1
|
Chen M, Xu Z, Zhu C, Liu Y, Ye Y, Liu C, Liu Z, Liang C, Liu C. Multiple-parameter MRI after neoadjuvant systemic therapy combining clinicopathologic features in evaluating axillary pathologic complete response in patients with clinically node-positive breast cancer. Br J Radiol 2022; 95:20220533. [PMID: 36000676 PMCID: PMC9793477 DOI: 10.1259/bjr.20220533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE This study aimed to evaluate axillary pathologic complete response (pCR) after neoadjuvant systemic therapy (NST) in clinically node-positive breast cancer (BC) patients based on post-NST multiple-parameter MRI and clinicopathological characteristics. METHODS In this retrospective study, females with clinically node-positive BC who received NST and followed by surgery between January 2017 and September 2021 were included. All axillary lymph nodes (ALNs) on MRI were matched with pathology by ALN markers or sizes. MRI morphological parameters, signal intensity curve (TIC) patterns and apparent diffusion coefficient (ADC) values of post-NST ALNs were measured. The clinicopathological characteristics was also collected and analyzed. Univariable and multivariable logistic regression analyses were performed to evaluate the independent predictors of axillary pCR. RESULTS Pathologically confirmed 137 non-pCR ALNs in 71 patients and 87 pCR ALNs in 87 patients were included in this study. Cortical thickness, fatty hilum, and TIC patterns of ALNs, hormone receptor, and human epidermal growth factor receptor 2 (HER2) status were significantly different between the two groups (all, p < 0.05). There was no significant difference for ADC values (p = 0.875). On multivariable analysis, TIC patterns (odds ratio [OR], 2.67, 95% confidence interval [CI]: 1.33, 5.34, p = 0.006), fatty hilum (OR, 2.88, 95% CI:1.39, 5.98, p = 0.004), hormone receptor (OR, 8.40, 95% CI: 2.48, 28.38, p = 0.001) and HER2 status (OR, 8.57, 95% CI: 3.85, 19.08, p < 0.001) were identified as independent predictors associated with axillary pCR. The area under the curve of the multivariate analysis using these predictors was 0.85 (95% CI: 0.79, 0.91). CONCLUSION Combining post-NST multiple-parameter MRI and clinicopathological characteristics allowed more accurate identification of BC patients who had received axillary pCR after NST. ADVANCES IN KNOWLEDGE A combined model incorporated multiple-parameter MRI and clinicopathologic features demonstrated good performance in evaluating axillary pCR preoperatively and non-invasively.
Collapse
Affiliation(s)
- Minglei Chen
- Shantou University Medical College, Shantou, China
| | | | | | | | | | | | | | | | - Chunling Liu
- Shantou University Medical College, Shantou, China
| |
Collapse
|
2
|
Wang Y, Han R, Wang Q, Zheng J, Lin C, Lu C, Li L, Chen H, Jin R, He Y. Biological Significance of 18F-FDG PET/CT Maximum Standard Uptake Value for Predicting EGFR Mutation Status in Non-Small Cell Lung Cancer Patients. Int J Gen Med 2021; 14:347-356. [PMID: 33568935 PMCID: PMC7868188 DOI: 10.2147/ijgm.s287506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/31/2020] [Indexed: 12/27/2022] Open
Abstract
Purpose To investigate the potential of maximum standardized uptake value (SUVmax) in predicting epidermal growth factor receptor (EGFR) mutation status in non-small cell lung cancer (NSCLC) patients. Methods Clinical data of 311 NSCLC patients who had undergone both EGFR mutation test and 18F-FDG PET/CT scans between January 2013 and December 2017 at our hospital were retrospectively analyzed. Patients were sub-grouped by their origin of SUVmax. Univariate and multivariate analyses were performed to investigate the association between clinical factors and EGFR mutations. Receiver operating characteristic curve (ROC) analysis was performed to confirm the predictive value of clinical factors. In vitro experiments were performed to confirm the correlation between EGFR mutations and glycolysis. Results EGFR-mutant patients had higher SUVmax than the wild-type patients in both primary tumors and metastases. In the multivariate analysis, SUVmax, gender and histopathologic type were determined as independent predictors of EGFR mutation status for patients whose SUVmax were obtained from the primary tumors; while for patients whose SUVmax were obtained from the metastases, SUVmax, smoking status and histopathologic type were regarded as independent predictors. ROC analysis showed that SUVmax of the primary tumors (cut off >10.92), not of the metastases, has better predictive value than other clinical factors in predicting EGFR mutation status. The predict performance was improved after combined SUVmax with other independent predictors. In addition, our in vitro experiments demonstrated that lung cancer cells with EGFR mutations have higher aerobic glycolysis level than wild-type cells. Conclusion SUVmax of the primary tumors has the potential to serve as a biomarker to predict EGFR mutation status in NSCLC patients.
Collapse
Affiliation(s)
- Yubo Wang
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Rui Han
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Qiushi Wang
- Department of Pathology, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Jie Zheng
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Caiyu Lin
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Conghua Lu
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Li Li
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Hengyi Chen
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Rongbing Jin
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Yong He
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
3
|
Predicting Clinical Efficacy of Vascular Disrupting Agents in Rodent Models of Primary and Secondary Liver Cancers: An Overview with Imaging-Histopathology Correlation. Diagnostics (Basel) 2020; 10:diagnostics10020078. [PMID: 32024029 PMCID: PMC7168934 DOI: 10.3390/diagnostics10020078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
Vascular disrupting agents (VDAs) have entered clinical trials for over 15 years. As the leading VDA, combretastatin A4 phosphate (CA4P) has been evaluated in combination with chemotherapy and molecular targeting agents among patients with ovarian cancer, lung cancer and thyroid cancer, but still remains rarely explored in human liver cancers. To overcome tumor residues and regrowth after CA4P monotherapy, a novel dual targeting pan-anticancer theragnostic strategy, i.e., OncoCiDia, has been developed and shown promise previously in secondary liver tumor models. Animal model of primary liver cancer is time consuming to induce, but of value for more closely mimicking human liver cancers in terms of tumor angiogenesis, histopathological heterogeneity, cellular differentiation, tumor components, cancer progression and therapeutic response. Being increasingly adopted in VDA researches, multiparametric magnetic resonance imaging (MRI) provides imaging biomarkers to reflect in vivo tumor responses to drugs. In this article as a chapter of a doctoral thesis, we overview the construction and clinical relevance of primary and secondary liver cancer models in rodents. Target selection for CA4P therapy assisted by enhanced MRI using hepatobiliary contrast agents (CAs), and therapeutic efficacy evaluated by using MRI with a non-specific contrast agent, dynamic contrast enhanced (DCE) imaging, diffusion weighted imaging (DWI) are also described. We then summarize diverse responses among primary hepatocellular carcinomas (HCCs), secondary liver and pancreatic tumors to CA4P, which appeared to be related to tumor size, vascularity, and cellular differentiation. In general, imaging-histopathology correlation studies allow to conclude that CA4P tends to be more effective in secondary liver tumors and in more differentiated HCCs, but less effective in less differentiated HCCs and implanted pancreatic tumor. Notably, cirrhotic liver may be responsive to CA4P as well. All these could be instructive for future clinical trials of VDAs.
Collapse
|
4
|
Liu YW, De Keyzer F, Feng YB, Chen F, Song SL, Swinnen J, Bormans G, Oyen R, Huang G, Ni YC. Intra-individual comparison of therapeutic responses to vascular disrupting agent CA4P between rodent primary and secondary liver cancers. World J Gastroenterol 2018; 24:2710-2721. [PMID: 29991876 PMCID: PMC6034151 DOI: 10.3748/wjg.v24.i25.2710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/01/2018] [Accepted: 04/09/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To compare therapeutic responses of a vascular-disrupting-agent, combretastatin-A4-phosphate (CA4P), among hepatocellular carcinomas (HCCs) and implanted rhabdomyosarcoma (R1) in the same rats by magnetic-resonance-imaging (MRI), microangiography and histopathology.
METHODS Thirty-six HCCs were created by diethylnitrosamine gavage in 14 rats that were also intrahepatically implanted with one R1 per rat as monitored by T2-/T1-weighted images (T2WI/T1WI) on a 3.0T clinical MRI-scanner. Vascular response and tumoral necrosis were detected by dynamic contrast-enhanced (DCE-) and CE-MRI before, 1 h after and 12 h after CA4P iv at 10 mg/kg (treatment group n = 7) or phosphate-buffered saline at 1.0 mL/kg (control group n = 7). Tumor blood supply was calculated by a semiquantitative DCE parameter of area under the time signal intensity curve (AUC30). In vivo MRI findings were verified by postmortem techniques.
RESULTS On CE-T1WIs, unlike the negative response in all tumors of control animals, in treatment group CA4P caused rapid extensive vascular shutdown in all R1-tumors, but mildly or spottily in HCCs at 1 h. Consequently, tumor necrosis occurred massively in R1-tumors but patchily in HCCs at 12 h. AUC30 revealed vascular closure (66%) in R1-tumors at 1 h (P < 0.05), followed by further perfusion decrease at 12 h (P < 0.01), while less significant vascular clogging occurred in HCCs. Histomorphologically, CA4P induced more extensive necrosis in R1-tumors (92.6%) than in HCCs (50.2%) (P < 0.01); tumor vascularity heterogeneously scored +~+++ in HCCs but homogeneously scored ++ in R1-tumors.
CONCLUSION This study suggests superior performance of CA4P in metastatic over primary liver cancers, which could guide future clinical applications of vascular-disrupting-agents.
Collapse
MESH Headings
- Angiography
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Carcinoma, Hepatocellular/blood supply
- Carcinoma, Hepatocellular/chemically induced
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Contrast Media/administration & dosage
- Diethylnitrosamine/toxicity
- Humans
- Liver/diagnostic imaging
- Liver/pathology
- Liver Neoplasms/blood supply
- Liver Neoplasms/chemically induced
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Liver Neoplasms, Experimental/chemically induced
- Liver Neoplasms, Experimental/diagnostic imaging
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/pathology
- Magnetic Resonance Imaging/methods
- Male
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/pathology
- Rats
- Rhabdomyosarcoma/blood supply
- Rhabdomyosarcoma/drug therapy
- Rhabdomyosarcoma/pathology
- Rhabdomyosarcoma/secondary
- Stilbenes/pharmacology
- Stilbenes/therapeutic use
- Treatment Outcome
- Tumor Microenvironment/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ye-Wei Liu
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
- Institute of Clinical Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200025, China
| | | | - Yuan-Bo Feng
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Feng Chen
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Shao-Li Song
- Institute of Clinical Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Johan Swinnen
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Guy Bormans
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Raymond Oyen
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Gang Huang
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- Institute of Clinical Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200025, China
| | - Yi-Cheng Ni
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
5
|
Liu Y, De Keyzer F, Wang Y, Wang F, Feng Y, Chen F, Yu J, Liu J, Song S, Swinnen J, Bormans G, Oyen R, Huang G, Ni Y. The first study on therapeutic efficacies of a vascular disrupting agent CA4P among primary hepatocellular carcinomas with a full spectrum of differentiation and vascularity: Correlation of MRI-microangiography-histopathology in rats. Int J Cancer 2018; 143:1817-1828. [PMID: 29707770 DOI: 10.1002/ijc.31567] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/27/2018] [Accepted: 04/10/2018] [Indexed: 12/19/2022]
Abstract
To better inform the next clinical trials of vascular disrupting agent combretastatin-A4-phosphate (CA4P) in patients with hepatic malignancies, this preclinical study aimed at evaluating CA4P therapeutic efficacy in rats with primary hepatocellular carcinomas (HCCs) of a full spectrum of differentiation and vascularity by magnetic resonance imaging (MRI), microangiography and histopathology. Ninety-six HCCs were raised in 25 rats by diethylnitrosamine gavage. Tumor growth was monitored by T2-/T1-weighted-MRI (T2WI, T1WI) using a 3.0 T scanner. Early vascular response and later intratumoral necrosis were detected by dynamic-contrast-enhanced (DCE) MRI and diffusion-weighted-imaging (DWI) before, 1 and 12 hr after CA4P iv-administration. In vivo MRI-findings were validated by postmortem-techniques. Multi-parametric MRI revealed rapid CA4P-induced tumor vascular shutdown within 1 hr, followed by variable intratumoral necrosis at 12 hr. Tumor volumes decreased by 10% at 1 hr (p < 0.05), but resumed at 12 hr. Correlations of semi-quantitative DCE parameter initial-area-under-the-gadolinium-curve (IAUGC30) with histopathology proved partial vascular closure and compensational reopening (p < 0.05). The higher grades of vascularity prevented those residual tumor tissues from CA4P-caused ischemic necrosis. By histopathology using a 4-scale cellular-differentiation criteria and a 4-grade tumor-vascularity classification, percentage of CA4P-induced necrosis negatively correlated with HCC differentiation (r = -0.404, p < 0.001) and tumor vascularity (r = -0.370, p < 0.001). Ordinal-logistic-regression helped to predict early tumor responses to CA4P in terms of tumoral differentiation and vascularity. Our study demonstrated that CA4P could induce vascular shutdown in primary HCCs within 1 hr, resulting in various degrees of tumor necrosis at 12 hr. MRI as a real-time imaging biomarker may help to define tumor vascularity and differentiation and further to predict CA4P therapeutic outcomes.
Collapse
Affiliation(s)
- Yewei Liu
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven, Belgium.,Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.,Institute of Clinical Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | | | - Yixin Wang
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Fengna Wang
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Yuanbo Feng
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Feng Chen
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Jie Yu
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Jianjun Liu
- Institute of Clinical Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoli Song
- Institute of Clinical Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Johan Swinnen
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Guy Bormans
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Raymond Oyen
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Gang Huang
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.,Institute of Clinical Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Yicheng Ni
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Hupple CW, Morscher S, Burton NC, Pagel MD, McNally LR, Cárdenas-Rodríguez J. A light-fluence-independent method for the quantitative analysis of dynamic contrast-enhanced multispectral optoacoustic tomography (DCE MSOT). PHOTOACOUSTICS 2018; 10:54-64. [PMID: 29988890 PMCID: PMC6033053 DOI: 10.1016/j.pacs.2018.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 05/20/2023]
Abstract
MultiSpectral Optoacoustic Tomography (MSOT) is an emerging imaging technology that allows for data acquisition at high spatial and temporal resolution. These imaging characteristics are advantageous for Dynamic Contrast Enhanced (DCE) imaging that can assess the combination of vascular flow and permeability. However, the quantitative analysis of DCE MSOT data has not been possible due to complications caused by wavelength-dependent light attenuation and variability in light fluence at different anatomical locations. In this work we present a new method for the quantitative analysis of DCE MSOT data that is not biased by light fluence. We have named this method the two-compartment linear standard model (2C-LSM) for DCE MSOT.
Collapse
Affiliation(s)
| | | | | | - Mark D. Pagel
- Department of Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - Lacey R. McNally
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | | |
Collapse
|
7
|
Ahn SY, Goo JM, Lee KH, Ha S, Paeng JC. Monitoring tumor response to the vascular disrupting agent CKD-516 in a rabbit VX2 intramuscular tumor model using PET/MRI: Simultaneous evaluation of vascular and metabolic parameters. PLoS One 2018; 13:e0192706. [PMID: 29438381 PMCID: PMC5811032 DOI: 10.1371/journal.pone.0192706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 01/29/2018] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES To determine whether the CKD-516 produces a significant change in vascular and metabolic parameters in PET/MRI. MATERIALS AND METHODS With institutional Animal Care and Use Committee approval, 18 VX2 carcinoma tumors implanted in bilateral back muscles of 9 rabbits were evaluated. Serial PET/MRI were performed before, 4 hours after and 1-week after vascular disrupting agent, CKD-516 at a dose of 0.7 mg/kg (treated group, n = 10) or saline (control group, n = 8) administration. PET/MRI-derived parameters and their interval changes were compared between the treated and control group by using the linear mixed model. Each parameter within each group was also compared by using the linear mixed model. RESULTS Changes of the volume transfer coefficient (Ktrans) and the initial area under the gadolinium concentration-time curve until 60 seconds (iAUC) in the treated group were significantly larger compared with those in the control group at 4-hour follow-up (mean, -39.91% vs. -6.04%, P = 0.018; and -49.71% vs. +6.23%, P = 0.013). Change of metabolic tumor volume (MTV) in the treated group was significantly smaller compared with that in the control group at 1-week follow-up (mean, +118.34% vs. +208.87%, P = 0.044). Serial measurements in the treated group revealed that Ktrans and iAUC decreased at 4-hour follow-up (P < 0.001) and partially recovered at 1-week follow-up (P = 0.001 and 0.024, respectively). MTV increased at a 4-hour follow-up (P = 0.038) and further increased at a 1-week follow-up (P < 0.001), while total lesion glycolysis (TLG) did not show a significant difference between the time points. SUVmax and SUVmean did not show significant interval changes between time points (P > 0.05). CONCLUSIONS PET/MRI is able to monitor the changes of vascular and metabolic parameters at different time points simultaneously, and confirmed that vascular changes precede the metabolic changes by VDA, CKD-516.
Collapse
Affiliation(s)
- Su Yeon Ahn
- Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Jin Mo Goo
- Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
- * E-mail:
| | - Kyung Hee Lee
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Korea
| | - Seunggyun Ha
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jin Chul Paeng
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Liu Y, Yin T, Keyzer FD, Feng Y, Chen F, Liu J, Song S, Yu J, Vandecaveye V, Swinnen J, Bormans G, Himmelreich U, Oyen R, Zhang J, Huang G, Ni Y. Micro-HCCs in rats with liver cirrhosis: paradoxical targeting effects with vascular disrupting agent CA4P. Oncotarget 2017; 8:55204-55215. [PMID: 28903414 PMCID: PMC5589653 DOI: 10.18632/oncotarget.19339] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
We sought to investigate anticancer efficacy of a vascular disrupting agent (VDA) combretastatin A-4 phosphate (CA4P) in relation to tumor size among hepatocellular carcinomas (HCCs) in rats using magnetic resonance imaging (MRI) and postmortem techniques. Nineteen rats with 43 chemically-induced HCCs of 2.8–20.9 mm in size on liver cirrhosis received CA4P intravenously at 10 mg/kg. Tumor-diameter was measured by T2-weighted imaging (T2WI) to define microcancers (< 5 mm) versus larger HCCs. Vascular responses and tissue necrosis were detected by diffusion-weighted imaging (DWI), contrast-enhanced T1-weighted imaging (CE-T1WI) and dynamic contrast enhanced (DCE-) MRI, which were validated by microangiography and histopathology. MRI revealed nearly complete necrosis in 5 out of 7 micro-HCCs, but diverse therapeutic necrosis in larger HCCs with a positive correlation with tumor size. Necrosis in micro-HCCs was 36.9% more than that in larger HCCs. While increased diffusion coefficient (ADCdiff) suggested tumor necrosis, perfusion coefficient (ADCperf) indicated sharply decreased blood perfusion in cirrhotic liver together with a reduction in micro-HCCs. DCE revealed lowered tumor blood flow from intravascular into extravascular extracellular space (EES). Microangiography and histopathology revealed hypo- and hypervascularity in 4 and 3 micro-HCCs, massive, partial and minor degrees of tumoral necrosis in 5, 1 and 1 micro-HCCs respectively, and patchy necrotic foci in cirrhotic liver. CD34-PAS staining implicated that poorly vascularized micro-HCCs growing on liver cirrhosis tended to respond better to CA4P treatment. In this study, more complete CA4P-response occurred unexpectedly in micro-HCCs in rats, along with CA4P-induced necrotic foci in cirrhotic liver. These may help to plan clinical applications of VDAs in patients with HCCs and liver cirrhosis.
Collapse
Affiliation(s)
- Yewei Liu
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium.,Institute of Clinical Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.,Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200025, China
| | - Ting Yin
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | | | - Yuanbo Feng
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Feng Chen
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Jianjun Liu
- Institute of Clinical Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Shaoli Song
- Institute of Clinical Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jie Yu
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | | | - Johan Swinnen
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Guy Bormans
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Uwe Himmelreich
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Raymond Oyen
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Jian Zhang
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Gang Huang
- Institute of Clinical Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.,Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200025, China
| | - Yicheng Ni
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| |
Collapse
|
9
|
Zhu L, Cheng Q, Luo W, Bao L, Guo G. A comparative study of apparent diffusion coefficient and intravoxel incoherent motion-derived parameters for the characterization of common solid hepatic tumors. Acta Radiol 2015; 56:1411-8. [PMID: 25422515 DOI: 10.1177/0284185114559426] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 10/14/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND The performance of diffusion-weighted imaging parameters for characterizing hepatic tumors is controversial. PURPOSE To compare the performances of apparent diffusion coefficient (ADC) and intravoxel incoherent motion (IVIM)-derived parameters, including the pure diffusion coefficient (D), perfusion coefficient (D*), and perfusion fraction (f), in the characterization of common solid hepatic tumors. MATERIAL AND METHODS Twelve healthy volunteers and 43 patients underwent free-breath diffusion-weighted magnetic resonance imaging (DW-MRI) of the liver using eight b values (10-800 s/mm(2)). Twelve regions of interest (ROIs) of normal liver tissue in healthy volunteers and 49 hepatic lesions (23 hepatocellular carcinomas [HCCs], 16 hemangiomas, and 10 metastases) were measured. Conventional ADC(0,500) and ADCtotal obtained by the mono-exponential model, as well as D, D*, and f were calculated. Student t-tests and receiver operating characteristic (ROC) analysis were also performed. RESULTS ADC(0,500), ADCtotal, and D were significantly lower in the malignant group ([1.48 ± 0.35] × 10(-3) mm(2)/s; [1.35 ± 0.30] × 10(-3) mm(2)/s; [1.18 ± 0.33] × 10(-3) mm(2)/s) compared to the hemangioma group ([2.74 ± 1.03] × 10(-3) mm(2)/s; [2.61 ± 0.81] × 10(-3) mm(2)/s; [1.97 ± 0.79] × 10(-3) mm(2)/s]. D* did not differ among multiple comparisons. For the area under the ROC curve (AUC-ROC), the maximum value was attained with ADCtotal (0.983) and was closely followed by ADC(0,500) (0.967), with lower values obtained for D (0.837), f (0.649), and D* (0.599). Statistically significant differences were found between the AUC-ROC of both ADCs (ADCtotal and ADC(0,500)) and D. There was no statistically significant difference between the AUC-ROC of ADCtotal and ADC(0,500). CONCLUSION ADCs showed superior diagnostic performance compared to IVIM-derived parameters in detecting differences between the malignant group and hemangioma group.
Collapse
Affiliation(s)
- Liuhong Zhu
- Radiology Department, Xiamen Second Hospital, Xiamen, Fujian, PR China
| | - Qihua Cheng
- Radiology Department, Xiamen Second Hospital, Xiamen, Fujian, PR China
| | - Wenbin Luo
- Radiology Department, Xiamen Second Hospital, Xiamen, Fujian, PR China
| | - Lijun Bao
- Department of Electronic Science, Magnetic Resonance Imaging Research Center, Xiamen University, Xiamen, PR China
| | - Gang Guo
- Radiology Department, Xiamen Second Hospital, Xiamen, Fujian, PR China
| |
Collapse
|
10
|
Liu Y, Yin T, Feng Y, Cona MM, Huang G, Liu J, Song S, Jiang Y, Xia Q, Swinnen JV, Bormans G, Himmelreich U, Oyen R, Ni Y. Mammalian models of chemically induced primary malignancies exploitable for imaging-based preclinical theragnostic research. Quant Imaging Med Surg 2015; 5:708-29. [PMID: 26682141 PMCID: PMC4671963 DOI: 10.3978/j.issn.2223-4292.2015.06.01] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/15/2015] [Indexed: 12/14/2022]
Abstract
Compared with transplanted tumor models or genetically engineered cancer models, chemically induced primary malignancies in experimental animals can mimic the clinical cancer progress from the early stage on. Cancer caused by chemical carcinogens generally develops through three phases namely initiation, promotion and progression. Based on different mechanisms, chemical carcinogens can be divided into genotoxic and non-genotoxic ones, or complete and incomplete ones, usually with an organ-specific property. Chemical carcinogens can be classified upon their origins such as environmental pollutants, cooked meat derived carcinogens, N-nitroso compounds, food additives, antineoplastic agents, naturally occurring substances and synthetic carcinogens, etc. Carcinogen-induced models of primary cancers can be used to evaluate the diagnostic/therapeutic effects of candidate drugs, investigate the biological influential factors, explore preventive measures for carcinogenicity, and better understand molecular mechanisms involved in tumor initiation, promotion and progression. Among commonly adopted cancer models, chemically induced primary malignancies in mammals have several advantages including the easy procedures, fruitful tumor generation and high analogy to clinical human primary cancers. However, in addition to the time-consuming process, the major drawback of chemical carcinogenesis for translational research is the difficulty in noninvasive tumor burden assessment in small animals. Like human cancers, tumors occur unpredictably also among animals in terms of timing, location and the number of lesions. Thanks to the availability of magnetic resonance imaging (MRI) with various advantages such as ionizing-free scanning, superb soft tissue contrast, multi-parametric information, and utility of diverse contrast agents, now a workable solution to this bottleneck problem is to apply MRI for noninvasive detection, diagnosis and therapeutic monitoring on those otherwise uncontrollable animal models with primary cancers. Moreover, it is foreseeable that the combined use of chemically induced primary cancer models and molecular imaging techniques may help to develop new anticancer diagnostics and therapeutics.
Collapse
|
11
|
Park HS, Han JK, Lee JM, Kim YI, Woo S, Yoon JH, Choi JY, Choi BI. Dynamic Contrast-Enhanced MRI Using a Macromolecular MR Contrast Agent (P792): Evaluation of Antivascular Drug Effect in a Rabbit VX2 Liver Tumor Model. Korean J Radiol 2015; 16:1029-37. [PMID: 26357497 PMCID: PMC4559774 DOI: 10.3348/kjr.2015.16.5.1029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/18/2015] [Indexed: 11/20/2022] Open
Abstract
Objective To evaluate the utility of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) using macromolecular contrast agent (P792) for assessment of vascular disrupting drug effect in rabbit VX2 liver tumor models. Materials and Methods This study was approved by our Institutional Animal Care and Use Committee. DCE-MRI was performed with 3-T scanner in 13 VX2 liver tumor-bearing rabbits, before, 4 hours after, and 24 hours after administration of vascular disrupting agent (VDA), using gadomelitol (P792, n = 7) or low molecular weight contrast agent (gadoterate meglumine [Gd-DOTA], n = 6). P792 was injected at a of dose 0.05 mmol/kg, while that of Gd-DOTA was 0.2 mmol/kg. DCE-MRI parameters including volume transfer coefficient (Ktrans) and initial area under the gadolinium concentration-time curve until 60 seconds (iAUC) of tumors were compared between the 2 groups at each time point. DCE-MRI parameters were correlated with tumor histopathology. Reproducibility in measurement of DCE-MRI parameters and image quality of source MR were compared between groups. Results P792 group showed a more prominent decrease in Ktrans and iAUC at 4 hours and 24 hours, as compared to the Gd-DOTA group. Changes in DCE-MRI parameters showed a weak correlation with histologic parameters (necrotic fraction and microvessel density) in both groups. Reproducibility of DCE-MRI parameters and overall image quality was not significantly better in the P792 group, as compared to the Gd-DOTA group. Conclusion Dynamic contrast-enhanced magnetic resonance imaging using a macromolecular contrast agent shows changes of hepatic perfusion more clearly after administration of the VDA. Gadolinium was required at smaller doses than a low molecular contrast agent.
Collapse
Affiliation(s)
- Hee Sun Park
- Department of Radiology, Konkuk University School of Medicine, Seoul 05030, Korea
| | - Joon Koo Han
- Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital, Seoul 03080, Korea
| | - Jeong Min Lee
- Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital, Seoul 03080, Korea
| | - Young Il Kim
- Department of Radiology, Sheikh Khalifa Specialty Hospital, Ras Al Khaimah, United Arab Emirates
| | - Sungmin Woo
- Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital, Seoul 03080, Korea
| | - Jung Hwan Yoon
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea
| | - Jin-Young Choi
- Department of Radiology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Byung Ihn Choi
- Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital, Seoul 03080, Korea
| |
Collapse
|
12
|
Joo I, Lee JM, Grimm R, Han JK, Choi BI. Monitoring Vascular Disrupting Therapy in a Rabbit Liver Tumor Model: Relationship between Tumor Perfusion Parameters at IVIM Diffusion-weighted MR Imaging and Those at Dynamic Contrast-enhanced MR Imaging. Radiology 2015. [PMID: 26200601 DOI: 10.1148/radiol.2015141974] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE To investigate whether perfusion-related intravoxel incoherent motion (IVIM) diffusion-weighted (DW) magnetic resonance (MR) imaging parameters correlate with dynamic contrast material-enhanced MR imaging parameters in between-subject and/or within-subject longitudinal settings for monitoring the therapeutic effects of a vascular disrupting agent (VDA) (CKD-516) in rabbit VX2 liver tumors. MATERIALS AND METHODS With institutional Animal Care and Use Committee approval, 21 VX2 liver tumor-bearing rabbits (treated, n = 15; control, n = 6) underwent IVIM DW imaging with 12 b values (0-800 sec/mm(2)) and dynamic contrast-enhanced MR imaging performed before (baseline) CKD-516 administration and 4 hours, 24 hours, and 7 days after administration. Perfusion-related IVIM DW imaging parameters of the tumors, including the pseudodiffusion coefficient (D*) and perfusion fraction (f), as well as dynamic contrast-enhanced MR imaging parameters, including the volume transfer coefficient (K(trans)) and initial area under the gadolinium concentration-time curve until 60 seconds (iAUC), were measured. IVIM DW imaging parameters were correlated with dynamic contrast-enhanced MR imaging parameters by using Pearson correlation analysis between subjects at each given time and by using a linear mixed model for within-subject longitudinal data. RESULTS In the treated group, D*, f, K(trans), and iAUC significantly decreased (-40.7% to -26.3%) at 4-hour follow-up compared with these values in the control group (-6.9% to +5.9%) (P < .05). For longitudinal monitoring of CKD-516 treatment, D* and f showed significant positive correlations with K(trans) and iAUC (P = .004 and P = .02; P < .001 and P = .006, respectively), while no significant correlations were observed between IVIM DW imaging and dynamic contrast-enhanced MR imaging parameters between subjects at any given time (P > .05). CONCLUSION In a rabbit tumor model, perfusion parameters serially quantified with IVIM DW imaging can be used as alternatives to dynamic contrast-enhanced MR imaging parameters in reflecting the dynamic changes in tumor perfusion during the within-subject longitudinal monitoring of VDA treatment.
Collapse
Affiliation(s)
- Ijin Joo
- From the Department of Radiology (I.J., J.M.L., J.K.H., B.I.C.) and Institute of Radiation Medicine (J.M.L., J.K.H., B.I.C.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Korea; and Siemens, Healthcare Sector, Erlangen, Germany (R.G.)
| | - Jeong Min Lee
- From the Department of Radiology (I.J., J.M.L., J.K.H., B.I.C.) and Institute of Radiation Medicine (J.M.L., J.K.H., B.I.C.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Korea; and Siemens, Healthcare Sector, Erlangen, Germany (R.G.)
| | - Robert Grimm
- From the Department of Radiology (I.J., J.M.L., J.K.H., B.I.C.) and Institute of Radiation Medicine (J.M.L., J.K.H., B.I.C.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Korea; and Siemens, Healthcare Sector, Erlangen, Germany (R.G.)
| | - Joon Koo Han
- From the Department of Radiology (I.J., J.M.L., J.K.H., B.I.C.) and Institute of Radiation Medicine (J.M.L., J.K.H., B.I.C.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Korea; and Siemens, Healthcare Sector, Erlangen, Germany (R.G.)
| | - Byung Ihn Choi
- From the Department of Radiology (I.J., J.M.L., J.K.H., B.I.C.) and Institute of Radiation Medicine (J.M.L., J.K.H., B.I.C.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Korea; and Siemens, Healthcare Sector, Erlangen, Germany (R.G.)
| |
Collapse
|
13
|
Yao N, Gao M, Ren K, Jiang X, Li Y, Jiang C, Huang D, Liu W, Wang X, Fang Z, Sun Z, Zhang J, Ni Y. PD806. Anticancer Drugs 2015; 26:148-59. [DOI: 10.1097/cad.0000000000000168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Gaeta M, Benedetto C, Minutoli F, D'Angelo T, Amato E, Mazziotti S, Racchiusa S, Mormina E, Blandino A, Pergolizzi S. Use of diffusion-weighted, intravoxel incoherent motion, and dynamic contrast-enhanced MR imaging in the assessment of response to radiotherapy of lytic bone metastases from breast cancer. Acad Radiol 2014; 21:1286-93. [PMID: 25088834 DOI: 10.1016/j.acra.2014.05.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 01/02/2023]
Abstract
RATIONALE AND OBJECTIVES To investigate the value of diffusion-weighted (DW), perfusion-sensitive, and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) techniques in assessing the response of bone metastases from breast cancer to radiotherapy, with particular emphasis on the role of intravoxel incoherent motion (IVIM)-DW parameters as a potential valuable imaging marker of tumor response. MATERIALS AND METHODS Fifteen women having breast cancer and bone metastases underwent MRI before and after radiotherapy (3 weeks [time 1], 2 months [time 2], and 4 months [time 3]), consisting of DW, perfusion-sensitive (IVIM), and DCE acquisitions. MR-based DW and perfusion parameters, including water diffusivity (D), perfusion fraction (f), pseudodiffusion (D*), total apparent diffusion coefficient (ADC-total), fractionated ADCs (ADC-high and ADC-low), and initial area under the gadolinium concentration curve after the first 60 seconds (IAUGC60), were determined. The morphologic MRI findings were also recorded. A one-way repeated measures analysis of variance was used to compare the value of MR-based parameters at the different time points. RESULTS A significant variation between pretreatment (time 0) and post-treatment (times 1, 2, and 3) was found for ADC-total and D parameters (P < .001). A statistically significant reduction was also found for IAUGC60 values between times 0 and 3 (P < .001). A significant change across the different time points was observed for D* and IAUGC60 parameters (P < .001). On the contrary, there was no statistically significant change over time for parameters ADC-total, D, f, and IAUGC60 comparing response between each metastasis, that is, the response to therapy was similar for each metastasis. CONCLUSIONS DW, IVIM, and DCE-MRI techniques show effectiveness in assessing the response to radiotherapy in bone metastases from breast cancer.
Collapse
Affiliation(s)
- Michele Gaeta
- Section of Radiological Sciences, Department of Biomedical Sciences and Morphologic and Functional Imaging, University of Messina, Italy
| | - Caterina Benedetto
- Section of Radiological Sciences, Department of Biomedical Sciences and Morphologic and Functional Imaging, University of Messina, Italy.
| | - Fabio Minutoli
- Section of Radiological Sciences, Department of Biomedical Sciences and Morphologic and Functional Imaging, University of Messina, Italy
| | - Tommaso D'Angelo
- Section of Radiological Sciences, Department of Biomedical Sciences and Morphologic and Functional Imaging, University of Messina, Italy
| | - Ernesto Amato
- Section of Radiological Sciences, Department of Biomedical Sciences and Morphologic and Functional Imaging, University of Messina, Italy
| | - Silvio Mazziotti
- Section of Radiological Sciences, Department of Biomedical Sciences and Morphologic and Functional Imaging, University of Messina, Italy
| | - Santi Racchiusa
- Section of Radiological Sciences, Department of Biomedical Sciences and Morphologic and Functional Imaging, University of Messina, Italy
| | - Enricomaria Mormina
- Section of Radiological Sciences, Department of Biomedical Sciences and Morphologic and Functional Imaging, University of Messina, Italy
| | - Alfredo Blandino
- Section of Radiological Sciences, Department of Biomedical Sciences and Morphologic and Functional Imaging, University of Messina, Italy
| | - Stefano Pergolizzi
- Section of Radiological Sciences, Department of Biomedical Sciences and Morphologic and Functional Imaging, University of Messina, Italy
| |
Collapse
|
15
|
Feng Y, Bogaert J, Oyen R, Ni Y. An overview on development and application of an experimental platform for quantitative cardiac imaging research in rabbit models of myocardial infarction. Quant Imaging Med Surg 2014; 4:358-75. [PMID: 25392822 PMCID: PMC4213418 DOI: 10.3978/j.issn.2223-4292.2013.09.01] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 09/05/2013] [Indexed: 12/28/2022]
Abstract
To exploit the advantages of using rabbits for cardiac imaging research and to tackle the technical obstacles, efforts have been made under the framework of a doctoral research program. In this overview article, by cross-referencing the current literature, we summarize how we have developed a preclinical cardiac research platform based on modified models of reperfused myocardial infarction (MI) in rabbits; how the in vivo manifestations of cardiac imaging could be closely matched with those ex vivo macro- and microscopic findings; how these imaging outcomes could be quantitatively analyzed, validated and demonstrated; and how we could apply this cardiac imaging platform to provide possible solutions to certain lingering diagnostic and therapeutic problems in experimental cardiology. In particular, tissue components in acute cardiac ischemia have been stratified and characterized, post-infarct lipomatous metaplasia (LM) as a common but hardly illuminated clinical pathology has been identified in rabbit models, and a necrosis avid tracer as well as an anti-ischemic drug have been successfully assessed for their potential utilities in clinical cardiology. These outcomes may interest the researchers in the related fields and help strengthen translational research in cardiovascular diseases.
Collapse
Affiliation(s)
- Yuanbo Feng
- KU Leuven, Department of Imaging and Pathology, Theragnostic Laboratory, Radiology Section, University Hospital Gasthuisberg, Leuven, Belgium
| | - Jan Bogaert
- KU Leuven, Department of Imaging and Pathology, Theragnostic Laboratory, Radiology Section, University Hospital Gasthuisberg, Leuven, Belgium
| | - Raymond Oyen
- KU Leuven, Department of Imaging and Pathology, Theragnostic Laboratory, Radiology Section, University Hospital Gasthuisberg, Leuven, Belgium
| | - Yicheng Ni
- KU Leuven, Department of Imaging and Pathology, Theragnostic Laboratory, Radiology Section, University Hospital Gasthuisberg, Leuven, Belgium
| |
Collapse
|
16
|
Raatschen HJ, Fischer S, Zsivcsec B, Schoenfeld CO, Hotz B, Buhr HJ, Hotz HG. Non-invasive quantification of anti-angiogenic therapy by contrast-enhanced MRI in experimental pancreatic cancer. Acta Radiol 2014; 55:131-9. [PMID: 23892234 DOI: 10.1177/0284185113493776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Currently, early changes of tumor vasculature after angiogenesis inhibition can only be evaluated by histopathology, a method not suitable in a clinical setting. PURPOSE To quantify effects of different angiogenesis inhibitors on the microvasculature of orthotopically implanted pancreatic cancers by contrast-enhanced magnetic resonance imaging (MRI) in order to establish a non-invasive technique for monitoring antiangiogenic cancer treatment. MATERIAL AND METHODS DSL-6A/C1 pancreatic cancers were implanted in the pancreas of 109 Lewis rats. Three weeks later, antiangiogenic treatment was initiated by administration of Bevacizumab (n = 38) or Suramin (n = 27) while the control group (n = 44) remained untreated. Dynamic MRI was performed 24 h, 1 week, and 4 weeks after treatment initiation. Fractional tumor plasma volume (fPV, %) and vascular permeability (K(PS), mL/min/100 cc) were calculated based on the MRI data by using a pharmacokinetic model. RESULTS Twenty-four hours after the initial dose, a significant decline in K(PS) was observed in the Bevacizumab group compared to the control and Suramin group (0.002 ± 0.008; 0.057 ± 0.046 and 0.064 ± 0.062 (mean ± SD); P < 0.05). At 1 week, fPV was significantly smaller in Bevacizumab and Suramin treated tumors compared to control tumors (6.25 ± 2.74, 7.47 ± 3.44, and 15.10 ± 9.97, respectively; P < 0.05). Differences in tumor volumes were first observed after 4 weeks of treatment with significantly larger control tumors (4380.3 ± 1590.6 vs. 869.6 ± 717.2 and 1676.5 ± 2524.1 mm(3); P < 0.05). CONCLUSION Dynamic MRI can quantify antiangiogenic effects on tumor microvasculature before changes in tumor volumes are detectable. Thus, this technique is a reasonable addition to morphological MRI and may be applied as an alternative to histopathology.
Collapse
Affiliation(s)
- Hans-Juergen Raatschen
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Susanne Fischer
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Benjamin Zsivcsec
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Birgit Hotz
- Department of General, Vascular and Thoracic Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Heinz J Buhr
- Department of General, Vascular and Thoracic Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Hubert G Hotz
- Department of General, Vascular and Thoracic Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
17
|
Prediction of early response to chemotherapy in lung cancer by using diffusion-weighted MR imaging. ScientificWorldJournal 2014; 2014:135841. [PMID: 24688359 PMCID: PMC3943194 DOI: 10.1155/2014/135841] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 12/29/2013] [Indexed: 01/21/2023] Open
Abstract
Purpose. To determine whether change of apparent diffusion coefficient (ADC) value could predict early response to chemotherapy in lung cancer. Materials and Methods. Twenty-five patients with advanced non-small cell lung cancer underwent chest MR imaging including DWI before and at the end of the first cycle of chemotherapy. The tumor's mean ADC value and diameters on MR images were calculated and compared. The grouping reference was based on serial CT scans according to Response Evaluation Criteria in Solid Tumors. Logistic regression was applied to assess treatment response prediction ability of ADC value and diameters. Results. The change of ADC value in partial response group was higher than that in stable disease group (P = 0.004). ROC curve showed that ADC value could predict treatment response with 100% sensitivity, 64.71% specificity, 57.14% positive predictive value, 100% negative predictive value, and 82.7% accuracy. The area under the curve for combination of ADC value and longest diameter change was higher than any parameter alone (P ≤ 0.01). Conclusions. The change of ADC value may be a sensitive indicator to predict early response to chemotherapy in lung cancer. Prediction ability could be improved by combining the change of ADC value and longest diameter.
Collapse
|
18
|
Bokacheva L, Ackerstaff E, LeKaye HC, Zakian K, Koutcher JA. High-field small animal magnetic resonance oncology studies. Phys Med Biol 2013; 59:R65-R127. [PMID: 24374985 DOI: 10.1088/0031-9155/59/2/r65] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review focuses on the applications of high magnetic field magnetic resonance imaging (MRI) and spectroscopy (MRS) to cancer studies in small animals. High-field MRI can provide information about tumor physiology, the microenvironment, metabolism, vascularity and cellularity. Such studies are invaluable for understanding tumor growth and proliferation, response to treatment and drug development. The MR techniques reviewed here include (1)H, (31)P, chemical exchange saturation transfer imaging and hyperpolarized (13)C MRS as well as diffusion-weighted, blood oxygen level dependent contrast imaging and dynamic contrast-enhanced MRI. These methods have been proven effective in animal studies and are highly relevant to human clinical studies.
Collapse
Affiliation(s)
- Louisa Bokacheva
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, 415 East 68 Street, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
19
|
Chen F, Keyzer FD, Feng YB, Cona MM, Yu J, Marchal G, Oyen R, Ni YC. Separate calculation of DW-MRI in assessing therapeutic effect in liver tumors in rats. World J Gastroenterol 2013; 19:9092-9103. [PMID: 24379636 PMCID: PMC3870564 DOI: 10.3748/wjg.v19.i47.9092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/07/2013] [Accepted: 11/05/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore whether the antitumor effect of a vascular disrupting agent (VDA) would be enhanced by combining with an antiangiogenic agent, and whether such synergistic effects can be effectively evaluated with separate calculation of diffusion weighted magnetic resonance imaging (DW-MRI).
METHODS: Thirty-seven rats with implanted liver tumors were randomized into the following three groups: (1) ZD6126, a kind of VDA; (2) ZDTHA, ZD6126 in combination with an antiangiogenic, thalidomide; and (3) control. Morphological DW-MRI were performed and quantified before, 4 h and 2 d after treatment. The apparent diffusion coefficient (ADC) values were calculated separately for low b values (ADClow), high b values (ADChigh) and all b values (ADCall). The tissue perfusion contribution, ADCperf, was calculated as ADClow-ADChigh. Imaging findings were finally verified by histopathology.
RESULTS: The combination therapy with ZDTHA significantly delayed tumor growth due to synergistic effects by inducing cumulative tumor necrosis. In addition to delaying tumor growth, ZDTHA caused tumor necrosis in an additive manner, which was verified by HE staining. Although both ADChigh and ADCall in the ZD6126 and ZDTHA groups were significantly higher compared to those in the control group on day 2, the entire tumor ADChigh of ZDTHA was even higher than that of ZD6126, but the significant difference was not observed for ADCall between ZDTHA and ZD6126. This indicated that the perfusion insensitive ADChigh values calculated from high b value images performed significantly better than ADCall for the monitoring of tumor necrosis on day 2. The perfusion sensitive ADCperf derived from ADClow by excluding high b value effects could better reflect the reduction of blood flow due to the vessel shutdown induced by ZD6126, compared to the ADClow at 4 h. The ADCperf could provide valuable perfusion information from DW-MRI data.
CONCLUSION: The separate calculation of ADC is more useful than conventional averaged ADC in evaluating the efficacy of combination therapy with ZD6126 and thalidomide for solid tumors.
Collapse
|
20
|
Joo I, Kim JH, Lee JM, Choi JW, Han JK, Choi BI. Early quantification of the therapeutic efficacy of the vascular disrupting agent, CKD-516, using dynamic contrast-enhanced ultrasonography in rabbit VX2 liver tumors. Ultrasonography 2013; 33:18-25. [PMID: 24936491 PMCID: PMC4058966 DOI: 10.14366/usg.13006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/01/2013] [Accepted: 11/15/2013] [Indexed: 01/17/2023] Open
Abstract
Purpose: To evaluate the usefulness of dynamic contrast-enhanced ultrasonography
(DCE-US) in the early quantification of hemodynamic change following
administration of the vascular disrupting agent (VDA) CKD-516 using a rabbit
VX2 liver tumor model. Methods: This study was approved by our institutional animal care and use committee.
Eight VX2 liver-tumor-bearing rabbits were treated with intravenous CKD-516,
and all underwent DCE-US using SonoVue before and again 2, 4, 6, and 24
hours following their treatment. The tumor perfusion parameters were
obtained from the time-intensity curve of the DCE-US data. Repeated measures
analysis of variance was performed to assess any significant change in tumor
perfusion over time. Relative changes in the DCE-US parameters between the
baseline and follow-up assessments were correlated with the relative changes
in tumor size over the course of seven days using Pearson correlation. Results: CKD-516 treatment resulted in significant changes in the DCE-US parameters,
including the peak intensity, total area under the time-intensity curve
(AUCtotal), and AUC during wash-out (AUCout) over
time (P<0.05). Pairwise comparison tests revealed that the
AUCtotal and AUC during wash-in (AUCin) seen on
the two-hour follow-up were significantly lower than the baseline values
(P<0.05). However, none of early changes in the DCE-US parameters until
24-hour follow-up showed a significant correlation with the relative changes
in tumor size during seven days after CKD-516 treatment. Conclusion: Our results suggest that a novel VDA (CKD-516) can cause disruption of tumor
perfusion as early as two hours after treatment and that the therapeutic
effect of CKD-516 treatment can be effectively quantified using DCE-US.
Collapse
Affiliation(s)
- Ijin Joo
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Jung Hoon Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea ; Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea ; Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jin Woo Choi
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Joon Koo Han
- Department of Radiology, Seoul National University Hospital, Seoul, Korea ; Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Byung Ihn Choi
- Department of Radiology, Seoul National University Hospital, Seoul, Korea ; Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Ortuño JE, Ledesma-Carbayo MJ, Simões RV, Candiota AP, Arús C, Santos A. DCE@urLAB: a dynamic contrast-enhanced MRI pharmacokinetic analysis tool for preclinical data. BMC Bioinformatics 2013; 14:316. [PMID: 24180558 PMCID: PMC4228420 DOI: 10.1186/1471-2105-14-316] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/28/2013] [Indexed: 01/08/2023] Open
Abstract
Background DCE@urLAB is a software application for analysis of dynamic contrast-enhanced magnetic resonance imaging data (DCE-MRI). The tool incorporates a friendly graphical user interface (GUI) to interactively select and analyze a region of interest (ROI) within the image set, taking into account the tissue concentration of the contrast agent (CA) and its effect on pixel intensity. Results Pixel-wise model-based quantitative parameters are estimated by fitting DCE-MRI data to several pharmacokinetic models using the Levenberg-Marquardt algorithm (LMA). DCE@urLAB also includes the semi-quantitative parametric and heuristic analysis approaches commonly used in practice. This software application has been programmed in the Interactive Data Language (IDL) and tested both with publicly available simulated data and preclinical studies from tumor-bearing mouse brains. Conclusions A user-friendly solution for applying pharmacokinetic and non-quantitative analysis DCE-MRI in preclinical studies has been implemented and tested. The proposed tool has been specially designed for easy selection of multi-pixel ROIs. A public release of DCE@urLAB, together with the open source code and sample datasets, is available at http://www.die.upm.es/im/archives/DCEurLAB/.
Collapse
Affiliation(s)
- Juan E Ortuño
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza, Spain.
| | | | | | | | | | | |
Collapse
|
22
|
Diverse responses to vascular disrupting agent combretastatin a4 phosphate: a comparative study in rats with hepatic and subcutaneous tumor allografts using MRI biomarkers, microangiography, and histopathology. Transl Oncol 2013; 6:42-50. [PMID: 23418616 DOI: 10.1593/tlo.12367] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 12/25/2012] [Accepted: 12/31/2012] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Differently located tumors of the same origin may exhibit diverse responses to the same therapeutics. To test this hypothesis, we compared the responses of rodent hepatic and subcutaneous engrafts of rhabdomyosarcoma-1 (R1) to a vascular disrupting agent Combretastatin A4 phosphate (CA4P). METHODS Twelve WAG/Rij rats, each bearing three R1 implanted in the right and left hepatic lobes and subcutaneously in the thoracic region, received CA4P intravenously at 5 mg/kg (n = 6) or solvent (n = 6). Therapeutic responses were compared interindividually and intraindividually among tumors of different sites till 48 hours after injection using in vivo MRI, postmortem digital microangiography, and histopathology. RESULTS MRI revealed that the subcutaneous tumors (STs) significantly increased in volume than hepatic tumors (HTs) 48 hours after CA4P (P < .05). Relative to vehicle controls and treated group at baseline, necrosis ratio, apparent diffusion coefficient, and enhancement ratio changed slightly with the STs but significantly with HTs (P < .05) after CA4P treatment. Vessel density derived from microangiography was significantly lower in STs compared to HTs without CA4P treatment. CA4P treatment resulted in decreased vessel density in HTs, while it did not affect vessel density in STs. MRI and microangiography outcomes were supported by histopathologic findings. CONCLUSIONS MRI and microangiography allowed quantitative comparison of therapeutic responses to CA4P in rats with multifocal tumors. The discovered diverse effects of the same drug on tumors of the same origin but different locations emphasize the presence of cancer heterogeneity and the importance of individualization of drug delivery.
Collapse
|
23
|
Kim KW, Lee JM, Jeon YS, Lee IJ, Choi Y, Park J, Kiefer B, Kim C, Han JK, Choi BI. Vascular disrupting effect of CKD-516: preclinical study using DCE-MRI. Invest New Drugs 2013; 31:1097-106. [PMID: 23299389 DOI: 10.1007/s10637-012-9915-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/11/2012] [Indexed: 11/29/2022]
Abstract
Vascular disrupting agents (VDAs) are new class of anti-cancer drugs targeting pre-existing tumor vasculature which lead to tumor ischemia and necrosis. An innovative tubulin polymerization inhibitor, CKD-516, was recently developed as a VDA. We attempted to evaluate its tubulin destabilizing effect using immunofluorescence staining on human endothelial cells (HUVECs) and to ascertain its antivascular effect in a rabbit VX2 tumor model using dynamic contrast-enhanced (DCE) MRI by measuring the changes in kinetic parameters such as K-trans and IAUGC. Immunofluorescence staining using anti-tubulin and anti-actin antibodies on HUVECs showed that CKD-516 selectively disrupted tubulin component of the endothelial cytoskeleton. Serial DCE-MRI showed a significant decrease in K-trans and IAUGC parameters from baseline at 4 h (39.9 % in K-trans; -45.0 % in IAUGC) and at 24 h (-32.2 % in K-trans; -36.5 % in IAUGC), and a significant recovery at 48 h (22.9 % in K-trans; 34.8 % in IAUGC) following administration of CKD-516 at a 0.7-mg/kg dose. When the tumors were stratified according to the initial K-trans value of 0.1, tumors with a high K-trans > 0.1 which was indicative of having well-developed pre-existing vessels, showed greater reduction in K-trans and IAUGC values. On histologic examination, the degree of necrosis of treated tumors was significantly greater than that of untreated tumors. In summary, CKD-516 is an effective VDA which results in rapid vascular shutdown by targeting the tubulin component of tumor vessels and thus leads to necrosis.
Collapse
|
24
|
Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) in Preclinical Studies of Antivascular Treatments. Pharmaceutics 2012; 4:563-89. [PMID: 24300371 PMCID: PMC3834929 DOI: 10.3390/pharmaceutics4040563] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/29/2012] [Accepted: 10/30/2012] [Indexed: 12/18/2022] Open
Abstract
Antivascular treatments can either be antiangiogenic or targeting established tumour vasculature. These treatments affect the tumour microvasculature and microenvironment but may not change clinical measures like tumour volume and growth. In research on antivascular treatments, information on the tumour vasculature is therefore essential. Preclinical research is often used for optimization of antivascular drugs alone or in combined treatments. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is an in vivo imaging method providing vascular information, which has become an important tool in both preclinical and clinical research. This review discusses common DCE-MRI imaging protocols and analysis methods and provides an overview of preclinical research on antivascular treatments utilizing DCE-MRI.
Collapse
|
25
|
Mechanisms of tumor resistance to small-molecule vascular disrupting agents: treatment and rationale of combination therapy. J Formos Med Assoc 2012; 112:115-24. [PMID: 23473523 DOI: 10.1016/j.jfma.2012.09.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 12/13/2022] Open
Abstract
Small-molecule vascular disrupting agents (VDAs) target the established tumor blood vessels, resulting in rapidly and selectively widespread ischemia and necrosis of central tumor; meanwhile, blood flow in normal tissues is relatively unaffected. Although VDAs therapy is considered an important option for treatment, its use is still limited. The tumor cells at the periphery are less sensitive to vascular shutdown than those at the center, and subsequently avoid a nutrient-deprived environment. This phenomenon is referred to as tumor resistance to VDAs treatment. The viable periphery rim of tumor cells contributes to tumor regeneration, metastasis, and ongoing progression. However, there is no systematic review of the plausible mechanisms of repopulation of the viable tumor cells following VDAs therapy. The purpose of this review is to provide insights into mechanisms of tumor surviving small-molecule VDAs therapy, and the synergetic treatment to the remaining viable tumor cells at the periphery.
Collapse
|
26
|
He N, Xie C, Wei W, Pan C, Wang W, Lv N, Wu P. A new, preoperative, MRI-based scoring system for diagnosing malignant axillary lymph nodes in women evaluated for breast cancer. Eur J Radiol 2012; 81:2602-12. [DOI: 10.1016/j.ejrad.2012.03.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 10/20/2011] [Indexed: 02/06/2023]
|
27
|
Comparison of two vascular-disrupting agents at a clinically relevant dose in rodent liver tumors with multiparametric magnetic resonance imaging biomarkers. Anticancer Drugs 2012; 23:12-21. [PMID: 21857503 DOI: 10.1097/cad.0b013e328349dd60] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We sought to compare the therapeutic efficacy between two vascular-disrupting agents, combretastatin A4 phosphate (CA4P) and ZD6126, at a clinically relevant dose on tumor models with magnetic resonance imaging (MRI). Thirty rats with liver rhabdomyosarcoma were randomized into CA4P (10 mg/kg), ZD6126 (10 mg/kg), and control group (n=10 for each group). Multiparametric MRI biomarkers including tumor volume, enhancement ratio, necrosis ratio, apparent diffusion coefficient (ADC), and K (volume transfer constant) derived from T2-weighted, T1-weighted, contrast-enhanced T1-weighted, and diffusion-weighted imaging, and dynamic contrast-enhanced MRI were compared at pretreatment, 1 h, 6 h, 24 h, 48 h, and 120 h posttreatment; they were validated using ex-vivo techniques. Relative to rapidly growing tumors without necrosis in control rats, tumors grew slower in the CA4P group compared with the ZD6126 group with a higher necrosis ratio at 120 h (P<0.05), as proven by histopathology. In the CA4P group, K decreased from 1 h until 6 h, and partially recovered at 120 h. In the ZD6126 group, the reduced K at 1 h began to rebound from 6 h and exceeded the baseline value at 120 h (P<0.05), parallel to evolving enhancement ratios (P<0.05). ADC revealed more necrotic tumors with CA4P versus ZD6126 at 120 h (P<0.05). The different tumor responses were confirmed by ex-vivo microangiography and histopathology. CA4P was more effective than ZD6126 in impairing blood supply, inducing necrosis, and delaying growth in rat liver tumors at a clinically relevant dose. A single dose of vascular-disrupting agent was insufficient to destroy the tumor. The multiparametric MRI biomarkers enabled in-vivo noninvasive comparison of therapeutic efficacy between CA4P and ZD6126.
Collapse
|
28
|
MR T1ρ as an imaging biomarker for monitoring liver injury progression and regression: an experimental study in rats with carbon tetrachloride intoxication. Eur Radiol 2012; 22:1709-16. [PMID: 22752522 DOI: 10.1007/s00330-012-2419-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/04/2011] [Accepted: 01/03/2012] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Recently it was shown that the magnetic resonance imaging (MRI) T1ρ value increased with the severity of liver fibrosis in rats with bile duct ligation. Using a rat carbon tetrachloride (CCl(4)) liver injury model, this study further investigated the merit of T1ρ relaxation for liver fibrosis evaluation. METHODS Male Sprague-Dawley rats received intraperitoneal injection of 2 ml/kg CCl(4) twice weekly for up to 6 weeks. Then CCl(4) was withdrawn and the animals were allowed to recover. Liver T1ρ MRI and conventional T2-weighted images were acquired. Animals underwent MRI at baseline and at 2 days, 2 weeks, 4 weeks and 6 weeks post CCl(4) injection, and they were also examined at 1 week and 4 weeks post CCl(4) withdrawal. Liver histology was also sampled at these time points. RESULTS Liver T1ρ values increased slightly, though significantly, on day 2, and then increased further and were highest at week 6 post CCl(4) insults. The relative liver signal intensity change on T2-weighted images followed a different time course compared with that of T1ρ. Liver T1ρ values decreased upon the withdrawal of the CCl(4) insult. Histology confirmed the animals had typical CCl(4) liver injury and fibrosis progression and regression processes. CONCLUSIONS MR T1ρ imaging can monitor CCl(4)-induced liver injury and fibrosis. KEY POINTS • MR T1ρ is a valuable imaging biomarker for liver injury/fibrosis. • Liver T1ρ was only mildly affected by oedema and acute inflammation. • Liver MR T1ρ decreased when liver fibrosis and injury regressed.
Collapse
|
29
|
Wang ES, Pili R, Seshadri M. Modulation of chemotherapeutic efficacy by vascular disrupting agents: optimizing the sequence and schedule. J Clin Oncol 2012; 30:760-1; author reply 761-3. [PMID: 22291088 DOI: 10.1200/jco.2011.39.3934] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
30
|
Comparison between nonspecific and necrosis-avid gadolinium contrast agents in vascular disrupting agent-induced necrosis of rodent tumors at 3.0T. Invest Radiol 2011; 46:531-8. [PMID: 21577133 DOI: 10.1097/rli.0b013e31821a2116] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE : To compare a commercial contrast agent (CA) Dotarem and a necrosis-avid CA (NACA) for their ability to evaluate the therapeutic necrosis with a vascular disrupting agent (VDA) on magnetic resonance imaging in rodent liver tumors to determine which could better correlate with the histopathologic outcome. METHODS : After the VDA treatment, 16 rats with 32 liver rhabdomyosarcomas were randomized into Dotarem and NACA groups (n = 8 per group) for both interindividual and intraindividual comparisons. T2-weighted imaging, T1-weighted imaging (T1WI), contrast-enhanced T1-weighted imaging (CE-T1WI), and diffusion-weighted imaging were performed at baseline, after VDA treatment and CA injections. The enhancing efficacy of CAs at immediate and delayed enhancement on CE-T1WI in viable tumor and necrosis was compared. Tumor necrosis ratios calculated from NACA and Dotarem were compared and correlated with gold-standard histopathology. RESULTS : On the immediate CE-T1WI, viable tumor was enhanced by either CA. On the delayed CE-T1WI at 30 minutes, both CAs failed to demarcate viable tumor from necrosis. At 24 hours post-NACA, the necrosis was clearly distinguished from viable tumor and thus derived necrosis ratio matched that from histopathology (P = 0.99); necrosis ratio from Dotarem was significantly lower than that from NACA and histopathology (P < 0.05, both), with a higher correlation of NACA than that of Dotarem with histopathology (r = 0.99 vs. r = 0.82). CONCLUSIONS : NACA better evaluated VDA-induced tumor necrosis than nonspecific CA on T1WI in tumor models of rat liver. NACA showed a closer correlation with histopathology than nonspecific CA for the delineation of true necrosis. Delayed enhancement on T1WI with nonspecific CA is not suitable for the assessment of VDA-induced tumor necrosis.
Collapse
|
31
|
Marysael T, Ni Y, Lerut E, de Witte P. Influence of the vascular damaging agents DMXAA and ZD6126 on hypericin distribution and accumulation in RIF-1 tumors. J Cancer Res Clin Oncol 2011; 137:1619-27. [PMID: 21858709 DOI: 10.1007/s00432-011-1032-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/29/2011] [Indexed: 12/31/2022]
Abstract
PURPOSE We investigated the influence of two types of vascular damaging agents (VDAs) (DMXAA vs. ZD6126) and sequence of administration (VDA 24 h before HYP vs. HYP 1 h before VDA) to evaluate the effect on hypericin (HYP) accumulation and distribution in necrotic tumors. METHODS Frozen sections of dorsally inoculated RIF-1 tumors were analyzed by fluorescence microscopy and H&E stained for histological evaluation. The localization of HYP was assessed both qualitatively and semi-quantitatively in necrotic tumor, viable tumor, or nontarget host tissue. RESULTS Whereas the type of VDA did not influence HYP accumulation and distribution, a clear advantage could be seen when administering VDA 24 h before HYP compared to HYP 1 h before VDA, pointing toward the absence of a "trapping" mechanism. In DMXAA-treated and not in ZD6126-treated tumors, spotty fluorescence was observed which is likely to be a consequence of neutrophil phagocytosis. Dexamethasone treatment neither did influence this phenomenon nor did change HYP uptake in necrotic tumor. CONCLUSIONS We conclude that HYP accumulation is optimal when it is administered after VDA injection. We also found that HYP accumulation in necrosis is not changed when using VDAs with different working mechanisms. This insight provides a rationale for tumor necrosis therapy (TNT) using iodine-131-labeled hypericin ([(131)I]-HYP) in combination with VDAs.
Collapse
Affiliation(s)
- Thierry Marysael
- Laboratorium voor Farmaceutische Biologie, Faculteit Farmaceutische Wetenschappen, K. U. Leuven, Herestraat 49-Bus 824, 3000 Leuven, Belgium
| | | | | | | |
Collapse
|
32
|
Chen F. Feng Chen's work on translational and clinical imaging. World J Radiol 2011; 3:120-4. [PMID: 21532873 PMCID: PMC3084436 DOI: 10.4329/wjr.v3.i4.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 03/28/2011] [Accepted: 04/04/2011] [Indexed: 02/06/2023] Open
Abstract
Dr. Feng Chen is a chief medical doctor and the vice chairman of the Department of Radiology in Zhong Da Hospital at Southeast University, Nanjing, China and a senior researcher in the Department of Radiology at the Catholic University of Leuven, Belgium. His main areas of interest are translational imaging research including stroke, tumor angiogenesis, assessment of therapeutic response in solid tumors, and magnetic resonance contrast media. Dr. Feng Chen has published 44 scientific papers in peer-reviewed international journals. He and his colleagues have developed an imaging platform which includes animal models, animal preparations and multiparametric magnetic resonance imaging (MRI) protocols for translational animal imaging research using clinical machines. His MRI findings on rodent stroke are considered to "serve as a model for future laboratory investigations of treatment of acute stroke and unify the approaches developed for clinical studies". He and his colleagues have introduced a novel liver tumor model in rodents, in which a series of studies concerning the antitumor activity of vascular disrupting agents have been successively conducted and assessed by in vivo MRI, especially by diffusion weighted imaging as an imaging biomarker. His goal is to provide valuable references for clinical practice and to contribute to the translation of animal imaging research into patient applications.
Collapse
|
33
|
Wang H, Marchal G, Ni Y. Multiparametric MRI biomarkers for measuring vascular disrupting effect on cancer. World J Radiol 2011; 3:1-16. [PMID: 21286490 PMCID: PMC3030722 DOI: 10.4329/wjr.v3.i1.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/13/2011] [Accepted: 01/20/2011] [Indexed: 02/06/2023] Open
Abstract
Solid malignancies have to develop their own blood supply for their aggressive growth and metastasis; a process known as tumor angiogenesis. Angiogenesis is largely involved in tumor survival, progression and spread, which are known to be significantly attributed to treatment failures. Over the past decades, efforts have been made to understand the difference between normal and tumor vessels. It has been demonstrated that tumor vasculature is structurally immature with chaotic and leaky phenotypes, which provides opportunities for developing novel anticancer strategies. Targeting tumor vasculature is not only a unique therapeutic intervention to starve neoplastic cells, but also enhances the efficacy of conventional cancer treatments. Vascular disrupting agents (VDAs) have been developed to disrupt the already existing neovasculature in actively growing tumors, cause catastrophic vascular shutdown within short time, and induce secondary tumor necrosis. VDAs are cytostatic; they can only inhibit tumor growth, but not eradicate the tumor. This novel drug mechanism has urged us to develop multiparametric imaging biomarkers to monitor early hemodynamic alterations, cellular dysfunctions and metabolic impairments before tumor dimensional changes can be detected. In this article, we review the characteristics of tumor vessels, tubulin-destabilizing mechanisms of VDAs, and in vivo effects of the VDAs that have been mostly studied in preclinical studies and clinical trials. We also compare the different tumor models adopted in the preclinical studies on VDAs. Multiparametric imaging biomarkers, mainly diffusion-weighted imaging and dynamic contrast-enhanced imaging from magnetic resonance imaging, are evaluated for their potential as morphological and functional imaging biomarkers for monitoring therapeutic effects of VDAs.
Collapse
|
34
|
Guiu B, Cercueil JP. Liver diffusion-weighted MR imaging: the tower of Babel? Eur Radiol 2010; 21:463-7. [DOI: 10.1007/s00330-010-2017-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Accepted: 10/11/2010] [Indexed: 01/12/2023]
|