1
|
Wang J, Huang J, Sun Z, Dong H, Li K, Lu J. Structural changes in spinal cord following optic neuritis: Insights from quantitative spinal MRI. Brain Res 2024; 1831:148830. [PMID: 38408557 DOI: 10.1016/j.brainres.2024.148830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
OBJECTIVES Previous studies have demonstrated that optic neuritis (ON) affects brain plasticity. However, whether ON affects the spinal cord remains unclear. We aimed to investigate the spinal cord changes in ON and their associations with disability. METHODS A total of 101 ON patients, and 41 healthy controls (HC) were retrospectively recruited. High-resolution imaging was conducted using a Magnetization Prepared Rapid Acquisition Gradient-Echo (MP-RAGE) sequence for T1-weighted images and an echo planar imaging (EPI) sequence for Diffusion Tensor Imaging (DTI) data collection. Additionally, patients' disability and cognitive impairment were evaluated using the Expanded Disability Status Scale (EDSS) and the Paced Auditory Serial Addition Test (PASAT), respectively. The quantitative spinal MRI was employed to examine the cross-sectional area (CSA) and diffusion indicators, with a specific focus on calculating the average values across the C2-C7 cervical spinal cord segments. CSA, fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were compared between groups. Correlation analyses were performed between CSA, diffusion indicators, and clinical variables. RESULTS No significant differences were found in CSA between ON patients and HCs. MD (p = 0.007) and RD (p = 0.018) were increased in ON patients compared with HCs, and AD was decreased in ON (p = 0.013). The AD values of the ON patients were significantly positively correlated with PASAT scores (r = 0.37, p < 0.001). CONCLUSIONS This study provided imaging evidence for DTI abnormalities in patients with ON. Spinal cord DTI can improve our knowledge of the path physiology of ON, and clinical progression.
Collapse
Affiliation(s)
- Jiyuan Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Jing Huang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Zheng Sun
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Huiqing Dong
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kuncheng Li
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
May MW, Hansen SLJD, Mahmutovic M, Scholz A, Kutscha N, Guerin B, Stockmann JP, Barry RL, Kazemivalipour E, Gumbrecht R, Kimmlingen R, Adriany M, Chang Y, Triantafyllou C, Knake S, Wald LL, Keil B. A patient-friendly 16-channel transmit/64-channel receive coil array for combined head-neck MRI at 7 Tesla. Magn Reson Med 2022; 88:1419-1433. [PMID: 35605167 PMCID: PMC9675905 DOI: 10.1002/mrm.29288] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE To extend the coverage of brain coil arrays to the neck and cervical-spine region to enable combined head and neck imaging at 7 Tesla (T) ultra-high field MRI. METHODS The coil array structures of a 64-channel receive coil and a 16-channel transmit coil were merged into one anatomically shaped close-fitting housing. Transmit characteristics were evaluated in a B1+ -field mapping study and an electromagnetic model. Receive SNR and the encoding capability for accelerated imaging were evaluated and compared with a commercially available 7 T brain array coil. The performance of the head-neck array coil was demonstrated in human volunteers using high-resolution accelerated imaging. RESULTS In the brain, the SNR matches the commercially available 32-channel brain array and showed improvements in accelerated imaging capabilities. More importantly, the constructed coil array improved the SNR in the face area, neck area, and cervical spine by a factor of 1.5, 3.4, and 5.2, respectively, in regions not covered by 32-channel brain arrays at 7 T. The interelement coupling of the 16-channel transmit coil ranged from -14 to -44 dB (mean = -19 dB, adjacent elements <-18 dB). The parallel 16-channel transmit coil greatly facilitates B1+ field shaping required for large FOV neuroimaging at 7 T. CONCLUSION This new head-neck array coil is the first demonstration of a device of this nature used for combined full-brain, head-neck, and cervical-spine imaging at 7 T. The array coil is well suited to provide large FOV images, which potentially improves ultrahigh field neuroimaging applications for clinical settings.
Collapse
Affiliation(s)
- Markus W May
- Institute of Medical Physics and Radiation Protection, Department of Life Science Engineering, Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Sam-Luca J D Hansen
- Institute of Medical Physics and Radiation Protection, Department of Life Science Engineering, Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Mirsad Mahmutovic
- Institute of Medical Physics and Radiation Protection, Department of Life Science Engineering, Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Alina Scholz
- Institute of Medical Physics and Radiation Protection, Department of Life Science Engineering, Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Nicolas Kutscha
- Institute of Medical Physics and Radiation Protection, Department of Life Science Engineering, Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Bastien Guerin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Jason P Stockmann
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Robert L Barry
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Ehsan Kazemivalipour
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | - Yulin Chang
- Siemens Medical Solutions USA, Inc., Malvern, Pennsylvania, USA
| | | | - Susanne Knake
- Department of Neurology, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Health Sciences and Technology, Harvard - Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Boris Keil
- Institute of Medical Physics and Radiation Protection, Department of Life Science Engineering, Mittelhessen University of Applied Sciences, Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
3
|
Liberato de Matos SNF, Ladeia-Rocha G, Neto JAC, de Oliveira CJV, Neto CA, Passos L, Oliveira-Filho J, Carvalho EM. Diffusion tensor imaging metrics in diagnosis of
HTLV‐1‐associated
myelopathy. Ann Clin Transl Neurol 2022; 9:488-496. [PMID: 35263043 PMCID: PMC8994983 DOI: 10.1002/acn3.51521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Sheila N F Liberato de Matos
- Immunology Service, Professor Edgard Santos University Hospital, Federal University of Bahia, Salvador.,UniFTC, Salvador, Bahia, Brazil
| | | | - José Abraão Carneiro Neto
- Immunology Service, Professor Edgard Santos University Hospital, Federal University of Bahia, Salvador
| | - Cassius J V de Oliveira
- Immunology Service, Professor Edgard Santos University Hospital, Federal University of Bahia, Salvador
| | | | - Lúcia Passos
- Immunology Service, Professor Edgard Santos University Hospital, Federal University of Bahia, Salvador
| | - Jamary Oliveira-Filho
- Neurology Service, Professor Edgard Santos University Hospital, Salvador, Bahia, Brazil.,Instituto de Ciências da Saúde, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Edgar M Carvalho
- Immunology Service, Professor Edgard Santos University Hospital, Federal University of Bahia, Salvador.,Laboratório de Pesquisas Clínicas (LAPEC), Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil.,National Institute of Science and Technology in Tropical Diseases (INCT-DT), CNPq, Brazil
| |
Collapse
|
4
|
Omar MKM, Abd Allah AEKH, Maghrabi MG, Mohamed MZ. The value of quantitative diffusion tensor imaging indices of spinal cord disorders. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2021. [DOI: 10.1186/s43055-021-00596-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Different lesions affecting the spinal cord can lead to myelopathy. Diffusion tensor imaging (DTI) is widely used to predict the degree of spinal cord microstructure affection and to assess axonal integrity and diffusion directionality. We hypothesized that not all DTI parameters have the same affection with different spinal cord pathologies. The purpose of this study is to assess the value of the quantitative diffusion tensor imaging indices in different spinal cord lesions.
Results
There is highly statistically significant difference of the fractional anisotropy (FA), relative anisotropy (RA), volume ratio (VR) and secondary eigenvector values (E2 and E3) between various studied cord lesions and control levels. There is no statistically significant difference of the apparent diffusion coefficient (ADC) and the primary eigenvector value (E1) (ANOVA test). The ROC curve analysis showed the higher sensitivity and accuracy were ‘88% and 62.5%, respectively,’ with FA cutoff value about 0.380.
Conclusion
The resulted quantitative DTI indices ‘fractional anisotropy, relative anisotropy, volume ratio and secondary eigenvalues’ work as a numerical in vivo marker of overall tissue injury in different pathologies affecting the spinal cord.
Collapse
|
5
|
Hernandez ALCC, Rezende TJR, Martinez ARM, de Brito MR, França MC. Tract-Specific Spinal Cord Diffusion Tensor Imaging in Friedreich's Ataxia. Mov Disord 2021; 37:354-364. [PMID: 34713932 DOI: 10.1002/mds.28841] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Spinal cord (SC) damage is a hallmark in Friedreich's ataxia (FRDA). Neuroimaging has been able to capture some SC macroscopic changes, but no study has evaluated microstructural SC white matter (WM) damage in vivo. OBJECTIVES We designed a cross-sectional study to evaluate microstructural integrity in SC WM tracts of FRDA patients using diffusion tensor imaging (DTI) with an automated analysis pipeline. METHODS Thirty patients and 30 matched healthy controls underwent 3 Tesla (T) magnetic resonance imaging (MRI). We obtained cervical SC T2 and diffusion-weighted imaging (DWI) acquisitions. Images were processed using the Spinal Cord Toolbox v.4.3.0. For levels C2-C5, we measured cross-sectional area (CSA) and WM DTI parameters (axial diffusivity [AD], fractional anisotropy [FA], radial diffusivity [RD], and mean diffusivity [MD]). Age, duration, and FARS scores were also obtained. RESULTS Mean age and disease duration of patients were 31 ± 10 and 11 ± 9 years, respectively. There was CSA reduction in FRDA amongst all levels. Between-group differences in FA, MD, and RD in total white matter (TWM), dorsal columns (DC), fasciculus gracilis (FG), fasciculus cuneatus (FC), and corticospinal tracts (CST) were present in all levels. FA and RD from TWM, DC, FC, and CST correlated with FARS scores, and in CST they also correlated with disease duration. CONCLUSION DTI uncovered abnormalities in SC WM tracts, which correlated with clinical features in FRDA. CSA and CST FA in C2 correlated best with disease severity, whereas DC FA showed the largest effect size to differentiate patients and healthy controls. SC WM microstructure is a potential neuroimaging biomarker to be explored in the disease. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ana Luisa C C Hernandez
- Department of Neurology and Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), School of Medical Sciences - University of Campinas (UNICAMP), Campinas, Brazil
| | - Thiago J R Rezende
- Department of Neurology and Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), School of Medical Sciences - University of Campinas (UNICAMP), Campinas, Brazil
| | - Alberto R M Martinez
- Department of Neurology and Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), School of Medical Sciences - University of Campinas (UNICAMP), Campinas, Brazil
| | - Mariana R de Brito
- Department of Neurology and Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), School of Medical Sciences - University of Campinas (UNICAMP), Campinas, Brazil
| | - Marcondes C França
- Department of Neurology and Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), School of Medical Sciences - University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
6
|
Irimia A, Van Horn JD. Mapping the rest of the human connectome: Atlasing the spinal cord and peripheral nervous system. Neuroimage 2021; 225:117478. [PMID: 33160086 PMCID: PMC8485987 DOI: 10.1016/j.neuroimage.2020.117478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/15/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
The emergence of diffusion, structural, and functional neuroimaging methods has enabled major multi-site efforts to map the human connectome, which has heretofore been defined as containing all neural connections in the central nervous system (CNS). However, these efforts are not structured to examine the richness and complexity of the peripheral nervous system (PNS), which arguably forms the (neglected) rest of the connectome. Despite increasing interest in an atlas of the spinal cord (SC) and PNS which is simultaneously stereotactic, interactive, electronically dissectible, scalable, population-based and deformable, little attention has thus far been devoted to this task of critical importance. Nevertheless, the atlasing of these complete neural structures is essential for neurosurgical planning, neurological localization, and for mapping those components of the human connectome located outside of the CNS. Here we recommend a modification to the definition of the human connectome to include the SC and PNS, and argue for the creation of an inclusive atlas to complement current efforts to map the brain's human connectome, to enhance clinical education, and to assist progress in neuroscience research. In addition to providing a critical overview of existing neuroimaging techniques, image processing methodologies and algorithmic advances which can be combined for the creation of a full connectome atlas, we outline a blueprint for ultimately mapping the entire human nervous system and, thereby, for filling a critical gap in our scientific knowledge of neural connectivity.
Collapse
Affiliation(s)
- Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles CA 90089, United States; Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA 90089, United States.
| | - John Darrell Van Horn
- Department of Psychology, University of Virginia, 485 McCormick Road, Gilmer Hall, Room 102, Charlottesville, Virginia 22903, United States; School of Data Science, University of Virginia, Dell 1, Charlottesville, Virginia 22903, United States.
| |
Collapse
|
7
|
Imaging of the Spinal Cord in Multiple Sclerosis: Past, Present, Future. Brain Sci 2020; 10:brainsci10110857. [PMID: 33202821 PMCID: PMC7696997 DOI: 10.3390/brainsci10110857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 11/17/2022] Open
Abstract
Spinal cord imaging in multiple sclerosis (MS) plays a significant role in diagnosing and tracking disease progression. The spinal cord is one of four key areas of the central nervous system where documenting the dissemination in space in the McDonald criteria for diagnosing MS. Spinal cord lesion load and the severity of cord atrophy are believed to be more relevant to disability than white matter lesions in the brain in different phenotypes of MS. Axonal loss contributes to spinal cord atrophy in MS and its degree correlates with disease severity and prognosis. Therefore, measures of axonal loss are often reliable biomarkers for monitoring disease progression. With recent technical advances, more and more qualitative and quantitative MRI techniques have been investigated in an attempt to provide objective and reliable diagnostic and monitoring biomarkers in MS. In this article, we discuss the role of spinal cord imaging in the diagnosis and prognosis of MS and, additionally, we review various techniques that may improve our understanding of the disease.
Collapse
|
8
|
Rocca MA, Preziosa P, Filippi M. What role should spinal cord MRI take in the future of multiple sclerosis surveillance? Expert Rev Neurother 2020; 20:783-797. [PMID: 32133874 DOI: 10.1080/14737175.2020.1739524] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION In multiple sclerosis (MS), inflammatory, demyelinating, and neurodegenerative phenomena affect the spinal cord, with detrimental effects on patients' clinical disability. Although spinal cord imaging may be challenging, improvements in MRI technologies have contributed to better evaluate spinal cord involvement in MS. AREAS COVERED This review summarizes the current state-of-art of the application of conventional and advanced MRI techniques to evaluate spinal cord damage in MS. Typical features of spinal cord lesions, their role in the diagnostic work-up of suspected MS, their predictive role for subsequent disease course and clinical worsening, and their utility to define treatment response are discussed. The role of spinal cord atrophy and of other advanced MRI techniques to better evaluate the associations between spinal cord abnormalities and the accumulation of clinical disability are also evaluated. Finally, how spinal cord assessment could evolve in the future to improve monitoring of disease progression and treatment effects is examined. EXPERT OPINION Spinal cord MRI provides relevant additional information to brain MRI in understanding MS pathophysiology, in allowing an earlier and more accurate diagnosis of MS, and in identifying MS patients at higher risk to develop more severe disability. A future role in monitoring the effects of treatments is also foreseen.
Collapse
Affiliation(s)
- Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute , Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute , Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute , Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute , Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute , Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute , Milan, Italy.,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute , Milan, Italy.,Vita-Salute San Raffaele University , Milan, Italy
| |
Collapse
|
9
|
Correlation between spinal cord diffusion tensor imaging and postural response latencies in persons with multiple sclerosis: A pilot study. Magn Reson Imaging 2019; 66:226-231. [PMID: 31704395 DOI: 10.1016/j.mri.2019.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/11/2019] [Accepted: 11/03/2019] [Indexed: 11/23/2022]
Abstract
PURPOSE Longer latency of postural response in multiple sclerosis (MS) may be linked to imbalance and increased likelihood of falls. It may be caused by the compromised microstructural integrity in the spinal cord, as evidenced by slowed somatosensory conduction in the spinal cord. Thus, the purpose of this study is to investigate the correlation between latency of postural responses and microstructural integrity of the cervical spinal cord, the region particularly related to the disease severity in MS, using diffusion tensor imaging (DTI) metrics. METHODS Seventeen persons with MS with mild-to-moderate disease severity were enrolled in this study. Postural response latencies of each patient were measured using electromyography of the tibialis anterior muscle (TA) and gastrocnemius muscle (GN) in response to surface perturbations. Cervical spinal cord DTI images were obtained from each patient. DTI mean, radial, axial diffusivity, and fractional anisotropy (FA) were measured between segments C4 and C6. Correlations of DTI metrics with postural response latencies, expanded disability status scale (EDSS) scores, and 25-foot walk (T25FW) were assessed using the Spearman's rank correlation coefficient at α = 0.05. RESULTS Lower FA was significantly correlated with longer latencies measured on right TA in response to forward postural perturbations (r = -0.51, p = .04). DTI metrics showed no significant correlations with EDSS scores (r = -0.06-0.09, p = .73-0.95) or T25FW (r = -0.1-0.14, p = .6-0.94). DTI metrics showed no significant differences between subjects with and without spinal cord lesions (p = .2-0.7). CONCLUSIONS Our results showed a significant correlation between lower FA in the cervical spinal cord and longer latencies measured on right TA in response to forward postural perturbations in persons with MS, suggesting that impaired cervical spinal cord microstructure assessed by DTI may be associated with the delayed postural responses.
Collapse
|
10
|
Abstract
Spinal cord (SC) MRI in multiple sclerosis (MS) has significant usefulness in clinical and investigational settings. Conventional MRI of the SC is used in clinical practice, because it has both diagnostic and prognostic value. A number of advanced, quantitative SC MRI measures that assess the structural and functional integrity of the SC have been evaluated in investigational settings. These techniques have collectively demonstrated usefulness in providing insight into microstructural and functional changes relevant to disability in MS. With further development, these techniques may be useful in clinical trial settings as biomarkers of neurodegeneration and protection, and in day-to-day clinical practice.
Collapse
Affiliation(s)
- Alexandra Muccilli
- Division of Neurology, St. Michael's Hospital, University of Toronto, 30 Bond Street, Toronto, Ontario, M5B 1W8, Canada; Division of Neurology, Centre Hospitalier de L'Université de Montréal, Université de Montréal, 1058 Saint-Denis Street, Montreal, Quebec H2X 3J4, Canada
| | - Estelle Seyman
- Division of Neurology, St. Michael's Hospital, University of Toronto, 30 Bond Street, Toronto, Ontario, M5B 1W8, Canada
| | - Jiwon Oh
- Division of Neurology, St. Michael's Hospital, University of Toronto, 30 Bond Street, Toronto, Ontario, M5B 1W8, Canada; Department of Neurology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
11
|
Eguchi Y, Kanamoto H, Oikawa Y, Suzuki M, Yamanaka H, Tamai H, Kobayashi T, Orita S, Yamauchi K, Suzuki M, Inage K, Aoki Y, Watanabe A, Furuya T, Koda M, Takahashi K, Ohtori S. Recent advances in magnetic resonance neuroimaging of lumbar nerve to clinical applications: A review of clinical studies utilizing Diffusion Tensor Imaging and Diffusion-weighted magnetic resonance neurography. Spine Surg Relat Res 2017; 1:61-71. [PMID: 31440614 PMCID: PMC6698557 DOI: 10.22603/ssrr.1.2016-0015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/30/2016] [Indexed: 11/05/2022] Open
Abstract
Much progress has been made in neuroimaging with Magnetic Resonance neurography and Diffusion Tensor Imaging (DTI) owing to higher magnetic fields and improvements in pulse sequence technology. Reports on lumbar nerve DTI have also increased considerably. Many studies have shown that the use of DTI in lumbar nerve lesions, such as lumbar foraminal stenosis and lumbar disc herniation, makes it possible to capture images of interruptions of tractography at stenotic sties, enabling the diagnosis of stenosis. DTI can also reveal significant decreases in fractional anisotropy (FA) with significant increases in apparent diffusion coefficient (ADC) values in compression lesions. FA values have higher accuracy than ADC values. Furthermore, strong correlations exist between FA values and indications of neurological severity, including the Japanese Orthopedic Association (JOA) score, the Oswestry Disability Index (ODI), and the Roland-Morris Disability Questionnaire (RDQ) in patients with lumbar disc herniation-induced radiculopathy. Most lumbar DTI has become 3T; 3T MRI has made it possible to take high-resolution DTI measurements in a short period of time. However, increased motion artifacts in the magnetic susceptibility effect lead to signal irregularities and image distortion. In the future, high-resolution DTI with reduced field-of-view may become useful in clinical applications, since visualization of nerve lesions and quantification of DTI parameters could allow more accurate diagnoses of lumbar nerve dysfunctions. Future translational studies will be necessary to successfully bring MR neuroimaging of lumbar nerve into clinical use.
Collapse
Affiliation(s)
- Yawara Eguchi
- Department of Orthopedic Surgery, National Hospital Organization Shimoshizu National Hospital, Japan
| | - Hirohito Kanamoto
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Japan
| | - Yasuhiro Oikawa
- Division of Orthopaedic Surgery, Chiba Children's Hospital, Japan
| | - Munetaka Suzuki
- Department of Orthopedic Surgery, National Hospital Organization Shimoshizu National Hospital, Japan
| | - Hajime Yamanaka
- Department of Orthopedic Surgery, National Hospital Organization Shimoshizu National Hospital, Japan
| | - Hiroshi Tamai
- Department of Orthopedic Surgery, National Hospital Organization Shimoshizu National Hospital, Japan
| | - Tatsuya Kobayashi
- Department of Orthopedic Surgery, National Hospital Organization Shimoshizu National Hospital, Japan
| | - Sumihisa Orita
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Japan
| | - Kazuyo Yamauchi
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Japan
| | - Miyako Suzuki
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Japan
| | - Kazuhide Inage
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Japan
| | - Yasuchika Aoki
- Department of Orthopaedic Surgery, Eastern Chiba Medical Center, Japan
| | - Atsuya Watanabe
- Department of Orthopaedic Surgery, Eastern Chiba Medical Center, Japan
| | - Takeo Furuya
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Japan
| | - Masao Koda
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Japan
| | - Kazuhisa Takahashi
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Japan
| | - Seiji Ohtori
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Japan
| |
Collapse
|
12
|
Wei LF, Wang SS, Zheng ZC, Tian J, Xue L. Analysis of the diffusion tensor imaging parameters of a normal cervical spinal cord in a healthy population. J Spinal Cord Med 2017; 40:338-345. [PMID: 27814138 PMCID: PMC5472022 DOI: 10.1080/10790268.2016.1244905] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Diffusion tensor imaging (DTI) shows great advantage in the diagnosis of brain diseases, including cervical spinal cord (CSC) disease. This study aims to obtain the normal values of the DTI parameters for a healthy population and to establish a baseline for CSC disease diagnosis using DTI. METHODS A total of 36 healthy adults were subjected to magnetic resonance imaging (MRI) for the entire CSC using the Siemens 3.0 T MR System. Sagittal DTI acquisition was carried out with a single-shot spin-echo echo-planar imaging (EPI) sequence along 12 non-collinear directions. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were determined at different cervical levels using a region of interest (ROI) method, following which they were correlated with parameters, like age and sex. Further, diffusion tensor tracking (DTT) was carried out to reconstruct the white matter fiber bundles of the CSC. RESULTS The full and complete fiber bundle structure of a normal CSC was confirmed in both the T2-weighted and DTI images. The FA and ADC values were significantly negatively correlated with each other and showed strongly negative and positive correlations with age, respectively, but not with sex. Additionally, there was no significant difference between the FA and the ADC values at different cervical levels. CONCLUSION The DTI technique can act as an important supplement to the conventional MRI technique for CSC observation. Moreover, the FA and ADC values can be used as sensitive parameters in the DTI study on the CSC by taking the effects of age into consideration.
Collapse
Affiliation(s)
| | - Shou-sen Wang
- Correspondence to: Shou-sen Wang, Department of Neurosurgery, Fuzhou General Hospital, Fuzhou Clinical Medicine School of Second Military Medical University, No. 156, Xi'erhuanbei Road, Fuzhou, 350025, P. R. China.
| | | | | | | |
Collapse
|
13
|
Li D, Wang X. Application value of diffusional kurtosis imaging (DKI) in evaluating microstructural changes in the spinal cord of patients with early cervical spondylotic myelopathy. Clin Neurol Neurosurg 2017; 156:71-76. [DOI: 10.1016/j.clineuro.2017.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/13/2017] [Accepted: 03/17/2017] [Indexed: 11/29/2022]
|
14
|
Efficacy of Diffusion Tensor Imaging Indices in Assessing Postoperative Neural Recovery in Cervical Spondylotic Myelopathy. Spine (Phila Pa 1976) 2017; 42:8-13. [PMID: 27128391 DOI: 10.1097/brs.0000000000001667] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Prospective observational cohort study. OBJECTIVE The aim of this study was to analyze the efficacy of diffusion tensor imaging (DTI) anisotropy indices in predicting the postoperative recovery in cervical spondylotic myelopathy (CSM) patients and to describe postoperative changes in the DTI indices based on neurological recovery after surgery. SUMMARY OF BACKGROUND DATA Surgical results of CSM are unpredictable and cannot be estimated based on preoperative MRI. DTI indices were found to have good sensitivity to detect changes in CSM, but their efficacy in predicting postoperative recovery and postoperative changes in DTI indices has not been studied before. METHODS Thirty-five patients who underwent surgical decompression for cervical spondylotic myelopathy underwent DTI evaluation preoperatively and postoperatively at 12 months. DTI indices-fractional anisotropy, apparent diffusion coefficient (ADC), relative anisotropy, volume ratio, and eigen vectors (E1, E2, and E3)-were obtained and clinical evaluations were made preoperatively and 12 months postoperatively. RESULTS Twenty-six patients were available for final follow-up at 12 months. Twenty patients showed improvement by at least 1 Nurick grade, five maintained the preoperative Nurick grade status and one patient was noted to have deterioration by 1 grade. The preoperative DTI values could not predict neurological recovery patterns postoperatively. Although conventional MRI showed adequate decompression in all patients irrespective of the clinical outcome, DTI indices showed variable results. There were significant improvements in postoperative DTI indices for ADC (P = 0.002), E1 (P < 0.001), and E2 (P = 0.012) values in patients who showed neurological recovery at 12 months. Postoperative DTI indices for coefficients ADC, E1, and E2 in neurologically static/worsened individuals remained unchanged or insignificant (P = 0.05) CONCLUSION.: The DTI indices were sensitive enough to indicate postoperative neurological recovery observed following surgery. Preoperative DTI evaluation could not predict postoperative recovery for patients with cervical spondylotic myelopathy. LEVEL OF EVIDENCE 4.
Collapse
|
15
|
Byval'tsev VA, Stepanov IA, Semenov AV, Perfil'ev DV, Belykh EG, Bardonova LA, Nikiforov SB, Sudakov NP, Bespyatykh IV, Antipina SL. [The possibilities for diagnostics of prescription of death coming based on the changes in the lumbar intervertebral disks (the comparison of the morphological, immunohistochemical and topographical findings)]. Sud Med Ekspert 2017; 60:4-8. [PMID: 28766519 DOI: 10.17116/sudmed20176044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The objective of the present study was the comprehensive analysis of the postmortem changes in the lumbar intervertebral disks within different periods after death. A total of seven vertebromotor segments were distinguished in the lumbosacral region of the vertebral column based on the examination of 7 corpses. All these segments were divided into three groups in accordance with the prescription of death coming as follows: up to 12 hours (group 1), between 12 and 24 hours (group 2), and between 24 and 36 hours (group 3) after death. The models of the segments thus obtained were subjected to the study by means of diffusion weighted MRI. The removed intervertebral disks were used for morphological and immunohistochemical investigations. The comparison of the diffusion coefficients (DI) revealed the significant difference between the intervertebral disks assigned to groups 1 and 2 (p<0.01). The number of the cells in the pulpal core, the vertebral end plate, and the fibrous ring in all the above groups of the intervertebral disks was significantly reduced (p<0.01). The analysis of the correlation dependence between cell density and diffusion coefficients has demonstrated the well apparent relationship between these characteristics of the intervertebral disks comprising groups 1 and 2. It is concluded that diffusion weighted MRI in the combination with the calculation of diffusion coefficients for the intervertebral disks provides a tool for diagnostics of prescription of death coming as confirmed by the results of the morphometric studies and immunohistochemical analysis.
Collapse
Affiliation(s)
- V A Byval'tsev
- Irkutsk State Medical University, Ministry of Health of the Russia, Irkutsk, Russia 664003; Irkutsk Research Centre of Surgery and Orthopedics, Irkutsk, Russia 664003; Irkutsk Railway Clinical Hospital, Irkutsk, Russia 664005; Irkutsk Medical Academy of Post-Graduate Education, Irkutsk, Russia 664049
| | - I A Stepanov
- Irkutsk State Medical University, Ministry of Health of the Russia, Irkutsk, Russia 664003
| | - A V Semenov
- Regional Bureau of Forensic Medical Expertise, Irkutsk, Russia, 664022
| | - D V Perfil'ev
- Regional Bureau of Forensic Medical Expertise, Irkutsk, Russia, 664022
| | - E G Belykh
- Irkutsk State Medical University, Ministry of Health of the Russia, Irkutsk, Russia 664003
| | - L A Bardonova
- Irkutsk State Medical University, Ministry of Health of the Russia, Irkutsk, Russia 664003
| | - S B Nikiforov
- Irkutsk Research Centre of Surgery and Orthopedics, Irkutsk, Russia 664003
| | - N P Sudakov
- Irkutsk Research Centre of Surgery and Orthopedics, Irkutsk, Russia 664003
| | - I V Bespyatykh
- Irkutsk Railway Clinical Hospital, Irkutsk, Russia 664005
| | - S L Antipina
- Irkutsk Railway Clinical Hospital, Irkutsk, Russia 664005
| |
Collapse
|
16
|
Gilli F, Chen X, Pachner AR, Gimi B. High-Resolution Diffusion Tensor Spinal Cord MRI Measures as Biomarkers of Disability Progression in a Rodent Model of Progressive Multiple Sclerosis. PLoS One 2016; 11:e0160071. [PMID: 27467829 PMCID: PMC4965026 DOI: 10.1371/journal.pone.0160071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/13/2016] [Indexed: 01/02/2023] Open
Abstract
Disease in the spinal cord is a major component of disability in multiple sclerosis, yet current techniques of imaging spinal cord injury are insensitive and nonspecific. This study seeks to remove this major impediment to research in multiple sclerosis and other spinal cord diseases by identifying reliable biomarkers of disability progression using diffusion tensor imaging (DTI), a magnetic resonance imaging technique, to evaluate the spinal cord in a model of multiple sclerosis, i.e. the Theiler’s Murine Encephalitis Virus-Induced Demyelinating Disease (TMEV-IDD). Mice with TMEV-IDD with varying levels of clinical disease were imaged using a 9.4T small animal MRI scanner. Axial diffusivity, radial diffusivity, and fractional anisotropy were calculated. Disability was assessed periodically using Rotarod assay and data were expressed as a neurological function index. Correlation was performed between DTI measurements and disability scores. TMEV-IDD mice displayed significant increased neurological deficits over time when compared with controls (p<0.0001). Concurrently, the values of fractional anisotropy and axial diffusivity were both decreased compared to controls (both p<0.0001), while radial diffusivity was increased (p<0.0001). Overall, fractional anisotropy changes were larger in white matter than in grey matter and differences were more pronounced in the ventral region. Lower disability scores were associated with decreased fractional anisotropy values measured in the ventral (r = 0.68; p<0.0001) and ventral-lateral (r = 0.70; p<0.0001) regions of the white matter. These data demonstrate that DTI measures of the spinal cord contribute to strengthening the association between neuroradiological markers and clinical disability, and support the use of DTI measures in spinal cord imaging in MS patients.
Collapse
Affiliation(s)
- Francesca Gilli
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| | - Xi Chen
- Department of Radiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Andrew R. Pachner
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Barjor Gimi
- Department of Radiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
17
|
McNulty JP, Lonergan R, Bannigan J, O’Laoide R, Rainford LA, Tubridy N. Visualisation of the medial longitudinal fasciculus using fibre tractography in multiple sclerosis patients with internuclear ophthalmoplegia. Ir J Med Sci 2016; 185:393-402. [DOI: 10.1007/s11845-016-1405-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/07/2016] [Indexed: 11/29/2022]
|
18
|
Martin AR, Aleksanderek I, Cohen-Adad J, Tarmohamed Z, Tetreault L, Smith N, Cadotte DW, Crawley A, Ginsberg H, Mikulis DJ, Fehlings MG. Translating state-of-the-art spinal cord MRI techniques to clinical use: A systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI. Neuroimage Clin 2015; 10:192-238. [PMID: 26862478 PMCID: PMC4708075 DOI: 10.1016/j.nicl.2015.11.019] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/23/2015] [Accepted: 11/27/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND A recent meeting of international imaging experts sponsored by the International Spinal Research Trust (ISRT) and the Wings for Life Foundation identified 5 state-of-the-art MRI techniques with potential to transform the field of spinal cord imaging by elucidating elements of the microstructure and function: diffusion tensor imaging (DTI), magnetization transfer (MT), myelin water fraction (MWF), MR spectroscopy (MRS), and functional MRI (fMRI). However, the progress toward clinical translation of these techniques has not been established. METHODS A systematic review of the English literature was conducted using MEDLINE, MEDLINE-in-Progress, Embase, and Cochrane databases to identify all human studies that investigated utility, in terms of diagnosis, correlation with disability, and prediction of outcomes, of these promising techniques in pathologies affecting the spinal cord. Data regarding study design, subject characteristics, MRI methods, clinical measures of impairment, and analysis techniques were extracted and tabulated to identify trends and commonalities. The studies were assessed for risk of bias, and the overall quality of evidence was assessed for each specific finding using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) framework. RESULTS A total of 6597 unique citations were identified in the database search, and after full-text review of 274 articles, a total of 104 relevant studies were identified for final inclusion (97% from the initial database search). Among these, 69 studies utilized DTI and 25 used MT, with both techniques showing an increased number of publications in recent years. The review also identified 1 MWF study, 11 MRS studies, and 8 fMRI studies. Most of the studies were exploratory in nature, lacking a priori hypotheses and showing a high (72%) or moderately high (20%) risk of bias, due to issues with study design, acquisition techniques, and analysis methods. The acquisitions for each technique varied widely across studies, rendering direct comparisons of metrics invalid. The DTI metric fractional anisotropy (FA) had the strongest evidence of utility, with moderate quality evidence for its use as a biomarker showing correlation with disability in several clinical pathologies, and a low level of evidence that it identifies tissue injury (in terms of group differences) compared with healthy controls. However, insufficient evidence exists to determine its utility as a sensitive and specific diagnostic test or as a tool to predict clinical outcomes. Very low quality evidence suggests that other metrics also show group differences compared with controls, including DTI metrics mean diffusivity (MD) and radial diffusivity (RD), the diffusional kurtosis imaging (DKI) metric mean kurtosis (MK), MT metrics MT ratio (MTR) and MT cerebrospinal fluid ratio (MTCSF), and the MRS metric of N-acetylaspartate (NAA) concentration, although these results were somewhat inconsistent. CONCLUSIONS State-of-the-art spinal cord MRI techniques are emerging with great potential to improve the diagnosis and management of various spinal pathologies, but the current body of evidence has only showed limited clinical utility to date. Among these imaging tools DTI is the most mature, but further work is necessary to standardize and validate its use before it will be adopted in the clinical realm. Large, well-designed studies with a priori hypotheses, standardized acquisition methods, detailed clinical data collection, and robust automated analysis techniques are needed to fully demonstrate the potential of these rapidly evolving techniques.
Collapse
Affiliation(s)
- Allan R Martin
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Izabela Aleksanderek
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Lindsay Tetreault
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | | | - David W Cadotte
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Adrian Crawley
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Howard Ginsberg
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - David J Mikulis
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Michael G Fehlings
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Gass A, Rocca MA, Agosta F, Ciccarelli O, Chard D, Valsasina P, Brooks JCW, Bischof A, Eisele P, Kappos L, Barkhof F, Filippi M. MRI monitoring of pathological changes in the spinal cord in patients with multiple sclerosis. Lancet Neurol 2015; 14:443-54. [PMID: 25748099 DOI: 10.1016/s1474-4422(14)70294-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The spinal cord is a clinically important site that is affected by pathological changes in most patients with multiple sclerosis; however, imaging of the spinal cord with conventional MRI can be difficult. Improvements in MRI provide a major advantage for spinal cord imaging, with better signal-to-noise ratio and improved spatial resolution. Through the use of multiplanar MRI, identification of diffuse and focal changes in the whole spinal cord is now routinely possible. Corroborated by related histopathological analyses, several new techniques, such as magnetisation transfer, diffusion tension imaging, functional MRI, and proton magnetic resonance spectroscopy, can detect non-focal, spinal cord pathological changes in patients with multiple sclerosis. Additionally, functional MRI can reveal changes in the response pattern to sensory stimulation in patients with multiple sclerosis. Through use of these techniques, findings of cord atrophy, intrinsic cord damage, and adaptation are shown to occur largely independently of focal spinal cord lesion load, which emphasises their relevance in depiction of the true burden of disease. Combinations of magnetisation transfer ratio or diffusion tension imaging indices with cord atrophy markers seem to be the most robust and meaningful biomarkers to monitor disease evolution in early multiple sclerosis.
Collapse
Affiliation(s)
- Achim Gass
- Department of Neurology, Universitätsmedizin Mannheim UMM, University of Heidelberg, Germany.
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience and Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience and Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Olga Ciccarelli
- Department of Brain Repair and Rehabilitation, University College London, Institute of Neurology National Institute for Health Research, University College London Hospitals, Biomedical Research Centre, London, UK
| | - Declan Chard
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, University College London, Institute of Neurology National Institute for Health Research, University College London Hospitals, Biomedical Research Centre, London, UK
| | - Paola Valsasina
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience and Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Antje Bischof
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Philipp Eisele
- Department of Neurology, Universitätsmedizin Mannheim UMM, University of Heidelberg, Germany
| | - Ludwig Kappos
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, Netherlands
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience and Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | | |
Collapse
|
20
|
El Maati AAA, Chalabi N. Diffusion tensor tractography as a supplementary tool to conventional MRI for evaluating patients with myelopathy. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2014. [DOI: 10.1016/j.ejrnm.2014.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
21
|
Kelley BJ, Harel NY, Kim CY, Papademetris X, Coman D, Wang X, Hasan O, Kaufman A, Globinsky R, Staib LH, Cafferty WBJ, Hyder F, Strittmatter SM. Diffusion tensor imaging as a predictor of locomotor function after experimental spinal cord injury and recovery. J Neurotrauma 2014; 31:1362-73. [PMID: 24779685 DOI: 10.1089/neu.2013.3238] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Traumatic spinal cord injury (SCI) causes long-term disability with limited functional recovery linked to the extent of axonal connectivity. Quantitative diffusion tensor imaging (DTI) of axonal integrity has been suggested as a potential biomarker for prognostic and therapeutic evaluation after trauma, but its correlation with functional outcomes has not been clearly defined. To examine this application, female Sprague-Dawley rats underwent midthoracic laminectomy followed by traumatic spinal cord contusion of differing severities or laminectomy without contusion. Locomotor scores and hindlimb kinematic data were collected for 4 weeks post-injury. Ex vivo DTI was then performed to assess axonal integrity using tractography and fractional anisotropy (FA), a numerical measure of relative white matter integrity, at the injury epicenter and at specific intervals rostral and caudal to the injury site. Immunohistochemistry for tissue sparing was also performed. Statistical correlation between imaging data and functional performance was assessed as the primary outcome. All injured animals showed some recovery of locomotor function, while hindlimb kinematics revealed graded deficits consistent with injury severity. Standard T2 magnetic resonance sequences illustrated conventional spinal cord morphology adjacent to contusions while corresponding FA maps indicated graded white matter pathology within these adjacent regions. Positive correlations between locomotor (Basso, Beattie, and Bresnahan score and gait kinematics) and imaging (FA values) parameters were also observed within these adjacent regions, most strongly within caudal segments beyond the lesion. Evaluation of axonal injury by DTI provides a mechanism for functional recovery assessment in a rodent SCI model. These findings suggest that focused DTI analysis of caudal spinal cord should be studied in human cases in relationship to motor outcome to augment outcome biomarkers for clinical cases.
Collapse
Affiliation(s)
- Brian J Kelley
- 1 Department of Neurosurgery, Yale University School of Medicine , New Haven, Connecticut
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
The assessment of neuronal status in normal and cervical spondylotic myelopathy using diffusion tensor imaging. Spine (Phila Pa 1976) 2014; 39:1183-9. [PMID: 24827523 DOI: 10.1097/brs.0000000000000369] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A prospective observational analysis of diffusion tensor imaging (DTI) datametrics collected from control and patients with cervical spondylotic myelopathy (CSM). OBJECTIVE The aims were to study the use of DTI in CSM and to probe whether DTI datametrics and tractography will correlate with magnetic resonance imaging and clinical findings. SUMMARY OF BACKGROUND DATA Magnetic resonance imaging is the current "gold standard" in the assessment of cord status in CSM; however, various parameters such as extent of compression and presence of signal intensity changes do not correlate well with clinical status. DTI is a novel investigation tool with proven applications in brain pathologies but is not routinely used in spinal cord evaluation. METHODS Patients with CSM (n = 35) who required surgical decompression (mean age = 48 yr) and 40 normal individuals (mean age = 38 yr) were included. Diffusion Tensor Imaging of the cervical spine was obtained using a 1.5T magnetic resonance image. Apparent diffusion coefficient, fractional anisotropy, and eigenvalues (E1, E2, and E3) were obtained at each cervical level. The DTI datametrics of CSM patients were compared with normal volunteers and correlated with individual and grouped Nurick grades, which indicate the neurological status of patients. RESULTS There was significant difference in DTI datametrics between patients with myelopathy and control (P < 0.05), with decrease in fractional anisotropy (0.49 ± 0.081 vs. 0.53 ± 0.07) and increase in apparent diffusion coefficient (1.8 ± 0.315 vs. 1.44 ± 0.145) and eigenvalues (E1: 2.82 ± 0.395 vs. 2.37 ± 0.221, E2: 1.64 ± 0.39 vs. 1.18 ± 0.198, E3: 0.956 ± 0.277 vs. 0.76 ± 0.142). There was also a significant difference between increasing grades of myelopathy when individuals were grouped as-control, self-ambulant (Nurick grades 1 and 2), and dependent (Nurick grades 3, 4, and 5). CONCLUSION The study shows that DTI is a promising and useful investigational tool in evaluation of CSM. There was a significant difference in all DTI values between control and patients with CSM, and there was a significant trend of change in values between control, self-ambulant, and dependent patients. Our results encourage further investigation of this important modality. LEVEL OF EVIDENCE 3.
Collapse
|
23
|
Brander A, Koskinen E, Luoto TM, Hakulinen U, Helminen M, Savilahti S, Ryymin P, Dastidar P, Öhman J. Diffusion tensor imaging of the cervical spinal cord in healthy adult population: normative values and measurement reproducibility at 3T MRI. Acta Radiol 2014; 55:478-85. [PMID: 23969263 DOI: 10.1177/0284185113499752] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Compared to diffusion tensor imaging (DTI) of the brain, there is a paucity of reports addressing the applicability of DTI in the evaluation of the spinal cord. Most normative data of cervical spinal cord DTI consist of relatively small and arbitrarily collected populations. Comprehensive normative data are necessary for clinical decision-making. PURPOSE To establish normal values for cervical spinal cord DTI metrics with region of interest (ROI)- and fiber tractography (FT)-based measurements and to assess the reproducibility of both measurement methods. MATERIAL AND METHODS Forty healthy adults underwent cervical spinal cord 3T MRI. Sagittal and axial conventional T2 sequences and DTI in the axial plane were performed. Whole cord fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were determined at different cervical levels from C2 to C7 using the ROI method. DTI metrics (FA, axial, and radial diffusivities based on eigenvalues λ1, λ2, and λ3, and ADC) of the lateral and posterior funicles were measured at C3 level. FA and ADC of the whole cord and the lateral and posterior funicles were also measured using quantitative tractography. Intra- and inter-observer variation of the measurement methods were assessed. RESULTS Whole cord FA values decreased and ADC values increased in the rostral to caudal direction from C2 to C7. Between the individual white matter funicles no statistically significant difference for FA or ADC values was found. Both axial diffusivity and radial diffusivity of both lateral funicles differed significantly from those of the posterior funicle. Neither gender nor age correlated with any of the DTI metrics. Intra-observer variation of the measurements for whole cord FA and ADC showed almost perfect agreement with both ROI and tractography-based measurements. There was more variation in measurements of individual columns. Inter-observer agreement varied from moderate to strong for whole cord FA and ADC. CONCLUSION Both ROI- and FT-based measurements are applicable methods yielding reproducible results for cervical spinal cord DTI metrics. Normative values for both measurement methods are presented.
Collapse
Affiliation(s)
- Antti Brander
- Medical Imaging Centre, Department of Radiology, Tampere University Hospital, Tampere, Finland
| | - Eerika Koskinen
- Department of Neurosciences and Rehabilitation, Tampere University Hospital, Tampere, Finland
| | - Teemu M Luoto
- Department of Neurosciences and Rehabilitation, Tampere University Hospital, Tampere, Finland
| | - Ullamari Hakulinen
- Medical Imaging Centre, Department of Radiology, Tampere University Hospital, Tampere, Finland
| | - Mika Helminen
- School of Health Sciences, University of Tampere, Tampere, Finland and Science Center, Pirkanmaa Hospital District, Tampere, Finland
| | - Sirpa Savilahti
- Medical Imaging Centre, Department of Radiology, Tampere University Hospital, Tampere, Finland
| | - Pertti Ryymin
- Medical Imaging Centre, Department of Radiology, Tampere University Hospital, Tampere, Finland
| | - Prasun Dastidar
- Medical Imaging Centre, Department of Radiology, Tampere University Hospital, Tampere, Finland
| | - Juha Öhman
- Department of Neurosciences and Rehabilitation, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
24
|
Assessment of apparent diffusion coefficient in lumbar intervertebral disc degeneration. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2014; 23:1830-6. [PMID: 24706061 DOI: 10.1007/s00586-014-3285-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 01/06/2014] [Accepted: 03/25/2014] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The aim of this study was to determine the relationship between the apparent diffusion coefficient (ADC) and lumbar intervertebral disc degeneration using diffusion-weighted magnetic resonance imaging (DWI). MATERIALS AND METHODS Using a 3 T magnetic resonance scanner, DWI of the lumbar spine was assessed in 109 patients, with a total of 545 lumbar discs analyzed. Apparent diffusion coefficient values were recorded for each disc, and all discs were visually graded by two independent observers using Pfirrmann's grading system. Apparent diffusion coefficient values of disc were tested by correlation with qualitative clinical grading of degeneration severity, patient age, and sex. Correlations were investigated using Pearson's and Spearman's rank correlation analysis, and multiple regression analysis. RESULTS Intervertebral disc degeneration was negatively correlated with ADC values of all levels (Spearman's correlation coefficient ranged from -0.381 to -0.604, p < 0.001). There was a significant negative association between age and ADC values at all spinal levels (Pearson's correlation coefficient ranged from -0.353 to -0.650, p < 0.001). When stepwise regression models were analyzed, both disc degeneration and age remained negatively associated with ADC values at each lumbar level (standardized coefficients ranged from -0.231 to -0.505, p < 0.01 and standardized coefficients ranged from -0.179 to -0.523, p < 0.05 respectively). CONCLUSION Apparent diffusion coefficient values obtained using DWI can assess lumbar intervertebral disc degeneration, and the ADC values were negatively correlated with the degree of disc degeneration.
Collapse
|
25
|
Liu X, Tian W, Kolar B, Hu R, Huang Y, Huang J, Ekholm S. Advanced MR diffusion tensor imaging and perfusion weighted imaging of intramedullary tumors and tumor like lesions in the cervicomedullary junction region and the cervical spinal cord. J Neurooncol 2013; 116:559-66. [PMID: 24374994 DOI: 10.1007/s11060-013-1323-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 12/15/2013] [Indexed: 12/24/2022]
Abstract
Differential diagnosis between intramedullary tumors and tumor-like lesions (TLL) in the cervicomedullary junction region and cervical spinal cord is important, sometimes clinical dilemma on conventional MR imaging and empirical treatment. We evaluated advanced MR diffusion tensor imaging (DTI) and perfusion weighted imaging (PWI) in 25 patients, including 12 with intramedullary tumors and 13 with TLL in the cervicomedullary junction region and cervical spinal cord. We found that mean fractional anisotropy value of tumors was significantly lower than the value found in TLL, and the mean trace apparent diffusion coefficient and peak height values of tumors were significantly higher (P < 0.05). The receiver operating characteristic curve analysis showed that peak height was better than any of the other imaging parameters, with a sensitivity of 90.9% and specificity of 80% using a cutoff value of 4.523 to differentiate between tumors and TLL. In conclusion, the MR DTI and PWI could be useful in differentiating between intramedullary tumors and TLL in the cervicomedullary junction region and cervical spinal cord.
Collapse
Affiliation(s)
- Xiang Liu
- University of Rochester, Rochester, NY, USA,
| | | | | | | | | | | | | |
Collapse
|
26
|
Wang X, Brieland JK, Kim JH, Chen YJ, O’Neal J, O’Neil SR, Tu TW, Trinkaus K, Song SK. Diffusion tensor imaging detects treatment effects of FTY720 in experimental autoimmune encephalomyelitis mice. NMR IN BIOMEDICINE 2013; 26:1742-1750. [PMID: 23939596 PMCID: PMC3838438 DOI: 10.1002/nbm.3012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/14/2013] [Accepted: 07/16/2013] [Indexed: 05/29/2023]
Abstract
Fingolimod (FTY720) is an orally available sphingosine-1-phosphate (S1P) receptor modulator reducing relapse frequency in patients with relapsing-remitting multiple sclerosis (RRMS). In addition to immunosuppression, neuronal protection by FTY720 has also been suggested, but remains controversial. Axial and radial diffusivities derived from in vivo diffusion tensor imaging (DTI) were employed as noninvasive biomarkers of axonal injury and demyelination to assess axonal protection by FTY720 in experimental autoimmune encephalomyelitis (EAE) mice. EAE was induced through active immunization of C57BL/6 mice using myelin oligodendrocyte glycoprotein peptide 35-55 (MOG(35-55)). We evaluated both the prophylactic and therapeutic treatment effect of FTY720 at doses of 3 and 10 mg/kg on EAE mice by daily clinical scoring and end-point in vivo DTI. Prophylactic administration of FTY720 suppressed the disease onset and prevented axon and myelin damage when compared with EAE mice without treatment. Therapeutic treatment by FTY720 did not prevent EAE onset, but reduced disease severity, improving axial and radial diffusivity towards the control values without statistical significance. Consistent with previous findings, in vivo DTI-derived axial and radial diffusivity correlated with clinical scores in EAE mice. The results support the use of in vivo DTI as an effective outcome measure for preclinical drug development.
Collapse
Affiliation(s)
- Xiaojie Wang
- Department of Chemistry, Washington University, St. Louis, MO, USA
| | | | - Joong H. Kim
- Department of Radiology, Washington University, St. Louis, MO, USA
| | - Ying-Jr Chen
- Department of Chemistry, Washington University, St. Louis, MO, USA
| | | | | | - Tsang-Wei Tu
- Department of Mechanical Engineering and Materials Science, St. Louis, MO, USA
| | - Kathryn Trinkaus
- Department of Biostatistics, Washington University, St. Louis, MO, USA
| | - Sheng-Kwei Song
- Department of Radiology, Washington University, St. Louis, MO, USA
| |
Collapse
|
27
|
Raz E, Bester M, Sigmund EE, Tabesh A, Babb JS, Jaggi H, Helpern J, Mitnick RJ, Inglese M. A better characterization of spinal cord damage in multiple sclerosis: a diffusional kurtosis imaging study. AJNR Am J Neuroradiol 2013; 34:1846-52. [PMID: 23578677 DOI: 10.3174/ajnr.a3512] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND PURPOSE The spinal cord is a site of predilection for MS lesions. While diffusion tensor imaging is useful for the study of anisotropic systems such as WM tracts, it is of more limited utility in tissues with more isotropic microstructures (on the length scales studied with diffusion MR imaging) such as gray matter. In contrast, diffusional kurtosis imaging, which measures both Gaussian and non-Gaussian properties of water diffusion, provides more biomarkers of both anisotropic and isotropic structural changes. The aim of this study was to investigate the cervical spinal cord of patients with MS and to characterize lesional and normal-appearing gray matter and WM damage by using diffusional kurtosis imaging. MATERIALS AND METHODS Nineteen patients (13 women, mean age = 41.1 ± 10.7 years) and 16 controls (7 women, mean age = 35.6 ± 11.2-years) underwent MR imaging of the cervical spinal cord on a 3T scanner (T2 TSE, T1 magnetization-prepared rapid acquisition of gradient echo, diffusional kurtosis imaging, T2 fast low-angle shot). Fractional anisotropy, mean diffusivity, and mean kurtosis were measured on the whole cord and in normal-appearing gray matter and WM. RESULTS Spinal cord T2-hyperintense lesions were identified in 18 patients. Whole spinal cord fractional anisotropy and mean kurtosis (P = .0009, P = .003), WM fractional anisotropy (P = .01), and gray matter mean kurtosis (P = .006) were significantly decreased, and whole spinal cord mean diffusivity (P = .009) was increased in patients compared with controls. Mean spinal cord area was significantly lower in patients (P = .04). CONCLUSIONS Diffusional kurtosis imaging of the spinal cord can provide a more comprehensive characterization of lesions and normal-appearing WM and gray matter damage in patients with MS. Diffusional kurtosis imaging can provide additional and complementary information to DTI on spinal cord pathology.
Collapse
Affiliation(s)
- E Raz
- Department of Radiology, New York University School of Medicine, New York, New York
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wheeler-Kingshott CA, Stroman PW, Schwab JM, Bacon M, Bosma R, Brooks J, Cadotte DW, Carlstedt T, Ciccarelli O, Cohen-Adad J, Curt A, Evangelou N, Fehlings MG, Filippi M, Kelley BJ, Kollias S, Mackay A, Porro CA, Smith S, Strittmatter SM, Summers P, Thompson AJ, Tracey I. The current state-of-the-art of spinal cord imaging: applications. Neuroimage 2013; 84:1082-93. [PMID: 23859923 DOI: 10.1016/j.neuroimage.2013.07.014] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 06/30/2013] [Accepted: 07/04/2013] [Indexed: 12/14/2022] Open
Abstract
A first-ever spinal cord imaging meeting was sponsored by the International Spinal Research Trust and the Wings for Life Foundation with the aim of identifying the current state-of-the-art of spinal cord imaging, the current greatest challenges, and greatest needs for future development. This meeting was attended by a small group of invited experts spanning all aspects of spinal cord imaging from basic research to clinical practice. The greatest current challenges for spinal cord imaging were identified as arising from the imaging environment itself; difficult imaging environment created by the bone surrounding the spinal canal, physiological motion of the cord and adjacent tissues, and small crosssectional dimensions of the spinal cord, exacerbated by metallic implants often present in injured patients. Challenges were also identified as a result of a lack of "critical mass" of researchers taking on the development of spinal cord imaging, affecting both the rate of progress in the field, and the demand for equipment and software to manufacturers to produce the necessary tools. Here we define the current state-of-the-art of spinal cord imaging, discuss the underlying theory and challenges, and present the evidence for the current and potential power of these methods. In two review papers (part I and part II), we propose that the challenges can be overcome with advances in methods, improving availability and effectiveness of methods, and linking existing researchers to create the necessary scientific and clinical network to advance the rate of progress and impact of the research.
Collapse
Affiliation(s)
- C A Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Centre, UCL Institute of Neurology, London, England, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
von Meyenburg J, Wilm BJ, Weck A, Petersen J, Gallus E, Mathys J, Schaetzle E, Schubert M, Boesiger P, von Meyenburg K, Goebels N, Kollias S. Spinal Cord Diffusion-Tensor Imaging and Motor-evoked Potentials in Multiple Sclerosis Patients: Microstructural and Functional Asymmetry. Radiology 2013; 267:869-79. [DOI: 10.1148/radiol.13112776] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Stroman PW, Wheeler-Kingshott C, Bacon M, Schwab JM, Bosma R, Brooks J, Cadotte D, Carlstedt T, Ciccarelli O, Cohen-Adad J, Curt A, Evangelou N, Fehlings MG, Filippi M, Kelley BJ, Kollias S, Mackay A, Porro CA, Smith S, Strittmatter SM, Summers P, Tracey I. The current state-of-the-art of spinal cord imaging: methods. Neuroimage 2013; 84:1070-81. [PMID: 23685159 DOI: 10.1016/j.neuroimage.2013.04.124] [Citation(s) in RCA: 237] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/08/2013] [Accepted: 04/16/2013] [Indexed: 12/28/2022] Open
Abstract
A first-ever spinal cord imaging meeting was sponsored by the International Spinal Research Trust and the Wings for Life Foundation with the aim of identifying the current state-of-the-art of spinal cord imaging, the current greatest challenges, and greatest needs for future development. This meeting was attended by a small group of invited experts spanning all aspects of spinal cord imaging from basic research to clinical practice. The greatest current challenges for spinal cord imaging were identified as arising from the imaging environment itself; difficult imaging environment created by the bone surrounding the spinal canal, physiological motion of the cord and adjacent tissues, and small cross-sectional dimensions of the spinal cord, exacerbated by metallic implants often present in injured patients. Challenges were also identified as a result of a lack of "critical mass" of researchers taking on the development of spinal cord imaging, affecting both the rate of progress in the field, and the demand for equipment and software to manufacturers to produce the necessary tools. Here we define the current state-of-the-art of spinal cord imaging, discuss the underlying theory and challenges, and present the evidence for the current and potential power of these methods. In two review papers (part I and part II), we propose that the challenges can be overcome with advances in methods, improving availability and effectiveness of methods, and linking existing researchers to create the necessary scientific and clinical network to advance the rate of progress and impact of the research.
Collapse
Affiliation(s)
- P W Stroman
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Naismith RT, Xu J, Klawiter EC, Lancia S, Tutlam NT, Wagner JM, Qian P, Trinkaus K, Song SK, Cross AH. Spinal cord tract diffusion tensor imaging reveals disability substrate in demyelinating disease. Neurology 2013; 80:2201-9. [PMID: 23667060 DOI: 10.1212/wnl.0b013e318296e8f1] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE This study assessed the tissue integrity of major cervical cord tracts by using diffusion tensor imaging (DTI) to determine the relationship with specific clinical functions carried by those tracts. METHODS This was a cross-sectional study of 37 patients with multiple sclerosis or neuromyelitis optica with remote cervical cord disease. Finger vibratory thresholds, 25-foot timed walk (25FTW), 9-hole peg test (9HPT), and Expanded Disability Status Scale were determined. DTI covered cervical regions C1 through C6 with 17 5-mm slices (0.9 × 0.9 mm in-plane resolution). Regions of interest included posterior columns (PCs) and lateral corticospinal tracts (CSTs). Hierarchical linear mixed-effect modeling included covariates of disease subtype (multiple sclerosis vs neuromyelitis optica), disease duration, and sex. RESULTS Vibration thresholds were associated with radial diffusivity (RD) and fractional anisotropy (FA) in the PCs (both p < 0.01), but not CSTs (RD, p = 0.29; FA, p = 0.14). RD and FA in PCs, and RD in CSTs were related to 9HPT (each p < 0.0001). 25FTW was associated with RD and FA in PCs (p < 0.0001) and RD in CSTs (p = 0.008). Expanded Disability Status Scale was related to RD and FA in PCs and CSTs (p < 0.0001). Moderate/severe impairments in 9HPT (p = 0.006) and 25FTW (p = 0.017) were more likely to show combined moderate/severe tissue injury within both PCs and CSTs by DTI. CONCLUSIONS DTI can serve as an imaging biomarker of spinal cord tissue injury at the tract level. RD and FA demonstrate strong and consistent relationships with clinical outcomes, specific to the clinical modality.
Collapse
|
32
|
DTI Measurements in Multiple Sclerosis: Evaluation of Brain Damage and Clinical Implications. Mult Scler Int 2013; 2013:671730. [PMID: 23606965 PMCID: PMC3628664 DOI: 10.1155/2013/671730] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 02/20/2013] [Accepted: 03/05/2013] [Indexed: 11/18/2022] Open
Abstract
Diffusion tensor imaging (DTI) is an effective means of quantifying parameters of demyelination and axonal loss. The application of DTI in Multiple Sclerosis (MS) has yielded noteworthy results. DTI abnormalities, which are already detectable in patients with clinically isolated syndrome (CIS), become more pronounced as disease duration and neurological impairment increase. The assessment of the microstructural alterations of white and grey matter in MS may shed light on mechanisms responsible for irreversible disability accumulation. In this paper, we examine the DTI analysis methods, the results obtained in the various tissues of the central nervous system, and correlations with clinical features and other MRI parameters. The adoption of DTI metrics to assess the outcome of prognostic measures may represent an extremely important step forward in the MS research field.
Collapse
|
33
|
Assessment of cervical spondylotic myelopathy using diffusion tensor magnetic resonance imaging parameter at 3.0 tesla. Spine (Phila Pa 1976) 2013; 38:407-14. [PMID: 22914703 DOI: 10.1097/brs.0b013e31826f25a3] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Cross-sectional study. OBJECTIVE To assess spinal cord condition in patients with cervical spondylosis (CS), using diffusion tensor imaging parameter. SUMMARY OF BACKGROUND DATA Although myelopathy is a common symptom after CS, clinically objective assessment for determination of surgical intervention is not straightforward. METHODS Twenty-six patients with CS and 30 normal control subjects were enrolled. Diffusion tensor imaging was obtained using a single-shot fast spin-echo-based sequence at 3.0 T. Mean diffusivity (MD) and fractional anisotropy (FA) were measured in the axial plane at 6 spinal levels. To evaluate MD and FA in patients with CS considering the normal variation at each spinal level and between spinal levels, MD and FA at the most compressed spinal level were transformed to normalized values with a z score. Presence of myelopathy was predicted with the MD and FA z scores. Diagnostic validity of MD and FA was compared with receiver operating characteristic analysis. More effective parameter and the optimal cutoff value for prediction were determined. RESULTS In normal subjects, MD and FA were significantly different between spinal levels. In patients with myelopathy, an MD increase or an FA decrease was demonstrated in most cases. Although both an MD increase and an FA decrease had diagnostic validity for myelopathy, receiver operating characteristic analysis demonstrated a higher sensitivity and specificity for prediction of an MD increase than an FA decrease (areas under the curve for MD and FA were 0.903 and 0.760, respectively). An MD z score of 1.40 was considered to be the best diagnostic cutoff value with 100% sensitivity and 75% specificity. CONCLUSION Myelopathy can be predicted with high accuracy with diffusion tensor imaging parameter, with the MD z score at the most compressed spinal level. LEVEL OF EVIDENCE 3.
Collapse
|
34
|
Abstract
The potential utility of diffusion tensor (DT) imaging in clinical practice is broad, and new applications continue to evolve as technology advances. Clinical applications of DT imaging and tractography include tissue characterization, lesion localization, and mapping of white matter tracts. DT imaging metrics are sensitive to microstructural changes associated with central nervous system disease; however, further research is needed to enhance specificity so as to facilitate more widespread clinical application. Preoperative tract mapping, with either directionally encoded color maps or tractography, provides useful information to the neurosurgeon and has been shown to improve clinical outcomes.
Collapse
|
35
|
Uda T, Takami T, Sakamoto S, Tsuyuguchi N, Yamagata T, Ohata K. Normal variation of diffusion tensor parameters of the spinal cord in healthy subjects at 3.0-Tesla. JOURNAL OF CRANIOVERTEBRAL JUNCTION AND SPINE 2012; 2:77-81. [PMID: 23125493 PMCID: PMC3486000 DOI: 10.4103/0974-8237.100060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIMS The purposes of the present study were to clarify the normal variation and to determine the normal reference values of diffusion tensor (DT) parameters (mean diffusivity [MD] and fractional anisotropy [FA]) of the spinal cord in single-shot fast spin-echo-based sequence at 3.0-Tesla (3T). MATERIALS AND METHODS Thirty healthy subjects (mean age = 44.2 years, range = 20-72 years) were enrolled for this study. Mean values of MD and FA in six spinal levels (C2/3, C3/4, C4/5, C5/6, C6/7, and C7/Th1) were measured. Mean values, variances, and distributions of the MD and FA in each spinal level were analyzed. Age-dependent change of MD and FA as well as correlation between MD and FA was also analyzed. RESULTS At all spinal levels, the values can be considered to be Gaussian distribution in MD but not in FA. A significant statistical negative correlation was observed between aging and the values of MD (r = 0.429, P = 0.018), but insignificant between the values of FA (P = 0.234). A slight significant statistical negative correlation was observed between the values of MD and FA (r = 0.156, P = 0.037). One way repeated measures analysis of variance indicated the significant difference between the spinal levels in both MD (P = 0.003) and FA (P < 0.0001). CONCLUSIONS The analyzed data in the present study would be helpful for comparison when investigating the spinal condition of spinal disorders.
Collapse
Affiliation(s)
- T Uda
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Sąsiadek MJ, Szewczyk P, Bladowska J. Application of diffusion tensor imaging (DTI) in pathological changes of the spinal cord. Med Sci Monit 2012; 18:RA73-9. [PMID: 22648262 PMCID: PMC3560718 DOI: 10.12659/msm.882891] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We review the current knowledge concerning clinical applications of the advanced technique of magnetic resonance imaging (MRI): diffusion tensor imaging (DTI) of the spinal cord. Due to technical difficulties, DTI has rarely been used in spinal cord diseases. However, in our opinion it is potentially a very useful method in diagnosis of the different pathological processes of the spinal cord and spinal canal. We discuss the physical principles and technical aspects of DTI, as well as current and future applications. DTI seems to be a very promising method for assessment of spinal cord trauma, spinal canal tumors, degenerative myelopathy, as well as demyelinating and infectious diseases of the spinal cord. DTI enables both qualitative and quantitative (by measuring of the fractional anisotropy and apparent diffusion coefficient parameters) assessment of the spinal cord. The particular applications are illustrated by the examples provided in this article.
Collapse
Affiliation(s)
- Marek J Sąsiadek
- Department of General and Interventional Radiology and Neuroradiology, Chair of Radiology, Wroclaw Medical University, Wroclaw, Poland.
| | | | | |
Collapse
|
37
|
Hodel J, Besson P, Outteryck O, Zéphir H, Ducreux D, Monnet A, Chéchin D, Zins M, Rodallec M, Pruvo JP, Vermersch P, Leclerc X. Pulse-triggered DTI sequence with reduced FOV and coronal acquisition at 3T for the assessment of the cervical spinal cord in patients with myelitis. AJNR Am J Neuroradiol 2012; 34:676-82. [PMID: 22918433 DOI: 10.3174/ajnr.a3254] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE DTI is a promising technique for imaging of the spinal cord, but the technique has susceptibility-induced artifacts. We evaluated a pulse-triggered DTI sequence with an rFOV technique and coronal acquisition for the assessment of the cervical spinal cord in patients with myelitis at 3T. MATERIALS AND METHODS A rFOV acquisition was established by a noncoplanar application of the excitation and the refocusing pulse in conjunction with outer volume suppression. The DTI sequence was performed in the coronal plane in 12 healthy volunteers and 40 consecutive patients with myelitis. Probabilistic tractography of the posterior and lateral funiculi was performed from the C1 to C7 levels. FA, MD, aD, rD, and ratios of aD and rD were measured. RESULTS In healthy volunteers, mean DTI indices within the whole-fiber pathways were the following: FA = 0.61, MD = 1.17 × 10(-3) mm(2)/s, aD = 1.96 × 10(-3) mm(2)/s, rD = 0.77 × 10(-3) mm(2)/s, and ratios of aD and rD = 2.5. Comparison of healthy controls and patients with myelitis identified statistically significant differences for all DTI parameters. Different patterns of myelitis, including spinal cord atrophy and active inflammatory lesions, were recognized. There was a significant correlation between clinical severity and DTI parameters. CONCLUSIONS The present work introduces a new approach for DTI of the cervical spinal cord at 3T, enabling a quantitative follow-up of patients with myelitis.
Collapse
Affiliation(s)
- J Hodel
- Department of Neuroradiology, CHU Salengro, Lille, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sigmund EE, Suero GA, Hu C, McGorty K, Sodickson DK, Wiggins GC, Helpern JA. High-resolution human cervical spinal cord imaging at 7 T. NMR IN BIOMEDICINE 2012; 25:891-899. [PMID: 22183956 PMCID: PMC3377161 DOI: 10.1002/nbm.1809] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 09/30/2011] [Accepted: 10/03/2011] [Indexed: 05/31/2023]
Abstract
We present high-resolution anatomical imaging of the cervical spinal cord in healthy volunteers at the ultrahigh field of 7 T with a prototype four-channel radiofrequency coil array, in comparison with 3-T imaging of the same subjects. Signal-to-noise ratios at both field strengths were estimated using the rigorous Kellman method. Spinal cord cross-sectional area measurements were performed, including whole-cord measurements at both fields and gray matter segmentation at 7 T. The 7-T array coil showed reduced sagittal coverage, comparable axial coverage and the expected significantly higher signal-to-noise ratio compared with equivalent 3-T protocols. In the cervical spinal cord, the signal-to-noise ratio was found by the Kellman method to be higher by a factor of 3.5 with the 7-T coil than with standard 3-T coils. Cervical spine imaging in healthy volunteers at 7 T revealed not only detailed white/gray matter differentiation, but also structures not visualized at lower fields, such as denticulate ligaments, nerve roots and rostral-caudal blood vessels. Whole-cord cross-sectional area measurements showed good agreement at both field strengths. The measurable gray/white matter cross-sectional areas at 7 T were found to be comparable with reports from histology. These pilot data demonstrate the use of higher signal-to-noise ratios at the ultrahigh field of 7 T for significant improvement in anatomical resolution of the cervical spinal cord, allowing the visualization of structures not seen at lower field strength, particularly for axial imaging.
Collapse
Affiliation(s)
- E E Sigmund
- Department of Radiology, New York University Langone Medical Center, New York, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Ukmar M, Montalbano A, Makuc E, Specogna I, Bratina A, Longo R, Cova MA. Fiber density index in the evaluation of the spinal cord in patients with multiple sclerosis. Radiol Med 2012; 117:1215-24. [PMID: 22744352 DOI: 10.1007/s11547-012-0848-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 08/23/2011] [Indexed: 10/28/2022]
Abstract
PURPOSE The aims of this study were to determine fractional anisotropy (FA) and the fibre density index (FDi) in the cervical spinal cord of patients with multiple sclerosis (MS) by using diffusion-tensor magnetic resonance imaging (DT-MRI) to identify possible differences between MS patients and controls. MATERIALS AND METHODS We studied 27 patients with MS - nine with primary progressive (PPMS), nine with secondary progressive (SPMS) and nine with relapsing-remitting (RRMS) disease - and 18 healthy individuals as controls. Conventional and DTI sequences with diffusion gradients applied in 32 directions were obtained. The results were compared between healthy controls and patients, between healthy controls and individual forms of MS and between the three forms of MS. Statistical analysis was performed by analysis of variance (ANOVA) and Student's t test. RESULTS The FDi in the three subgroups of patients and in controls showed a statistically significant difference. Using the t test, we found results from both PPMS and SPMS groups were different from controls. The correlation between FA and FDi was significant both in healthy controls and in MS patients evaluated as a single group. CONSLUCIONS: Despite the small group of patients, these findings suggest that FDi associated with FA is a sensitive parameter for assessing spinal cord damage in patients with MS.
Collapse
Affiliation(s)
- M Ukmar
- U.C.O. di Radiologia, Ospedale di Cattinara, Azienda Ospedaliero-Universitaria, Ospedale di Cattinara, Strada di Fiume 447, 34149, Trieste, Italy.
| | | | | | | | | | | | | |
Collapse
|
40
|
Signal-to-noise ratio of diffusion weighted magnetic resonance imaging: Estimation methods and in vivo application to spinal cord. Biomed Signal Process Control 2012. [DOI: 10.1016/j.bspc.2011.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Magnetic resonance diffusion tensor imaging in patients with cervical spondylotic spinal cord compression: correlations between clinical and electrophysiological findings. Spine (Phila Pa 1976) 2012; 37:48-56. [PMID: 21228747 DOI: 10.1097/brs.0b013e31820e6c35] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A prospective study evaluating a cohort of patients with spondylotic cervical spine compression. OBJECTIVE To analyze the potential of diffusion tensor imaging (DTI) of the cervical spinal cord in the detection of changes associated with spondylotic myelopathy, with particular reference to clinical and electrophysiological findings. SUMMARY OF BACKGROUND DATA Conventional magnetic resonance imaging (MRI) may provide confusing findings because of a frequent disproportion between the degree of the spinal cord compression and clinical symptoms. The DTI is known to be more sensitive to subtle pathological changes of the spinal cord compared with conventional MRI. METHODS The DTI of the cervical spinal cord was performed within a group of 52 patients with spondylotic spinal cord compression and 13 healthy volunteers on a 1.5-T MRI scanner. All patients underwent clinical examination that differentiated between asymptomatic and symptomatic myelopathy subgroups, and 45 patients underwent electrophysiological examination. We measured the apparent diffusion coefficient and fractional anisotropy of the spinal cord at C2/C3 level without compression and at the maximal compression level (MCL). Sagittal spinal canal diameter, cross-sectional spinal cord area, and presence of T2 hyperintensity at the MCL were also recorded. Nonparametric statistical testing was used for comparison of controls with subgroups of patients. RESULTS Significant differences in both the DTI parameters measured at the MCL, between patients with compression and control group, were found, while no difference was observed at the noncompression level. Moreover, fractional anisotropy values were lower and apparent diffusion coefficient values were higher at the MCL in the symptomatic patients than in the asymptomatic patients. The DTI showed higher potential to discriminate between clinical subgroups in comparison with standard MRI parameters and electrophysiological findings. CONCLUSION The DTI appears to be a promising imaging modality in patients with spondylotic spinal cord compression. It reflects the presence of symptomatic myelopathy and shows considerable potential for discriminating between symptomatic and asymptomatic patients.
Collapse
|
42
|
Hori M, Motosug U, Fatima Z, Ishigame K, Araki T. Mean displacement map of spine and spinal cord disorders using high b-value q-space imaging-feasibility study. Acta Radiol 2011; 52:1155-8. [PMID: 22067205 DOI: 10.1258/ar.2011.110226] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Q-space analysis is a new metric that uses multiple, high b-value, diffusion-weighted magnetic resonance (MR) data. This technique shows promising results as a tool to provide information complementary to that of other imaging techniques used on biological tissue in vivo. PURPOSE To investigate the use of a mean displacement (MDP) map of high b-value, q-space imaging (QSI) to characterize spinal and spinal cord lesions in vivo. MATERIAL AND METHODS Eight patients with spine or spinal cord disorders (two neurinomas, one myeloma, three cases of syringohydromyelia, and two cases of cervical spondylosis) were included. The MR imaging protocol consisted of conventional MR sequences, conventional diffusion-weighted imaging (DWI; b = 1000), and high b-value QSI with a maximum q value of 836.9 cm(-1). Apparent diffusion coefficient (ADC) maps of conventional DWI and MDP maps of QSI data were obtained and region-of-interest analyses for the lesions were performed. RESULTS MDP values of normal spinal cord, cerebrospinal fluid (CSF), and tumor parenchyma were 6.57 ± 0.52, 17.6 ± 2.75, and 8.49 ± 2.09, respectively (µm, mean ± standard deviation). In general, MDP maps were not well correlated with the corresponding ADC maps at the pathologic lesions. Spondylotic lesions tended to have higher MDP values than normal spinal cord, whereas syringohydromyelia produced MDP values slightly lower than those of CSF. CONCLUSION The heterogeneous MDP values were probably due to differences in tissues and pathologic structures. This technique has potential to provide additional clinical information to that obtained with conventional MR imaging.
Collapse
Affiliation(s)
- Masaaki Hori
- Department of Radiology, University of Yamanashi, Yamanashi
- Department of Radiology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Utaroh Motosug
- Department of Radiology, University of Yamanashi, Yamanashi
| | - Zareen Fatima
- Department of Radiology, University of Yamanashi, Yamanashi
| | | | - Tsutomu Araki
- Department of Radiology, University of Yamanashi, Yamanashi
| |
Collapse
|
43
|
Diffusion tensor imaging of the maturing paediatric cervical spinal cord: from the neonate to the young adult. J Neuroradiol 2011; 39:142-8. [PMID: 21723608 DOI: 10.1016/j.neurad.2011.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 05/03/2011] [Accepted: 05/05/2011] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Normative apparent diffusion coefficient (ADC) and fractional anisotropy (FA) metrics of the brain have been published previously. However, no larger studies evaluated the normal evolution of ADC/FA metrics of the maturing paediatric spinal cord. Goal of this study is to evaluate the age-dependent evolution of the ADC/FA values of the developing/maturing normal cervical spinal cord (CSC). PATIENTS AND METHODS Forty-one subjects, aged less than 18 years with a negative spinal MRI study and no systemic central nervous disease, underwent diffusion tensor imaging (DTI) of the CSC. DTI metrics were measured in the centre of the CSC. Regression and ANCOVA analyses were performed to evaluate the association between ADC/FA values and age and its potential modification by sex. RESULTS A linear model emerged as the best fit for our data. ADC showed a continuous decrease with age; FA showed a continuous increase with age. CONCLUSION The simultaneous age-related ADC decrease and FA increase likely reflect progressive maturation, myelination and fibre packing within the CSC similar to that observed in the brain. Collection of age-dependent normative DTI metrics may be helpful in the early identification and quantification of altered water diffusion in a variety of pathologies affecting the developing paediatric spinal cord.
Collapse
|
44
|
von Meyenburg J, Wilm B, Weck A, Petersen J, Gallus E, Mathys J, Schätzle E, von Meyenburg K, Goebels N, Kollias S. 6. Diffusion tensor MRI study of the spinal cord in patients with multiple sclerosis. Clin Neurophysiol 2011. [DOI: 10.1016/j.clinph.2010.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Cohen-Adad J, El Mendili MM, Lehéricy S, Pradat PF, Blancho S, Rossignol S, Benali H. Demyelination and degeneration in the injured human spinal cord detected with diffusion and magnetization transfer MRI. Neuroimage 2011; 55:1024-33. [PMID: 21232610 DOI: 10.1016/j.neuroimage.2010.11.089] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/15/2010] [Accepted: 11/17/2010] [Indexed: 10/18/2022] Open
Abstract
Characterizing demyelination/degeneration of spinal pathways in traumatic spinal cord injured (SCI) patients is crucial for assessing the prognosis of functional rehabilitation. Novel techniques based on diffusion-weighted (DW) magnetic resonance imaging (MRI) and magnetization transfer (MT) imaging provide sensitive and specific markers of white matter pathology. In this paper we combined for the first time high angular resolution diffusion-weighted imaging (HARDI), MT imaging and atrophy measurements to evaluate the cervical spinal cord of fourteen SCI patients and age-matched controls. We used high in-plane resolution to delineate dorsal and ventrolateral pathways. Significant differences were detected between patients and controls in the normal-appearing white matter for fractional anisotropy (FA, p<0.0001), axial diffusivity (p<0.05), radial diffusivity (p<0.05), generalized fractional anisotropy (GFA, p<0.0001), magnetization transfer ratio (MTR, p<0.0001) and cord area (p<0.05). No significant difference was detected in mean diffusivity (p=0.41), T1-weighted (p=0.76) and T2-weighted (p=0.09) signals. MRI metrics were remarkably well correlated with clinical disability (Pearson's correlations, FA: p<0.01, GFA: p<0.01, radial diffusivity: p=0.01, MTR: p=0.04 and atrophy: p<0.01). Stepwise linear regressions showed that measures of MTR in the dorsal spinal cord predicted the sensory disability whereas measures of MTR in the ventro-lateral spinal cord predicted the motor disability (ASIA score). However, diffusion metrics were not specific to the sensorimotor scores. Due to the specificity of axial and radial diffusivity and MT measurements, results suggest the detection of demyelination and degeneration in SCI patients. Combining HARDI with MT imaging is a promising approach to gain specificity in characterizing spinal cord pathways in traumatic injury.
Collapse
Affiliation(s)
- J Cohen-Adad
- UMR-678, INSERM-UPMC, Pitié-Salpêtrière Hospital, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
46
|
Tractography of peripheral nerves and skeletal muscles. Eur J Radiol 2010; 76:391-7. [DOI: 10.1016/j.ejrad.2010.03.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 03/11/2010] [Indexed: 11/19/2022]
|
47
|
Diffusion-weighted magnetic resonance imaging of symptomatic nerve root of patients with lumbar disk herniation. Neuroradiology 2010; 53:633-41. [DOI: 10.1007/s00234-010-0801-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Accepted: 11/04/2010] [Indexed: 02/01/2023]
|
48
|
Mueller-Mang C, Law M, Mang T, Fruehwald-Pallamar J, Weber M, Thurnher MM. Diffusion tensor MR imaging (DTI) metrics in the cervical spinal cord in asymptomatic HIV-positive patients. Neuroradiology 2010; 53:585-92. [PMID: 21046094 PMCID: PMC3139090 DOI: 10.1007/s00234-010-0782-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 10/13/2010] [Indexed: 12/01/2022]
Abstract
INTRODUCTION This study was conducted to compare diffusion tensor MR imaging (DTI) metrics of the cervical spinal cord in asymptomatic human immunodeficiency virus (HIV)-positive patients with those measured in healthy volunteers, and to assess whether DTI is a valuable diagnostic tool in the early detection of HIV-associated myelopathy (HIVM). METHODS MR imaging of the cervical spinal cord was performed in 20 asymptomatic HIV-positive patients and in 20 healthy volunteers on a 3-T MR scanner. Average fractional anisotropy (FA), mean diffusivity (MD), and major (E1) and minor (E2, E3) eigenvalues were calculated within regions of interest (ROIs) at the C2/3 level (central and bilateral anterior, lateral and posterior white matter). RESULTS Statistical analysis showed significant differences with regard to mean E3 values between patients and controls (p = 0.045; mixed-model analysis of variance (ANOVA) test). Mean FA was lower, and mean MD, mean E1, and mean E2 were higher in each measured ROI in patients compared to controls, but these differences were not statistically significant. CONCLUSION Asymptomatic HIV-positive patients demonstrate only subtle changes in DTI metrics measured in the cervical spinal cord compared to healthy volunteers that currently do not support using DTI as a diagnostic tool for the early detection of HIVM.
Collapse
Affiliation(s)
- Christina Mueller-Mang
- Department of Radiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
49
|
Setzer M, Murtagh RD, Murtagh FR, Eleraky M, Jain S, Marquardt G, Seifert V, Vrionis FD. Diffusion tensor imaging tractography in patients with intramedullary tumors: comparison with intraoperative findings and value for prediction of tumor resectability. J Neurosurg Spine 2010; 13:371-80. [PMID: 20809733 DOI: 10.3171/2010.3.spine09399] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
The aim of this retrospective study was to evaluate the predictive value of diffusion tensor (DT) imaging with respect to resectability of intramedullary spinal cord tumors and to determine the concordance of this method with intraoperative surgical findings.
Methods
Diffusion tensor imaging was performed in 14 patients with intramedullary lesions of the spinal cord at different levels using a 3-T magnet. Routine MR imaging scans were also obtained, including unenhanced and enhanced T1-weighted images and T2-weighted images. Patients were classified according to the fiber course with respect to the lesion and their lesions were rated as resectable or nonresectable. These results were compared with the surgical findings (existence vs absence of cleavage plane). The interrater reliability was calculated using the κ coefficient of Cohen.
Results
Of the 14 patients (7 male, 7 female; mean age 49.2 ± 15.5 years), 13 had tumors (8 ependymomas, 2 lymphomas, and 3 astrocytoma). One lesion was proven to be a multiple sclerosis plaque during further diagnostic workup. The lesions could be classified into 3 types according to the fiber course. In Type 1 (5 cases) fibers did not pass through the solid lesion. In Type 2 (3 cases) some fibers crossed the lesion, but most of the lesion volume did not contain fibers. In Type 3 (6 cases) the fibers were completely encased by tumor. Based on these results, 6 tumors were considered resectable, 7 were not. During surgery, 7 tumors showed a good cleavage plane, 6 did not. The interrater reliability (Cohen κ) was calculated as 0.83 (p < 0.003), which is considered to represent substantial agreement. The mean duration of follow-up was 12.0 ± 2.9. The median McCormick grade at the end of follow-up was II.
Conclusions
These preliminary data suggest that DT imaging in patients with spinal cord tumors is capable of predicting the resectability of the lesion. A further prospective study is needed to confirm these results and any effect on patient outcome.
Collapse
Affiliation(s)
- Matthias Setzer
- 1H. Lee Moffitt Cancer Center and Research Institute, Neurooncology Program, and
- 3Clinic of Neurosurgery, J. W. Goethe University, Frankfurt am Main, Germany
| | | | - F. Reed Murtagh
- 1H. Lee Moffitt Cancer Center and Research Institute, Neurooncology Program, and
- 2Departments of Neuroradiology and
| | - Mohammed Eleraky
- 1H. Lee Moffitt Cancer Center and Research Institute, Neurooncology Program, and
| | - Surbhi Jain
- 1H. Lee Moffitt Cancer Center and Research Institute, Neurooncology Program, and
| | - Gerhard Marquardt
- 3Clinic of Neurosurgery, J. W. Goethe University, Frankfurt am Main, Germany
| | - Volker Seifert
- 3Clinic of Neurosurgery, J. W. Goethe University, Frankfurt am Main, Germany
| | - Frank D. Vrionis
- 1H. Lee Moffitt Cancer Center and Research Institute, Neurooncology Program, and
- 4Neurosurgery, University of South Florida College of Medicine, Tampa, Florida; and
| |
Collapse
|
50
|
Eguchi Y, Ohtori S, Yamashita M, Yamauchi K, Suzuki M, Orita S, Kamoda H, Arai G, Ishikawa T, Miyagi M, Ochiai N, Kishida S, Masuda Y, Ochi S, Kikawa T, Takaso M, Aoki Y, Toyone T, Suzuki T, Takahashi K. Clinical applications of diffusion magnetic resonance imaging of the lumbar foraminal nerve root entrapment. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2010; 19:1874-82. [PMID: 20632042 DOI: 10.1007/s00586-010-1520-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Revised: 06/02/2010] [Accepted: 07/03/2010] [Indexed: 12/16/2022]
Abstract
Diffusion-weighted imaging (DWI) can provide valuable structural information about tissues that may be useful for clinical applications in evaluating lumbar foraminal nerve root entrapment. Our purpose was to visualize the lumbar nerve root and to analyze its morphology, and to measure its apparent diffusion coefficient (ADC) in healthy volunteers and patients with lumbar foraminal stenosis using 1.5-T magnetic resonance imaging. Fourteen patients with lumbar foraminal stenosis and 14 healthy volunteers were studied. Regions of interest were placed at the fourth and fifth lumbar root at dorsal root ganglia and distal spinal nerves (at L4 and L5) and the first sacral root and distal spinal nerve (S1) on DWI to quantify mean ADC values. The anatomic parameters of the spinal nerve roots can also be determined by neurography. In patients, mean ADC values were significantly higher in entrapped roots and distal spinal nerve than in intact ones. Neurography also showed abnormalities such as nerve indentation, swelling and running transversely in their course through the foramen. In all patients, leg pain was ameliorated after selective decompression (n = 9) or nerve block (n = 5). We demonstrated the first use of DWI and neurography of human lumbar nerves to visualize and quantitatively evaluate lumbar nerve entrapment with foraminal stenosis. We believe that DWI is a potential tool for diagnosis of lumbar nerve entrapment.
Collapse
Affiliation(s)
- Yawara Eguchi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|