1
|
Jain H, Kaur R, Sain SK, Siwach P. Development, Design, and Application of Efficient siRNAs Against Cotton Leaf Curl Virus-Betasatellite Complex to Mediate Resistance Against Cotton Leaf Curl Disease. Indian J Microbiol 2024; 64:558-571. [PMID: 39011016 PMCID: PMC11246389 DOI: 10.1007/s12088-024-01191-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/01/2024] [Indexed: 07/17/2024] Open
Abstract
Cotton leaf curl disease (CLCuD), caused by the Cotton leaf curl virus, is one of the most irrepressible diseases in cotton due to high recombination in the virus. RNA interference (RNAi) is widely used as a biotechnological approach for sequence-specific gene silencing guided by small interfering RNAs (siRNAs) to generate resistance against viruses. The success of RNAi depends upon the fact that the target site of the designed siRNA must be conserved even if the genome undergoes recombination. Thus, the present study designs the most efficient siRNA against the conserved sites of the Cotton leaf curl Multan virus (CLCuMuV) and the Cotton leaf curl Multan betasatellite (CLCuMB). From an initial prediction of 9 and 7 siRNAs against CLCuMuV and CLCuMB, respectively, the final selection was made for 2 and 1 siRNA based on parameters such as no off-targets, good GC content, high validity score, and targeting coding region. The target sites of siRNA were observed to lie in the AC3 and an overlapping region of AC2-AC1 of CLCuMuV and βC1 of CLCuMB; all target sites showed a highly conserved nature in recombination analysis. Docking the designed siRNAs with the Argonaute-2 protein of Gossypium hirsutum showed stable binding. Finally, BLASTn of siRNA-target positions in genomes of other BGVs indicated the suitability of designed siRNAs against a broad range of BGVs. The designed siRNAs of the present study could help gain complete control over the virus, though experimental validation is highly required to suggest predicted siRNAs for CLCuD resistance. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01191-z.
Collapse
Affiliation(s)
- Heena Jain
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, Haryana 125055 India
| | - Ramandeep Kaur
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, Haryana 125055 India
| | - Satish Kumar Sain
- Central Institute of Cotton Research, Regional Station, Sirsa, Haryana 125055 India
| | - Priyanka Siwach
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, Haryana 125055 India
| |
Collapse
|
2
|
Nalla MK, Schafleitner R, Pappu HR, Barchenger DW. Current status, breeding strategies and future prospects for managing chilli leaf curl virus disease and associated begomoviruses in Chilli ( Capsicum spp.). FRONTIERS IN PLANT SCIENCE 2023; 14:1223982. [PMID: 37936944 PMCID: PMC10626458 DOI: 10.3389/fpls.2023.1223982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
Chilli leaf curl virus disease caused by begomoviruses, has emerged as a major threat to global chilli production, causing severe yield losses and economic harm. Begomoviruses are a highly successful and emerging group of plant viruses that are primarily transmitted by whiteflies belonging to the Bemisia tabaci complex. The most effective method for mitigating chilli leaf curl virus disease losses is breeding for host resistance to Begomovirus. This review highlights the current situation of chilli leaf curl virus disease and associated begomoviruses in chilli production, stressing the significant issues that breeders and growers confront. In addition, the various breeding methods used to generate begomovirus resistant chilli cultivars, and also the complicated connections between the host plant, vector and the virus are discussed. This review highlights the importance of resistance breeding, emphasising the importance of multidisciplinary approaches that combine the best of traditional breeding with cutting-edge genomic technologies. subsequently, the article highlights the challenges that must be overcome in order to effectively deploy begomovirus resistant chilli varieties across diverse agroecological zones and farming systems, as well as understanding the pathogen thus providing the opportunities for improving the sustainability and profitability of chilli production.
Collapse
Affiliation(s)
- Manoj Kumar Nalla
- World Vegetable Center, South and Central Asia Regional Office, Hyderabad, India
| | | | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | | |
Collapse
|
3
|
Sangwan A, Gupta D, Singh OW, Roy A, Mukherjee SK, Mandal B, Singh N. Size variations of mesoporous silica nanoparticle control uptake efficiency and delivery of AC2-derived dsRNA for protection against tomato leaf curl New Delhi virus. PLANT CELL REPORTS 2023; 42:1571-1587. [PMID: 37482559 DOI: 10.1007/s00299-023-03048-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 07/07/2023] [Indexed: 07/25/2023]
Abstract
KEY MESSAGE We report the size dependent uptake of dsRNA loaded MSNPs into the leaves and roots of Nicotiana benthamiana plants and accessed for their relative reduction in Tomato leaf curl New Delhi viral load. A non-GMO method of RNA interference (RNAi) has been recently in practice through direct delivery of double stranded RNA into the plant cells. Tomato leaf curl New Delhi virus (ToLCNDV), a bipartitie begomovirus, is a significant viral pathogen of many crops in the Indian subcontinent. Conventional RNAi cargo delivery strategies for instance uses viral vectors and Agrobacterium-facilitated delivery, exhibiting specific host responses from the plant system. In the present study, we synthesized three different sizes of amine-functionalized mesoporous silica nanoparticles (amino-MSNPs) to mediate the delivery of dsRNA derived from the AC2 (dsAC2) gene of ToLCNDV and showed that these dsRNA loaded nanoparticles enabled effective reduction in viral load. Furthermore, we demonstrate that amino-MSNPs protected the dsRNA molecules from nuclease degradation, while the complex was efficiently taken up by the leaves and roots of Nicotiana benthamiana. The real time gene expression evaluation showed that plants treated with nanoparticles of different sizes ~ 10 nm (MSNPDEA), ~ 32 nm (MSNPTEA) and ~ 66 nm (MSNPNH3) showed five-, eleven- and threefold reduction of ToLCNDV in N. benthamiana, respectively compared to the plants treated with naked dsRNA. This work clearly demonstrates the size dependent internalization of amino-MSNPs and relative efficacy in transporting dsRNA into the plant system, which will be useful in convenient topical treatment to protect plants against their pathogens including viruses. Mesoporous silica nanoparticles loaded with FITC, checked for its uptake into Nicotiana benthamiana.
Collapse
Affiliation(s)
- Anju Sangwan
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Dipinte Gupta
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Oinam Washington Singh
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Anirban Roy
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sunil Kumar Mukherjee
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Bikash Mandal
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
- Biomedical Engineering Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
4
|
Akbarimotlagh M, Azizi A, Shams-Bakhsh M, Jafari M, Ghasemzadeh A, Palukaitis P. Critical points for the design and application of RNA silencing constructs for plant virus resistance. Adv Virus Res 2023; 115:159-203. [PMID: 37173065 DOI: 10.1016/bs.aivir.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Control of plant virus diseases is a big challenge in agriculture as is resistance in plant lines to infection by viruses. Recent progress using advanced technologies has provided fast and durable alternatives. One of the most promising techniques against plant viruses that is cost-effective and environmentally safe is RNA silencing or RNA interference (RNAi), a technology that could be used alone or along with other control methods. To achieve the goals of fast and durable resistance, the expressed and target RNAs have been examined in many studies, with regard to the variability in silencing efficiency, which is regulated by various factors such as target sequences, target accessibility, RNA secondary structures, sequence variation in matching positions, and other intrinsic characteristics of various small RNAs. Developing a comprehensive and applicable toolbox for the prediction and construction of RNAi helps researchers to achieve the acceptable performance level of silencing elements. Although the attainment of complete prediction of RNAi robustness is not possible, as it also depends on the cellular genetic background and the nature of the target sequences, some important critical points have been discerned. Thus, the efficiency and robustness of RNA silencing against viruses can be improved by considering the various parameters of the target sequence and the construct design. In this review, we provide a comprehensive treatise regarding past, present and future prospective developments toward designing and applying RNAi constructs for resistance to plant viruses.
Collapse
Affiliation(s)
- Masoud Akbarimotlagh
- Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University (TMU), Tehran, Iran
| | - Abdolbaset Azizi
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
| | - Masoud Shams-Bakhsh
- Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University (TMU), Tehran, Iran
| | - Majid Jafari
- Department of Plant Protection, Higher Education Complex of Saravan, Saravan, Iran
| | - Aysan Ghasemzadeh
- Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University (TMU), Tehran, Iran
| | - Peter Palukaitis
- Department of Horticulture Sciences, Seoul Women's University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Shingote PR, Wasule DL, Parma VS, Holkar SK, Karkute SG, Parlawar ND, Senanayake DMJB. An Overview of Chili Leaf Curl Disease: Molecular Mechanisms, Impact, Challenges, and Disease Management Strategies in Indian Subcontinent. Front Microbiol 2022; 13:899512. [PMID: 35847087 PMCID: PMC9277185 DOI: 10.3389/fmicb.2022.899512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Leaf curl disease in a chili plant is caused mainly by Chili leaf curl virus (ChiLCV) (Family: Geminiviridae, Genus: Begomovirus). ChiLCV shows a widespread occurrence in most of the chili (Capsicum spp.) growing regions. ChiLCV has a limited host range and infects tomatoes (Solanum lycopersicum), potatoes (S. tuberosum), and amaranth (Amaranthus tricolor). The virus genome is a monopartite circular single-stranded DNA molecule of 2.7 kb and associated with α and β-satellites of 1.3 and 1.4 kb, respectively. The virus genome is encapsulated in distinct twinned icosahedral particles of around 18-30 nm in size and transmitted by Bemisia tabaci (Family: Aleyrodidae, Order: Hemiptera). Recently, bipartite begomovirus has been found to be associated with leaf curl disease. The leaf curl disease has a widespread distribution in the major equatorial regions viz., Australia, Asia, Africa, Europe, and America. Besides the PCR, qPCR, and LAMP-based detection systems, recently, localized surface-plasmon-resonance (LPSR) based optical platform is used for ChiLCV detection in a 20-40 μl of sample volume using aluminum nanoparticles. Management of ChiLCV is more challenging due to the vector-borne nature of the virus, therefore integrated disease management strategies need to be followed to contain the spread and heavy crop loss. CRISPR/Cas-mediated virus resistance has gained importance in disease management of DNA and RNA viruses due to certain advantages over the conventional approaches. Therefore, CRISPR/Cas system-mediated resistance needs to be explored in chili against ChiLCV.
Collapse
Affiliation(s)
- Prashant Raghunath Shingote
- Department of Agricultural Biotechnology, Dr. Panjabrao Deshmukh Krishi Veedyapeeth, Akola, India.,Department of Agricultural Biotechnology, Vasantrao Naik College of Agricultural Biotechnology, Yavatmal, India
| | - Dhiraj Lalji Wasule
- Department of Agricultural Biotechnology, Dr. Panjabrao Deshmukh Krishi Veedyapeeth, Akola, India
| | - Vaishnavi Sanjay Parma
- Department of Agricultural Biotechnology, Dr. Panjabrao Deshmukh Krishi Veedyapeeth, Akola, India
| | - Somnath Kadappa Holkar
- Indian Council of Agricultural Research (ICAR)-National Research Centre for Grapes, Pune, India
| | - Suhas Gorakh Karkute
- Division of Vegetable Improvement, Indian Council of Agricultural Research (ICAR)-Indian Institute of Vegetable Research, Varanasi, India
| | - Narsing Devanna Parlawar
- Department of Agricultural Biotechnology, Dr. Panjabrao Deshmukh Krishi Veedyapeeth, Akola, India
| | - D M J B Senanayake
- Deparment of Agriculture, Rice Research and Development Institute, Bathalagoda, Sri Lanka
| |
Collapse
|
6
|
Sharma VK, Marla S, Zheng W, Mishra D, Huang J, Zhang W, Morris GP, Cook DE. CRISPR guides induce gene silencing in plants in the absence of Cas. Genome Biol 2022; 23:6. [PMID: 34980227 PMCID: PMC8722000 DOI: 10.1186/s13059-021-02586-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/17/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND RNA-targeting CRISPR-Cas can provide potential advantages over DNA editing, such as avoiding pleiotropic effects of genome editing, providing precise spatiotemporal regulation, and expanded function including antiviral immunity. RESULTS Here, we report the use of CRISPR-Cas13 in plants to reduce both viral and endogenous RNA. Unexpectedly, we observe that crRNA designed to guide Cas13 could, in the absence of the Cas13 protein, cause substantial reduction in RNA levels as well. We demonstrate Cas13-independent guide-induced gene silencing (GIGS) in three plant species, including stable transgenic Arabidopsis. Small RNA sequencing during GIGS identifies the production of small RNA that extend beyond the crRNA expressed sequence in samples expressing multi-guide crRNA. Additionally, we demonstrate that mismatches in guide sequences at position 10 and 11 abolish GIGS. Finally, we show that GIGS is elicited by guides that lack the Cas13 direct repeat and can extend to Cas9 designed crRNA of at least 28 base pairs, indicating that GIGS can be elicited through a variety of guide designs and is not dependent on Cas13 crRNA sequences or design. CONCLUSIONS Collectively, our results suggest that GIGS utilizes endogenous RNAi machinery despite the fact that crRNA are unlike canonical triggers of RNAi such as miRNA, hairpins, or long double-stranded RNA. Given similar evidence of Cas13-independent silencing in an insect system, it is likely GIGS is active across many eukaryotes. Our results show that GIGS offers a novel and flexible approach to RNA reduction with potential benefits over existing technologies for crop improvement and functional genomics.
Collapse
Affiliation(s)
| | - Sandeep Marla
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Wenguang Zheng
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Divya Mishra
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Jun Huang
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Wei Zhang
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | | | - David Edward Cook
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
7
|
Kaur R, Choudhury A, Chauhan S, Ghosh A, Tiwari R, Rajam MV. RNA interference and crop protection against biotic stresses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2357-2377. [PMID: 34744371 PMCID: PMC8526635 DOI: 10.1007/s12298-021-01064-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/14/2021] [Accepted: 09/07/2021] [Indexed: 05/26/2023]
Abstract
RNA interference (RNAi) is a universal phenomenon of RNA silencing or gene silencing with broader implications in important physiological and developmental processes of most eukaryotes, including plants. Small RNA (sRNA) are the critical drivers of the RNAi machinery that ensures down-regulation of the target genes in a homology-dependent manner and includes small-interfering RNAs (siRNAs) and micro RNAs (miRNAs). Plant researchers across the globe have exploited the powerful technique of RNAi to execute targeted suppression of desired genes in important crop plants, with an intent to improve crop protection against pathogens and pests for sustainable crop production. Biotic stresses cause severe losses to the agricultural productivity leading to food insecurity for future generations. RNAi has majorly contributed towards the development of designer crops that are resilient towards the various biotic stresses such as viruses, bacteria, fungi, insect pests, and nematodes. This review summarizes the recent progress made in the RNAi-mediated strategies against these biotic stresses, along with new insights on the future directions in research involving RNAi for crop protection.
Collapse
Affiliation(s)
- Ranjeet Kaur
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Aparajita Choudhury
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Sambhavana Chauhan
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Arundhati Ghosh
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Ruby Tiwari
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Manchikatla Venkat Rajam
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| |
Collapse
|
8
|
Rajput M, Choudhary K, Kumar M, Vivekanand V, Chawade A, Ortiz R, Pareek N. RNA Interference and CRISPR/Cas Gene Editing for Crop Improvement: Paradigm Shift towards Sustainable Agriculture. PLANTS 2021; 10:plants10091914. [PMID: 34579446 PMCID: PMC8467553 DOI: 10.3390/plants10091914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/09/2023]
Abstract
With the rapid population growth, there is an urgent need for innovative crop improvement approaches to meet the increasing demand for food. Classical crop improvement approaches involve, however, a backbreaking process that cannot equipoise with increasing crop demand. RNA-based approaches i.e., RNAi-mediated gene regulation and the site-specific nuclease-based CRISPR/Cas9 system for gene editing has made advances in the efficient targeted modification in many crops for the higher yield and resistance to diseases and different stresses. In functional genomics, RNA interference (RNAi) is a propitious gene regulatory approach that plays a significant role in crop improvement by permitting the downregulation of gene expression by small molecules of interfering RNA without affecting the expression of other genes. Gene editing technologies viz. the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (CRISPR/Cas) have appeared prominently as a powerful tool for precise targeted modification of nearly all crops' genome sequences to generate variation and accelerate breeding efforts. In this regard, the review highlights the diverse roles and applications of RNAi and CRISPR/Cas9 system as powerful technologies to improve agronomically important plants to enhance crop yields and increase tolerance to environmental stress (biotic or abiotic). Ultimately, these technologies can prove to be important in view of global food security and sustainable agriculture.
Collapse
Affiliation(s)
- Meenakshi Rajput
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305801, Rajasthan, India; (M.R.); (K.C.); (M.K.)
| | - Khushboo Choudhary
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305801, Rajasthan, India; (M.R.); (K.C.); (M.K.)
| | - Manish Kumar
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305801, Rajasthan, India; (M.R.); (K.C.); (M.K.)
| | - V. Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology, Jaipur 302017, Rajasthan, India;
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, 230 53 Alnarp, Sweden;
- Correspondence: (A.C.); (N.P.)
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, 230 53 Alnarp, Sweden;
| | - Nidhi Pareek
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305801, Rajasthan, India; (M.R.); (K.C.); (M.K.)
- Correspondence: (A.C.); (N.P.)
| |
Collapse
|
9
|
Devendran R, Kumar M, Ghosh D, Yogindran S, Karim MJ, Chakraborty S. Capsicum-infecting begomoviruses as global pathogens: host-virus interplay, pathogenesis, and management. Trends Microbiol 2021; 30:170-184. [PMID: 34215487 DOI: 10.1016/j.tim.2021.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 01/28/2023]
Abstract
Whitefly-transmitted begomoviruses are among the major threats to the cultivation of Capsicum spp. (Family: Solanaceae) worldwide. Capsicum-infecting begomoviruses (CIBs) have a broad host range and are commonly found in mixed infections, which, in turn, fuels the emergence of better-adapted species through intraspecies and interspecies recombination. Virus-encoded proteins hijack host factors to breach the well-coordinated antiviral response of plants. Epigenetic modifications of histones associated with viral minichromosomes play a critical role in this molecular arms race. Moreover, the association of DNA satellites further enhances the virulence of CIBs as the subviral agents aid the helper viruses to circumvent plant antiviral defense and facilitate expansion of their host range and disease development. The objective of this review is to provide a comprehensive overview on various aspects of CIBs such as their emergence, epidemiology, mechanism of pathogenesis, and the management protocols being employed for combating them.
Collapse
Affiliation(s)
- Ragunathan Devendran
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Manish Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Dibyendu Ghosh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneha Yogindran
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mir Jishan Karim
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
10
|
Thakur H, Jindal SK, Sharma A, Dhaliwal MS. Molecular mapping of dominant gene responsible for leaf curl virus resistance in chilli pepper ( Capsicum annuum L.). 3 Biotech 2020; 10:182. [PMID: 32257738 DOI: 10.1007/s13205-020-02168-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 03/15/2020] [Indexed: 10/24/2022] Open
Abstract
A resistant source (S-343) having monogenic dominant resistance to chilli leaf curl virus disease (ChiLCVD) has been identified at Punjab Agricultural University (PAU), Ludhiana. The F2 mapping population of 204 plants was derived from the cross MS-341 (susceptible) × S-343 (resistant) to identify the linked marker with the disease-resistant gene. Out of the 685 single-sequence repeats (SSRs) used, only 160 primers showed parental polymorphism. These 160 polymorphic primers were used for bulk segregant analysis and only eight SSR primers were able to differentiate the resistant and susceptible bulks. The linkage analysis revealed that the two markers CA 516044 and PAU-LC-343-1 were found linked with the disease-resistant gene covering a total distance of 15.7 centimorgan (cM). The two primers CA 516044 and PAU-LC-343-1 were found located on chromosome 6 of the pepper genome at a genetic distance of 6.8 cM and 8.9 cM, respectively, from the resistant gene. The validation of linked markers was performed using 26 resistant and susceptible genotypes developed at PAU, Ludhiana by former researchers. The validation of the primers revealed that there was a correlation between phenotypic and genotypic data of the used genotypes, and these markers can be used for the marker-assisted breeding procedures for transferring ChiLCVD resistance until the gene-based markers will be developed. The markers described in this study are the first-ever molecular markers identified as linked to the ChiLCVD-resistant gene.
Collapse
|
11
|
Loriato VAP, Martins LGC, Euclydes NC, Reis PAB, Duarte CEM, Fontes EPB. Engineering resistance against geminiviruses: A review of suppressed natural defenses and the use of RNAi and the CRISPR/Cas system. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110410. [PMID: 32005374 DOI: 10.1016/j.plantsci.2020.110410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/22/2019] [Accepted: 01/07/2020] [Indexed: 05/21/2023]
Abstract
The Geminiviridae family is one of the most successful and largest families of plant viruses that infect a large variety of important dicotyledonous and monocotyledonous crops and cause significant yield losses worldwide. This broad spectrum of host range is only possible because geminiviruses have evolved sophisticated strategies to overcome the arsenal of antiviral defenses in such diverse plant species. In addition, geminiviruses evolve rapidly through recombination and pseudo-recombination to naturally create a great diversity of virus species with divergent genome sequences giving the virus an advantage over the host recognition system. Therefore, it is not surprising that efficient molecular strategies to combat geminivirus infection under open field conditions have not been fully addressed. In this review, we present the anti-geminiviral arsenal of plant defenses, the evolved virulence strategies of geminiviruses to overcome these plant defenses and the most recent strategies that have been engineered for transgenic resistance. Although, the in vitro reactivation of suppressed natural defenses as well as the use of RNAi and CRISPR/Cas systems hold the potential for achieving broad-range resistance and/or immunity, potential drawbacks have been associated with each case.
Collapse
Affiliation(s)
- Virgílio A P Loriato
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil; Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Laura G C Martins
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Nívea C Euclydes
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Pedro A B Reis
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil; Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Christiane E M Duarte
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil; Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Elizabeth P B Fontes
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil; Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil.
| |
Collapse
|
12
|
Goodfellow S, Zhang D, Wang MB, Zhang R. Bacterium-Mediated RNA Interference: Potential Application in Plant Protection. PLANTS (BASEL, SWITZERLAND) 2019; 8:E572. [PMID: 31817412 PMCID: PMC6963952 DOI: 10.3390/plants8120572] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 01/10/2023]
Abstract
RNAi has emerged as a promising tool for targeting agricultural pests and pathogens and could provide an environmentally friendly alternative to traditional means of control. However, the deployment of this technology is still limited by a lack of suitable exogenous- or externally applied delivery mechanisms. Numerous means of overcoming this limitation are being explored. One such method, bacterium-mediated RNA interference, or bmRNAi, has been explored in other systems and shows great potential for application to agriculture. Here, we review the current state of bmRNAi, examine the technical limitations and possible improvements, and discuss its potential applications in crop protection.
Collapse
Affiliation(s)
- Simon Goodfellow
- School of Chemistry and Molecular Bioscience, University of Wollongong, NSW 2522, Australia
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Daai Zhang
- School of Chemistry and Molecular Bioscience, University of Wollongong, NSW 2522, Australia
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Ming-Bo Wang
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Ren Zhang
- School of Chemistry and Molecular Bioscience, University of Wollongong, NSW 2522, Australia
| |
Collapse
|
13
|
Sharma S, Kumar G, Dasgupta I. Simultaneous resistance against the two viruses causing rice tungro disease using RNA interference. Virus Res 2018; 255:157-164. [PMID: 30031045 DOI: 10.1016/j.virusres.2018.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/14/2018] [Accepted: 07/17/2018] [Indexed: 02/09/2023]
Abstract
Rice tungro is the most important viral disease affecting rice in South and Southeast Asia, caused by two viruses rice tungro bacilliform virus (RTBV) and rice tungro spherical virus (RTSV). Transgenic resistance using RNA-interference (RNAi) has been reported individually against RTBV and RTSV earlier. Here we report the development of transgenic rice plants expressing RNAi against both RTBV and RTSV simultaneously. A DNA construct carrying 300 bp of RTBV DNA and 300 bp of RTSV cDNA were cloned as the two arms in hairpin orientation in a binary plasmid background to generate RNAi against both viruses simultaneously. Transgenic rice plants were raised using the above construct and their resistance against RTBV and RTSV was quantified at the T1 plants. Levels of both the viral nucleic acids showed a fall of 100- to 500-fold in the above plants, compared with the non-transgenic controls, coupled with the amelioration of stunting. The transgenic plants also retained higher chlorophyll levels than the control non-transgenic plants after infection with RTBV and RTSV. Small RNA analysis of virus inoculated transgenic plants indicated the presence of 21 nt and 22 nt siRNAs specific to RTBV and RTSV. The evidence points towards an active RNAi mechanism leading to resistance against the tungro viruses in the plants analysed.
Collapse
Affiliation(s)
- Shweta Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Gaurav Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
14
|
|
15
|
Akmal M, Baig MS, Khan JA. Suppression of cotton leaf curl disease symptoms in Gossypium hirsutum through over expression of host-encoded miRNAs. J Biotechnol 2017; 263:21-29. [PMID: 29017848 DOI: 10.1016/j.jbiotec.2017.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/30/2017] [Accepted: 10/03/2017] [Indexed: 12/13/2022]
Abstract
Cotton leaf curl disease (CLCuD), a major factor resulting in the enormous yield losses in cotton crop, is caused by a distinct monopartite begomovirus in association with Cotton leaf curl Multan betasatellite (CLCuMB). Micro(mi)RNAs are known to regulate gene expression in eukaryotes, including antiviral defense in plants. In a previous study, we had computationally identified a set of cotton miRNAs, which were shown to have potential targets in the genomes of Cotton leaf curl Multan virus (CLCuMuV) and CLCuMB at multiple loci. In the current study, effect of Gossypium arboreum-encoded miRNAs on the genome of CLCuMuV and CLCuMB was investigated in planta. Two computationally predicted cotton-encoded miRNAs (miR398 and miR2950) that showed potential to bind multiple Open Reading Frames (ORFs; C1, C4, V1, and non- coding intergenic region) of CLCuMuV, and (βC1) of CLCuMB were selected. Functional validation of miR398 and miR2950 was done by overexpression approach in G. hirsutum var. HS6. A total of ten in vitro cotton plants were generated from independent events and subjected to biological and molecular analyses. Presence of the respective Precursor (pre)-miRNA was confirmed through PCR and Southern blotting, and their expression level was assessed by semi quantitative RT-PCR, Real Time quantitative PCR and northern hybridization in the PCR-positive lines. Southern hybridization revealed 2-4 copy integration of T-DNA in the genome of the transformed lines. Remarkably, expression of pre-miRNAs was shown up to 5.8-fold higher in the transgenic (T0) lines as revealed by Real Time PCR. The virus resistance was monitored following inoculation of the transgenic cotton lines with viruliferous whitefly (Bemisia tabaci) insect vector. After inoculation, four of the transgenic lines remained apparently symptom free. While a very low titre of viral DNA could be detected by Rolling circle amplification, betasatellite responsible for symptom induction could not be detected in any of the healthy looking transgenic lines. In this study for the first time, efficacy of the host (G. arboreum)-encoded miRNAs against CLCuD symptoms was experimentally demonstrated through overexpression of miR398 and miR2950 in G. hirsutum var. HS6 plants. Computational prediction of miRNAs targeting virus genome and their subsequent implication in translational inhibition or cleavage based suppression of viral mRNA via overexpression could help in generating virus resistant plants.
Collapse
Affiliation(s)
- Mohd Akmal
- Plant Virus Laboratory, Department of Biosciences, Jamia Millia Islamia, (A Central University), New Delhi, 110025, India
| | - Mirza S Baig
- Plant Virus Laboratory, Department of Biosciences, Jamia Millia Islamia, (A Central University), New Delhi, 110025, India
| | - Jawaid A Khan
- Plant Virus Laboratory, Department of Biosciences, Jamia Millia Islamia, (A Central University), New Delhi, 110025, India.
| |
Collapse
|
16
|
Sáez C, Esteras C, Martínez C, Ferriol M, Dhillon NPS, López C, Picó B. Resistance to tomato leaf curl New Delhi virus in melon is controlled by a major QTL located in chromosome 11. PLANT CELL REPORTS 2017; 36:1571-1584. [PMID: 28710536 DOI: 10.1007/s00299-017-2175-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/29/2017] [Indexed: 05/23/2023]
Abstract
Identification of three genomic regions and underlying candidate genes controlling the high level of resistance to ToLCNDV derived from a wild melon. SNP markers appropriated for MAS management of resistance. Tomato leaf curl New Delhi virus (ToLCNDV) is a bipartite begomovirus that severely affects melon crop (Cucumis melo) in the main production areas of Spain since 2012. In this work, we evaluated the degree of resistance of four accessions (two belonging to the subsp. agrestis var. momordica and two to the wild agrestis group) and their corresponding hybrids with a susceptible commercial melon belonging to the subsp. melo (Piel de Sapo, PS). The analysis using quantitative PCR (qPCR) allowed us to select one wild agrestis genotype (WM-7) with a high level of resistance and use it to construct segregating populations (F 2 and backcrosses). These populations were phenotyped for symptom severity and virus content using qPCR, and genotyped with different sets of SNP markers. Phenotyping and genotyping results in the F 2 and BC1s populations derived from the WM-7 × PS cross were used for QTL analysis. Three genomic regions controlling resistance to ToLCNDV were found, one major locus in chromosome 11 and two additional regions in chromosomes 12 and 2. The highest level of resistance (no or mild symptoms and very low viral titer) was obtained with the homozygous WM-7WM-7 genotype at the major QTL in chromosome 11, even with PSPS genotypes at the other two loci. The resistance derived from WM-7 is useful to develop new melon cultivars and the linked SNPs selected in this paper will be highly useful in marker-assisted breeding for ToLCNDV resistance in melon.
Collapse
Affiliation(s)
- Cristina Sáez
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Cristina Esteras
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Cecilia Martínez
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - María Ferriol
- Instituto Agroforestal Mediterráneo (IAM), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Narinder P S Dhillon
- World Vegetable Center East and Southeast Asia/Oceania, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
| | - Carmelo López
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Belén Picó
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| |
Collapse
|
17
|
Zaidi SS, Martin DP, Amin I, Farooq M, Mansoor S. Tomato leaf curl New Delhi virus: a widespread bipartite begomovirus in the territory of monopartite begomoviruses. MOLECULAR PLANT PATHOLOGY 2017; 18:901-911. [PMID: 27553982 PMCID: PMC6638225 DOI: 10.1111/mpp.12481] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 08/08/2016] [Accepted: 08/21/2016] [Indexed: 05/26/2023]
Abstract
UNLABELLED Tomato leaf curl New Delhi virus (ToLCNDV) is an exceptional Old World bipartite begomovirus. On the Indian subcontinent, a region in which monopartite DNA satellite-associated begomoviruses with mostly narrow geographical ranges predominate, it is widespread, with a geographical range also including the Far East, Middle East, North Africa and Europe. The success of ToLCNDV probably derives from its broad host range and highly flexible genomic configuration: its DNA-A component is capable of productively interacting with, and trans-replicating, diverse DNA-B components and betasatellites. An understanding of the capacity of ToLCNDV to infect a variety of hosts and spread across a broad and ecologically variable geographical range could illuminate the potential economic threats associated with similar begomoviral invasions. Towards this end, we used available ToLCNDV sequences to reconstruct the history of ToLCNDV spread. TAXONOMY Family Geminiviridae, Genus Begomovirus. ToLCNDV is a bipartite begomovirus. Following the revised begomovirus taxonomic criteria of 91% and 94% nucleotide identity for species and strain demarcation, respectively, ToLCNDV is a distinct species with two strains: ToLCNDV and ToLCNDV-Spain. HOST RANGE The primary cultivated host of ToLCNDV is tomato (Solanum lycopersicum), but the virus is also known to infect 43 other plant species from a range of families, including Cucurbitaceae, Euphorbiaceae, Solanaceae, Malvaceae and Fabaceae. DISEASE SYMPTOMS Typical symptoms of ToLCNDV infection in its various hosts include leaf curling, vein thickening, puckering, purpling/darkening of leaf margins, leaf area reduction, internode shortening and severe stunting.
Collapse
Affiliation(s)
- Syed Shan‐E‐Ali Zaidi
- National Institute for Biotechnology and Genetic EngineeringJhang RoadFaisalabad. PO Box 577, Pakistan
| | - Darren P. Martin
- Institute of Infectious Diseases and Molecular Medicine, Department of Integrative Biomedical Sciences, Division of Computational BiologyUniversity of Cape TownAnzio RdObservatoryCape Town, 7925, South Africa
| | - Imran Amin
- National Institute for Biotechnology and Genetic EngineeringJhang RoadFaisalabad. PO Box 577, Pakistan
| | - Muhammad Farooq
- National Institute for Biotechnology and Genetic EngineeringJhang RoadFaisalabad. PO Box 577, Pakistan
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic EngineeringJhang RoadFaisalabad. PO Box 577, Pakistan
| |
Collapse
|
18
|
Hameed A, Tahir MN, Asad S, Bilal R, Van Eck J, Jander G, Mansoor S. RNAi-Mediated Simultaneous Resistance Against Three RNA Viruses in Potato. Mol Biotechnol 2017; 59:73-83. [PMID: 28194691 DOI: 10.1007/s12033-017-9995-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RNA interference (RNAi) technology has been successfully applied in stacking resistance against viruses in numerous crop plants. During RNAi, the production of small interfering RNAs (siRNAs) from template double-standard RNA (dsRNA) derived from expression constructs provides an on-switch for triggering homology-based targeting of cognate viral transcripts, hence generating a pre-programmed immunity in transgenic plants prior to virus infection. In the current study, transgenic potato lines (Solanum tuberosum cv. Desiree) were generated, expressing fused viral coat protein coding sequences from Potato virus X (PVX), Potato virus Y (PVY), and Potato virus S (PVS) as a 600-bp inverted repeat expressed from a constitutive 35S promoter. The expression cassette (designated Ec1/p5941) was designed to generate dsRNAs having a hairpin loop configuration. The transgene insertions were confirmed by glufosinate resistance, gene-specific PCR, and Southern blotting. Regenerated lines were further assayed for resistance to virus inoculation for up to two consecutive crop seasons. Nearly 100% resistance against PVX, PVY, and PVS infection was observed in transgenic lines when compared with untransformed controls, which developed severe viral disease symptoms. These results establish the efficacy of RNAi using the coat protein gene as a potential target for the successful induction of stable antiviral immunity in potatoes.
Collapse
Affiliation(s)
- Amir Hameed
- Molecular Virology and Gene Silencing Group, National Institute for Biotechnology and Genetic Engineering, Faisalabad, 38000, Pakistan.,Department of Bioinformatics and Biotechnology, Government College University, Allama Iqbal Road, Faisalabad, Pakistan
| | - Muhammad Nouman Tahir
- Molecular Virology and Gene Silencing Group, National Institute for Biotechnology and Genetic Engineering, Faisalabad, 38000, Pakistan
| | - Shaheen Asad
- Molecular Virology and Gene Silencing Group, National Institute for Biotechnology and Genetic Engineering, Faisalabad, 38000, Pakistan
| | - Rakhshanda Bilal
- Molecular Virology and Gene Silencing Group, National Institute for Biotechnology and Genetic Engineering, Faisalabad, 38000, Pakistan
| | - Joyce Van Eck
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY, 14853, USA
| | - Georg Jander
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY, 14853, USA
| | - Shahid Mansoor
- Molecular Virology and Gene Silencing Group, National Institute for Biotechnology and Genetic Engineering, Faisalabad, 38000, Pakistan.
| |
Collapse
|