1
|
Kahlon PS, Förner A, Muser M, Oubounyt M, Gigl M, Hammerl R, Baumbach J, Hückelhoven R, Dawid C, Stam R. Laminarin-triggered defence responses are geographically dependent in natural populations of Solanum chilense. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3240-3254. [PMID: 36880316 DOI: 10.1093/jxb/erad087] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/06/2023] [Indexed: 05/21/2023]
Abstract
Natural plant populations are polymorphic and show intraspecific variation in resistance properties against pathogens. The activation of the underlying defence responses can depend on variation in perception of pathogen-associated molecular patterns or elicitors. To dissect such variation, we evaluated the responses induced by laminarin (a glucan, representing an elicitor from oomycetes) in the wild tomato species Solanum chilense and correlated this to observed infection frequencies of Phytophthora infestans. We measured reactive oxygen species burst and levels of diverse phytohormones upon elicitation in 83 plants originating from nine populations. We found high diversity in basal and elicitor-induced levels of each component. Further we generated linear models to explain the observed infection frequency of P. infestans. The effect of individual components differed dependent on the geographical origin of the plants. We found that the resistance in the southern coastal region, but not in the other regions, was directly correlated to ethylene responses and confirmed this positive correlation using ethylene inhibition assays. Our findings reveal high diversity in the strength of defence responses within a species and the involvement of different components with a quantitatively different contribution of individual components to resistance in geographically separated populations of a wild plant species.
Collapse
Affiliation(s)
- Parvinderdeep S Kahlon
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354, Freising, Germany
| | - Andrea Förner
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354, Freising, Germany
| | - Michael Muser
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354, Freising, Germany
| | - Mhaned Oubounyt
- Research Group of Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
| | - Michael Gigl
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Richard Hammerl
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Jan Baumbach
- Research Group of Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
- Computational BioMedicine lab, Institute of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, Odense, Denmark
| | - Ralph Hückelhoven
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354, Freising, Germany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Remco Stam
- Department of Phytopathology and Crop Protection, Institute for Phytopathology, Kiel University, Hermann Rodewald Str 9, 24118 Kiel, Germany
| |
Collapse
|
2
|
Zhang Q, Dandena H, McCausland M, Liu H, Liu Z, Xu W, Li G. Genetic Analysis of a Horizontal Resistance Locus BLMR2 in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 12:663868. [PMID: 34113364 PMCID: PMC8186441 DOI: 10.3389/fpls.2021.663868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/12/2021] [Indexed: 05/25/2023]
Abstract
Leptosphaeria maculans causes blackleg disease in Brassica napus. The blackleg disease is mainly controlled by resistance genes in B. napus. Previous studies have shown that the blackleg resistant BLMR2 locus that conferred horizontal resistance under field conditions, is located on chromosome A10 of B. napus. The purpose of this study is to fine map this locus and hence identify a candidate gene underlying horizontal resistance. The spectrum of resistance to L. maculans isolates of the resistance locus BLMR2 was analyzed using near isogenic lines, resistant, and susceptible cultivars. The results showed that this locus was horizontally resistant to all isolates tested. Sequence characterized amplified regions (SCAR), simple sequence repeats (SSR), and single nucleotide polymorphism (SNP) markers were developed in the chromosome region of BLMR2 and a fine genetic map was constructed. Two molecular markers narrowed BLMR2 in a 53.37 kb region where six genes were annotated. Among the six annotated genes, BnaA10g11280D/BnaA10g11290D encoding a cytochrome P450 protein were predicted as the candidate of BLMR2. Based on the profiling of pathogen induced transcriptome, three expressed genes in the six annotated genes were identified while only cytochrome P450 showed upregulation. The candidate corresponds to the gene involved in the indole glucosinolate biosynthesis pathway and plant basal defense in Arabidopsis thaliana. The molecular markers identified in this study will allow the quick incorporation of the BLMR2 allele in rapeseed cultivars to enhance blackleg resistance.
Collapse
|
3
|
Inoue A, Izumi H. Influence of Artificial Inoculation with Pseudomonas fluorescens on Enzymatic Browning Reactions of Fresh-cut Potatoes. Biocontrol Sci 2020; 25:215-222. [PMID: 33281179 DOI: 10.4265/bio.25.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
We initially correlated fluorescent pseudomonads and severity of enzymatic browning on fresh-cut potatoes. Subsequently, we determined the influence of inoculation with Pseudomonas fluorescens following its isolation from the brown tissues on the browning response on fresh-cut potatoes. Bacterial counts on potato slices were higher on browning tissues than on non-browning tissues. P. fluorescens that has been isolated only from the severely browning tissues developed brown discoloration on surface tissues when inoculated onto potato slices. When potato slices were initially inoculated with 103 colony-forming unit (CFU) per mL of P. fluorescens and then stored at 5ºC, bacterial counts, polyphenol oxidase (PPO) activity, phenolic content, and browning severity increased after 3 days of storage. We observed plant PPO derived from potatoes and bacterial PPO released by P. fluorescens and dictated that the plant PPO contributed to browning reactions because only the plant PPO was activated at pH 6-7 that lies in potato tissues. The PPO1 gene that contributed to browning on potatoes was expressed prominently in potato tissues following inoculation with P. fluorescens. These results indicated that P. fluorescens enhanced browning of fresh-cut potatoes by inducing the plant PPO gene, plant PPO activity, and accumulation of phenolics as a biocontrol agent.
Collapse
Affiliation(s)
- Ayano Inoue
- Faculty of Biology-Oriented Science and Technology, Kindai University
| | - Hidemi Izumi
- Faculty of Biology-Oriented Science and Technology, Kindai University
| |
Collapse
|
4
|
Pham AT, Harris DK, Buck J, Hoskins A, Serrano J, Abdel-Haleem H, Cregan P, Song Q, Boerma HR, Li Z. Fine Mapping and Characterization of Candidate Genes that Control Resistance to Cercospora sojina K. Hara in Two Soybean Germplasm Accessions. PLoS One 2015; 10:e0126753. [PMID: 25993056 PMCID: PMC4437980 DOI: 10.1371/journal.pone.0126753] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/07/2015] [Indexed: 01/21/2023] Open
Abstract
Frogeye leaf spot (FLS), caused by the fungus Cercospora sojina K. Hara, may cause a significant yield loss to soybean growers in regions with a warm and humid climate. Two soybean accessions, PI 594891 and PI 594774, were identified to carry a high level of resistance similar to that conditioned by the Rcs3 gene in 'Davis'. Previously, we reported that the resistance to FLS in these two plant introductions (PIs) was controlled by a novel gene (s) on chromosome 13 that is different from Rcs3. To fine-map the novel FLS resistance gene(s) in these two PIs, F2: 3 seeds from the crosses between PI 594891 and PI 594774, and the FLS susceptible genotype 'Blackhawk' were genotyped with SNP markers that were designed based on the SoySNP50k iSelect BeadChip data to identify recombinant events and locate candidate genes. Analysis of lines possessing key recombination events helped narrow down the FLS-resistance genomic region in PI 594891 from 3.3 Mb to a 72.6 kb region with five annotated genes. The resistance gene in PI 594774 was fine-mapped into a 540 kb region that encompasses the 72.6 kb region found in PI 594891. Sequencing five candidate genes in PI 594891 identified three genes that have several mutations in the promoter, intron, 5', and 3' UTR regions. qPCR analysis showed a difference in expression levels of these genes in both lines compared to Blackhawk in the presence of C. sojina. Based on phenotype, genotype and haplotype analysis results, these two soybean accessions might carry different resistance alleles of the same gene or two different gene(s). The identified SNPs were used to develop Kompetitive Allele Specific PCR (KASP) assays to detect the resistance alleles on chromosome 13 from the two PIs for marker-assisted selection.
Collapse
Affiliation(s)
- Anh-Tung Pham
- Center for Applied Genetic Technologies & Department of Crop and Soil Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Donna K. Harris
- Center for Applied Genetic Technologies & Department of Crop and Soil Sciences, University of Georgia, Athens, Georgia, United States of America
| | - James Buck
- Department of Plant Pathology, University of Georgia, Griffin, Georgia, United States of America
| | - Aaron Hoskins
- Center for Applied Genetic Technologies & Department of Crop and Soil Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Jonathan Serrano
- Center for Applied Genetic Technologies & Department of Crop and Soil Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Hussein Abdel-Haleem
- Center for Applied Genetic Technologies & Department of Crop and Soil Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Perry Cregan
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture-Agricultural Research Service, Beltsville, Maryland, United States of America
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture-Agricultural Research Service, Beltsville, Maryland, United States of America
| | - H. Roger Boerma
- Center for Applied Genetic Technologies & Department of Crop and Soil Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Zenglu Li
- Center for Applied Genetic Technologies & Department of Crop and Soil Sciences, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
5
|
Chi M, Bhagwat B, Lane WD, Tang G, Su Y, Sun R, Oomah BD, Wiersma PA, Xiang Y. Reduced polyphenol oxidase gene expression and enzymatic browning in potato (Solanum tuberosum L.) with artificial microRNAs. BMC PLANT BIOLOGY 2014; 14:62. [PMID: 24618103 PMCID: PMC4007649 DOI: 10.1186/1471-2229-14-62] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 03/04/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Polyphenol oxidase (PPO), often encoded by a multi-gene family, causes oxidative browning, a significant problem in many food products. Low-browning potatoes were produced previously through suppression of PPO gene expression, but the contribution of individual PPO gene isoform to the oxidative browning process was unknown. Here we investigated the contributions of different PPO genes to total PPO protein activity, and the correlations between PPO protein level, PPO activity and tuber tissue browning potential by suppression of all previously characterized potato PPO genes, both individually and in combination using artificial microRNAs (amiRNAs) technology. RESULTS Survey of the potato genome database revealed 9 PPO-like gene models, named StuPPO1 to StuPPO9 in this report. StuPPO1, StuPPO2, StuPPO3 and StuPPO4 are allelic to the characterized POTP1/P2, POT32, POT33 and POT72, respectively. Fewer ESTs were found to support the transcriptions of StuPPO5 to StuPPO8. StuPPO9 related ESTs were expressed at significant higher levels in pathogen-infected potato tissues. A series of browning phenotypes were obtained by suppressing StuPPO1 to StuPPO4 genes alone and in combination. Down-regulation of one or several of the PPO genes did not usually cause up-regulation of the other PPO genes in the transgenic potato tubers, but resulted in reduced PPO protein levels. The different PPO genes did not contribute equally to the total PPO protein content in the tuber tissues, with StuPPO2 accounting for ~ 55% as the major contributor, followed by StuPPO1, ~ 25-30% and StuPPO3 and StuPPO4 together with less than 15%. Strongly positive correlations between PPO protein level, PPO activity and browning potential were demonstrated in our analysis. Low PPO activity and low-browning potatoes were produced by simultaneous down-regulation of StuPPO2 to StuPPO4, but the greatest reduction occurred when StuPPO1 to StuPPO4 were all suppressed. CONCLUSION StuPPO1 to StuPPO4 genes contributed to browning reactions in tuber tissues but their effect was not equal. Different PPO genes may be regulated independently reflecting their diversified functions. Our results show that amiRNAs can be used to suppress closely related members of highly conserved multi-gene family. This approach also suggests a new strategy for breeding low-browning crops using small DNA inserts.
Collapse
Affiliation(s)
- Ming Chi
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
- Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, British Columbia V0H 1Z0, Canada
| | - Basdeo Bhagwat
- Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, British Columbia V0H 1Z0, Canada
| | - W David Lane
- Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, British Columbia V0H 1Z0, Canada
| | - Guiliang Tang
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Yinquan Su
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - Runcang Sun
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - B Dave Oomah
- Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, British Columbia V0H 1Z0, Canada
| | - Paul A Wiersma
- Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, British Columbia V0H 1Z0, Canada
| | - Yu Xiang
- Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, British Columbia V0H 1Z0, Canada
| |
Collapse
|
6
|
Tarwacka J, Polkowska-Kowalczyk L, Kolano B, Śliwka J, Wielgat B. Interspecific somatic hybrids Solanum villosum (+) S. tuberosum, resistant to Phytophthora infestans. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1541-8. [PMID: 23993778 DOI: 10.1016/j.jplph.2013.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 06/05/2013] [Accepted: 06/06/2013] [Indexed: 05/11/2023]
Abstract
The interspecific somatic hybrids 4x S. villosum (+) 2x S. tuberosum clone DG 81-68 (VT hybrids) were obtained and characterized molecularly and cytogenetically. The morphology of fusion-derived plants was intermediate in relation to the parental species. The expected ploidy level of the regenerants was 6x for the VT hybrids, but the real ploidy of the hybrids varied, with some of them being euploids, and others - aneuploids. The hybridity of the regenerants was verified by random amplified polymorphic DNA (RAPD) analysis. Despite the variation in ploidy, the RAPD patterns of the hybrids were mostly uniform, suggesting similarity of the genotypes of the VT clones. Genomic in situ hybridization (GISH) analysis discriminated between the chromosomes of both parental genomes in VT somatic hybrids and also confirmed their hybridity. The resistance of VT somatic hybrids to Phytophthora infestans was evaluated and all of the hybrids proved to be highly resistant. In search of the mechanisms involved in resistance of the Solanum species to P. infestans, the biochemical reactions occurring early after elicitor treatment were studied. The production of reactive oxygen species (ROS), as one of the earliest reactions induced by pathogens or their elicitors, was examined in the resistant wild species S. villosum, susceptible S. tuberosum clone DG 81-68 and in the VT hybrid, resistant to P. infestans. After treatment of the leaves with elicitor, the relative increase in ROS production was higher in leaves of the susceptible potato clone than in the resistant plants of S. villosum and the somatic hybrid.
Collapse
Affiliation(s)
- Justyna Tarwacka
- Department of Plant Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | | | | | | | | |
Collapse
|
7
|
Badri DV, Zolla G, Bakker MG, Manter DK, Vivanco JM. Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. THE NEW PHYTOLOGIST 2013; 198:264-273. [PMID: 23347044 DOI: 10.1111/nph.12124] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 11/27/2012] [Indexed: 06/01/2023]
Abstract
It is known that environmental factors can affect the biosynthesis of leaf metabolites. Similarly, specific pairwise plant-microbe interactions modulate the plant's metabolome by stimulating production of phytoalexins and other defense-related compounds. However, there is no information about how different soil microbiomes could affect the plant growth and the leaf metabolome. We analyzed experimentally how diverse soil microbiomes applied to the roots of Arabidopsis thaliana were able to modulate plant growth and the leaf metabolome, as assessed by GC-MS analyses. Further, we determined the effects of soil microbiome-driven changes in leaf metabolomics on the feeding behavior of Trichopulsia ni larvae. Soil microbiomes differentially impacted plant growth patterns as well as leaf metabolome composition. Similarly, most microbiome-treated plants showed inhibition to larvae feeding, compared with unamended control plants. Pyrosequencing analysis was conducted to determine the soil microbial composition and diversity of the soils used in this study. Correlation analyses were performed to determine relationships between various factors (soil microbial taxa, leaf chemical components, plant growth patterns and insect feeding behavior) and revealed that leaf amino acid content was positively correlated with both microbiome composition and insect feeding behavior.
Collapse
Affiliation(s)
- Dayakar V Badri
- Center for Rhizosphere Biology, Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA
| | - Gaston Zolla
- Center for Rhizosphere Biology, Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA
| | - Matthew G Bakker
- Center for Rhizosphere Biology, Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA
| | - Daniel K Manter
- United States Department of Agriculture-Agricultural Research Service, Soil-Plant-Nutrient Research Unit, Fort Collins, CO, 80526, USA
| | - Jorge M Vivanco
- Center for Rhizosphere Biology, Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
8
|
Machinandiarena MF, Lobato MC, Feldman ML, Daleo GR, Andreu AB. Potassium phosphite primes defense responses in potato against Phytophthora infestans. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1417-24. [PMID: 22727804 DOI: 10.1016/j.jplph.2012.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 05/17/2012] [Accepted: 05/17/2012] [Indexed: 05/10/2023]
Abstract
Although phosphite is widely used to protect plants from pathogenic oomycetes on a wide range of horticultural crops, the molecular mechanisms behind phosphite induced resistance are poorly understood. The aim of this work was to assess the effects of potassium phosphite (KPhi) on potato plant defense responses to infection with Phytophtora infestans (Pi). Pathogen development was severely restricted and there was also an important decrease in lesion size in infected KPhi-treated leaves. We demonstrated that KPhi primed hydrogen peroxide and superoxide anion production in potato leaves at 12 h post-inoculation with Pi. Moreover, the KPhi-treated leaves showed an increased and earlier callose deposition as compared with water-treated plants, beginning 48 h after inoculation. In contrast, callose deposition was not detected in water-treated leaves until 72 h after inoculation. In addition, we carried out RNA gel blot analysis of genes implicated in the responses mediated by salicylic (SA) and jasmonic acid (JA). To this end, we examined the temporal expression pattern of StNPR1 and StWRKY1, two transcription factors related to SA pathway, and StPR1 and StIPII, marker genes related to SA and JA pathways, respectively. The expression of StNPR1 and StWRKY1 was enhanced in response to KPhi treatment. In contrast, StIPII was down regulated in both KPhi- and water-treated leaves, until 48 h after infection with Pi, suggesting that the regulation of this gene could be independent of the KPhi treatment. Our results indicate that KPhi primes the plant for an earlier and more intense response to infection and that SA would mediate this response.
Collapse
|
9
|
Wang H, Wijeratne A, Wijeratne S, Lee S, Taylor CG, St Martin SK, McHale L, Dorrance AE. Dissection of two soybean QTL conferring partial resistance to Phytophthora sojae through sequence and gene expression analysis. BMC Genomics 2012; 13:428. [PMID: 22925529 PMCID: PMC3443417 DOI: 10.1186/1471-2164-13-428] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 08/14/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phytophthora sojae is the primary pathogen of soybeans that are grown on poorly drained soils. Race-specific resistance to P. sojae in soybean is gene-for-gene, although in many areas of the US and worldwide there are populations that have adapted to the most commonly deployed resistance to P. sojae ( Rps) genes. Hence, this system has received increased attention towards identifying mechanisms and molecular markers associated with partial resistance to this pathogen. Several quantitative trait loci (QTL) have been identified in the soybean cultivar 'Conrad' that contributes to the expression of partial resistance to multiple P. sojae isolates. RESULTS In this study, two of the Conrad QTL on chromosome 19 were dissected through sequence and expression analysis of genes in both resistant (Conrad) and susceptible ('Sloan') genotypes. There were 1025 single nucleotide polymorphisms (SNPs) in 87 of 153 genes sequenced from Conrad and Sloan. There were 304 SNPs in 54 genes sequenced from Conrad compared to those from both Sloan and Williams 82, of which 11 genes had SNPs unique to Conrad. Eleven of 19 genes in these regions analyzed with qRT-PCR had significant differences in fold change of transcript abundance in response to infection with P. sojae in lines with QTL haplotype from the resistant parent compared to those with the susceptible parent haplotype. From these, 8 of the 11 genes had SNPs in the upstream, untranslated region, exon, intron, and/or downstream region. These 11 candidate genes encode proteins potentially involved in signal transduction, hormone-mediated pathways, plant cell structural modification, ubiquitination, and basal resistance. CONCLUSIONS These findings may indicate a complex defense network with multiple mechanisms underlying these two soybean QTL conferring resistance to P. sojae. SNP markers derived from these candidate genes can contribute to fine mapping of QTL and marker assisted breeding for resistance to P. sojae.
Collapse
Affiliation(s)
- Hehe Wang
- The Department of Plant Pathology, The Ohio State University, Wooster, OH 44691, USA
| | - Asela Wijeratne
- Molecular and Cellular Imaging Center, OARDC, Wooster, OH 44691, USA
| | - Saranga Wijeratne
- Molecular and Cellular Imaging Center, OARDC, Wooster, OH 44691, USA
| | - Sungwoo Lee
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, USA
| | - Christopher G Taylor
- The Department of Plant Pathology, The Ohio State University, Wooster, OH 44691, USA
| | - Steven K St Martin
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, USA
| | - Leah McHale
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, USA
| | - Anne E Dorrance
- The Department of Plant Pathology, The Ohio State University, Wooster, OH 44691, USA
| |
Collapse
|
10
|
Orłowska E, Basile A, Kandzia I, Llorente B, Kirk HG, Cvitanich C. Revealing the importance of meristems and roots for the development of hypersensitive responses and full foliar resistance to Phytophthora infestans in the resistant potato cultivar Sarpo Mira. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4765-79. [PMID: 22844094 PMCID: PMC3428001 DOI: 10.1093/jxb/ers154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The defence responses of potato against Phytophthora infestans were studied using the highly resistant Sarpo Mira cultivar. The effects of plant integrity, meristems, and roots on the hypersensitive response (HR), plant resistance, and the regulation of PR genes were analysed. Sarpo Mira shoots and roots grafted with the susceptible Bintje cultivar as well as non-grafted different parts of Sarpo Mira plants were inoculated with P. infestans. The progress of the infection and the number of HR lesions were monitored, and the regulation of PR genes was compared in detached and attached leaves. Additionally, the antimicrobial activity of plant extracts was assessed. The presented data show that roots are needed to achieve full pathogen resistance, that the removal of meristems in detached leaves inhibits the formation of HR lesions, that PR genes are differentially regulated in detached leaves compared with leaves of whole plants, and that antimicrobial compounds accumulate in leaves and roots of Sarpo Mira plants challenged with P. infestans. While meristems are necessary for the formation of HR lesions, the roots of Sarpo Mira plants participate in the production of defence-associated compounds that increase systemic resistance. Based on the literature and on the presented results, a model is proposed for mechanisms involved in Sarpo Mira resistance that may apply to other resistant potato cultivars.
Collapse
Affiliation(s)
- Elzbieta Orłowska
- Department of Molecular Biology, Aarhus University, 8000 Aarhus C, Denmark.
| | | | | | | | | | | |
Collapse
|
11
|
Ali A, Moushib LI, Lenman M, Levander F, Olsson K, Carlson-Nilson U, Zoteyeva N, Liljeroth E, Andreasson E. Paranoid potato: phytophthora-resistant genotype shows constitutively activated defense. PLANT SIGNALING & BEHAVIOR 2012; 7:400-8. [PMID: 22476463 PMCID: PMC3443922 DOI: 10.4161/psb.19149] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Phytophthora is the most devastating pathogen of dicot plants. There is a need for resistance sources with different modes of action to counteract the fast evolution of this pathogen. In order to better understand mechanisms of defense against P. infestans, we analyzed several clones of potato. Two of the genotypes tested, Sarpo Mira and SW93-1015, exhibited strong resistance against P. infestans in field trials, whole plant assays and detached leaf assays. The resistant genotypes developed different sizes of hypersensitive response (HR)-related lesions. HR lesions in SW93-1015 were restricted to very small areas, whereas those in Sarpo Mira were similar to those in Solanum demissum, the main source of classical resistance genes. SW93-1015 can be characterized as a cpr (constitutive expressor of PR genes) genotype without spontaneous microscopic or macroscopic HR lesions. This is indicated by constitutive hydrogen peroxide (H₂O₂) production and PR1 (pathogenesis-related protein 1) secretion. SW93-1015 is one of the first plants identified as having classical protein-based induced defense expressed constitutively without any obvious metabolic costs or spontaneous cell death lesions.
Collapse
Affiliation(s)
- Ashfaq Ali
- Department of Biology; Lund University; Lund, Sweden
| | | | - Marit Lenman
- Department of Plant Protection Biology; Swedish University of Agricultural Sciences; Alnarp, Sweden
| | | | - Kerstin Olsson
- Department of Plant Breeding and Biotechnology; Swedish University of Agricultural Sciences; Alnarp, Sweden
| | - Ulrika Carlson-Nilson
- Department of Plant Breeding and Biotechnology; Swedish University of Agricultural Sciences; Alnarp, Sweden
| | - Nadezhda Zoteyeva
- Genetic Department of N.I. Vavilov Institute of Plant Industry; St. Petersburg, Russia
| | - Erland Liljeroth
- Department of Plant Protection Biology; Swedish University of Agricultural Sciences; Alnarp, Sweden
| | - Erik Andreasson
- Department of Plant Protection Biology; Swedish University of Agricultural Sciences; Alnarp, Sweden
- Correspondence to: Erik Andreasson,
| |
Collapse
|
12
|
Shi X, Tian Z, Liu J, van der Vossen EAG, Xie C. A potato pathogenesis-related protein gene, StPRp27, contributes to race-nonspecific resistance against Phytophthora infestans. Mol Biol Rep 2012; 39:1909-16. [PMID: 21667110 DOI: 10.1007/s11033-011-0937-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/25/2011] [Indexed: 11/30/2022]
Abstract
Late blight caused by Phytophthora infestans is the most important disease of potato. Many efforts have been made to understand molecular mechanism of the durable resistance to address the challenge raised by rapid evolution of the pathogen. A pathogenesis related protein (PR) gene StPRp27 was previously isolated from the potato leaves challenged by P. infestans. The sequence analysis and expression pattern reveal that StPRp27 may be associated with resistance to P. infestans. In present research, transient expression of StPRp27 in Nicotiana benthamiana enhanced resistance to P. infestans isolates 99189 and PY23 indicating its potential contribution to the disease resistance. These findings were also confirmed by over-expression of StPRp27 in potato cv. E-potato 3, which significantly slowed down the development of the disease after inoculation with a mixture of P. infestans races. Further, silencing of StPRp27 homologous genes in N. benthamiana harboring dominant Phytophthora resistance gene Rpi-blb1 or Rpi-blb2 showed no effects on the resistance triggered by these R genes. Our results suggest that StPRp27 contributes to a race-nonspecific resistance against P. infestans by inhibiting the disease development and has a potential use in selection and breeding for durable resistance to late blight.
Collapse
Affiliation(s)
- Xiaolei Shi
- Key Laboratory of Horticultural Plant Biology (Huazhong Agricultural University), Ministry of Education, National Center for Vegetable Improvement (Central China), Potato Engineering and Technology Research Center of Hubei Province Huazhong, Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | | | | | | | | |
Collapse
|
13
|
Orłowska E, Fiil A, Kirk HG, Llorente B, Cvitanich C. Differential gene induction in resistant and susceptible potato cultivars at early stages of infection by Phytophthora infestans. PLANT CELL REPORTS 2012; 31:187-203. [PMID: 21965005 DOI: 10.1007/s00299-011-1155-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/09/2011] [Accepted: 09/15/2011] [Indexed: 05/09/2023]
Abstract
Sarpo Mira, a potato variety with high resistance against the late blight pathogen Phytophthora infestans, is being used in breeding programs to increase late blight resistance in commercial varieties. Discovering genes that are important for P. infestans resistance will assist in the development of molecular markers for the selection of new resistant cultivars and the use of resistant varieties will reduce the environmental, health and financial costs associated with the use of pesticides. Using complementary DNA amplified fragment length polymorphism analyses, differentially expressed genes involved in the potato-P. infestans interaction were identified in the susceptible Bintje and in the resistant Sarpo Mira potato cultivars. Forty-eight differentially expressed transcript derived fragments (TDFs) were cloned and sequenced. The expression profiles of some of these genes were analyzed in detail using quantitative RT-PCR at seven time points: 1, 4, 17, 24, 30, 41 and 65 hours after inoculation (hai). We found that five transcripts with homologies to pathogenesis/defense-related genes and two TDFs with homology to transcription factors were significantly induced to higher levels in the resistant cultivar at very early stages of the infection (1 hai). Interestingly, most of these genes showed different expression profiles throughout the whole infection process between both cultivars. Particularly during its biotrophic growth phase, P. infestans triggered the down-regulation of infection responsive genes in the susceptible but not in the resistance cultivar. Our results suggest that these newly identified early-induced transcripts may be good candidates for conferring Sarpo Mira's resistance to late blight and they could be useful molecular markers for the selection of new resistant cultivars.
Collapse
Affiliation(s)
- Elżbieta Orłowska
- Department of Molecular Biology, Aarhus University, Aarhus C, Denmark.
| | | | | | | | | |
Collapse
|
14
|
Zhou G, Wang X, Yan F, Wang X, Li R, Cheng J, Lou Y. Genome-wide transcriptional changes and defence-related chemical profiling of rice in response to infestation by the rice striped stem borer Chilo suppressalis. PHYSIOLOGIA PLANTARUM 2011; 143:21-40. [PMID: 21534978 DOI: 10.1111/j.1399-3054.2011.01483.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
How rice defends itself against pathogen infection is well documented, but little is known about how it defends itself against herbivore attack. We measured changes in the transcriptome and chemical profile of rice when the plant is infested by the striped stem borer (SSB) Chilo suppressalis. Infestation by SSBs resulted in changes in the expression levels of 4545 rice genes; this number accounts for about 8% of the genome and is made up of 18 functional groups with broad functions. The largest group comprised genes involved in metabolism, followed by cellular transport, transcription and cellular signaling. Infestation by SSBs modulated many genes responsible for the biosynthesis of plant hormones and plant signaling. Jasmonic acid (JA), salicylic acid (SA) and ethylene were the major hormones that shaped the SSB-induced defence responses of rice. Many secondary signal transduction components, such as those involved in Ca²⁺ signaling and G-protein signaling, receptor and non-receptor protein kinases, and transcription factors were involved in the SSB-induced responses of rice. Photosynthesis and ATP synthesis from photophosphorylation were restricted by SSB feeding. In addition, SSB infestation induced the accumulation of defence compounds, including trypsin proteinase inhibitors (TrypPIs) and volatile organic compounds. These results demonstrate that SSB-induced defences required rice to reconfigure a wide variety of its metabolic, physiological and biochemical processes.
Collapse
Affiliation(s)
- Guoxin Zhou
- National Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Rauscher G, Simko I, Mayton H, Bonierbale M, Smart CD, Grünwald NJ, Greenland A, Fry WE. Quantitative resistance to late blight from Solanum berthaultii cosegregates with R(Pi-ber): insights in stability through isolates and environment. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:1553-67. [PMID: 20689906 DOI: 10.1007/s00122-010-1410-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 07/13/2010] [Indexed: 05/20/2023]
Abstract
Genetic resistance is a valuable tool in the fight against late blight of potatoes but little is known about the stability and specificity of quantitative resistance including the effect of defeated major resistance genes. In the present study we investigated the effect of different isolates of Phytophthora infestans on the mode of action of R(Pi-ber), an R-gene originating from Solanum berthaultii. The experiments were conducted on progenies derived from two reciprocal inter-specific backcrosses of Solanum tuberosum and S. berthaultii. The plant-pathogen interaction was tested in diverse environments including field, greenhouse and growth chamber conditions. The R(Pi-ber) gene provided complete resistance against a US8 isolate of P. infestans in all trials. When isolates compatible with R(Pi-ber) were used for inoculation, a smaller, but significant resistance effect was consistently detected in the same map position as the R-gene. This indicates that this R-gene provides a residual resistance effect, and/or that additional resistance loci are located in this genomic region of chromosome X. Additional quantitative resistance loci (QRL) were identified in the analyzed progenies. While some of the QRL (such as those near TG130 on chromosome III) were effective against several isolates of the pathogen, others were isolate specific. With a single exception, the S. berthaultii alleles were associated with a decrease in disease severity. Resistance loci reported in the present study co-locate with previously reported R-genes and QRL to P. infestans and other pathogens.
Collapse
Affiliation(s)
- Gilda Rauscher
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Tian ZD, Zhang Y, Liu J, Xie CH. Novel potato C2H2-type zinc finger protein gene, StZFP1, which responds to biotic and abiotic stress, plays a role in salt tolerance. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:689-97. [PMID: 20701691 DOI: 10.1111/j.1438-8677.2009.00276.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Many TFIIIA-type zinc finger proteins (ZFPs) play important roles in stress responses in plants. In the present study, a novel zinc finger protein gene, StZFP1, was cloned from potato. StZFP1 is a typical TFIIIA-type two-finger zinc finger gene with one B-box domain, one L-box domain and a DLN-box/EAR motif. The StZFP1 genes belong to a small gene family with an estimated copy number of four or five, located on chromosome I. StZFP1 is constitutively expressed in leaves, stems, roots, tubers and flowers of adult plants. Expression of StZFP1 can be induced by salt, dehydration and exogenously applied ABA. StZFP1 expression is also responsive to infection by the late blight pathogen Phytophthora infestans. Transient expression analysis of StZFP1:GFP fusion protein revealed that StZFP1 is preferentially localised in the nucleus. Ectopic expression of StZFP1, driven by the Arabidopsis rd29A promoter in transgenic tobacco, increased plant tolerance to salt stress. These results demonstrate that StZFP1 might be involved in potato responses to salt and dehydration stresses through an ABA-dependent pathway.
Collapse
Affiliation(s)
- Z-D Tian
- Key Laboratory of Horticultural Plant Biology (Huazhong Agricultural University), Ministry of Education; National Center for Vegetable Improvement (Central China)
| | | | | | | |
Collapse
|
17
|
Ni X, Tian Z, Liu J, Song B, Xie C. Cloning and molecular characterization of the potato RING finger protein gene StRFP1 and its function in potato broad-spectrum resistance against Phytophthora infestans. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:488-96. [PMID: 20042252 DOI: 10.1016/j.jplph.2009.10.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 10/27/2009] [Accepted: 10/29/2009] [Indexed: 05/20/2023]
Abstract
Really interesting new gene (RING) finger proteins function as ubiquitin ligase and play key roles in biotic and abiotic stresses. A new RING-H2 finger protein gene, StRFP1, was cloned from Phytophthora infestans-inoculated leaves of potato (Solanum tuberosum) clone 386209.10, which is free of R1-R11 genes. The deduced amino acid sequence was characterized by an N-terminal transmembrane domain, a GLD region and a RING-H2 finger signature. StRFP1 is homologous to the tobacco NtACRE132 protein and belongs to the ATL family. The DNA gel blot analysis and mapping revealed that StRFP1, an intron-free gene, had one to two copies in the potato genome and was located on chromosome 3. RT-PCR assays showed that StRFP1 was constitutively expressed in potato plants and significantly induced in detached potato leaves by P. infestans and plant defense-related signal molecules, abscisic acid, salicylic acid and methyl jasmonate. Transient expression studies revealed that StRFP1 fused with GFP localized to the plasma membrane or out of that in onion epidermal cells. The function of StRFP1 in potato resistance against late blight was further investigated by constructing overexpression and RNA interference (RNAi) vectors, which were introduced into potato cv. E-potato 3, respectively. By challenging the detached leaves with mixture races of P. infestans, all of the StRFP1-overexpressing plants displayed slower disease development than non-transformed controls in terms of the lesion growth rate (LGR). In contrast, StRFP1-silencing plants through RNAi were more susceptible to pathogen infection. The present results demonstrate that StRFP1 contributes to broad-spectrum resistance against P. infestans in potato.
Collapse
Affiliation(s)
- Xuemei Ni
- Key Laboratory of Horticultural Plant Biology (Huazhong Agricultural University), Wuhan, Hubei 430070, People's Republic of China
| | | | | | | | | |
Collapse
|
18
|
Pinzon A, Rodriguez-R LM, Gonzalez A, Bernal A, Restrepo S. Targeted metabolic reconstruction: a novel approach for the characterization of plant-pathogen interactions. Brief Bioinform 2010; 12:151-62. [DOI: 10.1093/bib/bbq009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Sierra R, Rodríguez-R LM, Chaves D, Pinzón A, Grajales A, Rojas A, Mutis G, Cárdenas M, Burbano D, Jiménez P, Bernal A, Restrepo S. Discovery of Phytophthora infestans genes expressed in planta through mining of cDNA libraries. PLoS One 2010; 5:e9847. [PMID: 20352100 PMCID: PMC2844423 DOI: 10.1371/journal.pone.0009847] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 03/04/2010] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Phytophthora infestans (Mont.) de Bary causes late blight of potato and tomato, and has a broad host range within the Solanaceae family. Most studies of the Phytophthora--Solanum pathosystem have focused on gene expression in the host and have not analyzed pathogen gene expression in planta. METHODOLOGY/PRINCIPAL FINDINGS We describe in detail an in silico approach to mine ESTs from inoculated host plants deposited in a database in order to identify particular pathogen sequences associated with disease. We identified candidate effector genes through mining of 22,795 ESTs corresponding to P. infestans cDNA libraries in compatible and incompatible interactions with hosts from the Solanaceae family. CONCLUSIONS/SIGNIFICANCE We annotated genes of P. infestans expressed in planta associated with late blight using different approaches and assigned putative functions to 373 out of the 501 sequences found in the P. infestans genome draft, including putative secreted proteins, domains associated with pathogenicity and poorly characterized proteins ideal for further experimental studies. Our study provides a methodology for analyzing cDNA libraries and provides an understanding of the plant--oomycete pathosystems that is independent of the host, condition, or type of sample by identifying genes of the pathogen expressed in planta.
Collapse
Affiliation(s)
- Roberto Sierra
- Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá Distrito Capital, Colombia
| | - Luis M. Rodríguez-R
- Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá Distrito Capital, Colombia
| | - Diego Chaves
- Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá Distrito Capital, Colombia
| | - Andrés Pinzón
- Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá Distrito Capital, Colombia
| | - Alejandro Grajales
- Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá Distrito Capital, Colombia
| | - Alejandro Rojas
- Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá Distrito Capital, Colombia
| | - Gabriel Mutis
- Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá Distrito Capital, Colombia
| | - Martha Cárdenas
- Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá Distrito Capital, Colombia
| | - Daniel Burbano
- Dirección de Tecnologías de Información, Universidad de los Andes, Bogotá Distrito Capital, Colombia
| | - Pedro Jiménez
- Programa de Biología Aplicada, Universidad Militar Nueva Granada, Bogotá Distrito Capital, Colombia
| | - Adriana Bernal
- Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá Distrito Capital, Colombia
| | - Silvia Restrepo
- Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá Distrito Capital, Colombia
| |
Collapse
|
20
|
Pinzón A, Barreto E, Bernal A, Achenie L, González Barrios AF, Isea R, Restrepo S. Computational models in plant-pathogen interactions: the case of Phytophthora infestans. Theor Biol Med Model 2009; 6:24. [PMID: 19909526 PMCID: PMC2787490 DOI: 10.1186/1742-4682-6-24] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 11/12/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phytophthora infestans is a devastating oomycete pathogen of potato production worldwide. This review explores the use of computational models for studying the molecular interactions between P. infestans and one of its hosts, Solanum tuberosum. MODELING AND CONCLUSION Deterministic logistics models have been widely used to study pathogenicity mechanisms since the early 1950s, and have focused on processes at higher biological resolution levels. In recent years, owing to the availability of high throughput biological data and computational resources, interest in stochastic modeling of plant-pathogen interactions has grown. Stochastic models better reflect the behavior of biological systems. Most modern approaches to plant pathology modeling require molecular kinetics information. Unfortunately, this information is not available for many plant pathogens, including P. infestans. Boolean formalism has compensated for the lack of kinetics; this is especially the case where comparative genomics, protein-protein interactions and differential gene expression are the most common data resources.
Collapse
Affiliation(s)
- Andrés Pinzón
- Mycology and Phytopathology Laboratory, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- Bioinformatics center, Colombian EMBnet node, Biotechnology Institute, National University of Colombia, Bogotá, Colombia
| | - Emiliano Barreto
- Bioinformatics center, Colombian EMBnet node, Biotechnology Institute, National University of Colombia, Bogotá, Colombia
| | - Adriana Bernal
- Mycology and Phytopathology Laboratory, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Luke Achenie
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg Virginia, USA
| | - Andres F González Barrios
- Grupo de Diseño de Productos y Procesos, Department of Chemical Engineering, Los Andes University, Bogotá, Colombia
| | - Raúl Isea
- Fundación IDEA, Centro de Biociencias, Hoyo de la puerta, Baruta 1080, Venezuela
| | - Silvia Restrepo
- Mycology and Phytopathology Laboratory, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
21
|
Xie W, Goodwin PH. A PRp27 gene of Nicotiana benthamiana contributes to resistance to Pseudomonas syringae pv. tabaci but not to Colletotrichum destructivum or Colletotrichum orbiculare. FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:351-361. [PMID: 32688652 DOI: 10.1071/fp08241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 01/21/2009] [Indexed: 06/11/2023]
Abstract
NbPRp27 from Nicotiana benthamiana Domin. is highly similar to NtPRp27, which is a secreted protein from Nicotiana tabacum L. belonging to pathogen-inducible genes comprising the PR17 family of pathogenesis-related proteins. A collection of related genes from plants in several plant families showed that their deduced amino acid sequences clustered according to plant family. Expression of NbPRp27 was not detectable in healthy leaves or stems but was expressed at high levels in roots. Expression was induced by wounding, BTH, ethylene, methyl jasmonate, ABA and NAA, but not by drought, heat or cold stress. Expression was induced by infection with the hemibiotrophic pathogens, Colletotrichum destructivum, Colletotrichum orbiculare and Pseudomonas syringae pv. tabaci. For infections with the Colletotrichum species, expression increased more slowly during biotrophy than necrotrophy, but the reverse was true for P. syringae pv. tabaci. Virus-induced silencing of NbPRp27 did not affect the lesion number produced by the Colletotrichum species but did reduce basal resistance to P. syringae pv. tabaci permitting higher bacterial populations. Based on sequence similarities, PRp27 proteins have been hypothesised to have protease activity and may contribute to resistance by exhibiting direct antimicrobial activity in the apoplast, releasing of antimicrobial compounds from the plant matrix or releasing elicitors from pathogens to induce resistance.
Collapse
Affiliation(s)
- Weilong Xie
- Department of Environmental Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Paul H Goodwin
- Department of Environmental Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
22
|
Panthee DR, Marois JJ, Wright DL, Narváez D, Yuan JS, Stewart CN. Differential expression of genes in soybean in response to the causal agent of Asian soybean rust (Phakopsora pachyrhizi Sydow) is soybean growth stage-specific. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:359-70. [PMID: 18853130 DOI: 10.1007/s00122-008-0905-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 09/23/2008] [Indexed: 05/07/2023]
Abstract
Understanding plant host response to a pathogen such as Phakopsora pachyrhizi, the causal agent of Asian soybean rust (ASR), under different environmental conditions and growth stages is crucial for developing a resistant plant variety. The main objective of this study was to perform global transcriptome profiling of P. pachyrhizi-exposed soybean (Glycine max) with susceptible reaction to the pathogen from two distinct developmental growth stages using whole genome Affymetrix microarrays of soybean followed by confirmation using a resistant genotype. Soybean cv. 5601T (susceptible to ASR) at the V(4) and R(1) growth stages and Glycine tomentella (resistant to ASR) plants were inoculated with P. pachyrhizi and leaf samples were collected after 72 h of inoculation for microarray analysis. Upon analyzing the data using Array Assist software at 5% false discovery rate (FDR), a total of 5,056 genes were found significantly differentially expressed at V(4) growth stage, of which 2,401 were up-regulated, whereas 579 were found differentially expressed at R(1) growth stage, of which 264 were up-regulated. There were 333 differentially expressed common genes between the V(4) and R(1) growth stages, of which 125 were up-regulated. A large difference in number of differentially expressed genes between the two growth stages indicates that the gene expression is growth-stage-specific. We performed real-time RT-PCR analysis on nine of these genes from both growth stages and both plant species and found results to be congruent with those from the microarray analysis.
Collapse
Affiliation(s)
- Dilip R Panthee
- Department of Plant Sciences, 252 Ellington Plant Sciences, The University of Tennessee, 2431 Joe Johnson Dr., Knoxville, TN, 37996, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Kavitha PG, Thomas G. Expression analysis of defense-related genes in Zingiber (Zingiberaceae) species with different levels of compatibility to the soft rot pathogen Pythium aphanidermatum. PLANT CELL REPORTS 2008; 27:1767-1776. [PMID: 18704430 DOI: 10.1007/s00299-008-0594-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 07/24/2008] [Accepted: 07/30/2008] [Indexed: 05/26/2023]
Abstract
Ginger (Zingiber officinale Roscoe) cultivars are susceptible to soft rot disease caused by Pythium aphanidermatum. We analyzed changes in transcript levels of 41 genes in the highly susceptible ginger cultivar varada, a less susceptible wild accession (wild ginger), and a Pythium aphanidermatum-resistant relative, Z. zerumbet, following treatment with Pythium aphanidermatum or one of three signaling molecules: salicylic acid (SA), jasmonic acid (JA), or ethylene (ET). The 41 studied genes were chosen because they are known to be involved in the hypersensitive response (HR), cell signaling, or host defense. Expression of most genes peaked within 24 h of Pythium aphanidermatum infection. Interestingly, the level of induction was typically manyfold higher in Z. zerumbet than in wild ginger. However, several HR genes that were significantly induced in wild ginger were not induced in Z. zerumbet. Most of the genes, including those involved in signaling, did not respond to any of the three signaling molecules in Z. zerumbet while several genes responded to all the three signaling molecules in varada. In wild ginger, a large proportion of the genes responded to ET, but not to SA or JA. These results suggest that different mechanisms govern the three pathosystems. Resistance in Z. zerumbet seems to be independent of HR and the tested signaling molecules, whereas both mechanisms appear to be activated in the tolerance reaction of wild ginger. This work revealed potential defense components of this understudied tropical taxa, and will contribute to the design of strategies for transgenic improvement of ginger.
Collapse
Affiliation(s)
- P G Kavitha
- Plant Molecular Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | | |
Collapse
|
24
|
Lehtonen MJ, Somervuo P, Valkonen JPT. Infection with Rhizoctonia solani induces defense genes and systemic resistance in potato sprouts grown without light. PHYTOPATHOLOGY 2008; 98:1190-8. [PMID: 18943407 DOI: 10.1094/phyto-98-11-1190] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Rhizoctonia solani is an important soilborne and seedborne fungal pathogen of potato (Solanum tuberosum). The initial infection of sprouts prior to emergence causes lesions and may be lethal to the sprout or sprout tip, which results in initiation and compensatory growth of new sprouts. They emerge successfully and do not suffer significant damage. The mechanism behind this recovery phenomenon is not known. It was hypothesized that infection may induce pathogen defense in sprouts, which was investigated in the present study. Tubers were sprouted in cool and moist conditions in darkness to mimic conditions beneath soil. The basal portion of the sprout was isolated from the apical portion with a soft plastic collar and inoculated with highly virulent R. solani. Induction of defense-related responses was monitored in the apical portion using microarray and quantitative polymerase chain reaction techniques at 48 and 120 h postinoculation (hpi) and by challenge-inoculation with R. solani in two experiments. Differential expression of 122 and 779 genes, including many well-characterized defense-related genes, was detected at 48 and 120 hpi, respectively. The apical portion of the sprout also expressed resistance which inhibited secondary infection of the sprouts. The observed systemic induction of resistance in sprouts upon infection with virulent R. solani provides novel information about pathogen defense in potato before the plant emerges and becomes photosynthetically active. These results advance our understanding of the little studied subject of pathogen defense in subterranean parts of plants.
Collapse
Affiliation(s)
- M J Lehtonen
- Plant Pathology Laboratory, Department of Applied Biology, FIN-00014 University of Helsinki, Finland
| | | | | |
Collapse
|
25
|
Mitra S, Wnsche H, Giri AP, Hivrale V, Baldwin IT. Silencing 7 herbivory-regulated proteins inNicotiana attenuatato understand their function in plantherbivore interactions. Funct Ecol 2008. [DOI: 10.1111/j.1365-2435.2008.01413.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Ros B, Mohler V, Wenzel G, Thümmler F. Phytophthora infestans-triggered response of growth- and defense-related genes in potato cultivars with different levels of resistance under the influence of nitrogen availability. PHYSIOLOGIA PLANTARUM 2008; 133:386-396. [PMID: 18282193 DOI: 10.1111/j.1399-3054.2008.01048.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The effects of high and low N concentrations on the Solanum tuberosum-Phytophthora infestans interaction were studied in the potato cultivars Bettina, New York 121, Indira and Arkula, which exhibited different levels of resistance. Aboveground biomass and Chl and N content were significantly higher in all cultivars grown in higher N environments, while C:N ratios were lower, confirming successful application of N. High availability of N significantly increased susceptibility of three of the four potato cultivars, and amounts of pathogen within the infected leaflets determined in a quantitative real-time reverse transcriptase-polymerase chain reaction reflected this. Differential gene expression of P. infestans-induced and -repressed genes derived from three subtracted cDNA libraries at 0, 24, 48 and 72 h post-inoculation was studied in parallel. P. infestans attack led to an induction of defense-related and at the same time repression of growth-related potato genes mainly encoding photosynthetic genes. High N supply led to higher transcript abundance of photosynthetic genes such as Chl a/b-binding protein and ribulose bisphosphate carboxylase. N-dependent suppression of defense-related compounds in absence of the pathogen was not observed. Better N nutrition appeared to allow the plants to invest more resources in defense reactions.
Collapse
Affiliation(s)
- Barbara Ros
- Department of Plant Sciences, Center for Life and Food Sciences Weihenstephan, Technische Universität München, Am Hochanger 2, 85350 Freising, Germany.
| | | | | | | |
Collapse
|
27
|
Dormancy in potato tuber meristems: chemically induced cessation in dormancy matches the natural process based on transcript profiles. Funct Integr Genomics 2008; 8:317-28. [PMID: 18317824 DOI: 10.1007/s10142-008-0079-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 01/12/2008] [Accepted: 01/31/2008] [Indexed: 12/24/2022]
Abstract
Meristem dormancy in perennial plants is a developmental process that results in repression of metabolism and growth. The cessation of dormancy results in rapid growth and should be associated with the production of nascent transcripts that encode for gene products controlling for cell division and growth. Dormancy cessation was allowed to progress normally or was chemically induced using bromoethane (BE), and microarray analysis was used to demonstrate changes in specific transcripts in response to dormancy cessation before a significant increase in cell division. Comparison of normal dormancy cessation to BE-induced dormancy cessation revealed a commonality in both up and downregulated transcripts. Many transcripts that decrease as dormancy terminates are inducible by abscisic acid particularly in the conserved BURP domain proteins, which include the RD22 class of proteins and in the storage protein patatin. Transcripts that are associated with an increase in expression encoded for proteins in the oxoglutarate-dependent oxygenase family. We conclude that BE-induced cessation of dormancy initiates transcript profiles similar to the natural processes that control dormancy.
Collapse
|
28
|
Schwachtje J, Baldwin IT. Why does herbivore attack reconfigure primary metabolism? PLANT PHYSIOLOGY 2008; 146:845-51. [PMID: 18316639 PMCID: PMC2259057 DOI: 10.1104/pp.107.112490] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 12/10/2007] [Indexed: 05/18/2023]
Affiliation(s)
- Jens Schwachtje
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | |
Collapse
|
29
|
Panthee DR, Yuan JS, Wright DL, Marois JJ, Mailhot D, Stewart CN. Gene expression analysis in soybean in response to the causal agent of Asian soybean rust (Phakopsora pachyrhizi Sydow) in an early growth stage. Funct Integr Genomics 2007; 7:291-301. [PMID: 17318271 DOI: 10.1007/s10142-007-0045-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Revised: 01/13/2007] [Accepted: 01/29/2007] [Indexed: 10/23/2022]
Abstract
Asian soybean rust (ASR) caused by Phakopsora pachyrhizi Sydow is a potentially devastating disease posing a serious threat to the soybean industry. Understanding plant host response at the molecular level is certainly important for control of the disease. The main objective of this study was to perform a transcriptome profiling of P. pachyrhizi-exposed young soybean plants (V2 growth stage) using whole genome Affymetrix microarrays of soybean. Three-week-old soybean cv. 5601 T plants at the V2 growth stage were inoculated with P. pachyrhizi, and leaf samples were collected 72 h post inoculation with subsequent microarray analysis performed. A total of 112 genes were found to be differentially expressed from P. pachyrhizi exposure, of which 46 were upregulated, and 66 were downregulated. Most of the differentially expressed genes were general defense and stress-related genes, and 34 of these were unknown. Confirmational real-time reverse transcription-polymerase chain reaction was performed on a subset of 5 out of 112 differentially expressed genes. These results were congruent with the microarray analysis. Our results indicated that low and nonspecific innate response to the pathogen may account for the failure to develop rust resistance in the soybean variety studied. To our knowledge, this is the first microarray analysis of soybean in response to ASR.
Collapse
Affiliation(s)
- D R Panthee
- Department of Plant Sciences, University of Tennessee, Rm 252, Ellington Plant Sciences, 2431 Joe Johnson Dr., Knoxville, TN 37996, USA
| | | | | | | | | | | |
Collapse
|