1
|
Pang B, Li J, Zhang R, Luo P, Wang Z, Shi S, Gao W, Li S. RNA-Seq and WGCNA Analyses Reveal Key Regulatory Modules and Genes for Salt Tolerance in Cotton. Genes (Basel) 2024; 15:1176. [PMID: 39336767 PMCID: PMC11431110 DOI: 10.3390/genes15091176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
The problem of soil salinization has seriously hindered agricultural development. Cotton is a pioneering salinity-tolerant crop, so harvesting its key salinity-tolerant genes is important for improving crop salt tolerance. In this study, we analyzed changes in the transcriptome expression profiles of the salt-tolerant cultivar Lu Mian 28 (LM) and the salt-sensitive cultivar Zhong Mian Suo 12 (ZMS) after applying salt stress, and we constructed weighted gene co-expression networks (WGCNA). The results indicated that photosynthesis, amino acid biosynthesis, membrane lipid remodeling, autophagy, and ROS scavenging are key pathways in the salt stress response. Plant-pathogen interactions, plant hormone signal transduction, the mitogen-activated protein kinase (MAPK) signaling pathway, and carotenoid biosynthesis are the regulatory networks associated with these metabolic pathways that confer cotton salt tolerance. The gene-weighted co-expression network was used to screen four modules closely related to traits, identifying 114 transcription factors, including WRKYs, ERFs, NACs, bHLHs, bZIPs, and MYBs, and 11 hub genes. This study provides a reference for acquiring salt-tolerant cotton and abundant genetic resources for molecular breeding.
Collapse
Affiliation(s)
- Bo Pang
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
| | - Jing Li
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
| | - Ru Zhang
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
| | - Ping Luo
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
| | - Zhengrui Wang
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
| | - Shunyu Shi
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
| | - Wenwei Gao
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
| | - Shengmei Li
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
- College of Biotechnology, Xinjiang Agricultural Vocational and Technical University, Changji 831100, China
| |
Collapse
|
2
|
Aizaz M, Lubna, Jan R, Asaf S, Bilal S, Kim KM, Al-Harrasi A. Regulatory Dynamics of Plant Hormones and Transcription Factors under Salt Stress. BIOLOGY 2024; 13:673. [PMID: 39336100 PMCID: PMC11429359 DOI: 10.3390/biology13090673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024]
Abstract
The negative impacts of soil salinization on ion homeostasis provide a significant global barrier to agricultural production and development. Plant physiology and biochemistry are severely affected by primary and secondary NaCl stress impacts, which damage cellular integrity, impair water uptake, and trigger physiological drought. Determining how transcriptional factors (TFs) and hormone networks are regulated in plants in response to salt stress is necessary for developing crops that tolerate salt. This study investigates the complex mechanisms of several significant TF families that influence plant responses to salt stress, involving AP2/ERF, bZIP, NAC, MYB, and WRKY. It demonstrates how these transcription factors (TFs) help plants respond to the detrimental effects of salinity by modulating gene expression through mechanisms including hormone signaling, osmotic stress pathway activation, and ion homeostasis. Additionally, it explores the hormonal imbalances triggered by salt stress, which entail complex interactions among phytohormones like jasmonic acid (JA), salicylic acid (SA), and abscisic acid (ABA) within the hormonal regulatory networks. This review highlights the regulatory role of key transcription factors in salt-stress response, and their interaction with plant hormones is crucial for developing genome-edited crops that can enhance agricultural sustainability and address global food security challenges.
Collapse
Affiliation(s)
- Muhammad Aizaz
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Lubna
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Rahmatullah Jan
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Saqib Bilal
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
3
|
Li W, Li H, Wei Y, Han J, Wang Y, Li X, Zhang L, Han D. Overexpression of a Fragaria vesca NAM, ATAF, and CUC (NAC) Transcription Factor Gene ( FvNAC29) Increases Salt and Cold Tolerance in Arabidopsis thaliana. Int J Mol Sci 2024; 25:4088. [PMID: 38612898 PMCID: PMC11012600 DOI: 10.3390/ijms25074088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
The NAC (NAM, ATAF1/2, CUC2) family of transcription factors (TFs) is a vital transcription factor family of plants. It controls multiple parts of plant development, tissue formation, and abiotic stress response. We cloned the FvNAC29 gene from Fragaria vesca (a diploid strawberry) for this research. There is a conserved NAM structural domain in the FvNAC29 protein. The highest homology between FvNAC29 and PaNAC1 was found by phylogenetic tree analysis. Subcellular localization revealed that FvNAC29 is localized onto the nucleus. Compared to other tissues, the expression level of FvNAC29 was higher in young leaves and roots. In addition, Arabidopsis plants overexpressing FvNAC29 had higher cold and high-salinity tolerance than the wild type (WT) and unloaded line with empty vector (UL). The proline and chlorophyll contents of transgenic Arabidopsis plants, along with the activities of the antioxidant enzymes like catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) under 200 mM NaCl treatment or -8 °C treatment, were higher than those activities of the control. Meanwhile, malondialdehyde (MDA) and the reactive oxygen species (ROS) content were higher in the WT and UL lines. FvNAC29 improves transgenic plant resistance to cold and salt stress by regulating the expression levels of AtRD29a, AtCCA1, AtP5CS1, and AtSnRK2.4. It also improves the potential to tolerate cold stress by positively regulating the expression levels of AtCBF1, AtCBF4, AtCOR15a, and AtCOR47. These findings suggest that FvNAC29 may be related to the processes and the molecular mechanisms of F. vesca response to high-salinity stress and LT stress, providing a comprehensive understanding of the NAC TFs.
Collapse
Affiliation(s)
- Wenhui Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.L.); (X.L.)
| | - Huiwen Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.L.); (X.L.)
| | - Yangfan Wei
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.L.); (X.L.)
| | - Jiaxin Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.L.); (X.L.)
| | - Yu Wang
- Horticulture Branch of Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China;
| | - Xingguo Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.L.); (X.L.)
| | - Lihua Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.L.); (X.L.)
| | - Deguo Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.L.); (X.L.)
| |
Collapse
|
4
|
Wang Z, He Z, Gao C, Wang C, Song X, Wang Y. Phosphorylation of birch BpNAC90 improves the activation of gene expression to confer drought tolerance. HORTICULTURE RESEARCH 2024; 11:uhae061. [PMID: 38659443 PMCID: PMC11040210 DOI: 10.1093/hr/uhae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/18/2024] [Indexed: 04/26/2024]
Abstract
The NAC transcription factors (TFs) play important roles in mediating abiotic stress tolerance; however, the mechanism is still not fully known. Here, an NAC gene (BpNAC90) from a gene regulatory network of Betula platyphylla (birch) that responded to drought was characterized. Overexpression and knockout of BpNAC90 displayed increased and reduced drought tolerance, respectively, relative to wild-type (WT) birch. BpNAC90 binds to different DNA motifs to regulate target genes in conferring drought tolerance, such as Eomes2, ABRE and Tgif2. BpNAC90 is phosphorylated by drought stress at Ser 205 by birch SNF1-related protein kinase 2 (BpSRK2A). Mutated BpNAC90 (termed S205A) with abolished phosphorylation, was transformed into birch for overexpression. The transgenic S205A plants displayed significantly reduced drought tolerance compared with plants overexpressing BpNAC90, but still showed increased drought tolerance relative to WT birch. At the same time, S205A showed a decreased capability to bind to motifs and reduced activation of target gene expression, which contributed to the reduced drought tolerance. Additionally, BpSRK2A and BpNAC90 can be induced by drought stress and form a complex to phosphorylate BpNAC90. The results together indicated that phosphorylation of BpNAC90 is necessary in conferring drought tolerance in birch.
Collapse
Affiliation(s)
- Zhibo Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Zihang He
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xingshun Song
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
5
|
Cui X, Tang M, Li L, Chang J, Yang X, Chang H, Zhou J, Liu M, Wang Y, Zhou Y, Sun F, Chen Z. Expression Patterns and Molecular Mechanisms Regulating Drought Tolerance of Soybean [ Glycine max (L.) Merr.] Conferred by Transcription Factor Gene GmNAC19. Int J Mol Sci 2024; 25:2396. [PMID: 38397076 PMCID: PMC10889163 DOI: 10.3390/ijms25042396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
NAC transcription factors are commonly involved in the plant response to drought stress. A transcriptome analysis of root samples of the soybean variety 'Jiyu47' under drought stress revealed the evidently up-regulated expression of GmNAC19, consistent with the expression pattern revealed by quantitative real-time PCR analysis. The overexpression of GmNAC19 enhanced drought tolerance in Saccharomyces cerevisiae INVSc1. The seed germination percentage and root growth of transgenic Arabidopsis thaliana were improved in comparison with those of the wild type, while the transgenic soybean composite line showed improved chlorophyll content. The altered contents of physiological and biochemical indices (i.e., soluble protein, soluble sugar, proline, and malondialdehyde) related to drought stress and the activities of three antioxidant enzymes (i.e., superoxide dismutase, peroxidase, and catalase) revealed enhanced drought tolerance in both transgenic Arabidopsis and soybean. The expressions of three genes (i.e., P5CS, OAT, and P5CR) involved in proline synthesis were decreased in the transgenic soybean hairy roots, while the expression of ProDH involved in the breakdown of proline was increased. This study revealed the molecular mechanisms underlying drought tolerance enhanced by GmNAC19 via regulation of the contents of soluble protein and soluble sugar and the activities of antioxidant enzymes, providing a candidate gene for the molecular breeding of drought-tolerant crop plants.
Collapse
Affiliation(s)
- Xiyan Cui
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.C.); (Y.W.); (Y.Z.)
| | - Minghao Tang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.C.); (Y.W.); (Y.Z.)
| | - Lei Li
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.C.); (Y.W.); (Y.Z.)
| | - Jiageng Chang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.C.); (Y.W.); (Y.Z.)
| | - Xiaoqin Yang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.C.); (Y.W.); (Y.Z.)
| | - Hongli Chang
- Shaanxi Key Laboratory for Animal Conservation, School of Life Sciences, Northwest University, Xi’an 710069, China
| | - Jiayu Zhou
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.C.); (Y.W.); (Y.Z.)
| | - Miao Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.C.); (Y.W.); (Y.Z.)
| | - Yan Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.C.); (Y.W.); (Y.Z.)
| | - Ying Zhou
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.C.); (Y.W.); (Y.Z.)
| | - Fengjie Sun
- Department of Biological Sciences, School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA
| | - Zhanyu Chen
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.C.); (Y.W.); (Y.Z.)
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
6
|
Wei W, Ju J, Zhang X, Ling P, Luo J, Li Y, Xu W, Su J, Zhang X, Wang C. GhBRX.1, GhBRX.2, and GhBRX4.3 improve resistance to salt and cold stress in upland cotton. FRONTIERS IN PLANT SCIENCE 2024; 15:1353365. [PMID: 38405586 PMCID: PMC10884310 DOI: 10.3389/fpls.2024.1353365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/23/2024] [Indexed: 02/27/2024]
Abstract
Introduction Abiotic stress during growth readily reduces cotton crop yield. The different survival tactics of plants include the activation of numerous stress response genes, such as BREVIS RADIX (BRX). Methods In this study, the BRX gene family of upland cotton was identified and analyzed by bioinformatics method, three salt-tolerant and cold-resistant GhBRX genes were screened. The expression of GhBRX.1, GhBRX.2 and GhBRXL4.3 in upland cotton was silenced by virus-induced gene silencing (VIGS) technique. The physiological and biochemical indexes of plants and the expression of related stress-response genes were detected before and after gene silencing. The effects of GhBRX.1, GhBRX.2 and GhBRXL4.3 on salt and cold resistance of upland cotton were further verified. Results and discussion We discovered 12, 6, and 6 BRX genes in Gossypium hirsutum, Gossypium raimondii and Gossypium arboreum, respectively. Chromosomal localization indicated that the retention and loss of GhBRX genes on homologous chromosomes did not have a clear preference for the subgenomes. Collinearity analysis suggested that segmental duplications were the main force for BRX gene amplification. The upland cotton genes GhBRX.1, GhBRX.2 and GhBRXL4.3 are highly expressed in roots, and GhBRXL4.3 is also strongly expressed in the pistil. Transcriptome data and qRT‒PCR validation showed that abiotic stress strongly induced GhBRX.1, GhBRX.2 and GhBRXL4.3. Under salt stress and low-temperature stress conditions, the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) and the content of soluble sugar and chlorophyll decreased in GhBRX.1-, GhBRX.2- and GhBRXL4.3-silenced cotton plants compared with those in the control (TRV: 00). Moreover, GhBRX.1-, GhBRX.2- and GhBRXL4.3-silenced cotton plants exhibited greater malondialdehyde (MDA) levels than did the control plants. Moreover, the expression of stress marker genes (GhSOS1, GhSOS2, GhNHX1, GhCIPK6, GhBIN2, GhSnRK2.6, GhHDT4D, GhCBF1 and GhPP2C) decreased significantly in the three target genes of silenced plants following exposure to stress. These results imply that the GhBRX.1, GhBRX.2 and GhBRXL4.3 genes may be regulators of salt stress and low-temperature stress responses in upland cotton.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jisheng Ju
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xueli Zhang
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Pingjie Ling
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jin Luo
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ying Li
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Wenjuan Xu
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Junji Su
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
- Center for Western Agricultural Research, Chinese Academy of Agricultural Sciences (CAAS), Changji, China
| | - Xianliang Zhang
- Center for Western Agricultural Research, Chinese Academy of Agricultural Sciences (CAAS), Changji, China
- Institute of Cotton Research, State Key Laboratory of Cotton Biology, Chinese Academy of Agricultural Sciences (CAAS), Anyang, China
| | - Caixiang Wang
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
7
|
Peng B, Sun X, Tian X, Kong D, He L, Peng J, Liu Y, Guo G, Sun Y, Pang R, Zhou W, Zhao J, Wang Q. OsNAC74 affects grain protein content and various biological traits by regulating OsAAP6 expression in rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:87. [PMID: 38037655 PMCID: PMC10684849 DOI: 10.1007/s11032-023-01433-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023]
Abstract
The grain protein content is an important quality trait in cereals, and the expression level of the OsAAP6 can significantly affect the grain protein content in rice. Through site-directed mutagenesis, we found that the position from -7 to -12 bp upstream of the transcription start site of the OsAAP6 was the functional variation site. By using the yeast single hybrid test, point-to-point in yeast, and the local surface plasmon resonance test, the OsNAC74 was screened and verified to be a regulator upstream of OsAAP6. The OsNAC74 is a constitutively expressed gene whose product is located on the cell membrane. The OsAAP6 and the genes related to the seed storage in the Osnac74 mutants were downregulated, and grain protein content was significantly reduced. In addition, OsNAC74 had a significant impact on quality traits such as grain chalkiness and gel consistency in rice. Although the Osnac74 mutant seeds were relatively small, the individual plant yield was not decreased. Therefore, OsNAC74 is an important regulatory factor with multiple biological functions. This study provides important information for the later use of OsNAC74 gene for molecular design and breeding in rice. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01433-w.
Collapse
Affiliation(s)
- Bo Peng
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Xiaoyu Sun
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Xiayu Tian
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Dongyan Kong
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Lulu He
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Juan Peng
- Xinyang Station of Plant Protection and Inspection, Xinyang, 464000 China
| | - Yan Liu
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Guiying Guo
- Xinyang Academy of Agricultural Science, Xinyang, 464000 China
| | - Yanfang Sun
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Ruihua Pang
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Wei Zhou
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Jinhui Zhao
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Quanxiu Wang
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| |
Collapse
|
8
|
Bouzroud S, Henkrar F, Fahr M, Smouni A. Salt stress responses and alleviation strategies in legumes: a review of the current knowledge. 3 Biotech 2023; 13:287. [PMID: 37520340 PMCID: PMC10382465 DOI: 10.1007/s13205-023-03643-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/21/2023] [Indexed: 08/01/2023] Open
Abstract
Salinity is one of the most significant environmental factors limiting legumes development and productivity. Salt stress disturbs all developmental stages of legumes and affects their hormonal regulation, photosynthesis and biological nitrogen fixation, causing nutritional imbalance, plant growth inhibition and yield losses. At the molecular level, salt stress exposure involves large number of factors that are implicated in stress perception, transduction, and regulation of salt responsive genes' expression through the intervention of transcription factors. Along with the complex gene network, epigenetic regulation mediated by non-coding RNAs, and DNA methylation events are also involved in legumes' response to salinity. Different alleviation strategies can increase salt tolerance in legume plants. The most promising ones are Plant Growth Promoting Rhizobia, Arbuscular Mycorrhizal Fungi, seed and plant's priming. Genetic manipulation offers an effective approach for improving salt tolerance. In this review, we present a detailed overview of the adverse effect of salt stress on legumes and their molecular responses. We also provide an overview of various ameliorative strategies that have been implemented to mitigate/overcome the harmful effects of salt stress on legumes.
Collapse
Affiliation(s)
- Sarah Bouzroud
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco
| | - Fatima Henkrar
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5R/INAU, 10000 Rabat, Morocco
| | - Mouna Fahr
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5R/INAU, 10000 Rabat, Morocco
| | - Abdelaziz Smouni
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5R/INAU, 10000 Rabat, Morocco
| |
Collapse
|
9
|
Gao Y, Chen H, Chen D, Hao G. Genetic and evolutionary dissection of melatonin response signaling facilitates the regulation of plant growth and stress responses. J Pineal Res 2023; 74:e12850. [PMID: 36585354 DOI: 10.1111/jpi.12850] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023]
Abstract
The expansion of gene families during evolution could generate functional diversity among their members to regulate plant growth and development. Melatonin, a phylogenetically ancient molecule, is vital for many aspects of a plant's life. Understanding the functional diversity of the molecular players involved in melatonin biosynthesis, signaling, and metabolism will facilitate the regulation of plant phenotypes. However, the molecular mechanism of melatonin response signaling elements in regulating this network still has many challenges. Here, we provide an in-depth analysis of the functional diversity and evolution of molecular components in melatonin signaling pathway. Genetic analysis of multiple mutants in plant species will shed light on the role of gene families in melatonin regulatory pathways. Phylogenetic analysis of these genes was performed, which will facilitate the identification of melatonin-related genes for future study. Based on the abovementioned signal networks, the mechanism of these genes was summarized to provide reference for studying the regulatory mechanism of melatonin in plant phenotypes. We hope that this work will facilitate melatonin research in higher plants and finely tuned spatio-temporal regulation of melatonin signaling.
Collapse
Affiliation(s)
- Yangyang Gao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P. R. China
| | - Huimin Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Dongyu Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P. R. China
| | - Gefei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P. R. China
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| |
Collapse
|
10
|
Meng X, Liu S, Zhang C, He J, Ma D, Wang X, Dong T, Guo F, Cai J, Long T, Li Z, Zhu M. The unique sweet potato NAC transcription factor IbNAC3 modulates combined salt and drought stresses. PLANT PHYSIOLOGY 2023; 191:747-771. [PMID: 36315103 PMCID: PMC9806649 DOI: 10.1093/plphys/kiac508] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Plants often simultaneously experience combined stresses rather than a single stress, causing more serious damage, but the underlying mechanisms remain unknown. Here, we identified the stress-induced IbNAC3 from sweet potato (Ipomoea batatas) as a nucleus-localized transcription activator. IbNAC3 contains a unique activation domain whose MKD sequence confers transactivation activities to multiple other TFs and is essential for the activated expression of downstream target genes. Ectopic expression of IbNAC3 conferred tolerance to single and combined salt and drought stresses in Arabidopsis (Arabidopsis thaliana), and a group of NAM, ATAF1/2, and CUC2 (NAC) TFs, including ANAC011, ANAC072, ANAC083, ANAC100, and NAP, interacted with IbNAC3, and the specific domains responsible for each interaction varied. Intriguingly, IbNAC3 repressed the interaction among the five NACs, and knockout or mutation of ANAC011 and ANAC072 dramatically impaired combined stress tolerance. IbNAC3-ANAC072 and IbNAC3-NAP modules synergistically activated the MICROTUBULE-RELATED E3 LIGASE57 (MREL57) gene. Consistently, mutation of MREL57 and overexpression of WAVE-DAM-PENED2-LIKE7, encoding a target protein of MREL57, both remarkably impaired combined stress tolerance. Moreover, transgenic plants displayed abscisic acid (ABA) hyposensitivity by directly promoting the transcription of ENHANCED RESPONSE TO ABA 1, a key negative regulator of ABA signaling. The data unravel the unique IbNAC3 TF functions as a pivotal component in combined stress tolerance by integrating multiple regulatory events and ubiquitin pathways, which is essential for developing high-tolerant plants in natural environments.
Collapse
Affiliation(s)
- Xiaoqing Meng
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Siyuan Liu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Chengbin Zhang
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Junna He
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Daifu Ma
- Jiangsu Xuzhou Sweetpotato Research Center, Chinese Academy of Agricultural Sciences (CAAS), Xuzhou, 221131, China
| | - Xin Wang
- Jiangsu Xuzhou Sweetpotato Research Center, Chinese Academy of Agricultural Sciences (CAAS), Xuzhou, 221131, China
| | - Tingting Dong
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Fen Guo
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Jing Cai
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Tiandan Long
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zongyun Li
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Mingku Zhu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| |
Collapse
|
11
|
Li Y, Han H, Fu M, Zhou X, Ye J, Xu F, Zhang W, Liao Y, Yang X. Genome-wide identification and expression analysis of NAC family genes in Ginkgo biloba L. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:107-118. [PMID: 36377299 DOI: 10.1111/plb.13486] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
NAC (NAM, ATAF, CUC2) transcription factors constitute one of the largest families of plant-specific transcription factors with important roles in plant growth and development and in biotic and abiotic stresses. The physicochemical properties, gene structure, cis-acting elements and expression patterns of NAC transcription factors in Ginkgo biloba were analysed using bioinformatics, and expression of this gene family was analysed via quantitative reverse transcription PCR. The family of G. biloba NAC transcription factors had 50 members, distributed on 12 chromosomes and divided into 11 groups. Members in the same group share a similar gene structure and motif distribution. Transcriptome data analysis of G. biloba showed that 35 genes were expressed in eight tissues. Correlation analysis suggested that GbNAC007 and GNAC008 might be involved in flavonoid biosynthesis. Expression levels of 12 GbNACs under cold, het, and salt stresses were analysed. Results indicate that NAC transcription factors play an important role in response to abiotic stresses. This study provides a reference for the functional analysis of the G. biloba family of NAC transcription factors, as well as a resource for studies on the involvement of this family in responses to abiotic stresses and flavonoid biosynthesis.
Collapse
Affiliation(s)
- Y Li
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - H Han
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - M Fu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - X Zhou
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - J Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - F Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - W Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Y Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - X Yang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
12
|
Asati R, Tripathi MK, Tiwari S, Yadav RK, Tripathi N. Molecular Breeding and Drought Tolerance in Chickpea. Life (Basel) 2022; 12:1846. [PMID: 36430981 PMCID: PMC9698494 DOI: 10.3390/life12111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cicer arietinum L. is the third greatest widely planted imperative pulse crop worldwide, and it belongs to the Leguminosae family. Drought is the utmost common abiotic factor on plants, distressing their water status and limiting their growth and development. Chickpea genotypes have the natural ability to fight drought stress using certain strategies viz., escape, avoidance and tolerance. Assorted breeding methods, including hybridization, mutation, and marker-aided breeding, genome sequencing along with omics approaches, could be used to improve the chickpea germplasm lines(s) against drought stress. Root features, for instance depth and root biomass, have been recognized as the greatest beneficial morphological factors for managing terminal drought tolerance in the chickpea. Marker-aided selection, for example, is a genomics-assisted breeding (GAB) strategy that can considerably increase crop breeding accuracy and competence. These breeding technologies, notably marker-assisted breeding, omics, and plant physiology knowledge, underlined the importance of chickpea breeding and can be used in future crop improvement programmes to generate drought-tolerant cultivars(s).
Collapse
Affiliation(s)
- Ruchi Asati
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Manoj Kumar Tripathi
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Sushma Tiwari
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Rakesh Kumar Yadav
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Niraj Tripathi
- Directorate of Research Services, Jawaharlal Nehru Agricultural University, Jabalpur 482004, India
| |
Collapse
|
13
|
Mondal B, Mukherjee A, Mazumder M, De A, Ghosh S, Basu D. Inducible expression of truncated NAC62 provides tolerance against Alternaria brassicicola and imparts developmental changes in Indian mustard. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111425. [PMID: 36007630 DOI: 10.1016/j.plantsci.2022.111425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/19/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Indian mustard (Brassica juncea) faces significant yield loss due to the 'Black Spot Disease,' caused by a fungus Alternaria brassicicola. In plants, NAC transcription factors (NAC TFs) are known for their roles in development and stress tolerance. One such NAC TF, NAC 62, was induced during A. brassicicola challenge in Sinapis alba, a non-host resistant plant against this fungus. Sequence analyses of BjuNAC62 from B. juncea showed that it belonged to the membrane-bound class of transcription factors. Gene expression study revealed differential protein processing of NAC62 between B. juncea and S. alba on pathogen challenge. Furthermore, NAC62 processing to 25 kDa protein was found to be unique to the resistant plant during pathogenesis. Conditional expression of BjuNAC62ΔC, which lacks its transmembrane domain, in B. juncea showed improved tolerance to A. brassicicola. BjuNAC62ΔC processing to 25 kDa product was also observed in tolerant transgenic plants. Additionally, transgenic plants showed induced expression of genes associated with defense-related phytohormone signaling pathways on pathogen challenge. Again, altered phenotypes suggest a possible developmental effect of BjuNAC62∆C in transgenic plants. The overall results suggest that the processing of BjuNAC62 might be playing a crucial role in resistance response against Black Spot disease by modulating defense-associated genes.
Collapse
Affiliation(s)
- Banani Mondal
- Division of Plant Biology, Bose Institute, P-1/12, CIT Rd, Scheme VIIM, Kolkata, West Bengal 700054, India.
| | - Amrita Mukherjee
- Division of Plant Biology, Bose Institute, P-1/12, CIT Rd, Scheme VIIM, Kolkata, West Bengal 700054, India
| | - Mrinmoy Mazumder
- Division of Plant Biology, Bose Institute, P-1/12, CIT Rd, Scheme VIIM, Kolkata, West Bengal 700054, India
| | - Aishee De
- Division of Plant Biology, Bose Institute, P-1/12, CIT Rd, Scheme VIIM, Kolkata, West Bengal 700054, India
| | - Swagata Ghosh
- Division of Plant Biology, Bose Institute, P-1/12, CIT Rd, Scheme VIIM, Kolkata, West Bengal 700054, India.
| | - Debabrata Basu
- Division of Plant Biology, Bose Institute, P-1/12, CIT Rd, Scheme VIIM, Kolkata, West Bengal 700054, India.
| |
Collapse
|
14
|
Han Z, Wang J, Wang X, Zhang X, Cheng Y, Cai Z, Nian H, Ma Q. GmWRKY21, a Soybean WRKY Transcription Factor Gene, Enhances the Tolerance to Aluminum Stress in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:833326. [PMID: 35958220 PMCID: PMC9359102 DOI: 10.3389/fpls.2022.833326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
The WRKY transcription factors (TFs) are one of the largest families of TFs in plants and play multiple roles in plant growth and development and stress response. In this study, GmWRKY21 encoding a WRKY transcription factor was functionally characterized in Arabidopsis and soybean. The GmWRKY21 protein containing a highly conserved WRKY domain and a C2H2 zinc-finger structure is located in the nucleus and has the characteristics of transcriptional activation ability. The GmWRKY21 gene presented a constitutive expression pattern rich in the roots, leaves, and flowers of soybean with over 6-fold of relative expression levels and could be substantially induced by aluminum stress. As compared to the control, overexpression of GmWRKY21 in Arabidopsis increased the root growth of seedlings in transgenic lines under the AlCl3 concentrations of 25, 50, and 100 μM with higher proline and lower MDA accumulation. The results of quantitative real-time polymerase chain reaction (qRT-PCR) showed that the marker genes relative to aluminum stress including ALMT, ALS3, MATE, and STOP1 were induced in GmWRKY21 transgenic plants under AlCl3 treatment. The stress-related genes, such as KIN1, COR15A, COR15B, COR47, GLOS3, and RD29A, were also upregulated in GmWRKY21 transgenic Arabidopsis under aluminum stress. Similarly, stress-related genes, such as GmCOR47, GmDREB2A, GmMYB84, GmKIN1, GmGST1, and GmLEA, were upregulated in hair roots of GmWRKY21 transgenic plants. In summary, these results suggested that the GmWRKY21 transcription factor may promote the tolerance to aluminum stress mediated by the pathways regulating the expression of the acidic aluminum stress-responsive genes and abiotic stress-responsive genes.
Collapse
Affiliation(s)
- Zhenzhen Han
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, China
| | - Jinyu Wang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, China
| | - Xinxin Wang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, China
| | - Xijia Zhang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, China
| | - Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, China
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, China
| |
Collapse
|
15
|
Su M, Wang S, Liu W, Yang M, Zhang Z, Wang N, Chen X. Interaction between MdWRKY55 and MdNAC17-L enhances salt tolerance in apple by activating MdNHX1 expression. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111282. [PMID: 35643619 DOI: 10.1016/j.plantsci.2022.111282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/28/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Salt stress greatly hinders plant growth and development, as well as crop production. To expand the planting area and choose salt-resistant varieties of apple (Malus×domestica), it is necessary to elucidate the salt-resistance mechanisms. Here, we identified a salt-responsive WRKY transcription factor, MdWRKY55. The overexpression of MdWRKY55 in apple calli significantly improved salt tolerance. MdWRKY55 bound to the MdNHX1 promoter, thereby enhancing its transcription. MdNAC17-L significantly promoted the effect of MdWRKY55 on the expression of downstream MdNHX1 by forming a protein complex. The functional analysis of MdWRKY55 provided valuable insights into the apple salt-tolerance regulatory network and established a theoretical basis for the molecular breeding of salt-tolerant apple.
Collapse
Affiliation(s)
- Mengyu Su
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, China
| | - Shuo Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, China
| | - Wenjun Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, China
| | - Ming Yang
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zongying Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, China
| | - Nan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, China.
| |
Collapse
|
16
|
Reddy BM, Anthony Johnson AM, Jagadeesh Kumar N, Venkatesh B, Jayamma N, Pandurangaiah M, Sudhakar C. De novo Transcriptome Analysis of Drought-Adapted Cluster Bean (Cultivar RGC-1025) Reveals the Wax Regulatory Genes Involved in Drought Resistance. FRONTIERS IN PLANT SCIENCE 2022; 13:868142. [PMID: 35837463 PMCID: PMC9274130 DOI: 10.3389/fpls.2022.868142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Cluster bean (Cyamopsis tetragonoloba L.) is one of the multipurpose underexplored crops grown as green vegetable and for gum production in dryland areas. Cluster bean is known as relatively tolerant to drought and salinity stress. To elucidate the molecular mechanisms involved in the drought tolerance of cluster bean cultivar RGC-1025, RNA sequencing (RNA-seq) of the drought-stressed and control samples was performed. De novo assembly of the reads resulted in 66,838 transcripts involving 203 pathways. Among these transcripts, differentially expressed gene (DEG) analysis resulted in some of the drought-responsive genes expressing alpha dioxygenase 2, low temperature-induced 65 kDa protein (LDI65), putative vacuolar amino acid transporter, and late embryogenesis abundant protein (LEA 3). The analysis also reported drought-responsive transcription factors (TFs), such as NAC, WRKY, GRAS, and MYB families. The relative expression of genes by qRT-PCR revealed consistency with the DEG analysis. Key genes involved in the wax biosynthesis pathway were mapped using the DEG data analysis. These results were positively correlated with epicuticular wax content and the wax depositions on the leaf surfaces, as evidenced by scanning electron microscope (SEM) image analysis. Further, these findings support the fact that enhanced wax deposits on the leaf surface had played a crucial role in combating the drought stress in cluster beans under drought stress conditions. In addition, this study provided a set of unknown genes and TFs that could be a source of engineering tolerance against drought stress in cluster beans.
Collapse
Affiliation(s)
- B. Manohara Reddy
- Plant Molecular Biology Laboratory, Department of Botany, Sri Krishnadevaraya University, Anantapur, India
| | | | - N. Jagadeesh Kumar
- Plant Molecular Biology Laboratory, Department of Botany, Sri Krishnadevaraya University, Anantapur, India
| | - Boya Venkatesh
- Plant Molecular Biology Laboratory, Department of Botany, Sri Krishnadevaraya University, Anantapur, India
| | - N. Jayamma
- Plant Molecular Biology Laboratory, Department of Botany, Sri Krishnadevaraya University, Anantapur, India
| | - Merum Pandurangaiah
- Plant Molecular Biology Laboratory, Department of Botany, Sri Krishnadevaraya University, Anantapur, India
| | - Chinta Sudhakar
- Plant Molecular Biology Laboratory, Department of Botany, Sri Krishnadevaraya University, Anantapur, India
| |
Collapse
|
17
|
Wang Z, Zhang Y, Hu H, Chen L, Zhang H, Chen R. CabHLH79 Acts Upstream of CaNAC035 to Regulate Cold Stress in Pepper. Int J Mol Sci 2022; 23:ijms23052537. [PMID: 35269676 PMCID: PMC8910607 DOI: 10.3390/ijms23052537] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/26/2022] Open
Abstract
Cold stress is one of the main restricting factors affecting plant growth and agricultural production. Complex cold signaling pathways induce the expression of hundreds of cold-sensitive genes. The NAC transcription factor CaNAC035 has previously been reported to significantly influence the response of pepper to cold stress. Here, using Yeast one-hybrid (Y1H) library screened to search for other relevant molecular factors, we identified that CabHLH79 directly binds to the CaNAC035 promoter. Different basic helix–loop–helix (bHLH) transcription factors (TFs) in plants significantly respond to multiple plant stresses, but the mechanism of bHLHs in the cold tolerance of pepper is still unclear. This study investigated the functional characterization of CabHLH79 in the regulation of cold resistance in pepper. Down-regulation of CabHLH79 in pepper by virus-induced gene silencing (VIGS) increased its sensitivity to low temperature, whereas overexpression of CabHLH79 in pepper or Arabidopsis enhanced cold resistance. Compared with control plants, VIGS mediated of CabHLH79 had lower enzyme activity and related gene expression levels, accompanied by higher reactive oxygen species (ROS) accumulation, relative electrolyte leakage (REL), and malondialdehyde accumulation (MDA) contents. Transient overexpression of CabHLH79 pepper positively regulated cold stress response genes and ROS genes, which reduced REL and MDA contents. Similarly, ectopic expression of CabHLH79 in Arabidopsis showed less ROS accumulation, and higher enzymes activities and expression levels. These results indicated that CabHLH79 enhanced cold tolerance by enhancing the expression of ROS-related and other cold stress tolerance-related genes. Taken together, our results showed a multifaceted module of bHLH79-NAC035 in the cold stress of pepper.
Collapse
Affiliation(s)
- Ziyu Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Z.W.); (Y.Z.); (H.H.); (L.C.); (H.Z.)
| | - Yumeng Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Z.W.); (Y.Z.); (H.H.); (L.C.); (H.Z.)
| | - Huifang Hu
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Z.W.); (Y.Z.); (H.H.); (L.C.); (H.Z.)
| | - Lang Chen
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Z.W.); (Y.Z.); (H.H.); (L.C.); (H.Z.)
| | - Huafeng Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Z.W.); (Y.Z.); (H.H.); (L.C.); (H.Z.)
| | - Rugang Chen
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Z.W.); (Y.Z.); (H.H.); (L.C.); (H.Z.)
- Shaanxi Engineering Research Center for Vegetables, Yangling 712100, China
- Correspondence: ; Tel./Fax: +86-29-8708-2613
| |
Collapse
|
18
|
Sun M, Sun S, Mao C, Zhang H, Ou C, Jia Z, Wang Y, Ma W, Li M, Jia S, Mao P. Dynamic Responses of Antioxidant and Glyoxalase Systems to Seed Aging Based on Full-Length Transcriptome in Oat (Avena sativa L.). Antioxidants (Basel) 2022; 11:antiox11020395. [PMID: 35204277 PMCID: PMC8869221 DOI: 10.3390/antiox11020395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 12/20/2022] Open
Abstract
Seed aging is a major challenge for food security, agronomic production, and germplasm conservation, and reactive oxygen species (ROS) and methylglyoxal (MG) are highly involved in the aging process. However, the regulatory mechanisms controlling the abundance of ROS and MG are not well characterized. To characterize dynamic response of antioxidant and glyoxalase systems during seed aging, oat (Avena sativa L.) aged seeds with a range of germination percentages were used to explore physiological parameters, biochemical parameters and relevant gene expression. A reference transcriptome based on PacBio sequencing generated 67,184 non-redundant full-length transcripts, with 59,050 annotated. Subsequently, eleven seed samples were used to investigate the dynamic response of respiration, ROS and MG accumulation, antioxidant enzymes and glyoxalase activity, and associated genes expression. The 48 indicators with high correlation coefficients were divided into six major response patterns, and were used for placing eleven seed samples into four groups, i.e., non-aged (Group N), higher vigor (Group H), medium vigor (Group M), and lower vigor (Group L). Finally, we proposed a putative model for aging response and self-detoxification mechanisms based on the four groups representing different aging levels. In addition, the outcomes of the study suggested the dysfunction of antioxidant and glyoxalase system, and the accumulation of ROS and MG definitely contribute to oat seed aging.
Collapse
|
19
|
Xiang Y, Bian X, Wei T, Yan J, Sun X, Han T, Dong B, Zhang G, Li J, Zhang A. ZmMPK5 phosphorylates ZmNAC49 to enhance oxidative stress tolerance in maize. THE NEW PHYTOLOGIST 2021; 232:2400-2417. [PMID: 34618923 DOI: 10.1111/nph.17761] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/17/2021] [Indexed: 05/16/2023]
Abstract
Mitogen-activated protein kinase (MPK) is a critical regulator of the antioxidant defence system in response to various stimuli. However, how MPK directly and exactly regulates antioxidant enzyme activities is still unclear. Here, we demonstrated that a NAC transcription factor ZmNAC49 mediated the regulation of antioxidant enzyme activities by ZmMPK5. ZmNAC49 expression is induced by oxidative stress. ZmNAC49 enhances oxidative stress tolerance in maize, and it also reduces superoxide anion generation and increases superoxide dismutase (SOD) activity. A detailed study showed that ZmMPK5 directly interacts with and phosphorylates ZmNAC49 in vitro and in vivo. ZmMPK5 directly phosphorylates Thr-26 in NAC subdomain A of ZmNAC49. Mutation at Thr-26 of ZmNAC49 does not affect the interaction with ZmMPK5 and its subcellular localisation. Further analysis found that ZmNAC49 activates the ZmSOD3 expression by directly binding to its promoter. ZmMPK5-mediated ZmNAC49 phosphorylation improves its ability to bind to the ZmSOD3 promoter. Thr-26 of ZmNAC49 is essential for its transcriptional activity. In addition, ZmSOD3 enhances oxidative stress tolerance in maize. Our results show that phosphorylation of Thr-26 in ZmNAC49 by ZmMPK5 increased its DNA-binding activity to the ZmSOD3 promoter, enhanced SOD activity and thereby improved oxidative stress tolerance in maize.
Collapse
Affiliation(s)
- Yang Xiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiangli Bian
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Tianhui Wei
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jingwei Yan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiujuan Sun
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Tong Han
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Baicheng Dong
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Gaofeng Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jing Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Aying Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
20
|
Lephatsi MM, Meyer V, Piater LA, Dubery IA, Tugizimana F. Plant Responses to Abiotic Stresses and Rhizobacterial Biostimulants: Metabolomics and Epigenetics Perspectives. Metabolites 2021; 11:457. [PMID: 34357351 PMCID: PMC8305699 DOI: 10.3390/metabo11070457] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 01/14/2023] Open
Abstract
In response to abiotic stresses, plants mount comprehensive stress-specific responses which mediate signal transduction cascades, transcription of relevant responsive genes and the accumulation of numerous different stress-specific transcripts and metabolites, as well as coordinated stress-specific biochemical and physiological readjustments. These natural mechanisms employed by plants are however not always sufficient to ensure plant survival under abiotic stress conditions. Biostimulants such as plant growth-promoting rhizobacteria (PGPR) formulation are emerging as novel strategies for improving crop quality, yield and resilience against adverse environmental conditions. However, to successfully formulate these microbial-based biostimulants and design efficient application programs, the understanding of molecular and physiological mechanisms that govern biostimulant-plant interactions is imperatively required. Systems biology approaches, such as metabolomics, can unravel insights on the complex network of plant-PGPR interactions allowing for the identification of molecular targets responsible for improved growth and crop quality. Thus, this review highlights the current models on plant defence responses to abiotic stresses, from perception to the activation of cellular and molecular events. It further highlights the current knowledge on the application of microbial biostimulants and the use of epigenetics and metabolomics approaches to elucidate mechanisms of action of microbial biostimulants.
Collapse
Affiliation(s)
- Motseoa M. Lephatsi
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (L.A.P.); (I.A.D.)
| | - Vanessa Meyer
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg 2050, South Africa;
| | - Lizelle A. Piater
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (L.A.P.); (I.A.D.)
| | - Ian A. Dubery
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (L.A.P.); (I.A.D.)
| | - Fidele Tugizimana
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (L.A.P.); (I.A.D.)
- International Research and Development Division, Omnia Group, Ltd., Johannesburg 2021, South Africa
| |
Collapse
|
21
|
Han T, Yan J, Xiang Y, Zhang A. Phosphorylation of ZmNAC84 at Ser-113 enhances the drought tolerance by directly modulating ZmSOD2 expression in maize. Biochem Biophys Res Commun 2021; 567:86-91. [PMID: 34146906 DOI: 10.1016/j.bbrc.2021.06.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022]
Abstract
NAC (NAM, ATAF1/2, and CUC2) transcription factors play vital roles in response to multiple abiotic stresses. Our previous study has demonstrated that ZmNAC84, a maize NAC transcription factor, enhanced the drought tolerance by increasing abscisic acid (ABA)-induced antioxidant enzyme activities of APX and SOD, and Ser-113, a key phosphorylation site, of ZmNAC84 played an important role in this process. However, the target gene of ZmNAC84 in this process is still unknown. Here, we found that ZmNAC84 only regulated the luciferase activity driven by ZmSOD2 promoter in tobacco. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) assay showed that ZmNAC84 directly bound to the CACGTG motif of ZmSOD2 promoter. Furthermore, phosphorylation of ZmNAC84 at Ser-113 up-regulated the ZmSOD2 expression by enhancing the DNA binding ability of ZmNAC84 to ZmSOD2 promoter and improved the drought tolerance. Taken together, our results demonstrate that ZmNAC84 directly regulates ZmSOD2 expression to enhance drought tolerance and Ser-113 of ZmNAC84 is crucial in this process.
Collapse
Affiliation(s)
- Tong Han
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jingwei Yan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yang Xiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Aying Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
22
|
van Beek CR, Guzha T, Kopana N, van der Westhuizen CS, Panda SK, van der Vyver C. The SlNAC2 transcription factor from tomato confers tolerance to drought stress in transgenic tobacco plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:907-921. [PMID: 34092944 PMCID: PMC8140038 DOI: 10.1007/s12298-021-00996-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/18/2021] [Accepted: 04/15/2021] [Indexed: 05/13/2023]
Abstract
UNLABELLED Drought is a key environmental factor that restricts crop growth and productivity. Plant responses to water-deficit stress at the whole plant level are mediated by stress-response gene expression through the action of transcription factors (TF). The NAC (NAM/ATAF/CUC) transcription factor family has been well documented in its role in improving plant abiotic stress tolerance. In the present study we evaluated the effects of overexpression of SlNAC2 TF on the photosynthetic machinery, relative water content (RWC), reactive oxygen species, antioxidants and proline levels in tobacco plants exposed to a water-deficit treatment. Shoot growth and seed formation were also evaluated before, during and following water-deficit to determine any morphological consequences of transgene expression. The transgenic plants maintained higher RWC and chlorophyll levels over 21 days after withholding water and stomatal conductance until the 16th day of water-deficit. Overexpression of SlNAC2 in tobacco increased proline levels, improved seed setting and delayed leaf senescence of the transgenic plants. Reactive oxygen species accumulated at lower levels in the dehydrated transgenic plants but no significant difference in superoxide dismutase and catalase content were seen between the genotypes. The conversion of glutathione to oxidized glutathione was significantly higher in the transgenic plants, supported by increased glutathione reductase transcript levels. Our results indicate that overexpression of SlNAC2 in tobacco improved survival during and recovery from water-deficit stress, without an associated biomass penalty under irrigation. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-00996-2.
Collapse
Affiliation(s)
- Coenraad R. van Beek
- Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7601 South Africa
| | - Tapiwa Guzha
- Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7601 South Africa
| | - Nolusindiso Kopana
- Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7601 South Africa
| | | | - Sanjib K. Panda
- Department of Biochemistry, Central University of Rajasthan, Rajasthan, 305817 India
| | - Christell van der Vyver
- Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7601 South Africa
| |
Collapse
|
23
|
Singh S, Koyama H, Bhati KK, Alok A. The biotechnological importance of the plant-specific NAC transcription factor family in crop improvement. JOURNAL OF PLANT RESEARCH 2021; 134:475-495. [PMID: 33616799 PMCID: PMC8106581 DOI: 10.1007/s10265-021-01270-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/13/2021] [Indexed: 05/02/2023]
Abstract
Climate change, malnutrition, and food insecurity are the inevitable challenges being faced by the agriculture sector today. Plants are susceptible to extreme temperatures during the crucial phases of flowering and seed development, and elevated carbon levels also lead to yield losses. Productivity is also affected by floods and droughts. Therefore, increasing plant yield and stress tolerance are the priorities to be met through novel biotechnological interventions. The contributions of NAC genes towards enhancing plant survivability under stress is well known. Here we focus on the potential of NAC genes in the regulation of abiotic stress tolerance, secondary cell wall synthesis, lateral root development, yield potential, seed size and biomass, ROS signaling, leaf senescence, and programmed cell death. Once naturally tolerant candidate NAC genes have been identified, and the nature of their association with growth and fitness against multi-environmental stresses has been determined, they can be exploited for building inherent tolerance in future crops via transgenic technologies. An update on the latest developments is provided in this review, which summarizes the current understanding of the roles of NAC in the establishment of various stress-adaptive mechanisms in model and food crop plants.
Collapse
Affiliation(s)
- Sadhana Singh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India.
| | - Hiroyuki Koyama
- Laboratory of Plant Cell Technology, Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Kaushal K Bhati
- Louvain Institute of Biomolecular Sciences, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Anshu Alok
- Department of Biotechnology, UIET, Punjab University, Chandigarh, India
| |
Collapse
|
24
|
Mei F, Chen B, Li F, Zhang Y, Kang Z, Wang X, Mao H. Overexpression of the wheat NAC transcription factor TaSNAC4-3A gene confers drought tolerance in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:37-50. [PMID: 33454635 DOI: 10.1016/j.plaphy.2021.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/04/2021] [Indexed: 05/07/2023]
Abstract
NAC transcription factors (TFs) play critical roles in plant abiotic stress responses. However, information on the roles of NAC TFs is limited in wheat (Triticum aestivum L.). In this study, we isolated three wheat TaSNAC4 homeologous genes, TaSNAC4-3A, TaSNAC4-3B, and TaSNAC4-3D, and characterized the function of TaSNAC4-3A in plant drought tolerance. TaSNAC4 is highly expressed in seedling leaves, and expression is induced by various abiotic stresses. Transient expression and transactivation assays showed that TaSNAC4-3A is localized to the nucleus, and the C-terminal region has transcriptional activation activity. Overexpression of TaSNAC4-3A in Arabidopsis led to stimulated germination and root growth when exposed to salt and osmotic stresses, and drought stress tolerance was significantly increased in the TaSNAC4-3A transgenic lines. When compared to the control plants, the transgenic lines overexpressing TaSNAC4-3A exhibited reduced stomatal aperture size under drought stress, and therefore had lower water loss rates. In addition, the overexpression of TaSNAC4-3A led to abscisic acid (ABA) hypersensitivity at the root elongation and seed germination stages. Further transcriptomic analysis demonstrated that there was a significant up-regulation of stress responsive genes in the TaSNAC4-3A transgenic lines. Our findings have revealed the important role of TaSNAC4-3A in plant drought tolerance.
Collapse
Affiliation(s)
- Fangming Mei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Bin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fangfang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yifang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Plant Science, Tarim University, Alar, Xinjiang, 843300, China
| | - Xiaojing Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
25
|
Li M, Chen R, Jiang Q, Sun X, Zhang H, Hu Z. GmNAC06, a NAC domain transcription factor enhances salt stress tolerance in soybean. PLANT MOLECULAR BIOLOGY 2021; 105:333-345. [PMID: 33155154 PMCID: PMC7858558 DOI: 10.1007/s11103-020-01091-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/25/2020] [Indexed: 05/18/2023]
Abstract
KEY MESSAGE We found GmNAC06 plays an important role in salt stress responses through the phenotypic, physiological and molecular analyses of OE, VC, and Mutant composite soybean. Salinization affects 20% of all cultivated land worldwide because of the high salinity of irrigation water and the excessive use of water, and this amount is increasing daily. NAC (NAM, ATAF, and CUC) have been found to be involved in salt stress. In this study, a soybean NAC gene, GmNAC06 (Glyma06g21020.1), was cloned and functionally characterized. The results of expression analysis suggested that salt stress could influence the expression level of GmNAC06. The subcellular localization analysis results suggested that GmNAC06 may function as a transcription factor. Under salt stress, the overexpression technology combined with CRISPR-Cas9 system found that GmNAC06 could cause the accumulation of proline and glycine betaine to alleviate or avoid the negative effects of ROS; similarly, it could control the Na+/K+ ratios in hairy roots to maintain ionic homeostasis. The fresh weight of the transgenic hairy roots and the histochemical ROS staining of wild leaves suggested that transgenic hairy roots influence the function of wild leaves under salt stress conditions. Moreover, the expression levels of GmUBC2 and GmHKT1 were higher in the GmNAC06 hairy roots than in the control. Thus, the overexpression of GmNAC06 in hairy roots notably causes an entire composite plant to exhibit salt tolerance. The phenotype of composite soybean plants and transgenic Arabidopsis plants suggest that GmNAC06 plays a role in response to salt stress and could be useful in generating salt tolerant transgenic crops.
Collapse
Affiliation(s)
- Ming Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
- National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Rui Chen
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Qiyan Jiang
- National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianjun Sun
- National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hui Zhang
- National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zheng Hu
- National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
26
|
Zhang Y, Gong H, Li D, Zhou R, Zhao F, Zhang X, You J. Integrated small RNA and Degradome sequencing provide insights into salt tolerance in sesame (Sesamum indicum L.). BMC Genomics 2020; 21:494. [PMID: 32682396 PMCID: PMC7368703 DOI: 10.1186/s12864-020-06913-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/14/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) exhibit important regulatory roles in the response to abiotic stresses by post-transcriptionally regulating the target gene expression in plants. However, their functions in sesame response to salt stress are poorly known. To dissect the complex mechanisms underlying salt stress response in sesame, miRNAs and their targets were identified from two contrasting sesame genotypes by a combined analysis of small RNAs and degradome sequencing. RESULTS A total of 351 previously known and 91 novel miRNAs were identified from 18 sesame libraries. Comparison of miRNA expressions between salt-treated and control groups revealed that 116 miRNAs were involved in salt stress response. Using degradome sequencing, potential target genes for some miRNAs were also identified. The combined analysis of all the differentially expressed miRNAs and their targets identified miRNA-mRNA regulatory networks and 21 miRNA-mRNA interaction pairs that exhibited contrasting expressions in sesame under salt stress. CONCLUSIONS This comprehensive integrated analysis may provide new insights into the genetic regulation mechanism of miRNAs underlying the adaptation of sesame to salt stress.
Collapse
Affiliation(s)
- Yujuan Zhang
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Huihui Gong
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Donghua Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Fengtao Zhao
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiurong Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
27
|
Gong L, Zhang H, Liu X, Gan X, Nie F, Yang W, Zhang L, Chen Y, Song Y, Zhang H. Ectopic expression of HaNAC1, an ATAF transcription factor from Haloxylon ammodendron, improves growth and drought tolerance in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:535-544. [PMID: 32305820 DOI: 10.1016/j.plaphy.2020.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
NAC transcription factors play a pivotal role in plant growth, development and response to abiotic stress. However, their biological functions in desert trees are largely unknown. In this work, the NAC transcription factor HaNAC1 from Haloxylon ammodendron, a typical wooden plant normally grown in desert, was isolated, and its possible role in plant growth and resistance to drought stress was investigated. HaNAC1 encodes an ATAF subfamily transcription factor containing one NAC domain with five conserved regions. Quantitative real time PCR analyses revealed that HaNAC1 was ubiquitously expressed in various tissues and organs such as roots, stems, leaves and seeds, with a predominant expression in stems. Further studies demonstrated that expression of HaNAC1 was significantly induced by osmotic stress in Haloxylon ammodendron seedlings, and subcellular localization analysis indicated that GFP-HaNAC1 fusion protein was localized to the nucleus in Arabidopsis leaf protoplast. Ectopic expression of HaNAC1 led to promoted growth and drought tolerance in transgenic Arabidopsis, accompanied with up-regulated expression of stress-inducible marker genes, and increased accumulation of proline, IAA and ABA under both normal and drought stress conditions. In addition, co-immunoprecipitation and Bi-molecular fluorescence complementation assays illustrated that HaNAC1 directly interacted with AtNAC32. All these results suggest that HaNAC1 is involved in both the growth and drought resistance of Haloxylon ammodendron, and could be used as a promising candidate gene for the breeding of crops with augmented tolerance to drought stress.
Collapse
Affiliation(s)
- Lei Gong
- Ningxia Key Laboratory for Agrobiotechnology, Agricultural Bio-Technology Center, Ningxia Academy of Agriculture and Forestry Science, 590 Huanghe East Road, Yinchuan, Ningxia Hui Nationality Autonomous Region, 750002, China
| | - Haiwen Zhang
- School of Life Sciences, Ningxia University, 489 Helanshan West Road, Yinchuan, Ningxia Hui Nationality Autonomous Region, 750021, China
| | - Xuan Liu
- Ningxia Key Laboratory for Agrobiotechnology, Agricultural Bio-Technology Center, Ningxia Academy of Agriculture and Forestry Science, 590 Huanghe East Road, Yinchuan, Ningxia Hui Nationality Autonomous Region, 750002, China
| | - Xiaoyan Gan
- Ningxia Key Laboratory for Agrobiotechnology, Agricultural Bio-Technology Center, Ningxia Academy of Agriculture and Forestry Science, 590 Huanghe East Road, Yinchuan, Ningxia Hui Nationality Autonomous Region, 750002, China
| | - Fengjie Nie
- Ningxia Key Laboratory for Agrobiotechnology, Agricultural Bio-Technology Center, Ningxia Academy of Agriculture and Forestry Science, 590 Huanghe East Road, Yinchuan, Ningxia Hui Nationality Autonomous Region, 750002, China
| | - Wenjing Yang
- Ningxia Key Laboratory for Agrobiotechnology, Agricultural Bio-Technology Center, Ningxia Academy of Agriculture and Forestry Science, 590 Huanghe East Road, Yinchuan, Ningxia Hui Nationality Autonomous Region, 750002, China
| | - Li Zhang
- Ningxia Key Laboratory for Agrobiotechnology, Agricultural Bio-Technology Center, Ningxia Academy of Agriculture and Forestry Science, 590 Huanghe East Road, Yinchuan, Ningxia Hui Nationality Autonomous Region, 750002, China
| | - Yuchao Chen
- Ningxia Key Laboratory for Agrobiotechnology, Agricultural Bio-Technology Center, Ningxia Academy of Agriculture and Forestry Science, 590 Huanghe East Road, Yinchuan, Ningxia Hui Nationality Autonomous Region, 750002, China
| | - Yuxia Song
- Ningxia Key Laboratory for Agrobiotechnology, Agricultural Bio-Technology Center, Ningxia Academy of Agriculture and Forestry Science, 590 Huanghe East Road, Yinchuan, Ningxia Hui Nationality Autonomous Region, 750002, China.
| | - Hongxia Zhang
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China.
| |
Collapse
|
28
|
Anwar A, She M, Wang K, Ye X. Cloning and molecular characterization of Triticum aestivum ornithine amino transferase (TaOAT) encoding genes. BMC PLANT BIOLOGY 2020; 20:187. [PMID: 32349679 PMCID: PMC7189522 DOI: 10.1186/s12870-020-02396-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 04/15/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND Ornithine aminotransferase (OAT, EC:2.6.1.13), alternatively known as ornithine delta aminotransferase (δOAT), is a pyridoxal phosphate (PLP)-dependent enzyme involved in the conversion of ornithine into glutamyl-5-semi-aldehyde (GSA) and vice versa. Up till now, there has been no study on OAT in wheat despite the success of its isolation from rice, maize, and sorghum. This study focuses on identification and molecular characterization of OAT in wheat. RESULTS In total, three homeologous OAT genes in wheat genome were found on chromosome group 5, named as TaOAT-5AL, TaOAT-5BL, and TaOAT-5DL. Sequence alignment between gDNA and its corresponding cDNA obtained a total of ten exons and nine introns. A phylogenetic tree was constructed and results indicated that OATs shared highly conserved domains between monocots and eudicots, which was further illustrated by using WebLogo to generate a sequence logo. Further subcellular localization analysis indicated that they functioned in mitochondria. Protein-protein interactions supported their role in proline biosynthesis through interactions with genes, such as delta 1-pyrroline-5-carboxylate synthetase (P5CS) and pyrroline-5-carboxylate reductase (P5CR), involved in the proline metabolic pathway. Promoter analysis exposed the presence of several stress responsive elements, implying their involvement in stress regulation. Expression profiling illustrated that TaOAT was highly induced in the wheat plants exposed to drought or salt stress condition. Upregulated expression of TaOATs was observed in stamens and at the heading stage. A potential role of TaOAT genes during floret development was also revealed. Furthermore, the transgenic plants overexpressing TaOAT showed enhanced tolerance to drought stress by increasing proline accumulation. In addition, salt tolerance of the transgenic plants was also enhanced. CONCLUSION TaOATs genes were involved in proline synthesis and nitrogen remobilization because they interacted with genes related to proline biosynthesis enzymes and arginine catabolism. In addition, TaOAT genes had a role in abiotic stress tolerance and a potential role in floret development. The results of this study may propose future research in the improvement of wheat resistance to abiotic stresses.
Collapse
Affiliation(s)
- Alia Anwar
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 People’s Republic of China
| | - Maoyun She
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA 6150 Australia
| | - Ke Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 People’s Republic of China
| | - Xingguo Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 People’s Republic of China
| |
Collapse
|
29
|
Wani SH, Kumar V, Khare T, Guddimalli R, Parveda M, Solymosi K, Suprasanna P, Kavi Kishor PB. Engineering salinity tolerance in plants: progress and prospects. PLANTA 2020; 251:76. [PMID: 32152761 DOI: 10.1007/s00425-020-03366-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 02/24/2020] [Indexed: 05/20/2023]
Abstract
There is a need to integrate conceptual framework based on the current understanding of salt stress responses with different approaches for manipulating and improving salt tolerance in crop plants. Soil salinity exerts significant constraints on global crop production, posing a serious challenge for plant breeders and biotechnologists. The classical transgenic approach for enhancing salinity tolerance in plants revolves by boosting endogenous defence mechanisms, often via a single-gene approach, and usually involves the enhanced synthesis of compatible osmolytes, antioxidants, polyamines, maintenance of hormone homeostasis, modification of transporters and/or regulatory proteins, including transcription factors and alternative splicing events. Occasionally, genetic manipulation of regulatory proteins or phytohormone levels confers salinity tolerance, but all these may cause undesired reduction in plant growth and/or yields. In this review, we present and evaluate novel and cutting-edge approaches for engineering salt tolerance in crop plants. First, we cover recent findings regarding the importance of regulatory proteins and transporters, and how they can be used to enhance salt tolerance in crop plants. We also evaluate the importance of halobiomes as a reservoir of genes that can be used for engineering salt tolerance in glycophytic crops. Additionally, the role of microRNAs as critical post-transcriptional regulators in plant adaptive responses to salt stress is reviewed and their use for engineering salt-tolerant crop plants is critically assessed. The potentials of alternative splicing mechanisms and targeted gene-editing technologies in understanding plant salt stress responses and developing salt-tolerant crop plants are also discussed.
Collapse
Affiliation(s)
- Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani, Anantnag, Jammu and Kashmir, 192 101, India.
| | - Vinay Kumar
- Department of Biotechnology, Modern College, Savitribai Phule Pune University, Ganeshkhind, Pune, 411 016, India
- Department of Environmental Science, Savitribai Phule Pune University, Ganeshkhind, Pune, 411 016, India
| | - Tushar Khare
- Department of Biotechnology, Modern College, Savitribai Phule Pune University, Ganeshkhind, Pune, 411 016, India
| | | | | | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, ELTE-Eötvös Loránd University, Budapest, 1053, Hungary
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - P B Kavi Kishor
- Department of Biotechnology, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur, 522 213, India
| |
Collapse
|
30
|
Duan AQ, Yang XL, Feng K, Liu JX, Xu ZS, Xiong AS. Genome-wide analysis of NAC transcription factors and their response to abiotic stress in celery (Apium graveolens L.). Comput Biol Chem 2020; 84:107186. [DOI: 10.1016/j.compbiolchem.2019.107186] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 11/29/2022]
|
31
|
Shan Z, Jiang Y, Li H, Guo J, Dong M, Zhang J, Liu G. Genome-wide analysis of the NAC transcription factor family in broomcorn millet (Panicum miliaceum L.) and expression analysis under drought stress. BMC Genomics 2020; 21:96. [PMID: 32000662 PMCID: PMC6993341 DOI: 10.1186/s12864-020-6479-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/10/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Broomcorn millet is a drought-tolerant cereal that is widely cultivated in the semiarid regions of Asia, Europe, and other continents; however, the mechanisms underlying its drought-tolerance are poorly understood. The NAM, ATAF1/2, and CUC2 (NAC) transcription factors form a large plant-specific gene family that is involved in the regulation of tissue development and abiotic stress. To date, NAC transcription factors have not been systematically researched in broomcorn millet. RESULTS In the present study, a total of 180 NAC (PmNAC) genes were identified from the broomcorn millet genome and named uniformly according to their chromosomal distribution. Phylogenetic analysis demonstrated that the PmNACs clustered into 12 subgroups, including the broomcorn millet-specific subgroup Pm_NAC. Gene structure and protein motif analyses indicated that closely clustered PmNAC genes were relatively conserved within each subgroup, while genome mapping analysis revealed that the PmNAC genes were unevenly distributed on broomcorn millet chromosomes. Transcriptome analysis revealed that the PmNAC genes differed greatly in expression in various tissues and under different drought stress durations. The expression of 10 selected genes under drought stress was analyzed using quantitative real-time PCR. CONCLUSION In this study, 180 NAC genes were identified in broomcorn millet, and their phylogenetic relationships, gene structures, protein motifs, chromosomal distribution, duplication, expression patterns in different tissues, and responses to drought stress were studied. These results will be useful for the further study of the functional characteristics of PmNAC genes, particularly with regards to drought resistance.
Collapse
Affiliation(s)
- Zhongying Shan
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
- College of Ecology and Garden Architecture, Dezhou University, Dezhou, 253023, China
| | - Yanmiao Jiang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China
| | - Haiquan Li
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China
| | - Jinjie Guo
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China
| | - Ming Dong
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China
| | - Jianan Zhang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China
| | - Guoqing Liu
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China.
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China.
| |
Collapse
|
32
|
Hoang XLT, Nguyen NC, Nguyen YNH, Watanabe Y, Tran LSP, Thao NP. The Soybean GmNAC019 Transcription Factor Mediates Drought Tolerance in Arabidopsis in an Abscisic Acid-Dependent Manner. Int J Mol Sci 2019; 21:E286. [PMID: 31906240 PMCID: PMC6981368 DOI: 10.3390/ijms21010286] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/27/2019] [Indexed: 12/27/2022] Open
Abstract
Being master regulators of gene expression, transcription factors (TFs) play important roles in determining plant growth, development and reproduction. To date, many TFs have been shown to positively mediate plant responses to environmental stresses. In the current study, the biological functions of a stress-responsive NAC [NAM (No Apical Meristem), ATAF1/2 (Arabidopsis Transcription Activation Factor1/2), CUC2 (Cup-shaped Cotyledon2)]-TF encoding gene isolated from soybean (GmNAC019) in relation to plant drought tolerance and abscisic acid (ABA) responses were investigated. By using a heterologous transgenic system, we revealed that transgenic Arabidopsis plants constitutively expressing the GmNAC019 gene exhibited higher survival rates in a soil-drying assay, which was associated with lower water loss rate in detached leaves, lower cellular hydrogen peroxide content and stronger antioxidant defense under water-stressed conditions. Additionally, the exogenous treatment of transgenic plants with ABA showed their hypersensitivity to this phytohormone, exhibiting lower rates of seed germination and green cotyledons. Taken together, these findings demonstrated that GmNAC019 functions as a positive regulator of ABA-mediated plant response to drought, and thus, it has potential utility for improving plant tolerance through molecular biotechnology.
Collapse
Affiliation(s)
- Xuan Lan Thi Hoang
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University–Vietnam National University HCMC, Ho Chi Minh 700000, Vietnam; (X.L.T.H.); (N.C.N.); (Y.-N.H.N.)
| | - Nguyen Cao Nguyen
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University–Vietnam National University HCMC, Ho Chi Minh 700000, Vietnam; (X.L.T.H.); (N.C.N.); (Y.-N.H.N.)
| | - Yen-Nhi Hoang Nguyen
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University–Vietnam National University HCMC, Ho Chi Minh 700000, Vietnam; (X.L.T.H.); (N.C.N.); (Y.-N.H.N.)
| | - Yasuko Watanabe
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan;
| | - Lam-Son Phan Tran
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan;
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
| | - Nguyen Phuong Thao
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University–Vietnam National University HCMC, Ho Chi Minh 700000, Vietnam; (X.L.T.H.); (N.C.N.); (Y.-N.H.N.)
| |
Collapse
|
33
|
Zhang K, Cui H, Cao S, Yan L, Li M, Sun Y. Overexpression of CrCOMT from Carex rigescens increases salt stress and modulates melatonin synthesis in Arabidopsis thaliana. PLANT CELL REPORTS 2019; 38:1501-1514. [PMID: 31473792 DOI: 10.1007/s00299-019-02461-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/12/2019] [Indexed: 05/27/2023]
Abstract
CrCOMT, a COMT gene in Carex rigescens, was verified to enhance salt stress tolerance in transgenic Arabidopsis. High salinity severely restricts plant growth and development while melatonin can alleviate salt damage. Caffeic acid O-methyltransferase (COMT) plays an important role in regulating plant growth, development, and stress responses. COMT could also participate in melatonin biosynthesis. The objective of this study was to identify CrCOMT from Carex rigescens (Franch.) V. Krecz, a stress-tolerant grass species with a widespread distribution in north China, and to determine its physiological functions and regulatory mechanisms that impart tolerance to salt stress. The results showed that the transcription of CrCOMT exhibited different expression patterns under salt, drought, and ABA treatments. Transgenic Arabidopsis with the overexpression of CrCOMT exhibited improved growth and physiological performance under salt stress, such as higher lateral root numbers, proline level, and chlorophyll content, than in the wild type (WT). Overexpression of CrCOMT also increased dehydration tolerance in Arabidopsis. The transcription of salt response genes was more highly activated in transgenic plants than in the WT under salt stress conditions. In addition, the melatonin content in transgenic plants was higher than that in the WT after stress treatment. Taken together, our results indicated that CrCOMT may positively regulate stress responses and melatonin synthesis under salt stress.
Collapse
Affiliation(s)
- Kun Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Huiting Cui
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Shihao Cao
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Li Yan
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Mingna Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| | - Yan Sun
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
34
|
Wang G, Tian C, Wang Y, Wan F, Hu L, Xiong A, Tian J. Selection of reliable reference genes for quantitative RT-PCR in garlic under salt stress. PeerJ 2019; 7:e7319. [PMID: 31341748 PMCID: PMC6640627 DOI: 10.7717/peerj.7319] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/18/2019] [Indexed: 12/21/2022] Open
Abstract
Quantitative real-time reverse-transcriptase PCR (qRT-PCR) has been frequently used for detecting gene expression. To obtain reliable results, selection of suitable reference genes is a fundamental and necessary step. Garlic (Allium sativum), a member from Alliaceae family, has been used both as a food flavoring and as a traditional medicine. In the present study, garlic plants were exposed to salt stress (200 mM NaCl) for 0, 1, 4 and 12 h, and garlic roots, bulbs, and leaves were harvested for subsequent analysis. The expression stability of eight candidate reference genes, eukaryotic translation initiation factor 4α (eIF-4α), actin (ACTIN), tubulin β-7 (TUB7), TAP42-interacting protein of 41 kDa (TIP41), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), SAND family protein (SAND), elongation factor 1 alpha (EF-1α), and protein phosphatase 2A (PP2A) were evaluated by geNorm, NormFinder, and BestKeeper. All genes tested displayed variable expression profiles under salt stress. In the leaf and root group, ACTIN was the best reference gene for normalizing gene expression. In garlic clove, ACTIN and SAND were the least variable, and were suitable for gene expression studies under salt stress; these two genes also performed well in all samples tested. Based on our results, we recommend that it is essential to use specific reference genes in different situations to obtain accurate results. Using a combination of multiple stable reference genes, such as ACTIN and SAND, to normalize gene expression is encouraged. The results from the study will be beneficial for accurate determination of gene expression in garlic and other plants.
Collapse
Affiliation(s)
- Guanglong Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Chang Tian
- Key Laboratory of Landscape Agriculture, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yunpeng Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Faxiang Wan
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Laibao Hu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Aisheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jie Tian
- Academy of Agriculture and Forestry Sciences of Qinghai University (Qinghai Academy of Agriculture and Forestry Sciences), Qinghai Key Laboratory of Vegetable Genetics and Physiology, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Qinghai, China
| |
Collapse
|
35
|
Guan H, Liu X, Niu F, Zhao Q, Fan N, Cao D, Meng D, He W, Guo B, Wei Y, Fu Y. OoNAC72, a NAC-Type Oxytropis ochrocephala Transcription Factor, Conferring Enhanced Drought and Salt Stress Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:890. [PMID: 31354764 PMCID: PMC6637385 DOI: 10.3389/fpls.2019.00890] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 06/21/2019] [Indexed: 05/23/2023]
Abstract
The NAC proteins form one of the largest families of plant-specific transcription factors (TFs) and play essential roles in developmental processes and stress responses. In this study, we characterized a NAC domain transcription factor, OoNAC72, from a legume Oxytropis ochrocephala. OoNAC72 was proved to be localized in the nuclei in tobacco lower epidermal cells and had transcriptional activation activity in yeast, confirming its transcription activity. OoNAC72 expression could be induced by drought, salinity and exogenous abscisic acid (ABA) in O. ochrocephala seedlings. Furthermore, over-expression of OoNAC72 driven by CaMV35S promoter in Arabidopsis resulted in ABA hypersensitivity and enhanced tolerance to drought and salt stresses during seed germination and post-germinative growth periods. In addition, over-expression of OoNAC72 enhanced the expression of stress-responsive genes such as RD29A, RD29B, RD26, LEA14, ANACOR19, ZAT10, PP2CA, and NCED3. These results highlight the important regulatory role of OoNAC72 in multiple abiotic stress tolerance, and may provide an underlying reason for the spread of O. ochrocephala.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yahui Wei
- Department of Life Science, Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi’an, China
| | - Yanping Fu
- Department of Life Science, Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi’an, China
| |
Collapse
|
36
|
Kimotho RN, Baillo EH, Zhang Z. Transcription factors involved in abiotic stress responses in Maize ( Zea mays L.) and their roles in enhanced productivity in the post genomics era. PeerJ 2019; 7:e7211. [PMID: 31328030 PMCID: PMC6622165 DOI: 10.7717/peerj.7211] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/26/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Maize (Zea mays L.) is a principal cereal crop cultivated worldwide for human food, animal feed, and more recently as a source of biofuel. However, as a direct consequence of water insufficiency and climate change, frequent occurrences of both biotic and abiotic stresses have been reported in various regions around the world, and recently, this has become a constant threat in increasing global maize yields. Plants respond to abiotic stresses by utilizing the activities of transcription factors (TFs), which are families of genes coding for specific TF proteins. TF target genes form a regulon that is involved in the repression/activation of genes associated with abiotic stress responses. Therefore, it is of utmost importance to have a systematic study on each TF family, the downstream target genes they regulate, and the specific TF genes involved in multiple abiotic stress responses in maize and other staple crops. METHOD In this review, the main TF families, the specific TF genes and their regulons that are involved in abiotic stress regulation will be briefly discussed. Great emphasis will be given on maize abiotic stress improvement throughout this review, although other examples from different plants like rice, Arabidopsis, wheat, and barley will be used. RESULTS We have described in detail the main TF families in maize that take part in abiotic stress responses together with their regulons. Furthermore, we have also briefly described the utilization of high-efficiency technologies in the study and characterization of TFs involved in the abiotic stress regulatory networks in plants with an emphasis on increasing maize production. Examples of these technologies include next-generation sequencing, microarray analysis, machine learning, and RNA-Seq. CONCLUSION In conclusion, it is expected that all the information provided in this review will in time contribute to the use of TF genes in the research, breeding, and development of new abiotic stress tolerant maize cultivars.
Collapse
Affiliation(s)
- Roy Njoroge Kimotho
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Elamin Hafiz Baillo
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhengbin Zhang
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
37
|
Nadeem M, Li J, Yahya M, Wang M, Ali A, Cheng A, Wang X, Ma C. Grain Legumes and Fear of Salt Stress: Focus on Mechanisms and Management Strategies. Int J Mol Sci 2019; 20:E799. [PMID: 30781763 PMCID: PMC6412900 DOI: 10.3390/ijms20040799] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 12/27/2022] Open
Abstract
Salinity is an ever-present major constraint and a major threat to legume crops, particularly in areas with irrigated agriculture. Legumes demonstrate high sensitivity, especially during vegetative and reproductive phases. This review gives an overview of legumes sensitivity to salt stress (SS) and mechanisms to cope with salinity stress under unfavorable conditions. It also focuses on the promising management approaches, i.e., agronomic practices, breeding approaches, and genome editing techniques to improve performance of legumes under SS. Now, the onus is on researchers to comprehend the plants physiological and molecular mechanisms, in addition to various responses as part of their stress tolerance strategy. Due to their ability to fix biological nitrogen, high protein contents, dietary fiber, and essential mineral contents, legumes have become a fascinating group of plants. There is an immense need to develop SS tolerant legume varieties to meet growing demand of protein worldwide. This review covering crucial areas ranging from effects, mechanisms, and management strategies, may elucidate further the ways to develop SS-tolerant varieties and to produce legume crops in unfavorable environments.
Collapse
Affiliation(s)
- Muhammad Nadeem
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Jiajia Li
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Muhammad Yahya
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Minghua Wang
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Asif Ali
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Andong Cheng
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Xiaobo Wang
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Chuanxi Ma
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
38
|
Kumar M, Yusuf MA, Yadav P, Narayan S, Kumar M. Overexpression of Chickpea Defensin Gene Confers Tolerance to Water-Deficit Stress in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2019; 10:290. [PMID: 30915095 PMCID: PMC6423178 DOI: 10.3389/fpls.2019.00290] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 02/21/2019] [Indexed: 05/22/2023]
Abstract
Plant defensins are mainly known for their antifungal activity. However, limited information is available regarding their function in abiotic stresses. In this study, a defensin gene, Ca-AFP, from Cicer arietinum, commonly known as chickpea, was cloned and transformed in Arabidopsis thaliana for its functional characterization under simulated water-deficit conditions. Under simulated water-deficit conditions (mannitol and polyethylene glycol-6000 induced), the transgenic A. thaliana plants had higher accumulation of the Ca-AFP transcript compared to that under non-stress condition and showed higher germination rate, root length, and biomass than the wild-type (WT) plants. To get further insights into the role of Ca-AFP in conferring tolerance to water-deficit stress, we determined various physiological parameters and found significant reduction in the transpiration rate and stomatal conductance whereas the net photosynthesis and water use efficiency was increased in the transgenic plants compared to that in the WT plants under water deficit conditions. The transgenic plants showed enhanced superoxide dismutase, ascorbate peroxidase, and catalase activities, had higher proline, chlorophyll, and relative water content, and exhibited reduced ion leakage and malondialdehyde content under water-deficit conditions. Overall, our results indicate that overexpression of Ca-AFP could be an efficient approach for conferring tolerance to water-deficit stress in plants.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Biosciences, Integral University, Lucknow, India
- Department of Biotechnology, CSIR-National Botanical Research Institute, Lucknow, India
| | - Mohd Aslam Yusuf
- Department of Bioengineering, Integral University, Lucknow, India
| | - Pooja Yadav
- Department of Biotechnology, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shiv Narayan
- Plant Physiology Laboratory, CSIR-National Botanical Research Institute, Lucknow, India
| | - Manoj Kumar
- Department of Biotechnology, CSIR-National Botanical Research Institute, Lucknow, India
- *Correspondence: Manoj Kumar,
| |
Collapse
|
39
|
Zhang H, Cui X, Guo Y, Luo C, Zhang L. Picea wilsonii transcription factor NAC2 enhanced plant tolerance to abiotic stress and participated in RFCP1-regulated flowering time. PLANT MOLECULAR BIOLOGY 2018; 98:471-493. [PMID: 30406468 DOI: 10.1007/s11103-018-0792-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/14/2018] [Indexed: 05/25/2023]
Abstract
Picea wilsonii transcription factor PwNAC2 enhanced plant tolerance to salt and drought stress through multiple signaling pathway and interacted with PwRFCP1 to participate in flowering regulation. NAC is one of the largest transcription factor families in plants, however, its role is not yet fully understood. Here, we identified a transcription factor PwNAC2 in Picea wilsonii, which localized in nucleus with transcriptional activity in C-terminal region and can form homodimer by itself. Expression analysis by real-time PCR showed that PwNAC2 was induced by multiple abiotic stresses and phytohormones stimuli. PwRFCP1 (Resemble-FCA-contain-PAT1 domain), an interaction protein of PwNAC2 was screened via yeast two hybrid. Luciferase complementation assay confirmed the interaction in vivo and bimolecular fluorescence complementation assay showed the interaction in nucleus. PwNAC2 overexpression retarded Arabidopsis hypocotyls growth which is closely related to light, whereas promotion of hypocotyls growth by PwRFCP1 is independent on light. Under drought or salt treatment, overexpression of PwNAC2 in Arabidopsis showed more vigorous seed germination and significant tolerance for seedlings by ROS scavenging, reducing of membrane damage, slower water loss and increased stomatal closure. ABA or CBF-pathway marker genes were substantially higher in PwNAC2 transgenic Arabidopsis. Overexpression of PwRFCP1 promotes flowering in transgenic Arabidopsis, whereas PwNAC2 delayed flowering by altering the expression of FT, SOC1 and FLC. In addtioin, PwRFCP1 overexpression plants showed no higher tolerance to stress treatment than Col-0. Collectively, our results indicate that PwNAC2 enhanced plant tolerance to abiotic stress through multiple signaling pathways and participated in PwRFCP1-regulated flowering time.
Collapse
Affiliation(s)
- Hehua Zhang
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Xiaoyue Cui
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Yuxiao Guo
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Chaobing Luo
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Lingyun Zhang
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
40
|
Huang Y, Zhao H, Gao F, Yao P, Deng R, Li C, Chen H, Wu Q. A R2R3-MYB transcription factor gene, FtMYB13, from Tartary buckwheat improves salt/drought tolerance in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:238-248. [PMID: 30227384 DOI: 10.1016/j.plaphy.2018.09.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/24/2018] [Accepted: 09/10/2018] [Indexed: 05/24/2023]
Abstract
Abiotic stress causes various negative impacts on plants, such as water loss, reactive oxygen species (ROS) accumulation and decreased photosynthesis. R2R3-MYB transcription factors (TFs) play crucial roles in the response of plants to abiotic stress. However, their functions in Tartary buckwheat, a strongly abiotic and resistant coarse cereal, haven't been fully investigated. In this paper, we report that a R2R3-MYB from Tartary buckwheat, FtMYB13, is not an activator of transcriptional activity but is located in the nucleus. Moreover, compared to the wild type (WT), transgenic Arabidopsis overexpressing FtMYB13 had a lower sensitivity to ABA and caused improved drought/salt tolerance, which was attributed to the higher proline content, greater photosynthetic efficiency, higher transcript abundance of some stress-related genes and the smaller amount of reactive oxygen species (ROS) and malondialdehyde (MDA) in the transgenic lines compared to WT. Consequently, our work indicates that FtMYB13 is involved in mediating plant responses to ABA, as well as salt and drought.
Collapse
Affiliation(s)
- Yunji Huang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan Province, China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan Province, China
| | - Fei Gao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan Province, China
| | - Panfeng Yao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan Province, China
| | - Renyu Deng
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan Province, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan Province, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan Province, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan Province, China.
| |
Collapse
|
41
|
Mahdavi Mashaki K, Garg V, Nasrollahnezhad Ghomi AA, Kudapa H, Chitikineni A, Zaynali Nezhad K, Yamchi A, Soltanloo H, Varshney RK, Thudi M. RNA-Seq analysis revealed genes associated with drought stress response in kabuli chickpea (Cicer arietinum L.). PLoS One 2018; 13:e0199774. [PMID: 29953498 PMCID: PMC6023194 DOI: 10.1371/journal.pone.0199774] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/13/2018] [Indexed: 11/24/2022] Open
Abstract
Drought is the most important constraint that effects chickpea production globally. RNA-Seq has great potential to dissect the molecular mechanisms of tolerance to environmental stresses. Transcriptome profiles in roots and shoots of two contrasting Iranian kabuli chickpea genotypes (Bivanij and Hashem) were investigated under water-limited conditions at early flowering stage using RNA-Seq approach. A total of 4,572 differentially expressed genes (DEGs) were identified. Of these, 261 and 169 drought stress responsive genes were identified in the shoots and the roots, respectively, and 17 genes were common in the shoots and the roots. Gene Ontology (GO) analysis revealed several sub-categories related to the stress, including response to stress, defense response and response to stimulus in the tolerant genotype Bivanij as compared to the sensitive genotype Hashem under drought stress. In addition, several Transcription factors (TFs) were identified in major metabolic pathways such as, ABA, proline and flavonoid biosynthesis. Furthermore, a number of the DEGs were observed in "QTL-hotspot" regions which were reported earlier in chickpea. Drought tolerance dissection in the genotypes revealed that the genes and the pathways involved in shoots of Bivanij were the most important factor to make a difference between the genotypes for drought tolerance. The identified TFs in the experiment, particularly those which were up-regulated in shoots of Bivanij during drought stress, were potential candidates for enhancing tolerance to drought.
Collapse
Affiliation(s)
- Keyvan Mahdavi Mashaki
- Department of Plant Breeding and Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Vanika Garg
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | | | - Himabindu Kudapa
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Annapurna Chitikineni
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Khalil Zaynali Nezhad
- Department of Plant Breeding and Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Ahad Yamchi
- Department of Plant Breeding and Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hasan Soltanloo
- Department of Plant Breeding and Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Rajeev Kumar Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Mahendar Thudi
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| |
Collapse
|
42
|
Mathew IE, Agarwal P. May the Fittest Protein Evolve: Favoring the Plant-Specific Origin and Expansion of NAC Transcription Factors. Bioessays 2018; 40:e1800018. [PMID: 29938806 DOI: 10.1002/bies.201800018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/26/2018] [Indexed: 12/12/2022]
Abstract
Plant-specific NAC transcription factors (TFs) evolve during the transition from aquatic to terrestrial plant life and are amplified to become one of the biggest TF families. This is because they regulate genes involved in water conductance and cell support. They also control flower and fruit formation. The review presented here focuses on various properties, regulatory intricacies, and developmental roles of NAC family members. Processes controlled by NACs depend majorly on their transcriptional properties. NACs can function as both activators and/or repressors. Additionally, their homo/hetero dimerization abilities can also affect DNA binding and activation properties. The active protein levels are dependent on the regulatory cascades. Because NACs regulate both development and stress responses in plants, in-depth knowledge about them has the potential to help guide future crop improvement studies.
Collapse
Affiliation(s)
- Iny Elizebeth Mathew
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
43
|
The chrysanthemum leaf and root transcript profiling in response to salinity stress. Gene 2018; 674:161-169. [PMID: 29944951 DOI: 10.1016/j.gene.2018.06.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/13/2018] [Accepted: 06/22/2018] [Indexed: 11/22/2022]
Abstract
RNA-Seq was applied to capture the transcriptome of the leaf and root of non-treated and salinity-treated chrysanthemum cv. 'Jinba' plants. A total of 206,868 unigenes of mean length 849 nt and of N50 length 1363 nt was identified; of these about 64% (> 132,000) could be functionally assigned. Depending on the severity of the salinity stress, differential transcription was observed for genes encoding proteins involved in osmotic adjustment, in ion transport, in reactive oxygen species scavenging and in the regulation of abscisic acid (ABA) signaling. The root stress response was dominated by the up-regulation of genes involved in ion transport, while that of the leaf reflected the plant's effort to make osmotic adjustments and to regulate Ca2+ transport. An array of known transcription factors (WRKY, AP2/ERF, MYB, bHLH and NAC) were differentially transcribed.
Collapse
|
44
|
Zhang Y, Li D, Wang Y, Zhou R, Wang L, Zhang Y, Yu J, Gong H, You J, Zhang X. Genome-wide identification and comprehensive analysis of the NAC transcription factor family in Sesamum indicum. PLoS One 2018; 13:e0199262. [PMID: 29927997 PMCID: PMC6013105 DOI: 10.1371/journal.pone.0199262] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022] Open
Abstract
The NAM, ATAF1/2, and CUC2 (NAC) family constitutes a large family of plant-specific transcription factors, involved in many aspects of physiological processes and a variety of abiotic stresses. There is little information concerning the NAC family in Sesamum indicum. In this study, 87 sesame NAC genes were identified and phylogenetically clustered into 12 groups with Arabidopsis NAC genes. A total of 83 SiNAC genes were distributed non-randomly on the 16 linkage groups in sesame. Four and 49 SiNACs were found to be tandemly and segmentally duplicated, respectively. Expression profiles of SiNAC genes in different tissues (root, stem, leaf, flower, seed, and capsule) and in response to drought and waterlogging stresses by using RNA-seq data demonstrated that 23 genes were highly expressed in all tissues, 18 and 31 SiNACs respond strongly to drought and waterlogging stresses, respectively. In addition, the expression of 30 SiNAC genes distributed in different subgroups was analyzed with quantitative real-time RT-PCR under cold, osmotic, and salt stresses, revealed that their expression patterns vary in response to abiotic stresses. SiNAC genes displayed diverse expression patterns among the different tissues and stress treatments, suggested that their contribution to plant growth and development in sesame and multiple stress resistance in sesame. In this study, NAC transcription factors were analyzed in sesame and some specific candidate SiNAC genes in response to abiotic stress for functional study were identified. This study provides valuable information to deepen our understanding of the abiotic stress responses by NAC transcription factors in sesame.
Collapse
Affiliation(s)
- Yujuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Donghua Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yanyan Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yanxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jingyin Yu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Huihui Gong
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- * E-mail: (XZ); (JY)
| | - Xiurong Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- * E-mail: (XZ); (JY)
| |
Collapse
|
45
|
Khan SA, Li MZ, Wang SM, Yin HJ. Revisiting the Role of Plant Transcription Factors in the Battle against Abiotic Stress. Int J Mol Sci 2018; 19:ijms19061634. [PMID: 29857524 PMCID: PMC6032162 DOI: 10.3390/ijms19061634] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/10/2018] [Accepted: 05/24/2018] [Indexed: 01/01/2023] Open
Abstract
Owing to diverse abiotic stresses and global climate deterioration, the agricultural production worldwide is suffering serious losses. Breeding stress-resilient crops with higher quality and yield against multiple environmental stresses via application of transgenic technologies is currently the most promising approach. Deciphering molecular principles and mining stress-associate genes that govern plant responses against abiotic stresses is one of the prerequisites to develop stress-resistant crop varieties. As molecular switches in controlling stress-responsive genes expression, transcription factors (TFs) play crucial roles in regulating various abiotic stress responses. Hence, functional analysis of TFs and their interaction partners during abiotic stresses is crucial to perceive their role in diverse signaling cascades that many researchers have continued to undertake. Here, we review current developments in understanding TFs, with particular emphasis on their functions in orchestrating plant abiotic stress responses. Further, we discuss novel molecular mechanisms of their action under abiotic stress conditions. This will provide valuable information for understanding regulatory mechanisms to engineer stress-tolerant crops.
Collapse
Affiliation(s)
- Sardar-Ali Khan
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Meng-Zhan Li
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Suo-Min Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Hong-Ju Yin
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
46
|
Wu D, Sun Y, Wang H, Shi H, Su M, Shan H, Li T, Li Q. The SlNAC8 gene of the halophyte Suaeda liaotungensis enhances drought and salt stress tolerance in transgenic Arabidopsis thaliana. Gene 2018; 662:10-20. [PMID: 29631006 DOI: 10.1016/j.gene.2018.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/30/2018] [Accepted: 04/05/2018] [Indexed: 11/19/2022]
Abstract
NAC (NAM, ATAF1/2 and CUC) transcription factors play an important role in resisting abiotic stress in plants. In this study, a novel NAC gene, designated SlNAC8 from Suaeda liaotungensis K. was characterized. SlNAC8 protein is localized in the nucleus, and the yeast one-hybrid screening showed that it contains an activation domain in its C-terminus and functions as a transcriptional activator. Gene expression analysis revealed that it is induced by drought and salt stress. Arabidopsis plants overexpressing SlNAC8 demonstrated enhanced tolerance to drought and salt stress, showing significant advantages in seed germination, root growth, shoot growth, and survival rate compared with controls. Moreover, transgenic plants had a significantly higher proline concentration, antioxidant enzyme activity (superoxide dismutase, peroxidase, and catalase), and level of chlorophyll fluorescence than wild-type, and a significantly lower malondialdehyde concentration and electrolyte leakage under drought and salt stress. The overexpression of SlNAC8 in transgenic plants also enhanced the expression of stress-responsive genes such as RD20, GSTF6, COR47, RD29A, RD29B, and NYC1. In summary, SlNAC8, as a transcription factor, may change the physiological-biochemical characteristic of plants by regulating the expression of stress-responsive genes and enhance the drought and salt stress tolerance of plants. SlNAC8 can be utilized for developing drought and salinity tolerance in crop plants through genetic engineering.
Collapse
Affiliation(s)
- Dandan Wu
- College of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Yinghao Sun
- College of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Hongfei Wang
- College of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - He Shi
- College of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Mingxing Su
- College of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Hongyan Shan
- College of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Tongtong Li
- College of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Qiuli Li
- College of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China.
| |
Collapse
|
47
|
Lu X, Zhang X, Duan H, Lian C, Liu C, Yin W, Xia X. Three stress-responsive NAC transcription factors from Populus euphratica differentially regulate salt and drought tolerance in transgenic plants. PHYSIOLOGIA PLANTARUM 2018; 162:73-97. [PMID: 28776695 DOI: 10.1111/ppl.12613] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/04/2017] [Accepted: 07/10/2017] [Indexed: 05/04/2023]
Abstract
Stress-responsive NAM, Arabidopsis transcription activation factor 1/2 (ATAF1/2) and CUC2 (SNAC) genes are being used to alter stress tolerance in Arabidopsis or grasses through genetic engineering. However, limited reports are available about the functional characteristics of SNAC in trees. In this study, three putative NAC proteins were identified from Populus euphratica. PeNAC034 and PeNAC045 were classified into the ATAF subgroup and PeNAC036 into the ANAC072 subgroup. These three SNAC transcription factors were localized in the nucleus and contained the transcription activation domain in their C-terminal. Under drought and salt stresses, PeNAC036 was strongly induced in the whole plant, but PeNAC034 was significantly suppressed in the roots and stems, and PeNAC045 was inhibited in the roots. PeNAC036 overexpression in Arabidopsis wild-type (WT) (OEPeNAC036) and PeNAC036 complementation in mutant anac072 (anac072/PeNAC036) lines increased tolerance to salt and drought, whereas PeNAC034 overexpression in WT (OEPeNAC034) and PeNAC034 complementation in mutant ataf1 (ataf1/PeNAC034) lines enhanced salt and drought sensitivity. After drought and salt treatments, the expression levels of COR47, RD29B, ERD11, RD22 and DREB2A were upregulated in OEPeNAC036 and anac072/PeNAC036 lines, but were downregulated in OEPeNAC034 and ataf1/PeNAC034 plants. Compared with WT and Vector lines, PeNAC045 overexpression in poplar WT (OEPeNAC045) led to a significant decrease in the net photosynthesis rate, stomatal conductance and transpiration rate under salinity and drought conditions. These results suggest that P. euphratica can adapt to the environment of high salinity and drought, which may be related to the differential expression patterns of SNAC genes.
Collapse
Affiliation(s)
- Xin Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Xiaofei Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Hui Duan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Conglong Lian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Chao Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, P. R. China
| |
Collapse
|
48
|
İlhan E, Büyük İ, İnal B. Transcriptome - Scale characterization of salt responsive bean TCP transcription factors. Gene 2017; 642:64-73. [PMID: 29129811 DOI: 10.1016/j.gene.2017.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 10/22/2017] [Accepted: 11/07/2017] [Indexed: 11/26/2022]
Abstract
TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) proteins are important regulators of growth and developmental processes including branching, floral organ morphogenesis and leaf growth as well as stress response. This study identified 27 TCP genes of Phaseolus vulgaris (common bean), which were divided into three clusters based on phylogenetic relationship. In addition, this study showed that some of TCP genes such as Pvul-TCP-4 and Pvul-TCP-15 located on chromosomes 3 and 7, Pvul-TCP-7 and Pvul-TCP-20 located on chromosome 7 and 9, were segmentally duplicated. On the other hand, a total of 20 Pvul-TCP genes have predicted to be targeted by microRNAs (miRNA). Most of the miRNA-target genes were Pvul-TCP-1, -11, -13 and -27, which were targeted by 13, 17, 22 and 13 plant miRNAs, respectively. miR319 was one of the highly represented regulatory miRNAs to target TCP transcripts. Promoter region analysis of TCP genes resulted that the GT-1 motif, which was related to salt stress, was found in 14 different Pvul-TCP genes. Expression profiling of 10 Pvul-TCP genes based on RNA-sequencing data further confirmed with quantitative real-time RT-PCR measurements identified that Pvul-TCP genes under salt stress are expressed in a cultivar- and tissue-specific manner.
Collapse
Affiliation(s)
- Emre İlhan
- Depart. of Molecular Bio. and Genetics, Erzurum Technical University, Erzurum, Turkey.
| | - İlker Büyük
- Depart. of Biology, Ankara University, Ankara, Turkey; Depart. of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Behcet İnal
- Depart. of Agricultural Biotechnology, Siirt University, Siirt, Turkey
| |
Collapse
|
49
|
Cao L, Yu Y, Ding X, Zhu D, Yang F, Liu B, Sun X, Duan X, Yin K, Zhu Y. The Glycine soja NAC transcription factor GsNAC019 mediates the regulation of plant alkaline tolerance and ABA sensitivity. PLANT MOLECULAR BIOLOGY 2017; 95:253-268. [PMID: 28884328 DOI: 10.1007/s11103-017-0643-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/29/2017] [Indexed: 05/23/2023]
Abstract
Overexpression of Gshdz4 or GsNAC019 enhanced alkaline tolerance in transgenic Arabidopsis. We proved that Gshdz4 up-regulated both GsNAC019 and GsRD29B but GsNAC019 may repress the GsRD29B expression under alkaline stress. Wild soybean (Glycine soja) has a high tolerance to environmental challenges. It is a model species for dissecting the molecular mechanisms of salt-alkaline stresses. Although many NAC transcription factors play important roles in response to multiple abiotic stresses, such as salt, osmotic and cold, their mode of action in alkaline stress resistance is largely unknown. In our study, we identified a G. soja NAC gene, GsNAC019, which is a homolog of the Arabidopsis AtNAC019 gene. GsNAC019 was highly up-regulated by 50 mM NaHCO3 treatment in the roots of wild soybean. Further investigation showed that a well-characterized transcription factor, Gshdz4 protein, bound the cis-acting element sequences (CAATA/TA), which are located in the promoter of the AtNAC019/GsNAC019 genes. Overexpression of Gshdz4 positively regulated AtNAC019 expression in transgenic Arabidopsis, implying that AtNAC019/GsNAC019 may be the target genes of Gshdz4. GsNAC019 was demonstrated to be a nuclear-localized protein in onion epidermal cells and possessed transactivation activity in yeast cells. Moreover, overexpression of GsNAC019 in Arabidopsis resulted in enhanced tolerance to alkaline stress at the seedling and mature stages, but reduced ABA sensitivity. The closest Arabidopsis homolog mutant plants of Gshdz4, GsNAC019 and GsRD29B containing athb40, atnac019 and atrd29b were sensitive to alkaline stress. Overexpression or the closest Arabidopsis homolog mutant plants of the GsNAC019 gene in Arabidopsis positively or negatively regulated the expression of stress-related genes, such as AHA2, RD29A/B and KIN1. Moreover, this mutation could phenotypically promoted or compromised plant growth under alkaline stress, implying that GsNAC019 may contribute to alkaline stress tolerance via the ABA signal transduction pathway and regulate expression of the downstream stress-related genes.
Collapse
Affiliation(s)
- Lei Cao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yang Yu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Dan Zhu
- College of Life Science, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Fan Yang
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, 413 90, Sweden
| | - Xiaoli Sun
- Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Xiangbo Duan
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Kuide Yin
- Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China.
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
50
|
Marques DN, Reis SPD, de Souza CR. Plant NAC transcription factors responsive to abiotic stresses. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.plgene.2017.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|