1
|
Lu H, Jawdy S, Chen JG, Yang X, Kalluri UC. Poplar transformation with variable explant sources to maximize transformation efficiency. Sci Rep 2025; 15:1320. [PMID: 39779752 PMCID: PMC11711765 DOI: 10.1038/s41598-024-81235-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
For decades, Agrobacterium tumefaciens-mediated plant transformation has played an integral role in advancing fundamental and applied plant biology. The recent omnipresent emergence of synthetic biology, which relies on plant transformation to manipulate plant DNA and gene expression for novel product biosynthesis, has further propelled basic as well as applied interests in plant transformation technologies. The strong demand for a faster design-build-test-learn cycle, the essence of synthetic biology, is, however, still ill-matched with the long-standing issues of high tissue culture recalcitrance and low transformation efficiency of a wide range of plant species especially food, fiber and energy crops. To maximize the utility of plant material and improve the transformation productivity per unit plant form, we studied the regeneration and transformation efficiency of different types of explants, including leaf, stem, petiole, and root from Populus, a woody perennial bioenergy crop. Our results show that root explants, in addition to the above-ground tissues, have considerable regeneration capacity and amenability to A. tumefaciens and, the resulting transformants have largely comparable morphology, reporter gene expression, and transcriptome profile, independent of the explant source tissue. Transcriptome analyses mapped to regeneration stages and transformation efficiencies further revealed the expression of the auxin and cytokinin signaling and various developmental pathway genes in leaf and root explants undergoing early organogenesis. We further report high-potential candidate genes that may potentially be associated with higher regeneration and transformation efficiency. Overall, our study shows that explants from above- and belowground organs of a Populus plant are suitable for genetic transformation and tissue culture regeneration, and together with the underlying transcriptome data open new routes to maximize plant explant utilization, stable transformation productivity, and plant transformation efficiency.
Collapse
Affiliation(s)
- Haiwei Lu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Biology, University of NE - Kearney, Kearney, NE, USA
| | - Sara Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Udaya C Kalluri
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
2
|
Li H, Wang H, Guan L, Li Z, Wang H, Luo J. Optimization of High-Efficiency Tissue Culture Regeneration Systems in Gray Poplar. Life (Basel) 2023; 13:1896. [PMID: 37763300 PMCID: PMC10532866 DOI: 10.3390/life13091896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
A series of tissue culture regeneration protocols were conducted on gray poplar (P. tremula × P. alba) to select the most efficient callus induction medium, adventitious shoot differentiation medium, shoot elongation medium and rooting medium, which laid the foundation for the optimization of genetic transformation technology for gray poplar. The results showed that the Woody Plant Medium (WPM) supplemented with 0.10 mg L-1 kinetin (KT) and 1.00 mg L-1 2,4-dichlorophenoxyacetic acid (2,4-D) was the most suitable medium for callus induction. The callus induction rates of different tissues were greater than 85.7%. The optimal adventitious shoot differentiation medium was the WPM supplemented with 0.02 mg L-1 thidiazuron (TDZ), and the adventitious shoot differentiation rates of young tissues were 22.2-41.9%. The optimal direct differentiation medium was the Murashige and Skoog (MS) medium supplemented with 0.20 mg L-1 6-benzylaminopurine (6-BA), 0.10 mg L-1 indole butyric acid (IBA) and 0.001 mg L-1 TDZ, and the differentiation rate of adventitious shoots was greater than 94%. The best shoot elongation medium for adventitious shoots was the MS medium with 0.10 mg L-1 naphthylacetic acid (NAA). After 45 days of cultivation in the MS medium with 0.10 mg L-1 NAA, the average plant height was 1.8 cm, and the average number of elongated adventitious shoots was 11 per explant. The 1/2 MS medium with 0.10 mg L-1 NAA showed the best performance for rooting, and later, shoot growth. The direct shoot induction pathway can induce adventitious shoots much faster than the indirect adventitious shoot induction pathway can, and the time cost via the direct adventitious shoot induction pathway can be shortened by 2-6 weeks compared to that of the indirect shoot induction pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Luo
- College of Horticulture and Forestry Science, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China; (H.L.); (H.W.); (L.G.); (Z.L.); (H.W.)
| |
Collapse
|
3
|
Klocko AL, Elorriaga E, Ma C, Strauss SH. Variation in floral form of CRISPR knock-outs of the poplar homologs of LEAFY and AGAMOUS after FT heat-induced early flowering. HORTICULTURE RESEARCH 2023; 10:uhad132. [PMID: 37564267 PMCID: PMC10410293 DOI: 10.1093/hr/uhad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/20/2023] [Indexed: 08/12/2023]
Abstract
Plant migration and gene flow from genetically modified or exotic trees to nearby lands or by crossing with wild relatives is a major public and regulatory concern. Many genetic strategies exist to mitigate potential gene flow; however, the long delay in onset of flowering is a severe constraint to research progress. We used heat-induced FT overexpression to speed assessment of the expected floral phenotypes after CRISPR knockout of poplar homologs of the key floral genes, LEAFY and AGAMOUS. We selected events with previously characterized CRISPR-Cas9 induced biallelic changes then re-transformed them with the Arabidopsis thaliana FLOWERING LOCUS T (AtFT) gene under control of either a strong constitutive promoter or a heat-inducible promoter. We successfully obtained flowering in both a male and female clones of poplar, observing a wide range of inflorescence and floral forms among flowers, ramets, and insertion events. Overall, flowers obtained from the selected LFY and AG targeted events were consistent with what would be predicted for loss-of-function of these genes. LFY-targeted events showed small catkins with leaf-like organs, AG-targeted events had nested floral organs consistent with reduction in floral determinacy and absence of well-formed carpels or anthers. These findings demonstrate the great developmental plasticity of Populus flowers during genetically accelerated flowering, which may be of horticultural value. They also provide an informative early view of floral phenotypes and apparent sterility from knockouts of both these gene targets.
Collapse
Affiliation(s)
- Amy L Klocko
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Estefania Elorriaga
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA
| | - Cathleen Ma
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA
| | - Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
4
|
Khan A, Nasim N, Pudhuvai B, Koul B, Upadhyay SK, Sethi L, Dey N. Plant Synthetic Promoters: Advancement and Prospective. AGRICULTURE 2023; 13:298. [DOI: 10.3390/agriculture13020298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Native/endogenous promoters have several fundamental limitations in terms of their size, Cis-elements distribution/patterning, and mode of induction, which is ultimately reflected in their insufficient transcriptional activity. Several customized synthetic promoters were designed and tested in plants during the past decade to circumvent such constraints. Such synthetic promoters have a built-in capacity to drive the expression of the foreign genes at their maximum amplitude in plant orthologous systems. The basic structure and function of the promoter has been discussed in this review, with emphasis on the role of the Cis-element in regulating gene expression. In addition to this, the necessity of synthetic promoters in the arena of plant biology has been highlighted. This review also provides explicit information on the two major approaches for developing plant-based synthetic promoters: the conventional approach (by utilizing the basic knowledge of promoter structure and Cis-trans interaction) and the advancement in gene editing technology. The success of plant genetic manipulation relies on the promoter efficiency and the expression level of the transgene. Therefore, advancements in the field of synthetic promoters has enormous potential in genetic engineering-mediated crop improvement.
Collapse
Affiliation(s)
- Ahamed Khan
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, 370 05 České Budějovice, Czech Republic
| | - Noohi Nasim
- Division of Microbial and Plant Biotechnology, Institute of Life Sciences, Department of Biotechnology, Government of India, Bhubaneswar 751023, Odisha, India
| | - Baveesh Pudhuvai
- Department of Genetics and Biotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, 370 05 České Budějovice, Czech Republic
| | - Bhupendra Koul
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, Punjab, India
| | | | - Lini Sethi
- Division of Microbial and Plant Biotechnology, Institute of Life Sciences, Department of Biotechnology, Government of India, Bhubaneswar 751023, Odisha, India
| | - Nrisingha Dey
- Division of Microbial and Plant Biotechnology, Institute of Life Sciences, Department of Biotechnology, Government of India, Bhubaneswar 751023, Odisha, India
| |
Collapse
|
5
|
Yuan G, Lu H, Tang D, Hassan MM, Li Y, Chen JG, Tuskan GA, Yang X. Expanding the application of a UV-visible reporter for transient gene expression and stable transformation in plants. HORTICULTURE RESEARCH 2021; 8:234. [PMID: 34719678 PMCID: PMC8558336 DOI: 10.1038/s41438-021-00663-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/25/2021] [Accepted: 08/01/2021] [Indexed: 05/08/2023]
Abstract
Green fluorescent protein (GFP) has been widely used for monitoring gene expression and protein localization in diverse organisms. However, highly sensitive imaging equipment, like fluorescence microscope, is usually required for the visualization of GFP, limitings its application to fixed locations in samples. A reporter that can be visualized in real-time regardless the shape, size and location of the target samples will increase the flexibility and efficiency of research work. Here, we report the application of a GFP-like protein, called eYGFPuv, in both transient expression and stable transformation, in two herbaceous plant species (Arabidopsis and tobacco) and two woody plant species (poplar and citrus). We observed bright fluorescence under UV light in all of the four plant species without any effects on plant growth or development. eYGFPuv was shown to be effective for imaging transient expression in leaf and root tissues. With a focus on in vitro transformation, we demonstrated that the transgenic events expressing 1x eYGFPuv could be easily identified visually during the callus stage and the shoot stage, enabling early and efficient selection of transformants. Furthermore, whole-plant level visualization of eYGFPuv revealed its ubiquitous stability in transgenic plants. In addition, our transformation experiments showed that eYGFPuv can also be used to select transgenic plants without antibiotics. This work demonstrates the feasibility of utilizing 1x eYGFPuv in studies of gene expression and plant transformation in diverse plants.
Collapse
Affiliation(s)
- Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Haiwei Lu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Dan Tang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
- National Center for Citrus Improvement, College of Horticulture, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Md Mahmudul Hassan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Yi Li
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
6
|
Lawrence EH, Leichty AR, Doody EE, Ma C, Strauss SH, Poethig RS. Vegetative phase change in Populus tremula × alba. THE NEW PHYTOLOGIST 2021; 231:351-364. [PMID: 33660260 PMCID: PMC8353317 DOI: 10.1111/nph.17316] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/17/2021] [Indexed: 05/24/2023]
Abstract
Plants transition through juvenile and adult phases of vegetative development in a process known as vegetative phase change (VPC). In poplars (genus Populus) the differences between these stages are subtle, making it difficult to determine when this transition occurs. Previous studies of VPC in poplars have relied on plants propagated in vitro, leaving the natural progression of this process unknown. We examined developmental morphology of seed-grown and in vitro derived Populus tremula × alba (clone 717-1B4), and compared the phenotype of these to transgenics with manipulated miR156 expression, the master regulator of VPC. In seed-grown plants, most traits changed from node-to-node during the first 3 months of development but remained constant after node 25. Many traits remained unchanged in clones over-expressing miR156, or were enhanced when miR156 was lowered, demonstrating their natural progression is regulated by the miR156/SPL pathway. The characteristic leaf fluttering of Populus is one of these miR156-regulated traits. Vegetative development in plants grown from culture mirrored that of seed-grown plants, allowing direct comparison between plants often used in research and those found in nature. These results provide a foundation for further research on the role of VPC in the ecology and evolution of this economically important genus.
Collapse
Affiliation(s)
- Erica H. Lawrence
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aaron R. Leichty
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Erin E. Doody
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cathleen Ma
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA
| | - Steven H. Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA
| | - R. Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Rigoulot SB, Petzold HE, Williams SP, Brunner AM, Beers EP. Populus trichocarpa clade A PP2C protein phosphatases: their stress-induced expression patterns, interactions in core abscisic acid signaling, and potential for regulation of growth and development. PLANT MOLECULAR BIOLOGY 2019; 100:303-317. [PMID: 30945147 DOI: 10.1007/s11103-019-00861-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/26/2019] [Indexed: 05/26/2023]
Abstract
Overexpression of the poplar PP2C protein phosphatase gene PtrHAB2 resulted in increased tree height and altered leaf morphology and phyllotaxy, implicating PP2C phosphatases as growth regulators functioning under favorable conditions. We identified and studied Populus trichocarpa genes, PtrHAB1 through PtrHAB15, belonging to the clade A PP2C family of protein phosphatases known to regulate abscisic acid (ABA) signaling. PtrHAB1 through PtrHAB3 and PtrHAB12 through PtrHAB15 were the most highly expressed genes under non-stress conditions. The poplar PP2C genes were differentially regulated by drought treatments. Expression of PtrHAB1 through PtrHAB3 was unchanged or downregulated in response to drought, while all other PtrHAB genes were weakly to strongly upregulated in response to drought stress treatments. Yeast two-hybrid assays involving seven ABA receptor proteins (PtrRCAR) against 12 PtrHAB proteins detected 51 interactions involving eight PP2Cs and all PtrRCAR proteins with 22 interactions requiring the addition of ABA. PtrHAB2, PtrHAB12, PtrHAB13 and PtrHAB14 also interacted with the sucrose non-fermenting related kinase 2 proteins PtrSnRK2.10 and PtrSnRK2.11, supporting conservation of a SnRK2 signaling cascade regulated by PP2C in poplar. Additionally, PtrHAB2, PtrHAB12, PtrHAB13 and PtrHAB14 interacted with the mitogen-activated protein kinase protein PtrMPK7. Due to its interactions with PtrSnRK2 and PtrMPK7 proteins, and its reduced expression during drought stress, PtrHAB2 was overexpressed in poplar to test its potential as a growth regulator under non-stress conditions. 35S::PtrHAB2 transgenics exhibited increased growth rate for a majority of transgenic events and alterations in leaf phyllotaxy and morphology. These results indicate that PP2Cs have additional roles which extend beyond canonical ABA signaling, possibly coordinating plant growth and development in response to environmental conditions.
Collapse
Affiliation(s)
- Stephen B Rigoulot
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - H Earl Petzold
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Sarah P Williams
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Biology, College of William and Mary, Williamsburg, VA, 23187, USA
| | - Amy M Brunner
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Eric P Beers
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
8
|
Cánovas FM, Cañas RA, de la Torre FN, Pascual MB, Castro-Rodríguez V, Avila C. Nitrogen Metabolism and Biomass Production in Forest Trees. FRONTIERS IN PLANT SCIENCE 2018; 9:1449. [PMID: 30323829 PMCID: PMC6172323 DOI: 10.3389/fpls.2018.01449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/12/2018] [Indexed: 05/20/2023]
Abstract
Low nitrogen (N) availability is a major limiting factor for tree growth and development. N uptake, assimilation, storage and remobilization are key processes in the economy of this essential nutrient, and its efficient metabolic use largely determines vascular development, tree productivity and biomass production. Recently, advances have been made that improve our knowledge about the molecular regulation of acquisition, assimilation and internal recycling of N in forest trees. In poplar, a model tree widely used for molecular and functional studies, the biosynthesis of glutamine plays a central role in N metabolism, influencing multiple pathways both in primary and secondary metabolism. Moreover, the molecular regulation of glutamine biosynthesis is particularly relevant for accumulation of N reserves during dormancy and in N remobilization that takes place at the onset of the next growing season. The characterization of transgenic poplars overexpressing structural and regulatory genes involved in glutamine biosynthesis has provided insights into how glutamine metabolism may influence the N economy and biomass production in forest trees. Here, a general overview of this research topic is outlined, recent progress are analyzed and challenges for future research are discussed.
Collapse
Affiliation(s)
- Francisco M. Cánovas
- Grupo de Biología Molecular y Biotecnología de Plantas, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga, Spain
| | | | | | | | | | | |
Collapse
|
9
|
Klocko AL, Lu H, Magnuson A, Brunner AM, Ma C, Strauss SH. Phenotypic Expression and Stability in a Large-Scale Field Study of Genetically Engineered Poplars Containing Sexual Containment Transgenes. Front Bioeng Biotechnol 2018; 6:100. [PMID: 30123794 PMCID: PMC6085431 DOI: 10.3389/fbioe.2018.00100] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/26/2018] [Indexed: 01/12/2023] Open
Abstract
Genetic engineering (GE) has the potential to help meet demand for forest products and ecological services. However, high research and development costs, market restrictions, and regulatory obstacles to performing field tests have severely limited the extent and duration of field research. There is a notable paucity of field studies of flowering GE trees due to the time frame required and regulatory constraints. Here we summarize our findings from field testing over 3,300 GE poplar trees and 948 transformation events in a single, 3.6 hectare field trial for seven growing seasons; this trial appears to be the largest field-based scientific study of GE forest trees in the world. The goal was to assess a diversity of approaches for obtaining bisexual sterility by modifying RNA expression or protein function of floral regulatory genes, including LEAFY, AGAMOUS, APETALA1, SHORT VEGETATIVE PHASE, and FLOWERING LOCUS T. Two female and one male clone were transformed with up to 23 different genetic constructs designed to obtain sterile flowers or delay onset of flowering. To prevent gene flow by pollen and facilitate regulatory approval, the test genotypes chosen were incompatible with native poplars in the area. We monitored tree survival, growth, floral onset, floral abundance, pollen production, seed formation and seed viability. Tree survival was above 95%, and variation in site conditions generally had a larger impact on vegetative performance and onset of flowering than did genetic constructs. Floral traits, when modified, were stable over three to five flowering seasons, and we successfully identified RNAi or overexpression constructs that either postponed floral onset or led to sterile flowers. There was an absence of detectable somaclonal variation; no trees were identified that showed vegetative or floral modifications that did not appear to be related to the transgene added. Surveys for seedling and sucker establishment both within and around the plantation identified small numbers of vegetative shoots (root sprouts) but no seedlings, indicative of a lack of establishment of trees via seeds in the area. Overall, this long term study showed that GE containment traits can be obtained which are effective, stable, and not associated with vegetative abnormalities or somaclonal variation.
Collapse
Affiliation(s)
| | | | | | | | | | - Steven H. Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
10
|
Lee S, Lee YJ, Choi S, Park SB, Tran QG, Heo J, Kim HS. Development of an alcohol-inducible gene expression system for recombinant protein expression in Chlamydomonas reinhardtii. JOURNAL OF APPLIED PHYCOLOGY 2018; 30:2297-2304. [PMID: 30147236 PMCID: PMC6096782 DOI: 10.1007/s10811-018-1480-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 05/13/2023]
Abstract
Microalgae have been widely considered for the production of valuable products, such as lipid-based biofuel, value-added pigments, and anti-photo aging reagents. More recently, microalgae have been considered an alternative host for recombinant protein production because of their economic benefits and ecofriendly characteristics. Additionally, many microalgal strains identified to date are generally recognized as safe (GRAS); therefore, the use of microalgae-based technology is promising. However, basic studies on the genetic engineering of microalgae are rare, despite their importance. Particularly, inducible promoter systems that can be applied for strain engineering or recombinant protein production are rarely studied; hence, a number of challenging issues remain unsolved. Therefore, in this study, we focused on the development of a convenient and compact-inducible promoter system that can be used in microalgae. Based on previous success with plant systems, we employed the alcohol-inducible AlcR-P alcA system, which originates from the filamentous fungus, Aspergillus nidulans. This system comprises only two components, a regulatory protein, AlcR, and an inducible promoter, P alcA. Therefore, construction and transformation of the gene cassettes can be easily performed. Ethanol-dependent gene expression was observed in the transformants with no significant growth retardation or inducer consumption observed in the cells cultivated under optimized conditions.
Collapse
Affiliation(s)
- Sujin Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Republic of Korea
- Department of Environmental Biotechnology, KRIBB school of Biotechnology, Korea University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
| | - Yong Jae Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Republic of Korea
| | - Saehae Choi
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Republic of Korea
- Present Address: K-Biohealth, Osong, Chungbuk, 28160 Republic of Korea
| | - Su-Bin Park
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Republic of Korea
- Department of Environmental Biotechnology, KRIBB school of Biotechnology, Korea University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
| | - Quynh-Giao Tran
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Republic of Korea
- Department of Environmental Biotechnology, KRIBB school of Biotechnology, Korea University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
| | - Jina Heo
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Republic of Korea
- Department of Environmental Biotechnology, KRIBB school of Biotechnology, Korea University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Republic of Korea
- Department of Environmental Biotechnology, KRIBB school of Biotechnology, Korea University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
| |
Collapse
|
11
|
Elorriaga E, Klocko AL, Ma C, Strauss SH. Variation in Mutation Spectra Among CRISPR/Cas9 Mutagenized Poplars. FRONTIERS IN PLANT SCIENCE 2018; 9:594. [PMID: 29868058 PMCID: PMC5949366 DOI: 10.3389/fpls.2018.00594] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/16/2018] [Indexed: 05/18/2023]
Abstract
In an effort to produce reliably contained transgenic trees, we used the CRISPR/Cas9 system to alter three genes expected to be required for normal flowering in poplar (genus Populus). We designed synthetic guide RNAs (sgRNAs) to target the poplar homolog of the floral meristem identity gene, LEAFY (LFY), and the two poplar orthologs of the floral organ identity gene AGAMOUS (AG). We generated 557 transgenic events with sgRNA(s) and the Cas9 transgene and 49 events with Cas9 but no sgRNA, and analyzed all events by Sanger Sequencing of both alleles. Out of the 684 amplicons from events with sgRNAs, 474 had mutations in both alleles (77.5%). We sequenced both AG paralogs for 71 events in INRA clone 717-1B4 and 22 events in INRA clone 353-53, and found that 67 (94.4%) and 21 (95.5%) were double locus knockouts. Due partly to a single nucleotide polymorphism (SNP) present in the target region, one sgRNA targeting the AG paralogs was found to be completely inactive by itself (0%) but showed some activity in generating deletions when used in a construct with a second sgRNA (10.3-24.5%). Small insertion/deletion (indel) mutations were prevalent among mutated alleles of events with only one sgRNA (ranging from 94.3 to 99.1%), while large deletions were prevalent among alleles with two active sgRNAs (mean proportion of mutated alleles was 22.6% for small indels vs. 77.4% for large indels). For both LFY and AG, each individual sgRNA-gene combination had a unique mutation spectrum (p < 0.001). An AG-sgRNA construct with two sgRNAs had similar mutation spectra among two poplar clones (p > 0.05), however, a LFY-sgRNA construct with a single sgRNA gave significantly different mutation spectra among the same two clones (p < 0.001). The 49 empty vector control events had no mutations in either allele, and 310 potential "off-target" sequences also had no mutations in 58 transgenic events studied. CRISPR/Cas9 is a very powerful and precise system for generating loss-of-function mutations in poplars, and should be effective for generating reliably infertile trees that may promote regulatory, market, or public acceptance of genetic engineering technology.
Collapse
Affiliation(s)
- Estefania Elorriaga
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States
| | - Amy L. Klocko
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Cathleen Ma
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States
| | - Steven H. Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States
- *Correspondence: Steven H. Strauss
| |
Collapse
|
12
|
Adeyemo OS, Chavarriaga P, Tohme J, Fregene M, Davis SJ, Setter TL. Overexpression of Arabidopsis FLOWERING LOCUS T (FT) gene improves floral development in cassava (Manihot esculenta, Crantz). PLoS One 2017; 12:e0181460. [PMID: 28753668 PMCID: PMC5533431 DOI: 10.1371/journal.pone.0181460] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/20/2017] [Indexed: 11/30/2022] Open
Abstract
Cassava is a tropical storage-root crop that serves as a worldwide source of staple food for over 800 million people. Flowering is one of the most important breeding challenges in cassava because in most lines flowering is late and non-synchronized, and flower production is sparse. The FLOWERING LOCUS T (FT) gene is pivotal for floral induction in all examined angiosperms. The objective of the current work was to determine the potential roles of the FT signaling system in cassava. The Arabidopsis thaliana FT gene (atFT) was transformed into the cassava cultivar 60444 through Agrobacterium-mediated transformation and was found to be overexpressed constitutively. FT overexpression hastened flower initiation and associated fork-type branching, indicating that cassava has the necessary signaling factors to interact with and respond to the atFT gene product. In addition, overexpression stimulated lateral branching, increased the prolificacy of flower production and extended the longevity of flower development. While FT homologs in some plant species stimulate development of vegetative storage organs, atFT inhibited storage-root development and decreased root harvest index in cassava. These findings collectively contribute to our understanding of flower development in cassava and have the potential for applications in breeding.
Collapse
Affiliation(s)
- O. Sarah Adeyemo
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, United States of America
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Paul Chavarriaga
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Joe Tohme
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Martin Fregene
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Seth J. Davis
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Tim L. Setter
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
13
|
Updates in inducible transgene expression using viral vectors: from transient to stable expression. Curr Opin Biotechnol 2014; 32:85-92. [PMID: 25437638 DOI: 10.1016/j.copbio.2014.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 10/29/2014] [Accepted: 11/10/2014] [Indexed: 01/19/2023]
Abstract
The prospect of economically producing useful biologics in plants has greatly increased with the advent of viral vectors. The ability of viral vectors to amplify transgene expression has seen them develop into robust transient platforms for the high-level, rapid production of recombinant proteins. To adapt these systems to stably transformed plants, new ways of deconstructing the virus machinery and linking its expression and replication to chemically controlled promoters have been developed. The more advanced of these stable, inducible hyper-expression vectors provide both activated and amplified heterologous transgene expression. Such systems could be deployed in broad acre crops and provide a pathway to fully exploit the advantages of plants as a platform for the manufacture of a wide spectrum of products.
Collapse
|
14
|
Dugdale B, Mortimer CL, Kato M, James TA, Harding RM, Dale JL. Design and construction of an in-plant activation cassette for transgene expression and recombinant protein production in plants. Nat Protoc 2014; 9:1010-27. [PMID: 24705598 DOI: 10.1038/nprot.2014.068] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Virus-based transgene expression systems have become particularly valuable for recombinant protein production in plants. The dual-module in-plant activation (INPACT) expression platform consists of a uniquely designed split-gene cassette incorporating the cis replication elements of Tobacco yellow dwarf geminivirus (TYDV) and an ethanol-inducible activation cassette encoding the TYDV Rep and RepA replication-associated proteins. The INPACT system is essentially tailored for recombinant protein production in stably transformed plants and provides both inducible and high-level transient transgene expression with the potential to be adapted to diverse crop species. The construction of a novel split-gene cassette, the inducible nature of the system and the ability to amplify transgene expression via rolling-circle replication differentiates this system from other DNA- and RNA-based virus vector systems used for stable or transient recombinant protein production in plants. Here we provide a detailed protocol describing the design and construction of a split-gene INPACT cassette, and we highlight factors that may influence optimal activation and amplification of gene expression in transgenic plants. By using Nicotiana tabacum, the protocol takes 6-9 months to complete, and recombinant proteins expressed using INPACT can accumulate to up to 10% of the leaf total soluble protein.
Collapse
Affiliation(s)
- Benjamin Dugdale
- 1] Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Queensland, Australia. [2]
| | - Cara L Mortimer
- 1] Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Queensland, Australia. [2]
| | - Maiko Kato
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Tess A James
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Robert M Harding
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Queensland, Australia
| | - James L Dale
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
15
|
Kinkema M, Geijskes RJ, Shand K, Coleman HD, De Lucca PC, Palupe A, Harrison MD, Jepson I, Dale JL, Sainz MB. An improved chemically inducible gene switch that functions in the monocotyledonous plant sugar cane. PLANT MOLECULAR BIOLOGY 2014; 84:443-54. [PMID: 24142380 DOI: 10.1007/s11103-013-0140-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 10/07/2013] [Indexed: 05/03/2023]
Abstract
Chemically inducible gene switches can provide precise control over gene expression, enabling more specific analyses of gene function and expanding the plant biotechnology toolkit beyond traditional constitutive expression systems. The alc gene expression system is one of the most promising chemically inducible gene switches in plants because of its potential in both fundamental research and commercial biotechnology applications. However, there are no published reports demonstrating that this versatile gene switch is functional in transgenic monocotyledonous plants, which include some of the most important agricultural crops. We found that the original alc gene switch was ineffective in the monocotyledonous plant sugar cane, and describe a modified alc system that is functional in this globally significant crop. A promoter consisting of tandem copies of the ethanol receptor inverted repeat binding site, in combination with a minimal promoter sequence, was sufficient to give enhanced sensitivity and significantly higher levels of ethanol inducible gene expression. A longer CaMV 35S minimal promoter than was used in the original alc gene switch also substantially improved ethanol inducibility. Treating the roots with ethanol effectively induced the modified alc system in sugar cane leaves and stem, while an aerial spray was relatively ineffective. The extension of this chemically inducible gene expression system to sugar cane opens the door to new opportunities for basic research and crop biotechnology.
Collapse
Affiliation(s)
- Mark Kinkema
- Syngenta Centre for Sugar Cane Biofuels Development, Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, 4001, Australia,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wei H, Yordanov YS, Georgieva T, Li X, Busov V. Nitrogen deprivation promotes Populus root growth through global transcriptome reprogramming and activation of hierarchical genetic networks. THE NEW PHYTOLOGIST 2013; 200:483-497. [PMID: 23795675 DOI: 10.1111/nph.12375] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/20/2013] [Indexed: 05/07/2023]
Abstract
We show a distinct and previously poorly characterized response of poplar (Populus tremula × Populus alba) roots to low nitrogen (LN), which involves activation of root growth and significant transcriptome reprogramming. Analysis of the temporal patterns of enriched ontologies among the differentially expressed genes revealed an ordered assembly of functionally cohesive biological events that aligned well with growth and morphological responses. A core set of 28 biological processes was significantly enriched across the whole studied period and 21 of these were also enriched in the roots of Arabidopsis thaliana during the LN response. More than half (15) of the 28 processes belong to gene ontology (GO) terms associated with signaling and signal transduction pathways, suggesting the presence of conserved signaling mechanisms triggered by LN. A reconstruction of genetic regulatory network analysis revealed a sub-network centered on a PtaNAC1 (P. tremula × alba NAM, ATAF, CUC 1) transcription factor. PtaNAC1 root-specific up-regulation increased root biomass and significantly changed the expression of the connected hub genes specifically under LN. Our results provide evidence that the root response to LN involves hierarchically structured genetic networks centered on key regulatory factors. Targeting these factors via genetic engineering or breeding approaches can allow dynamic adjustment of root architecture in response to variable nitrogen availabilities in the soil.
Collapse
Affiliation(s)
- Hairong Wei
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931-1295, USA
- Biotechnology Research Center, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
- Computer Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Yordan S Yordanov
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931-1295, USA
| | - Tatyana Georgieva
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931-1295, USA
| | - Xiang Li
- Computer Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Victor Busov
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931-1295, USA
- Biotechnology Research Center, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| |
Collapse
|
17
|
Zhu R, Shevchenko O, Ma C, Maury S, Freitag M, Strauss SH. Poplars with a PtDDM1-RNAi transgene have reduced DNA methylation and show aberrant post-dormancy morphology. PLANTA 2013; 237:1483-93. [PMID: 23455459 DOI: 10.1007/s00425-013-1858-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 02/07/2013] [Indexed: 05/22/2023]
Abstract
The Arabidopsis thaliana DDM1 (Decreased DNA Methylation) gene is necessary for the maintenance of DNA methylation and heterochromatin assembly. In Arabidopsis, ddm1 mutants exhibit strong but delayed morphological phenotypes. We used RNA interference (RNAi) to suppress transcripts of two orthologous DDM1 paralogs in Populus trichocarpa and examined effects on whole plant phenotypes during perennial growth and seasonal dormancy. The RNAi-PtDDM1 transgenic poplars showed a wide range of DDM1 transcript suppression; the most strongly suppressed line had 37.5 % of the expression of the non-transgenic control. Genomic cytosine methylation (mC %) was 11.1 % in the non-transgenic control, compared with 9.1 % for the transgenic event with lowest mC %, a reduction of 18.1 %. An evaluation of greenhouse growth directly after acclimation of in vitro grown plants showed no developmental or growth rate abnormalities associated with the decrease in PtDDM1 expression. However, after a dormancy cycle and growth outdoors, a mottled leaf phenotype appeared in some of the transgenic insertion events that had strongly reduced PtDDM1 expression and DNA methylation. The phenotypic consequences of reduced DDM1 activity and DNA methylation appears to increase with cumulative plant propagation and growth.
Collapse
Affiliation(s)
- Ruoqing Zhu
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | | | |
Collapse
|
18
|
Chen Y, Yordanov YS, Ma C, Strauss S, Busov VB. DR5 as a reporter system to study auxin response in Populus. PLANT CELL REPORTS 2013; 32:453-63. [PMID: 23283559 DOI: 10.1007/s00299-012-1378-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/19/2012] [Accepted: 12/12/2012] [Indexed: 05/23/2023]
Abstract
KEY MESSAGE : Auxin responsive promoter DR5 reporter system is functional in Populus to monitor auxin response in tissues including leaves, roots, and stems. We described the behavior of the DR5::GUS reporter system in stably transformed Populus plants. We found several similarities with Arabidopsis, including sensitivity to native and synthetic auxins, rapid induction after treatment in a variety of tissues, and maximal responses in root tissues. There were also several important differences from Arabidopsis, including slower time to maximum response and lower induction amplitude. Young leaves and stem sections below the apex showed much higher DR5 activity than did older leaves and stems undergoing secondary growth. DR5 activity was highest in cortex, suggesting high levels of auxin concentration and/or sensitivity in this tissue. Our study shows that the DR5 reporter system is a sensitive and facile system for monitoring auxin responses and distribution at cellular resolution in poplar.
Collapse
Affiliation(s)
- Yiru Chen
- Michigan Technological University, School of Forest Research and Environmental Science, 1400 Townsend Drive, Houghton, MI 49931, USA
| | | | | | | | | |
Collapse
|
19
|
Vuković R, Bauer N, Curković-Perica M. Genetic elicitation by inducible expression of β-cryptogein stimulates secretion of phenolics from Coleus blumei hairy roots. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 199-200:18-28. [PMID: 23265315 DOI: 10.1016/j.plantsci.2012.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 10/27/2012] [Accepted: 10/31/2012] [Indexed: 06/01/2023]
Abstract
The accumulation of phenolic compounds in plants is often part of the defense response against stress and pathogen attack, which can be triggered and activated by elicitors. Oomycetal proteinaceous elicitor, β-cryptogein, induces hypersensitive response and systemic acquired resistance against some pathogens. In order to test the effect of endogenously synthesized cryptogein protein on phenolic compounds accumulation in tissue, and secretion into the culture medium, Coleus blumei hairy roots were generated. Agrobacterium rhizogenes was employed to insert synthetic crypt gene, encoding β-cryptogein, under the control of alcohol-inducible promoter. The expression of β-cryptogein, in C. blumei hairy roots, was controlled by application of 1% and 2% ethanol, during 21 days induction period. Ethanol-induced expression of β-cryptogein caused significant decrease of soluble phenolics and rosmarinic acid (RA) in hairy root lines and increase of phenolics, RA and caffeic acid in culture medium. These data suggest that β-cryptogein might be a potential regulatory factor for phenolics secretion from the roots.
Collapse
Affiliation(s)
- Rosemary Vuković
- Department of Biology, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | | | | |
Collapse
|
20
|
Zawaski C, Ma C, Strauss SH, French D, Meilan R, Busov VB. PHOTOPERIOD RESPONSE 1 (PHOR1)-like genes regulate shoot/root growth, starch accumulation, and wood formation in Populus. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5623-34. [PMID: 22915748 PMCID: PMC3444277 DOI: 10.1093/jxb/ers217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
This study describes functional characterization of two putative poplar PHOTOPERIOD RESPONSE 1 (PHOR1) orthologues. The expression and sequence analyses indicate that the two poplar genes diverged, at least partially, in function. PtPHOR1_1 is most highly expressed in roots and induced by short days, while PtPHOR1_2 is more uniformly expressed throughout plant tissues and is not responsive to short days. The two PHOR1 genes also had distinct effects on shoot and root growth when their expression was up- and downregulated transgenically. PtPHOR1_1 effects were restricted to roots while PtPHOR1_2 had similar effects on aerial and below-ground development. Nevertheless, both genes seemed to be upregulated in transgenic poplars that are gibberellin-deficient and gibberellin-insensitive, suggesting interplay with gibberellin signalling. PHOR1 suppression led to increased starch accumulation in both roots and stems. The effect of PHOR1 suppression on starch accumulation was coupled with growth-inhibiting effects in both roots and shoots, suggesting that PHOR1 is part of a mechanism that regulates the allocation of carbohydrate to growth or storage in poplar. PHOR1 downregulation led to significant reduction of xylem formation caused by smaller fibres and vessels suggesting that PHOR1 likely plays a role in the growth of xylem cells.
Collapse
Affiliation(s)
- Christine Zawaski
- School of Forest Resources and Environmental Science, Michigan Technological UniversityHoughton, MI 49931-1295USA
| | - Cathleen Ma
- Department of Forest Ecosystems and Society, Oregon State UniversityCorvallis, OR 97331-5752USA
| | - Steven H. Strauss
- Department of Forest Ecosystems and Society, Oregon State UniversityCorvallis, OR 97331-5752USA
| | - Darla French
- Department of Forestry and Natural Resources, Purdue UniversityWest Lafayette, IN 47907-2061USA
| | - Richard Meilan
- Department of Forestry and Natural Resources, Purdue UniversityWest Lafayette, IN 47907-2061USA
| | - Victor B. Busov
- School of Forest Resources and Environmental Science, Michigan Technological UniversityHoughton, MI 49931-1295USA
- *To whom correspondence should be addressed: E-mail:
| |
Collapse
|
21
|
Zawaski C, Kadmiel M, Pickens J, Ma C, Strauss S, Busov V. Repression of gibberellin biosynthesis or signaling produces striking alterations in poplar growth, morphology, and flowering. PLANTA 2011; 234:1285-98. [PMID: 21792553 DOI: 10.1007/s00425-011-1485-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 07/07/2011] [Indexed: 05/02/2023]
Abstract
We modified gibberellin (GA) metabolism and signaling in transgenic poplars using dominant transgenes and studied their effects for 3 years under field conditions. The transgenes that we employed either reduced the bioactive GAs, or attenuated their signaling. The majority of transgenic trees had significant and in many cases dramatic changes in height, crown architecture, foliage morphology, flowering onset, floral structure, and vegetative phenology. Most transgenes elicited various levels of height reduction consistent with the roles of GA in elongation growth. Several other growth traits were proportionally reduced, including branch length, internode distance, and leaf length. In contrast to elongation growth, stem diameter growth was much less affected, suggesting that semi-dwarf trees in dense stands might provide high levels of biomass production and carbon sequestration. The severity of phenotypic effects was strongly correlated with transgene expression among independent transgenic events, but often in a non-linear manner, the form of which varied widely among constructs. The majority of semi-dwarfed, transgenic plants showed delayed bud flush and early bud set, and expression of a native GAI transgene accelerated first time flowering in the field. All of the phenotypic changes observed in multiple years were stable over the 3 years of field study. Our results suggest that transgenic modification of GA action may be useful for producing semi-dwarf trees with modified growth and morphology for horticulture and other uses.
Collapse
Affiliation(s)
- Christine Zawaski
- School of Forest Research and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | | | | | | | | | | |
Collapse
|
22
|
Gou J, Ma C, Kadmiel M, Gai Y, Strauss S, Jiang X, Busov V. Tissue-specific expression of Populus C19 GA 2-oxidases differentially regulate above- and below-ground biomass growth through control of bioactive GA concentrations. THE NEW PHYTOLOGIST 2011; 192:626-39. [PMID: 21819406 DOI: 10.1111/j.1469-8137.2011.03837.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
• Here, we studied the poplar C(19) gibberellin 2-oxidase (GA2ox) gene subfamily. We show that a set of paralogous gene pairs differentially regulate shoot and root development. • PtGA2ox4 and its paralogous gene PtGA2ox5 are primarily expressed in aerial organs, and overexpression of PtGA2ox5 produced a strong dwarfing phenotype characteristic of GA deficiency. Suppression of PtGA2ox4 and PtGA2ox5 led to increased biomass growth, but had no effect on root development. By contrast, the PtGA2ox2 and PtGA2ox7 paralogous pair was predominantly expressed in roots, and when these two genes were RNAi-suppressed it led to a decrease of root biomass. • The morphological changes in the transgenic plants were underpinned by tissue-specific increases in bioactive GAs that corresponded to the predominant native expression of the targeted paralogous gene pair. Although RNAi suppression of both paralogous pairs led to changes in wood development, they were much greater in the transgenics with suppressed PtGA2ox4 and PtGA2ox5. The degree of gene suppression in independent events was strongly associated with phenotypes, demonstrating dose-dependent control of growth by GA2ox RNA concentrations. • The expression and transgenic modifications reported here show that shoot- and leaf-expressed PtGA2ox4 and PtGA2ox5 specifically restrain aerial shoot growth, while root-expressed PtGA2ox2 and PtGA2ox7 promote root development.
Collapse
Affiliation(s)
- Jiqing Gou
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931-1295, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Dalton DA, Ma C, Shrestha S, Kitin P, Strauss SH. Trade-offs between biomass growth and inducible biosynthesis of polyhydroxybutyrate in transgenic poplar. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:759-767. [PMID: 21265995 DOI: 10.1111/j.1467-7652.2010.00585.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Polyhydroxybutyrate (PHB) is a bioplastic that can be produced in transgenic plants by the coexpression of three bacterial genes for its biosynthesis. PHB yields from plants have been constrained by the negative impacts on plant health that result from diversion of resources into PHB production; thus, we employed an ecdysone analogue-based system for induced gene expression. We characterized 49 insertion events in hybrid transgenic poplar (Populus tremula x alba) that were produced using Agrobacterium transformation and studied two high-producing events in detail. Regenerated plants contained up to 1-2% PHB (dry weight) in leaves after 6-8 weeks of induction. Strong induction was observed with 1-10 mm Intrepid and limited direct toxicity observed. Confocal fluorescence microscopy was used to visualize PHB granules in chloroplasts after chemical treatment to reduce autofluorescence. A greenhouse study indicated that there were no negative consequences of PHB production on growth unless the PHB content exceeded 1% of leaf weight; at PHB levels above 1%, growth (height, diameter and total mass) decreased by 10%-34%.
Collapse
|
24
|
Warnasooriya SN, Montgomery BL. Using transgenic modulation of protein synthesis and accumulation to probe protein signaling networks in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2011; 6:1312-21. [PMID: 21862868 PMCID: PMC3258059 DOI: 10.4161/psb.6.9.16437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Deployment of new model species in the plant biology community requires the development and/or improvement of numerous genetic tools. Sequencing of the Arabidopsis thaliana genome opened up a new challenge of assigning biological function to each gene. As many genes exhibit spatiotemporal or other conditional regulation of biological processes, probing for gene function necessitates applications that can be geared toward temporal, spatial and quantitative functional analysis in vivo. The continuing quest to establish new platforms to examine plant gene function has resulted in the availability of numerous genomic and proteomic tools. Classical and more recent genome-wide experimental approaches include conventional mutagenesis, tagged DNA insertional mutagenesis, ectopic expression of transgenes, activation tagging, RNA interference and two-component transactivation systems. The utilization of these molecular tools has resulted in conclusive evidence for the existence of many genes, and expanded knowledge on gene structure and function. This review covers several molecular tools that have become increasingly useful in basic plant research. We discuss their advantages and limitations for probing cellular protein function while emphasizing the contributions made to lay the fundamental groundwork for genetic manipulation of crops using plant biotechnology.
Collapse
Affiliation(s)
- Sankalpi N Warnasooriya
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|
25
|
Voelker SL, Lachenbruch B, Meinzer FC, Kitin P, Strauss SH. Transgenic poplars with reduced lignin show impaired xylem conductivity, growth efficiency and survival. PLANT, CELL & ENVIRONMENT 2011; 34:655-68. [PMID: 21309794 DOI: 10.1111/j.1365-3040.2010.02270.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We studied xylem anatomy and hydraulic architecture in 14 transgenic insertion events and a control line of hybrid poplar (Populus spp.) that varied in lignin content. Transgenic events had different levels of down-regulation of two genes encoding 4-coumarate:coenzyme A ligase (4CL). Two-year-old trees were characterized after growing either as free-standing trees in the field or as supported by stakes in a greenhouse. In free-standing trees, a 20 to 40% reduction in lignin content was associated with increased xylem vulnerability to embolism, shoot dieback and mortality. In staked trees, the decreased biomechanical demands on the xylem was associated with increases in the leaf area to sapwood area ratio and wood specific conductivity (k(s)), and with decreased leaf-specific conductivity (k(l)). These shifts in hydraulic architecture suggest that the bending stresses perceived during growth can affect traits important for xylem water transport. Severe 4CL-downregulation resulted in the patchy formation of discoloured, brown wood with irregular vessels in which water transport was strongly impeded. These severely 4CL-downregulated trees had significantly lower growth efficiency (biomass/leaf area). These results underscore the necessity of adequate lignification for mechanical support of the stem, water transport, tree growth and survival.
Collapse
Affiliation(s)
- Steven L Voelker
- Department of Wood Science and Engineering Department of Forest Ecosystems and Society, Oregon State University U.S.D.A. Forest Service, Forest Sciences Laboratory, 3200 Jefferson Way, Corvallis, OR 97330, USA.
| | | | | | | | | |
Collapse
|
26
|
Voelker SL, Lachenbruch B, Meinzer FC, Strauss SH. Reduced wood stiffness and strength, and altered stem form, in young antisense 4CL transgenic poplars with reduced lignin contents. THE NEW PHYTOLOGIST 2011; 189:1096-1109. [PMID: 21158867 DOI: 10.1111/j.1469-8137.2010.03572.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
• Reduced lignin content in perennial crops has been sought as a means to improve biomass processability for paper and biofuels production, but it is unclear how this could affect wood properties and tree form. • Here, we studied a nontransgenic control and 14 transgenic events containing an antisense 4-coumarate:coenzyme A ligase (4CL) to discern the consequences of lignin reduction in poplar (Populus sp.). During the second year of growth, trees were grown either free-standing in a field trial or affixed to stakes in a glasshouse. • Reductions in lignin of up to 40% gave comparable losses in wood strength and stiffness. This occurred despite the fact that low-lignin trees had a similar wood density and up to three-fold more tension wood. In free-standing and staked trees, the control line had twice the height for a given diameter as did low-lignin trees. Staked trees had twice the height for a given diameter as free-standing trees in the field, but did not differ in wood stiffness. • Variation in tree morphogenesis appears to be governed by lignin x environment interactions mediated by stresses exerted on developing cells. Therefore our results underline the importance of field studies for assessing the performance of transgenic trees with modified wood properties.
Collapse
Affiliation(s)
- Steven L Voelker
- Department of Wood Science & Engineering, Oregon State University, Corvallis, OR 97330, USA
| | - Barbara Lachenbruch
- Department of Wood Science & Engineering, Oregon State University, Corvallis, OR 97330, USA
| | - Frederick C Meinzer
- USDA Forest Service, Pacific Northwest Research Station, 3200 Jefferson Way, Corvallis, OR 97330, USA
| | - Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97330, USA
| |
Collapse
|
27
|
Han KM, Dharmawardhana P, Arias RS, Ma C, Busov V, Strauss SH. Gibberellin-associated cisgenes modify growth, stature and wood properties in Populus. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:162-78. [PMID: 20573046 DOI: 10.1111/j.1467-7652.2010.00537.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We studied the effects on plant growth from insertion of five cisgenes that encode proteins involved in gibberellin metabolism or signalling. Intact genomic copies of PtGA20ox7, PtGA2ox2,Pt RGL1_1, PtRGL1_2 and PtGAI1 genes from the genome-sequenced Populus trichocarpa clone Nisqually-1 were transformed into Populus tremula × alba (clone INRA 717-1B4), and growth, morphology and xylem cell size characterized in the greenhouse. Each cisgene encompassed 1-2 kb of 5' and 1 kb of 3' flanking DNA, as well as all native exons and introns. Large numbers of independent insertion events per cisgene (19-38), including empty vector controls, were studied. Three of the cisgenic modifications had significant effects on plant growth rate, morphology or wood properties. The PtGA20ox7 cisgene increased rate of shoot regeneration in vitro, accelerated early growth, and variation in growth rate was correlated with PtGA20ox7 gene expression. PtRGL1_1 and PtGA2ox2 caused reduced growth, while PtRGL1_2 gave rise to plants that grew normally but had significantly longer xylem fibres. RT-PCR studies suggested that the lack of growth inhibition observed in PtRGL1_2 cisgenic plants was a result of co-suppression. PtGAI1 slowed regeneration rate and both PtGAI1 and PtGA20ox7 gave rise to increased variance among events for early diameter and volume index, respectively. Our work suggests that cisgenic insertion of additional copies of native genes involved in growth regulation may provide tools to help modify plant architecture, expand the genetic variance in plant architecture available to breeders and accelerate transfer of alleles between difficult-to-cross species.
Collapse
Affiliation(s)
- Katherine M Han
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, USA
| | | | | | | | | | | |
Collapse
|
28
|
Voelker SL, Lachenbruch B, Meinzer FC, Jourdes M, Ki C, Patten AM, Davin LB, Lewis NG, Tuskan GA, Gunter L, Decker SR, Selig MJ, Sykes R, Himmel ME, Kitin P, Shevchenko O, Strauss SH. Antisense down-regulation of 4CL expression alters lignification, tree growth, and saccharification potential of field-grown poplar. PLANT PHYSIOLOGY 2010; 154:874-86. [PMID: 20729393 PMCID: PMC2949011 DOI: 10.1104/pp.110.159269] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 08/18/2010] [Indexed: 05/18/2023]
Abstract
Transgenic down-regulation of the Pt4CL1 gene family encoding 4-coumarate:coenzyme A ligase (4CL) has been reported as a means for reducing lignin content in cell walls and increasing overall growth rates, thereby improving feedstock quality for paper and bioethanol production. Using hybrid poplar (Populus tremula × Populus alba), we applied this strategy and examined field-grown transformants for both effects on wood biochemistry and tree productivity. The reductions in lignin contents obtained correlated well with 4CL RNA expression, with a sharp decrease in lignin amount being observed for RNA expression below approximately 50% of the nontransgenic control. Relatively small lignin reductions of approximately 10% were associated with reduced productivity, decreased wood syringyl/guaiacyl lignin monomer ratios, and a small increase in the level of incorporation of H-monomers (p-hydroxyphenyl) into cell walls. Transgenic events with less than approximately 50% 4CL RNA expression were characterized by patches of reddish-brown discolored wood that had approximately twice the extractive content of controls (largely complex polyphenolics). There was no evidence that substantially reduced lignin contents increased growth rates or saccharification potential. Our results suggest that the capacity for lignin reduction is limited; below a threshold, large changes in wood chemistry and plant metabolism were observed that adversely affected productivity and potential ethanol yield. They also underline the importance of field studies to obtain physiologically meaningful results and to support technology development with transgenic trees.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Steven H. Strauss
- Department of Wood Science and Engineering (S.L.V., B.L.) and Department of Forest Ecosystems and Society (O.S., S.H.S.), Oregon State University, Corvallis, Oregon 97331; United States Department of Agriculture Forest Service, Pacific Northwest Research Station, Corvallis, Oregon 97331 (F.C.M.); Washington State University, Institute of Biological Chemistry, Pullman, Washington 99164–6340 (M.J., C.K., A.M.P., L.B.D., N.G.L.); BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6422 (G.A.T., L.G., S.R.D., M.J.S., R.S., M.E.H.); National Renewable Energy Laboratory, Golden, Colorado 80401 (S.R.D.,M.J.S., R.S., M.E.H.); Laboratory for Wood Biology and Xylarium, Royal Museum for Central Africa, B–3080 Tervuren, Belgium (P.K.)
| |
Collapse
|
29
|
Grant EH, Fujino T, Beers EP, Brunner AM. Characterization of NAC domain transcription factors implicated in control of vascular cell differentiation in Arabidopsis and Populus. PLANTA 2010; 232:337-52. [PMID: 20458494 DOI: 10.1007/s00425-010-1181-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 04/19/2010] [Indexed: 05/05/2023]
Abstract
Wood has a wide variety of uses and is arguably the most important renewable raw material. The composition of xylem cell types in wood determines the utility of different types of wood for distinct commercial applications. Using expression profiling and phylogenetic analysis, we identified many xylem-associated regulatory genes that may control the differentiation of cells involved in wood formation in Arabidopsis and poplar. Prominent among these are NAC domain transcription factors (NACs). We studied NACs with putative involvement as negative (XND1 from Arabidopsis and its poplar orthologs PopNAC118, PopNAC122, PopNAC128, PopNAC129), or positive (SND2 and SND3 from Arabidopsis and their poplar orthologs PopNAC105, PopNAC154, PopNAC156, PopNAC157) regulators of secondary cell wall synthesis. Using quantitative PCR and in situ hybridization, we evaluated expression of these Populus NACs in a developmental gradient and in association with reaction wood and found that representatives from both groups were associated with wood-forming tissue and phloem fibers. Additionally, XND1 orthologs were expressed in mesophyll cells of developing leaves. We prepared transgenic Arabidopsis and poplar plants for overexpression of selected NACs. XND1 overexpression in poplar resulted in severe stunting. Additionally, poplar XND1 overexpressors lacked phloem fibers and showed reductions in cell size and number, vessel number, and frequency of rays in the xylem. Overexpression of PopNAC122, an XND1 ortholog, yielded an analogous phenotype in Arabidopsis. Overexpression of PopNAC154 in poplar reduced height growth and increased the relative proportion of bark versus xylem.
Collapse
Affiliation(s)
- Emily H Grant
- Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
30
|
Zhang H, Harry DE, Ma C, Yuceer C, Hsu CY, Vikram V, Shevchenko O, Etherington E, Strauss SH. Precocious flowering in trees: the FLOWERING LOCUS T gene as a research and breeding tool in Populus. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2549-60. [PMID: 20406786 DOI: 10.1093/jxb/erq092] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Expression of FLOWERING LOCUS T (FT) and its homologues has been shown to accelerate the onset of flowering in a number of plant species, including poplar (Populus spp.). The application of FT should be of particular use in forest trees, as it could greatly accelerate and enable new kinds of breeding and research. Recent evidence showing the extent to which FT is effective in promoting flowering in trees is discussed, and its effectiveness in poplar is reported. Results using one FT gene from Arabidopsis and two from poplar, all driven by a heat-inducible promoter, transformed into two poplar genotypes are also described. Substantial variation in flowering response was observed depending on the FT gene and genetic background. Heat-induced plants shorter than 30 cm failed to flower as well as taller plants. Plants exposed to daily heat treatments lasting 3 weeks tended to produce fewer abnormal flowers than those in heat treatments of shorter durations; increasing the inductive temperature from 37 degrees C to 40 degrees C produced similar benefits. Using optimal induction conditions, approximately 90% of transgenic plants could be induced to flower. When induced FT rootstocks were grafted with scions that lacked FT, flowering was only observed in rootstocks. The results suggest that a considerable amount of species- or genotype-specific adaptation will be required to develop FT into a reliable means for shortening the generation cycle for breeding in poplar.
Collapse
Affiliation(s)
- Huanling Zhang
- Northwest A&F University, College of Forestry, Yangling, 712100 People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mohamed R, Wang CT, Ma C, Shevchenko O, Dye SJ, Puzey JR, Etherington E, Sheng X, Meilan R, Strauss SH, Brunner AM. Populus CEN/TFL1 regulates first onset of flowering, axillary meristem identity and dormancy release in Populus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:674-88. [PMID: 20202169 DOI: 10.1111/j.1365-313x.2010.04185.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Members of the CENTRORADIALIS (CEN)/TERMINAL FLOWER 1 (TFL1) subfamily control shoot meristem identity, and loss-of-function mutations in both monopodial and sympodial herbaceous plants result in dramatic changes in plant architecture. We studied the degree of conservation between herbaceous and woody perennial plants in shoot system regulation by overexpression and RNA interference (RNAi)-mediated suppression of poplar orthologs of CEN, and the related gene MOTHER OF FT AND TFL 1 (MFT). Field study of transgenic poplars (Populus spp.) for over 6 years showed that downregulation of PopCEN1 and its close paralog, PopCEN2, accelerated the onset of mature tree characteristics, including age of first flowering, number of inflorescences and proportion of short shoots. Surprisingly, terminal vegetative meristems remained indeterminate in PopCEN1-RNAi trees, suggesting the possibility that florigen signals are transported to axillary mersitems rather than the shoot apex. However, the axillary inflorescences (catkins) of PopCEN1-RNAi trees contained fewer flowers than did wild-type catkins, suggesting a possible role in maintaining the indeterminacy of the inflorescence apex. Expression of PopCEN1 was significantly correlated with delayed spring bud flush in multiple years, and in controlled environment experiments, 35S::PopCEN1 and RNAi transgenics required different chilling times to release dormancy. Considered together, these results indicate that PopCEN1/PopCEN2 help to integrate shoot developmental transitions that recur during each seasonal cycle with the age-related changes that occur over years of growth.
Collapse
Affiliation(s)
- Rozi Mohamed
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331-5752, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bao Y, Dharmawardhana P, Mockler TC, Strauss SH. Genome scale transcriptome analysis of shoot organogenesis in Populus. BMC PLANT BIOLOGY 2009; 9:132. [PMID: 19919717 PMCID: PMC2784466 DOI: 10.1186/1471-2229-9-132] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 11/17/2009] [Indexed: 05/09/2023]
Abstract
BACKGROUND Our aim is to improve knowledge of gene regulatory circuits important to dedifferentiation, redifferentiation, and adventitious meristem organization during in vitro regeneration of plants. Regeneration of transgenic cells remains a major obstacle to research and commercial deployment of most taxa of transgenic plants, and woody species are particularly recalcitrant. The model woody species Populus, due to its genome sequence and amenability to in vitro manipulation, is an excellent species for study in this area. The genes recognized may help to guide the development of new tools for improving the efficiency of plant regeneration and transformation. RESULTS We analyzed gene expression during poplar in vitro dedifferentiation and shoot regeneration using an Affymetrix array representing over 56,000 poplar transcripts. We focused on callus induction and shoot formation, thus we sampled RNAs from tissues: prior to callus induction, 3 days and 15 days after callus induction, and 3 days and 8 days after the start of shoot induction. We used a female hybrid white poplar clone (INRA 717-1 B4, Populus tremula x P. alba) that is used widely as a model transgenic genotype. Approximately 15% of the monitored genes were significantly up-or down-regulated when controlling the false discovery rate (FDR) at 0.01; over 3,000 genes had a 5-fold or greater change in expression. We found a large initial change in expression after the beginning of hormone treatment (at the earliest stage of callus induction), and then a much smaller number of additional differentially expressed genes at subsequent regeneration stages. A total of 588 transcription factors that were distributed in 45 gene families were differentially regulated. Genes that showed strong differential expression included components of auxin and cytokinin signaling, selected cell division genes, and genes related to plastid development and photosynthesis. When compared with data on in vitro callogenesis in Arabidopsis, 25% (1,260) of up-regulated and 22% (748) of down-regulated genes were in common with the genes regulated in poplar during callus induction. CONCLUSION The major regulatory events during plant cell organogenesis occur at early stages of dedifferentiation. The regulatory circuits reflect the combinational effects of transcriptional control and hormone signaling, and associated changes in light environment imposed during dedifferentiation.
Collapse
Affiliation(s)
- Yanghuan Bao
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon 97331-5752, USA
| | - Palitha Dharmawardhana
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon 97331-5752, USA
| | - Todd C Mockler
- Department of Botany and Plant Pathology, Cordley Hall 2082, Oregon State University, Corvallis, Oregon 97331-2902, USA
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331-7303, USA
| | - Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon 97331-5752, USA
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331-7303, USA
| |
Collapse
|
33
|
Bao Y, Dharmawardhana P, Arias R, Allen MB, Ma C, Strauss SH. WUS and STM-based reporter genes for studying meristem development in poplar. PLANT CELL REPORTS 2009; 28:947-62. [PMID: 19280192 DOI: 10.1007/s00299-009-0685-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 01/08/2009] [Accepted: 02/08/2009] [Indexed: 05/08/2023]
Abstract
We describe the development of a reporter system for monitoring meristem initiation in poplar using promoters of poplar homologs to the meristem-active regulatory genes WUSCHEL (WUS) and SHOOTMERISTEMLESS (STM). When ~3 kb of the 5' flanking regions of close homologs were used to drive expression of the GUSPlus gene, 50-60% of the transgenic events showed expression in apical and axillary meristems. However, expression was also common in other organs, including in leaf veins (40 and 46% of WUS and STM transgenic events, respectively) and hydathodes (56% of WUS transgenic events). Histochemical GUS staining of explants during callogenesis and shoot regeneration using in vitro stems as explants showed that expression was detectable prior to visible shoot development, starting 3-15 days after explants were placed onto callus inducing medium. A minority of WUS and STM events also showed expression in the cambium, phloem, or xylem of regenerated, greenhouse grown plants undergoing secondary growth. Based on microarray gene expression data, a paralog of poplar WUS was detectably up-regulated during shoot initiation, but the other paralog was not. Both paralogs of poplar STM were down-regulated threefold to sixfold during early callus initiation. We identified 15-35 copies of cytokinin response regulator binding motifs (ARR1AT) and one copy of the auxin response element (AuxRE) in both promoters. Several of the events recovered may be useful for studying the process of primary and secondary meristem development, including treatments intended to stimulate meristem development to promote clonal propagation and genetic transformation.
Collapse
Affiliation(s)
- Y Bao
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331-5752, USA
| | | | | | | | | | | |
Collapse
|
34
|
Li J, Brunner AM, Meilan R, Strauss SH. Matrix attachment region elements have small and variable effects on transgene expression and stability in field-grown Populus. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:887-96. [PMID: 19548343 DOI: 10.1111/j.1467-7652.2008.00369.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Matrix attachment regions (MARs) are thought to buffer transgenes from the influence of surrounding chromosomal sequences, and therefore to reduce transgene silencing and variation in expression. The statistical properties of more than 400 independent transgenic events produced in Populus, with and without flanking MAR elements from the tobacco root gene RB7, were analysed. The expression of two reporter genes in two poplar clones during three phases of vegetative growth, and the association of T-DNA characteristics with expression, was examined. It was found that MARs did not show a consistent effect on transgene expression levels; they had no effect on the green fluorescent protein (GFP) reporter gene, but reduced expression in the Basta resistance (BAR) reporter gene by 23%. The presence of MARs reduced expression variability within transformant populations, apparently by reducing the number of silenced or weakly expressing events. Transgene expression was highly stable over vegetative growth cycles that spanned 3 years of growth in the glasshouse and field, but MARs showed no association with the strength of correlations in expression over the years. Nonetheless, MARs increased the correlation in expression between a p35S::GFP and prbcS::BAR transgene linked on the same vector, but the effect was small and varied between the years. The presence of MARs had no effect on the transgene copy number, but was positively associated with T-DNA truncations, as well as with the formation of direct over inverted repeats at the same chromosomal locus.
Collapse
Affiliation(s)
- Jingyi Li
- Department of Forest Science, Oregon State University, Corvallis, OR 97331-5752, USA
| | | | | | | |
Collapse
|
35
|
Efficient and stable transgene suppression via RNAi in field-grown poplars. Transgenic Res 2007; 17:679-94. [PMID: 17929189 DOI: 10.1007/s11248-007-9148-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 09/22/2007] [Indexed: 12/23/2022]
Abstract
The efficiency and stability of RNA interference (RNAi) in perennial species, particularly in natural environments, is poorly understood. We studied 56 independent poplar RNAi transgenic events in the field over 2 years. A resident BAR transgene was targeted with two different types of RNAi constructs: a 475-bp IR of the promoter sequence and a 275-bp IR of the coding sequence, each with and without the presence of flanking matrix attachment regions (MARs). RNAi directed at the coding sequence was a strong inducer of gene silencing; 80% of the transgenic events showed more than 90% suppression. In contrast, RNAi targeting the promoter resulted in only 6% of transgenic events showing more than 90% suppression. The degree of suppression varied widely but was highly stable in each event over 2 years in the field, and had no association with insert copy number or the presence of MARs. RNAi remained stable during a winter to summer seasonal cycle, a time when expression of the targeted transgene driven by an rbcS promoter varied widely. When strong gene suppression was induced by an IR directed at the promoter sequence, it was accompanied by methylation of the homologous promoter region. DNA methylation was also observed in the coding region of highly suppressed events containing an IR directed at the coding sequence; however, the methylation degree and pattern varied widely among those suppressed events. Our results suggest that RNAi can be highly effective for functional genomics and biotechnology of perennial plants.
Collapse
|
36
|
Jia H, Van Loock B, Liao M, Verbelen JP, Vissenberg K. Combination of the ALCR/alcA ethanol switch and GAL4/VP16-UAS enhancer trap system enables spatial and temporal control of transgene expression in Arabidopsis. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:477-82. [PMID: 17442066 DOI: 10.1111/j.1467-7652.2007.00255.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The experimental control of gene expression in specific tissues or cells at defined time points is a useful tool for the analysis of gene function. GAL4/VP16-UAS enhancer trap lines can be used to selectively express genes in specific tissues or cells, and an ethanol-inducible system can help to control the time of expression. In this study, the combination of the two methods allowed the successful regulation of gene expression in both time and space. For this purpose, a binary vector, 962-UAS::GUS, was constructed in which the ALCR activator and beta-glucuronidase (GUS) reporter gene were placed under the control of upstream activator sequence (UAS) elements and the alcA response element, respectively. Three different GAL4/VP16-UAS enhancer trap lines of Arabidopsis were transformed, resulting in transgenic plants in which GUS activity was detected only on ethanol induction and exclusively in the predicted tissues of the enhancer trap lines. As a library of different enhancer trap lines with distinct green fluorescent protein (GFP) patterns exist, transformation with a similar vector, in which GUS is replaced by another gene, would enable the control of the time and place of transgene expression. We have constructed two vectors for easy cloning of the gene of interest, one with a polylinker site and one that is compatible with the GATEWAY vector conversion system. The method can be extended to other species when enhancer trap lines become available.
Collapse
Affiliation(s)
- Hongge Jia
- University of Antwerp, Department of Biology, Plant Physiology and Morphology, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | | | | | | | | |
Collapse
|