1
|
Câmara PEAS, Pellizzari FM, Lopes FAC, Amorim ET, Bones FLV, Anjos DA, Carvalho-Silva M, Convey P, Rosa LH. DNA metabarcoding reveal hidden diversity of periphytic eukaryotes on marine Antarctic macroalgae. AN ACAD BRAS CIENC 2025; 96:e20240570. [PMID: 39813480 DOI: 10.1590/0001-3765202420240570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/01/2024] [Indexed: 01/18/2025] Open
Abstract
Polar marine macroalgae thrive in extreme conditions, often displaying geographic isolation and high degree of endemism. The "phycosphere" refers to the zone around the algae inhabited by microrganisms. Our study used DNA metabarcoding to survey the eukaryotic communities associated with seven seaweed species obtained at King George Island (South Shetland Islands, maritime Antarctic), including two Rhodophyta, two Chlorophyta and three Phaeophyceae. The ITS2 region was used as a barcode and our analysis yielded 77 eukaryotic ASVs spanning five Kingdoms (Fungi, Metazoa, Chromista, Protozoa, and Viridiplantae) and ten phyla (Ascomycota, Basidiomycota, Cercozoa, Ciliophora, Ochrophyta, Amebozoa, Chlorophyta, Rhodophyta, Bryophyta and Cnidaria). Additionally, we identified 14 potential new occurrence records for Antarctica. Ciliates and green algae were the most species-rich groups. The most abundant assigned associated species was Monostroma angicava (Chrorophyta). Within the macroalgal, the Chlorophyceans Ulothrix sp. hosted the greatest number of taxa, followed by Monostroma hariotii. Our data suggested that Antarctic macroalgae host a rich diversity of associated organisms and the biodiversity associated with the phycosphere remains underestimated.
Collapse
Affiliation(s)
- Paulo Eduardo A S Câmara
- Universidade de Brasília, Departamento de Botânica, Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro, Asa Norte, s/n, 70910-900 Brasília, DF, Brazil
- Universidade Federal de Santa Catarina, Pós-graduação em Plantas, Fungos e Algas, Campus Universitário, s/n, Sala 208, Bloco E, Córrego Grande, 88040-900 Florianópolis, SC, Brazil
| | - Franciane Maria Pellizzari
- Universidade Estadual do Paraná (UNESPAR), Departamento de Ciências Biológicas, Programa de Pós-graduação em Ecossistemas Litorâneos e Insulares, Rua Comendador Correia Júnior, 11783203-560 Paranaguá, PR, Brazil
| | - Fabyano A C Lopes
- Universidade Federal do Tocantins, Laboratório de Microbiologia, Rua 03, Lote 11,/n, 77500-000 Porto Nacional, TO, Brazil
- Universidade Federal do Tocantins, Núcleo de Estudos Ambientais, Rua 03, Lote 11, s/n, 77500-000 Porto Nacional, TO, Brazil
| | - Eduardo T Amorim
- Jardim Botânico do Rio de Janeiro (JBRJ), Centro Nacional de Conservação da Flora (CNCFLORA), Rua Pacheco Leão 915, 22460-030 Rio de Janeiro, RJ, Brazil
| | - Fábio L V Bones
- Universidade Federal de Santa Catarina, Pós-graduação em Plantas, Fungos e Algas, Campus Universitário, s/n, Sala 208, Bloco E, Córrego Grande, 88040-900 Florianópolis, SC, Brazil
| | - Dafne A Anjos
- Universidade de Brasília, Departamento de Botânica, Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro, Asa Norte, s/n, 70910-900 Brasília, DF, Brazil
- Universidade do Estado do Rio de Janeiro, UERJ, Instituto de Biologia Roberto Alcantara Gomes, Rua São Francisco Xavier 524, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
| | - Micheline Carvalho-Silva
- Universidade de Brasília, Departamento de Botânica, Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro, Asa Norte, s/n, 70910-900 Brasília, DF, Brazil
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom
- University of Johannesburg, Department of Zoology, PO Box 524, Auckland Park 2006, Johannesburg, South Africa
| | - Luiz Henrique Rosa
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Microbiologia, Av. Antônio Carlos, 6627, Pampulha, 31270-000 Belo Horizonte, MG, Brazil
| |
Collapse
|
2
|
Mugnai G, Pinchuk I, Borruso L, Tiziani R, Sannino C, Canini F, Turchetti B, Mimmo T, Zucconi L, Buzzini P. The hidden network of biocrust successional stages in the High Arctic: Revealing abiotic and biotic factors shaping microbial and metazoan communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171786. [PMID: 38508248 DOI: 10.1016/j.scitotenv.2024.171786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Despite the important role that biocrust communities play in maintaining ecosystem structure and functioning in deglaciated barren soil, few studies have been conducted on the dynamics of biotic communities and the impact of physicochemical characteristics in shaping the different successional stages. In this study an integrated approach encompassing physicochemical parameters and molecular taxonomy was used for identifying the indicator taxa and the presence of intra- and inter-kingdom interactions in five different crust/biocrust successional stages: i) physical crust, ii) cyanobacteria-dominated biocrust, iii) cyanobacteria/moss-dominated biocrust, iv) moss-dominated biocrust and v) bryophyte carpet. The phylum Gemmatimonadota was the bacterial indicator taxon in the early stage, promoting both inter- and intra-kingdom interactions, while Cyanobacteria and Nematoda phyla played a pivotal role in formation and dynamics of cyanobacteria-dominated biocrusts. A multitrophic community, characterized by a shift from oligotrophic to copiotrophic bacteria and the presence of saproxylic arthropod and herbivore insects was found in the cyanobacteria/moss-dominated biocrust, while a more complex biota, characterized by an increased fungal abundance (classes Sordariomycetes, Leotiomycetes, and Dothideomycetes, phylum Ascomycota), associated with highly trophic consumer invertebrates (phyla Arthropoda, Rotifera, Tardigrada), was observed in moss-dominated biocrusts. The class Bdelloidea and the family Hypsibiidae (phyla Rotifera and Tardigrada, respectively) were metazoan indicator taxon in bryophyte carpet, suggesting their potential role in shaping structure and function of this late successional stage. Nitrogen and phosphorus were the main physicochemical limiting factors driving the shift among different crust/biocrust successional stages. Identification and characterization of indicator taxa, biological intra- and inter-kingdom interactions and abiotic factors driving the shift among different crust/biocrust successional stages provide a detailed picture on crust/biocrust dynamics, revealing a strong interconnection among micro- and macrobiota systems. These findings enhance our understanding of biocrust ecosystems in High Arctic, providing valuable insights for their conservation and management in response to environmental shifts due to climate change.
Collapse
Affiliation(s)
- Gianmarco Mugnai
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, Perugia 06121, Italy.
| | - Irina Pinchuk
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, Perugia 06121, Italy
| | - Luigimaria Borruso
- Faculty of Agricultural, Environmental and Food Science, Free University of Bolzano-Bozen, Bozen-Bolzano, 39100, Italy
| | - Raphael Tiziani
- Faculty of Agricultural, Environmental and Food Science, Free University of Bolzano-Bozen, Bozen-Bolzano, 39100, Italy
| | - Ciro Sannino
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, Perugia 06121, Italy
| | - Fabiana Canini
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo 01100, Italy
| | - Benedetta Turchetti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, Perugia 06121, Italy
| | - Tanja Mimmo
- Faculty of Agricultural, Environmental and Food Science, Free University of Bolzano-Bozen, Bozen-Bolzano, 39100, Italy
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo 01100, Italy
| | - Pietro Buzzini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, Perugia 06121, Italy
| |
Collapse
|
3
|
Jung P, Briegel-Williams L, Werner L, Jost E, Schultz M, Nürnberg DJ, Grube M, Lakatos M. A direct PCR approach with low-biomass insert opens new horizons for molecular sciences on cryptogam communities. Appl Environ Microbiol 2024; 90:e0002424. [PMID: 38349146 PMCID: PMC10952543 DOI: 10.1128/aem.00024-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 03/21/2024] Open
Abstract
Molecular sequence data have transformed research on cryptogams (e.g., lichens, microalgae, fungi, and symbionts thereof) but methods are still strongly hampered by the small size and intermingled growth of the target organisms, poor cultivability and detrimental effects of their secondary metabolites. Here, we aim to showcase examples on which a modified direct PCR approach for diverse aspects of molecular work on environmental samples concerning biocrusts, biofilms, and cryptogams gives new options for the research community. Unlike traditional approaches, this methodology only requires biomass equivalent to colonies and fragments of 0.2 mm in diameter, which can be picked directly from the environmental sample, and includes a quick DNA lysis followed by a standardized PCR cycle that allows co-cycling of various organisms/target regions in the same run. We demonstrate that this modified method can (i) amplify the most widely used taxonomic gene regions and those used for applied and environmental sciences from single colonies and filaments of free-living cyanobacteria, bryophytes, fungi, and lichens, including their mycobionts, chlorobionts, and cyanobionts from both isolates and in situ material during co-cycling; (ii) act as a tool to confirm that the dominant lichen photobiont was isolated from the original sample; and (iii) optionally remove inhibitory secondary lichen substances. Our results represent examples which highlight the method's potential for future applications covering mycology, phycology, biocrusts, and lichenology, in particular.IMPORTANCECyanobacteria, green algae, lichens, and other cryptogams play crucial roles in complex microbial systems such as biological soil crusts of arid biomes or biofilms in caves. Molecular investigations on environmental samples or isolates of these microorganisms are often hampered by their dense aggregation, small size, or metabolism products which complicate DNA extraction and subsequent PCRs. Our work presents various examples of how a direct DNA extraction and PCR method relying on low biomass inserts can overcome these common problems and discusses additional applications of the workflow including adaptations.
Collapse
Affiliation(s)
- Patrick Jung
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Laura Briegel-Williams
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Lina Werner
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Emily Jost
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Matthias Schultz
- Institute for Plant Science and Microbiology, Herbarium Hamburgense, University of Hamburg, Hamburg, Germany
| | - Dennis J. Nürnberg
- Institute of Experimental Physics, Freie Universität Berlin, Berlin, Germany
- Dahlem Centre for Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Martin Grube
- Institute of Biology, University of Graz, Graz, Austria
| | - Michael Lakatos
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| |
Collapse
|
4
|
Câmara PEAS, de Menezes GCA, Lopes FAC, da Silva Paiva T, Carvalho-Silva M, Convey P, Amorim ET, Rosa LH. Investigating non-fungal eukaryotic diversity in snow in the Antarctic Peninsula region using DNA metabarcoding. Extremophiles 2023; 28:3. [PMID: 37962679 DOI: 10.1007/s00792-023-01322-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023]
Abstract
Snow is a unique microhabitat, despite being a harsh environment, multiple life forms have adapted to survive in it. While algae, bacteria and fungi are dominant microorganisms in Antarctic snow, little is known about other organisms that may be present in this habitat. We used metabarcoding to investigate DNA sequence diversity of non-fungal eukaryotes present in snow obtained from six different sites across the Maritime Antarctica. A total of 20 taxa were assigned to obtained sequences, representing five Kingdoms (Chromista, Protozoa, Viridiplantae and Metazoa) and four phyla (Ciliophora, Cercozoa, Chlorophyta and Cnidaria). The highest diversity indices were detected in Trinity Peninsula followed by Robert Island, Arctowski Peninsula, Deception Island, King George Island and Snow Island. The most abundant assignments were to Trebouxiophyceae, followed by Chlamydomonas nivalis and Chlamidomonadales. No taxa were detected at all sites. Three potentially new records for Antarctica were detected: two Ciliophora (Aspidisca magna and Stokesia sp.) and the green algae Trebouxia potteri. Our data suggested that similarities found between the sites may be more related with snow physicochemical properties rather than geographic proximity or latitude. This study provides new insights into the diversity and distribution of eukaryotic organisms in Antarctic snow.
Collapse
Affiliation(s)
- Paulo E A S Câmara
- Departamento de Botânica, Universidade de Brasília, Brasília, 70910-900, Brasil.
- Algas E Plantas, Pós Graduação Em Fungos, Universidade Federal de Santa Catarina, Florianoplis, Santa Catarina, Brazil.
| | - Graciéle C A de Menezes
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brasil
| | - Fabyano A C Lopes
- Laboratório de Microbiologia, Universidade Federal Do Tocantins, Porto Nacional, Brazil
| | - Thiago da Silva Paiva
- Laboratório de Protistologia, Instituto de Biologia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
- Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006, South Africa
- Biodiversity of Antarctic and Sub-Antarctic Ecosystems (BASE), Santiago, Chile
| | - Eduardo T Amorim
- Centro Nacional de Conservação da Flora/Instituto de Pesquisas Jardim Botânico Do Rio de Janeiro (CNCFlora/JBRJ), Rio de Janeiro, Brazil
| | - Luiz H Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brasil
| |
Collapse
|
5
|
Wei L, Zhao Q, Chen X, Sun Q, Zhang X, Chen Y. Seasonal variation in soil algal community structure in different forest plantations in subtropic China. FRONTIERS IN PLANT SCIENCE 2023; 14:1181184. [PMID: 37521936 PMCID: PMC10382206 DOI: 10.3389/fpls.2023.1181184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
Algae exert great impact on soil formation and biogeochemical cycling. However, there is no full understanding of the response of soil algal community structure to the seasonal fluctuations in temperature and moisture and changes of soil physicochemical properties across different forests. Here, based on 23S rRNA gene sequencing, we analyzed soil algal community structure in four different forest plantations in two seasons and examined soil physiochemical properties. The results showed the significantly seasonal variation in soil algal community structure, with the higher overall diversity in summer than in winter. In addition, there existed significant correlations between soil algae (species composition, relative abundance, diversity index) and physicochemical properties (pH, total phosphorus, organic matter and nitrate nitrogen), suggesting that edaphic characteristics are also largely responsible for the variation in soil algal community. Nevertheless, the seasonal variation in algal community structure was greater than the variation across different forest plantations. This suggest temperature and moisture are more important than soil physicochemical properties in determining soil algal community structure. The findings of the present study enhance our understanding of the algal communities in forest ecosystems and are of great significance for the management and protection of algal ecosystem.
Collapse
Affiliation(s)
- Liman Wei
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Agricultural Sensors and Intelligent Perception Technology Innovation Center of Anhui Province, Zhongke Hefei Institutes of Collaborative Research and Innovation for Intelligent Agriculture, Hefei, China
| | - Qiong Zhao
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Xiangyu Chen
- Agricultural Sensors and Intelligent Perception Technology Innovation Center of Anhui Province, Zhongke Hefei Institutes of Collaborative Research and Innovation for Intelligent Agriculture, Hefei, China
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Qingye Sun
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Xiang Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Yongjing Chen
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| |
Collapse
|
6
|
Câmara PEAS, Bones FLV, Lopes FAC, Oliveira FS, Barreto CC, Knop Henriques D, Campos LP, Carvalho-Silva M, Convey P, Rosa LH. DNA Metabarcoding Reveals Cryptic Diversity in Forest Soils on the Isolated Brazilian Trindade Island, South Atlantic. MICROBIAL ECOLOGY 2023; 85:1056-1071. [PMID: 35484416 DOI: 10.1007/s00248-022-02018-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/19/2022] [Indexed: 05/04/2023]
Abstract
Located 1140 km from the South American coastline in the South Atlantic Ocean and with an age of 4 million years, Trindade Island is the most recent volcanic component of Brazilian territory. Its original native vegetation has been severely damaged by human influence, in particular through the introduction of exotic grazing animals such as goats. However, since the complete eradication of goats and other feral animals in the late 1990s, the island's vegetation has been recovering, and even some endemic species that had been considered extinct have been rediscovered. In this study, we set out to characterize the contemporary cryptic diversity in soils of the recovering native forest of Trindade Island using metabarcoding by high throughput sequencing (HTS). The sequence diversity obtained was dominated by microorganisms, including three domains (Bacteria, Archaea, and Eukarya) and five kingdoms (Fungi, Metazoa, Protozoa, Chromista, and Viridiplantae). Bacteria were represented by 20 phyla and 116 taxa, with Archaea by only one taxon. Fungi were represented by seven phyla and 250 taxa, Viridiplantae by five phyla and six taxa, Protozoa by five phyla and six taxa, Metazoa by three phyla and four taxa and Chromista by two phyla and two taxa. Even after the considerable anthropogenic impacts and devastation of the island's natural forest, our sequence data reveal the presence of a rich and complex diversity of microorganisms, invertebrates, and plants and provide important baseline biodiversity information that will contribute to ecological restoration efforts on the island.
Collapse
Affiliation(s)
- Paulo E A S Câmara
- Departamento de Botânica, Universidade de Brasília, Brasília, Brasil.
- Pós Graduação Em Plantas, Fungos E Algas, Universidade Federal de Santa Catarina, Florianópolis, Brasil.
| | - Fábio Leal Viana Bones
- Pós Graduação Em Plantas, Fungos E Algas, Universidade Federal de Santa Catarina, Florianópolis, Brasil
| | | | - Fabio S Oliveira
- Departamento de Geografia, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | | | | | | | | | - Peter Convey
- British Antarctic Survey, Cambridge, UK
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - Luiz Henrique Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| |
Collapse
|
7
|
Successional Development of the Phototrophic Community in Biological Soil Crusts on Coastal and Inland Dunes. BIOLOGY 2022; 12:biology12010058. [PMID: 36671750 PMCID: PMC9856012 DOI: 10.3390/biology12010058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
(1) Biological soil crusts (biocrusts) are microecosystems consisting of prokaryotic and eukaryotic microorganisms growing on the topsoil. This study aims to characterize changes in the community structure of biocrust phototrophic organisms along a dune chronosequence in the Baltic Sea compared to an inland dune in northern Germany. (2) A vegetation survey followed by species determination and sediment analyses were conducted. (3) The results highlight a varying phototrophic community composition within the biocrusts regarding the different successional stages of the dunes. At both study sites, a shift from algae-dominated to lichen- and moss-dominated biocrusts in later successional dune types was observed. The algae community of both study sites shared 50% of the identified species while the moss and lichen community shared less than 15%. This indicates a more generalized occurrence of the algal taxa along both chronosequences. The mosses and lichens showed a habitat-specific species community. Moreover, an increase in the organic matter and moisture content with advanced biocrust development was detected. The enrichment of carbon, nitrogen, and phosphorus in the different biocrust types showed a similar relationship. (4) This relation can be explained by biomass growth and potential nutrient mobilization by the microorganisms. Hence, the observed biocrust development potentially enhanced soil formation and contributed to nutrient accumulation.
Collapse
|
8
|
Pushkareva E, Elster J, Holzinger A, Niedzwiedz S, Becker B. Biocrusts from Iceland and Svalbard: Does microbial community composition differ substantially? Front Microbiol 2022; 13:1048522. [PMID: 36590427 PMCID: PMC9800606 DOI: 10.3389/fmicb.2022.1048522] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
A wide range of microorganisms inhabit biocrusts of arctic and sub-arctic regions. These taxa live and thrive under extreme conditions and, moreover, play important roles in biogeochemical cycling. Nevertheless, their diversity and abundance remain ambiguous. Here, we studied microbial community composition in biocrusts from Svalbard and Iceland using amplicon sequencing and epifluorescence microscopy. Sequencing of 16S rRNA gene revealed the dominance of Chloroflexi in the biocrusts from Iceland and Longyearbyen, and Acidobacteria in the biocrusts from Ny-Ålesund and South Svalbard. Within the 18S rRNA gene sequencing dataset, Chloroplastida prevailed in all the samples with dominance of Trebouxiophyceae in the biocrusts from Ny-Ålesund and Embryophyta in the biocrusts from the other localities. Furthermore, cyanobacterial number of cells and biovolume exceeded the microalgal in the biocrusts. Community compositions in the studied sites were correlated to the measured chemical parameters such as conductivity, pH, soil organic matter and mineral nitrogen contents. In addition, co-occurrence analysis showed the dominance of positive potential interactions and, bacterial and eukaryotic taxa co-occurred more frequently together.
Collapse
Affiliation(s)
- Ekaterina Pushkareva
- Department of Biology, Botanical Institute, University of Cologne, Cologne, Germany,*Correspondence: Ekaterina Pushkareva,
| | - Josef Elster
- Institute of Botany, Academy of Sciences of the Czech Republic, Trebon, Czechia,Centre for Polar Ecology, University of South Bohemia, Ceske Budejovice, Czechia
| | - Andreas Holzinger
- Functional Plant Biology, Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Sarina Niedzwiedz
- Marine Botany, Faculty of Biology and Chemistry & MARUM, University of Bremen, Bremen, Germany
| | - Burkhard Becker
- Department of Biology, Botanical Institute, University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Glaser K, Albrecht M, Baumann K, Overmann J, Sikorski J. Biological Soil Crust From Mesic Forests Promote a Specific Bacteria Community. Front Microbiol 2022; 13:769767. [PMID: 35369523 PMCID: PMC8966483 DOI: 10.3389/fmicb.2022.769767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/19/2022] [Indexed: 12/03/2022] Open
Abstract
Biological soil crusts (biocrusts) harbor a diverse community of various microorganisms with microalgae as primary producers and bacteria living in close association. In mesic regions, biocrusts emerge rapidly on disturbed surface soil in forest, typically after clear-cut or windfall. It is unclear whether the bacterial community in biocrusts is similar to the community of the surrounding soil or if biocrust formation promotes a specific bacterial community. Also, many of the interactions between bacteria and algae in biocrusts are largely unknown. Through high-throughput-sequencing analysis of the bacterial community composition, correlated drivers, and the interpretation of biological interactions in a biocrust of a forest ecosystem, we show that the bacterial community in the biocrust represents a subset of the community of the neighboring soil. Bacterial families connected with degradation of large carbon molecules, like cellulose and chitin, and the bacterivore Bdellovibrio were more abundant in the biocrust compared to bulk soil. This points to a closer interaction and nutrient recycling in the biocrust compared to bulk soil. Furthermore, the bacterial richness was positively correlated with the content of mucilage producing algae. The bacteria likely profit from the mucilage sheaths of the algae, either as a carbon source or protectant from grazing or desiccation. Comparative sequence analyses revealed pronounced differences between the biocrust bacterial microbiome. It seems that the bacterial community of the biocrust is recruited from the local soil, resulting in specific bacterial communities in different geographic regions.
Collapse
Affiliation(s)
- Karin Glaser
- Applied Ecology and Phycology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Martin Albrecht
- Applied Ecology and Phycology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Karen Baumann
- Department of Soil Science, Faculty of Agricultural and Environmental Science, University of Rostock, Rostock, Germany
| | - Jörg Overmann
- Department of Microbiology, Faculty of Life Sciences, Technische Universität Braunschweig, Braunschweig, Germany
| | - Johannes Sikorski
- Leibniz-Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
10
|
Câmara PEAS, Menezes GCA, Pinto OHB, Silva MC, Convey P, Rosa LH. Using metabarcoding to assess Viridiplantae sequence diversity present in Antarctic glacial ice. AN ACAD BRAS CIENC 2022; 94:e20201736. [PMID: 35239797 DOI: 10.1590/0001-3765202220201736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 06/04/2021] [Indexed: 11/22/2022] Open
Abstract
Antarctica contains most of the glacial ice on the planet, a habitat that is largely unexplored by biologists. Recent warming in parts of Antarctica, particularly the Antarctic Peninsula region, is leading to widespread glacial retreat, releasing melt water and, potentially, contained biological material and propagules. In this study, we used a DNA metabarcoding approach to characterize Viridiplantae DNA present in Antarctic glacial ice. Ice samples from six glaciers in the South Shetland Islands and Antarctic Peninsula were analysed, detecting the presence of DNA representing a total of 16 taxa including 11 Chlorophyta (green algae) and five Magnoliophyta (flowering plants). The green algae may indicate the presence of a viable algal community in the ice or simply of preserved DNA, and the sequence diversity assigned included representatives of Chlorophyta not previously recorded in Antarctica. The presence of flowering plant DNA is most likely to be associated with pollen or tissue fragments introduced by humans.
Collapse
Affiliation(s)
- Paulo E A S Câmara
- Universidade de Brasília, Departamento de Botânica, Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro, s/n, 70910-900 Brasília, DF, Brazil.,Universidade Federal de Santa Catarina, Pós-graduação em Plantas, Fungos e Algas, Campus Universitário, s/n, Sala 208, Bloco E, Córrego Grande, 88040-900 Florianópolis, SC, Brazil
| | - Graciele C A Menezes
- Universidade Federal de Minas Gerais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Av. Antônio Carlos, 6627, Pampulha, 31270-000 Belo Horizonte, MG, Brazil
| | - Otavio H B Pinto
- Universidade de Brasília, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro, s/n, 70910-000 Brasília, DF, Brazil
| | - Micheline C Silva
- Universidade de Brasília, Departamento de Botânica, Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro, s/n, 70910-900 Brasília, DF, Brazil
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, U.K.,University of Johannesburg, Department of Zoology, PO Box 524, Auckland Park 2006, Johannesburg, South Africa
| | - Luiz H Rosa
- Universidade Federal de Minas Gerais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Av. Antônio Carlos, 6627, Pampulha, 31270-000 Belo Horizonte, MG, Brazil
| |
Collapse
|
11
|
Pérez CA, Kim M, Aravena JC, Silva W. Diazotrophic activity and denitrification in two long-term chronosequences of maritime Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:152234. [PMID: 34896140 DOI: 10.1016/j.scitotenv.2021.152234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
The main goals of this study were to identify whether key processes involved in microbial soil nitrogen transformations, such as diazotrophic activity and denitrification, the chemical properties of limiting elements in the soil, and microbial community structure, differ in the different successional stages of two long term chronosequences in maritime Antarctica. Moreover, we expect the rates of diazotrophic activity and denitrification to be stimulated by increases in air temperature and moisture. To answer these questions, we selected three stages in the succession (early, mid and late) in each of two well established chronosequences: three raised beaches in Ardley Island; and the Barton Peninsula, which includes two cosmogenically dated sites and the forefield of the Fourcade glacier. In the Ardley chronosequence, higher diazotrophic activity was found in the older successional stages, concomitant with an increase in the abundance of Cyanobacteria. In the Barton chronosequence, Cyanobacteria were only present and abundant (Microcoleus) in the early successional stage, coinciding with the highest diazotrophic activity. Denitrification in the Barton chronosequence tended to be highest at the mid successional sites, associated with the highest abundance of Rhodanobacter. In the Ardley chronosequence, the lowest abundance of Rhodanobacter was linked to lower denitrification rates in the mid successional stage. In the Ardley chronosequence, significant positive effects of passive warming and water addition on diazotrophic activity were detected in the first and the second years of the study respectively. In the Barton chronosequence on the other hand, there was no response to either passive warming or water addition, probably a manifestation of the higher nutrient limitation in this site. Denitrification showed no response to either warming or water addition. Thus, the response of microbial nitrogen transformations to global change is highly dependent on the environmental setting, such as soil origin, age and climate regime.
Collapse
Affiliation(s)
- Cecilia A Pérez
- Institute of Ecology and Biodiversity (IEB), Las Palmeras, 3425 Santiago, Chile.
| | - Mincheol Kim
- Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea
| | - Juan Carlos Aravena
- Centro de Investigación Gaia Antártica (CIGA), Universidad de Magallanes, Punta Arenas, Chile
| | - Wladimir Silva
- Institute of Ecology and Biodiversity (IEB), Las Palmeras, 3425 Santiago, Chile
| |
Collapse
|
12
|
Diversity of Viridiplantae DNA present on rock surfaces in the Ellsworth Mountains, continental Antarctica. Polar Biol 2022. [DOI: 10.1007/s00300-022-03021-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Fonseca BM, Câmara PEAS, Ogaki MB, Pinto OHB, Lirio JM, Coria SH, Vieira R, Carvalho-Silva M, Amorim ET, Convey P, Rosa LH. Green algae (Viridiplantae) in sediments from three lakes on Vega Island, Antarctica, assessed using DNA metabarcoding. Mol Biol Rep 2021; 49:179-188. [PMID: 34686990 DOI: 10.1007/s11033-021-06857-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Vega Island is located off the eastern tip of the Antarctic Peninsula (Maritime Antarctica), in the Weddell Sea. In this study, we used metabarcoding to investigate green algal DNA sequence diversity present in sediments from three lakes on Vega Island (Esmeralda, Copépodo, and Pan Negro Lakes). METHODS AND RESULTS Total DNA was extracted and the internal transcribed spacer 2 region of the nuclear ribosomal DNA was used as a DNA barcode for molecular identification. Green algae were represented by sequences representing 78 taxa belonging to Phylum Chlorophyta, of which 32% have not previously been recorded from Antarctica. Sediment from Pan Negro Lake generated the highest number of DNA reads (11,205), followed by Esmeralda (9085) and Copépodo (1595) Lakes. Esmeralda Lake was the richest in terms of number of taxa (59), with Copépodo and Pan Negro Lakes having 30 taxa each. Bray-Curtis dissimilarity among lakes was high (~ 0.80). The Order Chlamydomonadales (Chlorophyceae) gave the highest contribution in terms of numbers of taxa and DNA reads in all lakes. The most abundant taxon was Chlorococcum microstigmatum. CONCLUSIONS The study confirms the utility of DNA metabarcoding in assessing potential green algal diversity in Antarctic lakes, generating new Antarctic records.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rosemary Vieira
- Instituto de Geociências, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | | | | | - Peter Convey
- British Antarctic Survey, Cambridge, UK
- Department of Zoology, University of Johannesburg, Auckland Park, South Africa
| | - Luiz Henrique Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
14
|
Microbial Diversity in Subarctic Biocrusts from West Iceland following an Elevation Gradient. Microorganisms 2021; 9:microorganisms9112195. [PMID: 34835321 PMCID: PMC8624075 DOI: 10.3390/microorganisms9112195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 11/16/2022] Open
Abstract
Biological soil crusts (biocrusts) are essential communities of organisms in the Icelandic soil ecosystem, as they prevent erosion and cryoturbation and provide nutrients to vascular plants. However, biocrust microbial composition in Iceland remains understudied. To address this gap in knowledge, we applied high-throughput sequencing to study microbial community composition in biocrusts collected along an elevation gradient (11–157 m a.s.l.) stretching away perpendicular to the marine coast. Four groups of organisms were targeted: bacteria and cyanobacteria (16S rRNA gene), fungi (transcribed spacer region), and other eukaryotes (18S rRNA gene). The amplicon sequencing of the 16S rRNA gene revealed the dominance of Proteobacteria, Bacteroidetes, and Actinobacteria. Within the cyanobacteria, filamentous forms from the orders Synechococcales and Oscillatoriales prevailed. Furthermore, fungi in the biocrusts were dominated by Ascomycota, while the majority of reads obtained from sequencing of the 18S rRNA gene belonged to Archaeplastida. In addition, microbial photoautotrophs isolated from the biocrusts were assigned to the cyanobacterial genera Phormidesmis, Microcoleus, Wilmottia, and Oscillatoria and to two microalgal phyla Chlorophyta and Charophyta. In general, the taxonomic diversity of microorganisms in the biocrusts increased following the elevation gradient and community composition differed among the sites, suggesting that microclimatic and soil parameters might shape biocrust microbiota.
Collapse
|
15
|
|
16
|
Câmara PEAS, Convey P, Rangel SB, Konrath M, Barreto CC, Pinto OHB, Silva MC, Henriques DK, de Oliveira HC, Rosa LH. The largest moss carpet transplant in Antarctica and its bryosphere cryptic biodiversity. Extremophiles 2021; 25:369-384. [PMID: 34117569 DOI: 10.1007/s00792-021-01235-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/01/2021] [Indexed: 01/16/2023]
Abstract
As part of the reconstruction of the Brazilian Antarctic Station on King George Island, three areas of moss carpet were transplanted to minimize the impact of the new facilities on the local biodiversity. A total of 650 m2 of moss carpet was transplanted to neighboring but previously uncolonized locations and has subsequently survived for the last 3 years. Antarctic moss carpets typically comprise low moss species diversity and are often monospecific. We investigated the cryptic biodiversity that was transplanted along with the carpets using a metabarcoding approach through high throughput sequencing. We targeted 16S rRNA for Bacteria and Archaea, ITS for Fungi and Viridiplantae and Cox1 for Metazoa. We detected DNA representing 263 taxa from five Kingdoms (Chromista, Fungi, Metazoa, Protista and Viridiplantae), two Domains (Archaea and Bacteria) and 33 Phyla associated with the carpet. This diversity included one Archaea, 189 Bacteria, 24 Chromista, 19 Fungi, eight Metazoa, seven Protista and 16 Viridiplantae. Bacteria was the most abundant, rich and diverse group, with Chromista second in diversity and richness. Metazoa was less diverse but second highest in dominance. This is the first study to attempt transplanting a significant area of moss carpet to minimize anthropogenic environmental damage in Antarctica and to use metabarcoding as a proxy to assess diversity associated with Antarctic moss carpets, further highlighting the importance of such habitats for other organisms and their importance for conservation.
Collapse
Affiliation(s)
| | | | - Sandro B Rangel
- Instituto Brasileiro Do Meio Ambiente, IBAMA, Brasilia, Brazil
| | - Marcelo Konrath
- China National Electronics Import and Export Corporation, CEIEC, Beijing, China
| | | | - Otavio H B Pinto
- Departamento de Biologia Molecular, Universidade de Brasília, Brasilia, Brazil
| | | | | | | | - Luiz H Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
17
|
Câmara PEAS, Carvalho-Silva M, Pinto OHB, Amorim ET, Henriques DK, da Silva TH, Pellizzari F, Convey P, Rosa LH. Diversity and Ecology of Chlorophyta (Viridiplantae) Assemblages in Protected and Non-protected Sites in Deception Island (Antarctica, South Shetland Islands) Assessed Using an NGS Approach. MICROBIAL ECOLOGY 2021; 81:323-334. [PMID: 32860076 DOI: 10.1007/s00248-020-01584-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/24/2020] [Indexed: 05/20/2023]
Abstract
Assessment of the diversity of algal assemblages in Antarctica has until now largely relied on traditional microbiological culture approaches. Here we used DNA metabarcoding through high-throughput sequencing (HTS) to assess the uncultured algal diversity at two sites on Deception Island, Antarctica. The first was a relatively undisturbed site within an Antarctic Specially Protected Area (ASPA 140), and the second was a site heavily impacted by human visitation, the Whalers Bay historic site. We detected 65 distinct algal taxa, 50 from within ASPA 140 and 61 from Whalers Bay. Of these taxa, 46 were common to both sites, and 19 only occurred at one site. Algal richness was about six times greater than reported in previous studies using culture methods. A high proportion of DNA reads obtained was assigned to the highly invasive species Caulerpa webbiana at Whalers Bay, and the potentially pathogenic genus Desmodesmus was found at both sites. Our data demonstrate that important differences exist between these two protected and human-impacted sites on Deception Island in terms of algal diversity, richness, and abundance. The South Shetland Islands have experienced considerable effects of climate change in recent decades, while warming through geothermal activity on Deception Island itself makes this island one of the most vulnerable to colonization by non-native species. The detection of DNA of non-native taxa highlights concerns about how human impacts, which take place primarily through tourism and national research operations, may influence future biological colonization processes in Antarctica.
Collapse
Affiliation(s)
| | | | - Otávio H B Pinto
- Departamento de Biologia Celular e Molecular, Universidade de Brasília (UnB), Brasilia, Brazil
| | - Eduardo T Amorim
- Departamento de Botânica, Universidade de Brasília (UnB), Brasilia, Brazil
- Centro Nacional de Conservação da Flora/Instituto de Pesquisas Jardim Botânico do Rio de Janeiro (CNCFlora/JBRJ), Rio de Janeiro, Brazil
| | | | - Thamar Holanda da Silva
- Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Franciane Pellizzari
- Departamento de Ciências Biológicas, Universidade Estadual do Paraná, Paranaguá, Brazil
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Luiz Henrique Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
18
|
|
19
|
Borchhardt N, Gründling-Pfaff S. Ecophysiological Response Against Temperature in Klebsormidium (Streptophyta) Strains Isolated From Biological Soil Crusts of Arctic and Antarctica Indicate Survival During Global Warming. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
20
|
Malavasi V, Soru S, Cao G. Extremophile Microalgae: the potential for biotechnological application. JOURNAL OF PHYCOLOGY 2020; 56:559-573. [PMID: 31917871 DOI: 10.1111/jpy.12965] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/26/2019] [Indexed: 05/18/2023]
Abstract
Microalgae are photosynthetic microorganisms that use sunlight as an energy source, and convert water, carbon dioxide, and inorganic salts into algal biomass. The isolation and selection of microalgae, which allow one to obtain large amounts of biomass and valuable compounds, is a prerequisite for their successful industrial production. This work provides an overview of extremophile algae, where their ability to grow under harsh conditions and the corresponding accumulation of metabolites are addressed. Emphasis is placed on the high-value products of some prominent algae. Moreover, the most recent applications of these microorganisms and their potential exploitation in the context of astrobiology are taken into account.
Collapse
Affiliation(s)
- Veronica Malavasi
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124, Cagliari, Italy
| | - Santina Soru
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124, Cagliari, Italy
| | - Giacomo Cao
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124, Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123, Cagliari, Italy
| |
Collapse
|
21
|
Škaloud P, Škaloudová M, Jadrná I, Bestová H, Pusztai M, Kapustin D, Siver PA. Comparing Morphological and Molecular Estimates of Species Diversity in the Freshwater Genus Synura (Stramenopiles): A Model for Understanding Diversity of Eukaryotic Microorganisms. JOURNAL OF PHYCOLOGY 2020; 56:574-591. [PMID: 32065394 DOI: 10.1111/jpy.12978] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
We performed a comparison of molecular and morphological diversity in a freshwater colonial genus Synura (Chrysophyceae, Stramenopiles), using the island of Newfoundland (Canada) as a case study. We examined the morphological species diversity in collections from 79 localities, and compared these findings to diversity based on molecular characters for 150 strains isolated from the same sites. Of 27 species or species-level lineages identified, only one third was recorded by both molecular and morphological techniques, showing both approaches are complementary in estimating species diversity within this genus. Eight taxa, each representing young evolutionary lineages, were recovered only by sequencing of isolated colonies, whereas ten species were recovered only microscopically. Our complex investigation, involving both morphological and molecular examinations, indicates that our knowledge of Synura diversity is still poor, limited only to a few well-studied areas. We revealed considerable cryptic diversity within the core S. petersenii and S. leptorrhabda lineages. We further resolved the phylogenetic position of two previously described taxa, S. kristiansenii and S. petersenii f. praefracta, propose species-level status for S. petersenii f. praefracta, and describe three new species, S. vinlandica, S. fluviatilis, and S. cornuta. Our findings add to the growing body of literature detailing distribution patterns observed in the genus, ranging from cosmopolitan species, to highly restricted taxa, to species such as S. hibernica found along coastal regions on multiple continents. Finally, our study illustrates the usefulness of combining detailed morphological information with gene sequence data to examine species diversity within chrysophyte algae.
Collapse
Affiliation(s)
- Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 00, Praha 2, Czech Republic
| | - Magda Škaloudová
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 00, Praha 2, Czech Republic
| | - Iva Jadrná
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 00, Praha 2, Czech Republic
| | - Helena Bestová
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 00, Praha 2, Czech Republic
| | - Martin Pusztai
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 00, Praha 2, Czech Republic
| | - Dmitry Kapustin
- Institute of Plant Physiology, Russian Academy of Sciences, Botanical Street 35, 127276, Moscow, Russia
| | - Peter A Siver
- Department of Botany, Connecticut College, New London, 06320-4196, Connecticut, USA
| |
Collapse
|
22
|
Garrido-Benavent I, Pérez-Ortega S, Durán J, Ascaso C, Pointing SB, Rodríguez-Cielos R, Navarro F, de los Ríos A. Differential Colonization and Succession of Microbial Communities in Rock and Soil Substrates on a Maritime Antarctic Glacier Forefield. Front Microbiol 2020; 11:126. [PMID: 32117148 PMCID: PMC7018881 DOI: 10.3389/fmicb.2020.00126] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/20/2020] [Indexed: 12/20/2022] Open
Abstract
Glacier forefields provide a unique chronosequence to assess microbial or plant colonization and ecological succession on previously uncolonized substrates. Patterns of microbial succession in soils of alpine and subpolar glacier forefields are well documented but those affecting high polar systems, including moraine rocks, remain largely unexplored. In this study, we examine succession patterns in pioneering bacterial, fungal and algal communities developing on moraine rocks and soil at the Hurd Glacier forefield (Livingston Island, Antarctica). Over time, changes were produced in the microbial community structure of rocks and soils (ice-free for different lengths of time), which differed between both substrates across the entire chronosequence, especially for bacteria and fungi. In addition, fungal and bacterial communities showed more compositional consistency in soils than rocks, suggesting community assembly in each niche could be controlled by processes operating at different temporal and spatial scales. Microscopy revealed a patchy distribution of epilithic and endolithic lithobionts, and increasing endolithic colonization and microbial community complexity along the chronosequence. We conclude that, within relatively short time intervals, primary succession processes at polar latitudes involve significant and distinct changes in edaphic and lithic microbial communities associated with soil development and cryptogamic colonization.
Collapse
Affiliation(s)
- Isaac Garrido-Benavent
- Departamento de Biogeoquímica y Ecología Microbiana, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | | | - Jorge Durán
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Carmen Ascaso
- Departamento de Biogeoquímica y Ecología Microbiana, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Stephen B. Pointing
- Yale-NUS College, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Ricardo Rodríguez-Cielos
- ETSI de Telecomunicación, Departamento de Señales, Sistemas y Radiocomunicaciones, Universidad Politécnica de Madrid, Madrid, Spain
| | - Francisco Navarro
- ETSI de Telecomunicación, Departamento de Matemática Aplicada a las TIC, Universidad Politécnica de Madrid, Madrid, Spain
| | - Asunción de los Ríos
- Departamento de Biogeoquímica y Ecología Microbiana, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| |
Collapse
|
23
|
Pushkareva E, Wilmotte A, Láska K, Elster J. Comparison of Microphototrophic Communities Living in Different Soil Environments in the High Arctic. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
24
|
Warren SD, Clair LL, Stark LR, Lewis LA, Pombubpa N, Kurbessoian T, Stajich JE, Aanderud ZT. Reproduction and Dispersal of Biological Soil Crust Organisms. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00344] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
25
|
Li Z, Qiu K, Schneider RL, Morreale SJ, Xie Y. Comparison of microbial community structures in soils with woody organic amendments and soils with traditional local organic amendments in Ningxia of Northern China. PeerJ 2019; 7:e6854. [PMID: 31119077 PMCID: PMC6511227 DOI: 10.7717/peerj.6854] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/19/2019] [Indexed: 01/25/2023] Open
Abstract
Background Addition of organic amendments has been commonly adopted as a means to restore degraded soils globally. More recently, the use of woody organic amendments has been recognized as a viable method of capturing and retaining water and restoring degraded and desertified soil, especially in semi-arid regions. However, the impacts of woody amendments on soil microbial community structure, versus other traditional organic supplements is less understood. Methods Three locally available natural organic materials of different qualities, i.e., cow manure (CM), corn straw (CS), and chipped poplar branches (PB) were selected as treatments in Ningxia, Northern China and compared with control soils. Four microcosms served as replicates for each treatment. All treatments contained desertified soil; treatments with amendments were mixed with 3% (w/w) of one of the above organic materials. After 7 and 15 months from the start of the experiment, soil samples were analyzed for chemical and physical properties, along with biological properties, which included microbial α-diversity, community structure, and relative abundance of microbial phyla. Results Both bacterial and fungal α-diversity indices were weakly affected by amendments throughout the experimental period. All amendments yielded different microbial community compositions than the Control soils. The microbial community composition in the CS and PB treatments also were different from the CM treatment. After 15 months of the experiment, CS and PB exhibited similar microbial community composition, which was consistent with their similar soil physical and chemical properties. Moreover, CS and PB also appeared to exert similar effects on the abundance of some microbial taxa, and both of these treatments yield different abundances of microbial taxa than the CM treatment. Conclusion New local organic amendment with PB tended to affect the microbial community in a similar way to the traditional local organic amendment with CS, but different from the most traditional local organic amendment with CM in Ningxia, Northern China. Moreover, the high C/N-sensitive, and lignin and cellulose decompose-related microbial phyla increased in CS and PB have benefits in decomposing those incorporated organic materials and improving soil properties. Therefore, we recommend that PB should also be considered as a viable soil organic amendment for future not in Ningxia, but also in other places.
Collapse
Affiliation(s)
- Zhigang Li
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Kaiyang Qiu
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Rebecca L Schneider
- Department of Nature Resources, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Stephen J Morreale
- Department of Nature Resources, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Yingzhong Xie
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
26
|
Rippin M, Lange S, Sausen N, Becker B. Biodiversity of biological soil crusts from the Polar Regions revealed by metabarcoding. FEMS Microbiol Ecol 2019. [PMID: 29514253 DOI: 10.1093/femsec/fiy036] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Biological soil crusts (BSCs) are amalgamations of autotrophic, heterotrophic and saprotrophic organisms. In the Polar Regions, these unique communities occupy essential ecological functions such as primary production, nitrogen fixation and ecosystem engineering. Here, we present the first molecular survey of BSCs from the Arctic and Antarctica focused on both eukaryotes and prokaryotes as well as passive and active biodiversity. Considering sequence abundance, Bryophyta is among the most abundant taxa in all analyzed BSCs suggesting that they were in a late successional stage. In terms of algal and cyanobacterial biodiversity, the genera Chloromonas, Coccomyxa, Elliptochloris and Nostoc were identified in all samples regardless of origin confirming their ubiquitous distribution. For the first time, we found the chrysophyte Spumella to be common in polar BSCs as it was present in all analyzed samples. Co-occurrence analysis revealed the presence of sulfur metabolizing microbes indicating that BSCs also play an important role for the sulfur cycle. In general, phototrophs were most abundant within the BSCs but there was also a diverse community of heterotrophs and saprotrophs. Our results show that BSCs are unique microecosystems in polar environments with an unexpectedly high biodiversity.
Collapse
Affiliation(s)
- Martin Rippin
- University of Cologne, Botanical Institute, Zülpicher Str. 47B, 50674 Cologne, Germany
| | - Sebastian Lange
- University of Cologne, Botanical Institute, Zülpicher Str. 47B, 50674 Cologne, Germany
| | - Nicole Sausen
- University of Cologne, Botanical Institute, Zülpicher Str. 47B, 50674 Cologne, Germany
| | - Burkhard Becker
- University of Cologne, Botanical Institute, Zülpicher Str. 47B, 50674 Cologne, Germany
| |
Collapse
|
27
|
Muñoz-Martín MÁ, Becerra-Absalón I, Perona E, Fernández-Valbuena L, Garcia-Pichel F, Mateo P. Cyanobacterial biocrust diversity in Mediterranean ecosystems along a latitudinal and climatic gradient. THE NEW PHYTOLOGIST 2019; 221:123-141. [PMID: 30047599 DOI: 10.1111/nph.15355] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/17/2018] [Indexed: 06/08/2023]
Abstract
Cyanobacteria are a key biotic component as primary producers in biocrusts, topsoil communities that have important roles in the functioning of drylands. Yet, major knowledge gaps exist regarding the composition of biocrust cyanobacterial diversity and distribution in Mediterranean ecosystems. We describe cyanobacterial diversity in Mediterranean semiarid soil crusts along an aridity gradient by using next-generation sequencing and bioinformatics analyses, and detect clear shifts along it in cyanobacterial dominance. Statistical analyses show that temperature and precipitation were major parameters determining cyanobacterial composition, suggesting the presence of differentiated climatic niches for distinct cyanobacteria. The responses to temperature of a set of cultivated, pedigreed strains representative of the field populations lend direct support to that contention, with psychrotolerant vs thermotolerant physiology being strain dependent, and consistent with their dominance along the natural gradient. Our results suggest a possible replacement, as global warming proceeds, of cool-adapted by warm-adapted nitrogen-fixing cyanobacteria (such as Scytonema) and a switch in the dominance of Microcoleus vaginatus by thermotolerant, novel phylotypes of bundle-forming cyanobacteria. These differential sensitivities of cyanobacteria to rising temperatures and decreasing precipitation, their ubiquity, and their low generation time point to their potential as bioindicators of global change.
Collapse
Affiliation(s)
- M Ángeles Muñoz-Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Itzel Becerra-Absalón
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Comparada, Facultad de Ciencia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elvira Perona
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lara Fernández-Valbuena
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Pilar Mateo
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
28
|
Post rapid freezing growth of Antarctic strain of Heterococcus sp. monitored by cell viability and chlorophyll fluorescence. Cryobiology 2018; 85:39-46. [PMID: 30292810 DOI: 10.1016/j.cryobiol.2018.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/24/2018] [Accepted: 10/03/2018] [Indexed: 11/20/2022]
Abstract
The soil microalgae of the genus Heterococcus are found in cold environments and have been reported for the terrestrial ecosystems of several Sub-Antarctic and Antarctic Islands. This study focused on resistance of Heterococcus sp. to sub-zero temperature. Heterococcus sp. was isolated from soil samples from James Ross Island, Antarctica. Culture of Heterococcus sp. grown in liquid medium were used to study ribitol effects at sub-zero temperatures on the species resistance to rapid freezing (RF, immersion of a sample into liquid nitrogen) and consequent cultivation on agar. Before the experiment, Heterococcus sp. was cultured in liquid medium for 11 months and then treated in ribitol concentrations of 32 or 50 mM for 2 h. Then, 1 ml samples were frozen to -196 °C in liquid nitrogen (day 0) and inoculated on BBM agar after thawing. Number of living and dead cells was evaluated and the cell viability (Pν) was calculated repeatedly using the optical microscopy approach. The addition of ribitol caused a noticable increase in Pν on days 9, 12, 14 (with a Pν of 25-45% in ribitol-treated samples compared to 10% in the untreated control). In the following period (d 16-19), the positive effect of ribitol on Pν was less pronounced but still statistically significant. To evaluate the negative effects of RF on chlorophyll fluorescence parameters, the potential yield of photochemical reactions in PS II (FV/FM), and the effective quantum yield of photochemical reactions in PS II (ФPSII) were measured immediately before and after RF. Consequently, FV/FM and ФPSII of agar inoculates were measured repeatedly for 30 d cultivation in 3 d interval. Both the 32 and the 50 mM addition of ribitol caused earlier detection of the parameters (d 16) compared to the control measurements (d 23) as well as reaching the maximum values of the chlorophyll fluorescence parameters earlier (d 23 in ribitol-treated samples compared to d 25 in control samples). Heterococcus sp. proved to be a species resistant to rapid freezing. The ability may help the species to survive in harsh Antarctic environments typified by rapid fluctuations in temperature that may bring a rapid freezing of the alga.
Collapse
|
29
|
Jung P, Briegel-Williams L, Schermer M, Büdel B. Strong in combination: Polyphasic approach enhances arguments for cold-assigned cyanobacterial endemism. Microbiologyopen 2018; 8:e00729. [PMID: 30239166 PMCID: PMC6528576 DOI: 10.1002/mbo3.729] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 11/24/2022] Open
Abstract
Cyanobacteria of biological soil crusts (BSCs) represent an important part of circumpolar and Alpine ecosystems, serve as indicators for ecological condition and climate change, and function as ecosystem engineers by soil stabilization or carbon and nitrogen input. The characterization of cyanobacteria from both polar regions remains extremely important to understand geographic distribution patterns and community compositions. This study is the first of its kind revealing the efficiency of combining denaturing gradient gel electrophoresis (DGGE), light microscopy and culture‐based 16S rRNA gene sequencing, applied to polar and Alpine cyanobacteria dominated BSCs. This study aimed to show the living proportion of cyanobacteria as an extension to previously published meta‐transcriptome data of the same study sites. Molecular fingerprints showed a distinct clustering of cyanobacterial communities with a close relationship between Arctic and Alpine populations, which differed from those found in Antarctica. Species richness and diversity supported these results, which were also confirmed by microscopic investigations of living cyanobacteria from the BSCs. Isolate‐based sequencing corroborated these trends as cold biome clades were assigned, which included a potentially new Arctic clade of Oculatella. Thus, our results contribute to the debate regarding biogeography of cyanobacteria of cold biomes.
Collapse
Affiliation(s)
- Patrick Jung
- Plant Ecology and Systematics, Biology Institute, University of Kaiserslautern, Kaiserslautern, Germany
| | - Laura Briegel-Williams
- Plant Ecology and Systematics, Biology Institute, University of Kaiserslautern, Kaiserslautern, Germany
| | - Michael Schermer
- Plant Ecology and Systematics, Biology Institute, University of Kaiserslautern, Kaiserslautern, Germany
| | - Burkhard Büdel
- Plant Ecology and Systematics, Biology Institute, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|