1
|
Islam O, Matsuyama R, Min KD. Deforestation and predator species richness as potential environmental drivers for roadkill of wild water deer in South Korea. Front Vet Sci 2025; 12:1483563. [PMID: 39958806 PMCID: PMC11825762 DOI: 10.3389/fvets.2025.1483563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/13/2025] [Indexed: 02/18/2025] Open
Abstract
Introduction The roadkill incidence of Korean water deer (Hydropotes inermis argyropus) has become a nationwide concern in recent years because of its contribution to biodiversity loss. Various environmental risk factors for the occurrence of roadkill events were found. However, there is a gap in observational studies focusing on the effects of deforestation and predator species richness on the roadkill, despite their plausible mechanisms. This study aimed to investigate the associations between water deer roadkill events and environmental risk factors in South Korea. Methods We analyzed 1,986 roadkill events of water deer recorded on highway routes managed by the Korean National Transport Center from 2019 to 2021 as an outcome variable, and the values of environmental factors collated as explanatory variables. Multivariate logistic regression models were used to investigate these associations. Results This study highlighted two main explanatory variables: predator species richness and deforestation, and the results indicate that higher deforestation level was associated with higher odds of the roadkill incidence, with an odds ratio of 1.15 [95% confidence interval (CI) = 1.07-1.25] from the ordinary model and 1.11 (95% credible interval = 1.03-1.21) from the spatial regression model. Conversely, predator species richness is negatively associated with the roadkill events, with an odds ratio of 0.75 (95% confidence interval = 0.69 to 0.80) from the ordinary regression model and 0.76 (95% credible interval = 0.66-0.86) from the spatial regression model. Conclusion These findings suggest that conservational effort, such as preventing wildlife diversity and mitigating deforestation could reduce the incidence of water deer roadkill events.
Collapse
Affiliation(s)
- Obaidul Islam
- Laboratory of Veterinary Epidemiology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Ryota Matsuyama
- Veterinary Epidemiology Unit, Graduate School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Kyung-Duk Min
- Laboratory of Veterinary Epidemiology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
2
|
Waterman J, Black S, Sykes N, Kitchener AC, Mills WF, Fellowes MDE. The return of raptors to Scotland's skies: Investigating the diets of reintroduced red kites and white-tailed eagles using stable isotopes. PLoS One 2025; 20:e0315945. [PMID: 39775462 PMCID: PMC11709231 DOI: 10.1371/journal.pone.0315945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Species reintroductions are increasingly seen as important methods of biodiversity restoration. Reintroductions of red kites Milvus milvus and white-tailed eagles Halieaeetus albicilla to Britain, which were extirpated in the late 19th and early 20th centuries, represent major conservation successes. Here, we measured stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) in feather keratin and bone collagen of museum specimens of red kites and white-tailed eagles, which were collected from across Scotland between the 1800s and 2010s. Our objectives were to investigate dietary differences between species and between the pre- and post- reintroduction periods. Among reintroduced birds, δ13C values were significantly less negative and δ15N values higher in feather keratin and bone collagen of white-tailed eagles compared to red kites, likely reflecting a greater reliance on marine resources by the former. Our stable isotope data showed a wide range, confirming the dietary diversity observed in conventional diet studies of both taxa, with white-tailed eagles, in particular, having wide dietary niches and a considerable degree of inter-individual variability. Isotopic data from pre-introduction red kites mostly fell within the range of post-reintroduction birds, suggesting they had similar diets to the pre-reintroduction birds, or the prey base for modern birds is isotopically indistinguishable from that of their historic counterparts. For white-tailed eagles, several pre-reintroduction birds were isotopically distinct from the post-reintroduction population. These differences may indicate a changing prey base, although these conclusions are complicated by shifting distributions and small population samples. Overall, our study demonstrates the utility of natural history collections in examining changes in diet, environment, and interactions with humans in reintroduced species compared with pre-extirpation indigenous populations.
Collapse
Affiliation(s)
- Juliette Waterman
- School of Archaeology, Geography & Environmental Science, University of Reading, Whiteknights, Reading, United Kingdom
| | - Stuart Black
- School of Archaeology, Geography & Environmental Science, University of Reading, Whiteknights, Reading, United Kingdom
| | - Naomi Sykes
- Department of Archaeology and History, University of Exeter, Streatham, Exeter, United Kingdom
| | - Andrew C. Kitchener
- Department of Natural Sciences, National Museums Scotland, Edinburgh, United Kingdom
- School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom
| | - William F. Mills
- School of Archaeology, Geography & Environmental Science, University of Reading, Whiteknights, Reading, United Kingdom
| | - Mark D. E. Fellowes
- Department of Biological Sciences, Royal Holloway, University of London, Egham, United Kingdom
| |
Collapse
|
3
|
Haque F, Soerensen AL, Sköld M, Awad R, Spaan KM, Lauria MZ, Plassmann MM, Benskin JP. Per- and polyfluoroalkyl substances (PFAS) in white-tailed sea eagle eggs from Sweden: temporal trends (1969-2021), spatial variations, fluorine mass balance, and suspect screening. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1549-1563. [PMID: 37622471 DOI: 10.1039/d3em00141e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Temporal and spatial trends of 15 per- and polyfluoroalkyl substances (PFAS) were determined in white-tailed sea eagle (WTSE) eggs (Haliaeetus albicilla) from two inland and two coastal regions of Sweden between 1969 and 2021. PFAS concentrations generally increased from ∼1969 to ∼1990s-2010 (depending on target and site) and thereafter plateaued or declined, with perfluorooctane sulfonamide (FOSA) and perfluorooctane sulfonate (PFOS) declining faster than most perfluoroalkyl carboxylic acids (PFCAs). The net result was a shift in the PFAS profile from PFOS-dominant in 1969-2010 to an increased prevalence of PFCAs over the last decade. Further, during the entire period higher PFAS concentrations were generally observed in coastal populations, possibly due to differences in diet and/or proximity to more densely populated areas. Fluorine mass balance determination in pooled samples from three of the regions (2019-2021) indicated that target PFAS accounted for the vast majority (i.e. 81-100%) of extractable organic fluorine (EOF). Nevertheless, high resolution mass-spectrometry-based suspect screening identified 55 suspects (31 at a confidence level [CL] of 1-3 and 24 at a CL of 4-5), of which 43 were substances not included in the targeted analysis. Semi-quantification of CL ≤ 2 suspects increased the identified EOF to >90% in coastal samples. In addition to showing the impact of PFAS regulation and phase-out initiatives, this study demonstrates that most extractable organofluorine in WTSE eggs is made up of known (legacy) PFAS, albeit with low levels of novel substances.
Collapse
Affiliation(s)
- Faiz Haque
- Department of Environmental Science, Stockholm University, Svante Arrhenius Väg 8, 106 91, Stockholm, Sweden.
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, USA.
| | - Anne L Soerensen
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, Box 50007, 104 05, Stockholm, Sweden.
| | - Martin Sköld
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, Box 50007, 104 05, Stockholm, Sweden.
- Department of Mathematics, Stockholm University, Albanovägen 28, 106 91, Stockholm, Sweden
| | - Raed Awad
- Department of Environmental Science, Stockholm University, Svante Arrhenius Väg 8, 106 91, Stockholm, Sweden.
- IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28, Stockholm, Sweden
| | - Kyra M Spaan
- Department of Environmental Science, Stockholm University, Svante Arrhenius Väg 8, 106 91, Stockholm, Sweden.
| | - Mélanie Z Lauria
- Department of Environmental Science, Stockholm University, Svante Arrhenius Väg 8, 106 91, Stockholm, Sweden.
| | - Merle M Plassmann
- Department of Environmental Science, Stockholm University, Svante Arrhenius Väg 8, 106 91, Stockholm, Sweden.
| | - Jonathan P Benskin
- Department of Environmental Science, Stockholm University, Svante Arrhenius Väg 8, 106 91, Stockholm, Sweden.
| |
Collapse
|
4
|
Durkalec MM, Nawrocka A, Kitowski I, Filipek A, Sell B, Kmiecik M, Jedziniak P. Lead, cadmium, and other trace elements in the liver of golden eagles and white-tailed eagles: recent data from Poland and a systematic review of previous studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:38566-38581. [PMID: 36585589 PMCID: PMC10039830 DOI: 10.1007/s11356-022-25024-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The golden eagle (Aquila chrysaetos) and the white-tailed eagle (Haliaeetus albicilla), being apex predators and facultative scavengers, can bioaccumulate different environmental contaminants, including toxic elements that may adversely affect their health. We analyzed the levels of cadmium (Cd), lead (Pb), and other metals and metalloids, including arsenic (As), barium (Ba), beryllium (Be), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), magnesium (Mg), manganese (Mn), molybdenum (Mo), selenium (Se), thorium (Th), thallium (Tl), uranium (U), vanadium (V), and zinc (Zn) in liver samples taken from three golden eagles and 36 white-tailed eagles that were found dead across Poland to verify their exposure. We also used a systematic review to summarize the available literature data on Cd, Pb, and other studied elements in the liver of both eagle species. Analyses of trace elements in the liver samples of the Polish eagles revealed interspecific differences in Cd, Cu, and Mn and differences in Co, Mn, Tl, and Zn among study regions. All elements tested except Pb were below the suggested thresholds linked with adverse health effects in birds. The hepatic Pb found in almost half of all the tested individuals suggests environmental exposure to this toxic element. One of the tested white-tailed eagles had hepatic Pb above the threshold of sublethal poisoning. Although our results seem optimistic, as previous Polish studies showed a higher prevalence of birds with hepatic Pb exceeding the toxicity threshold, they indicate that exposure to this toxic metal could still pose an additional threat to the health of Polish eagles.
Collapse
Affiliation(s)
- Maciej Marcin Durkalec
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Aleja Partyzantów 57, 24-100, Puławy, Poland.
| | - Agnieszka Nawrocka
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Aleja Partyzantów 57, 24-100, Puławy, Poland
| | - Ignacy Kitowski
- Department of Zoology and Animal Ecology, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Aleksandra Filipek
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Aleja Partyzantów 57, 24-100, Puławy, Poland
| | - Bartosz Sell
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Aleja Partyzantów 57, 24-100, Puławy, Poland
| | - Mirosława Kmiecik
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Aleja Partyzantów 57, 24-100, Puławy, Poland
| | - Piotr Jedziniak
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Aleja Partyzantów 57, 24-100, Puławy, Poland
| |
Collapse
|
5
|
White-Tailed Eagles’ (Haliaeetus albicilla) Exposure to Anticoagulant Rodenticides and Causes of Poisoning in Poland (2018–2020). TOXICS 2022; 10:toxics10020063. [PMID: 35202249 PMCID: PMC8878881 DOI: 10.3390/toxics10020063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/19/2022] [Accepted: 01/29/2022] [Indexed: 12/10/2022]
Abstract
The white-tailed eagle (Haliaeetus albicilla) is strictly protected in Poland due to its threat of extinction. This study’s main goal was to assess their exposure to indirect poisoning by anticoagulant rodenticides (AR). This study presents the investigation results of 40 white-tailed eagles’ suspected poisoning cases in the years 2018–2020 in Poland. In all tested liver samples, using a liquid chromatography–mass spectrometry method, at least one of the AR (bromadiolone, brodifacoum, difenacoum, flocoumafen) was detected and confirmed. The other tested AR compounds (chlorophacinone, coumachlor, coumatetralyl, difethialone, diphacinone, warfarin) were not detected. The mean concentration of the sum of rodenticides was 174.4 µg/kg (from 2.5 to 1225.0 µg/kg). In 20 cases, the sum concentration was above 100 µg/kg and in 10 cases it was above 200 µg/kg. Interpretation of cases of AR poisonings should take into account their concentration in the liver, anatomopathological lesions, circumstances of death/finding of the animal, and elimination of other possible causes of poisoning. Based on this study, AR was the direct cause of death in 10% of incidents. Extensive use of rodenticides generates a high risk of poisonings of white-tailed eagles in Poland.
Collapse
|
6
|
Ekblad C, Eulaers I, Schulz R, Stjernberg T, Søndergaard J, Zubrod J, Laaksonen T. Spatial and dietary sources of elevated mercury exposure in white-tailed eagle nestlings in an Arctic freshwater environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:117952. [PMID: 34425374 DOI: 10.1016/j.envpol.2021.117952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Human-induced mercury (Hg) contamination is of global concern and its effects on wildlife remain of high concern, especially in environmental hotspots such as inland aquatic ecosystems. Mercury biomagnifies through the food web resulting in high exposure in apex predators, such as the white-tailed eagle (Haliaeetus albicilla), making them excellent sentinel species for environmental Hg contamination. An expanding population of white-tailed eagles is inhabiting a sparsely populated inland area in Lapland, northern Finland, mainly around two large reservoirs flooded 50 years ago. As previous preliminary work revealed elevated Hg levels in this population, we measured Hg exposure along with dietary proxies (δ13C and δ15N) in body feathers collected from white-tailed eagle nestlings in this area between 2007 and 2018. Mercury concentrations were investigated in relation to territory characteristics, proximity to the reservoirs and dietary ecology as potential driving factors of Hg contamination. Mercury concentrations in the nestlings (4.97-31.02 μg g-1 dw) were elevated, compared to earlier reported values in nestlings from the Finnish Baltic coast, and exceeded normal background levels (≤5.00 μg g-1) while remaining below the tentative threshold of elevated risk for Hg exposure mediated health effect (>40.00 μg g-1). The main drivers of Hg contamination were trophic position (proxied by δ15N), the dietary proportion of the predatory fish pike (Esox lucius), and the vicinity to the Porttipahta reservoir. We also identified a potential evolutionary trap, as increased intake of the preferred prey, pike, increases exposure. All in all, we present results for poorly understood freshwater lake environments and show that more efforts should be dedicated to further unravel potentially complex pathways of Hg exposure to wildlife.
Collapse
Affiliation(s)
- Camilla Ekblad
- Section of Ecology, Department of Biology, University of Turku, 20014, Turku, Finland.
| | - Igor Eulaers
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Ralf Schulz
- IES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, DE-76829, Landau, Germany
| | - Torsten Stjernberg
- Finnish Museum of Natural History, University of Helsinki, PO Box 17, FI-00014, Helsinki, Finland
| | - Jens Søndergaard
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Jochen Zubrod
- IES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, DE-76829, Landau, Germany
| | - Toni Laaksonen
- Section of Ecology, Department of Biology, University of Turku, 20014, Turku, Finland
| |
Collapse
|