1
|
Zheng H, Zhang L, Bai X, Zhu J, Liu S, Ke Y, Lin Q, Yuan Y, Ji T. GCN5-targeted dual-modal probe across the blood-brain barrier for borders display in invasive glioblastoma. Nat Commun 2025; 16:2345. [PMID: 40057495 PMCID: PMC11890771 DOI: 10.1038/s41467-025-57598-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/27/2025] [Indexed: 05/13/2025] Open
Abstract
Glioblastoma (GBM) is a highly invasive malignancy with a poor prognosis, primarily attributable to its diffuse infiltration into adjacent brain tissue, thereby complicating effective surgical resection. Current imaging modalities often struggle to accurately identify tumor boundaries. Here, we identify general control non-repressed protein 5 (GCN5) as a promising molecular target for GBM imaging, as it is expressed in GBM lesions within brain tissue, and its expression levels are significantly correlated with GBM grading. We develop a dual-modal probe with a particle size of 20 nm, capable of efficiently traversing the blood-brain barrier (BBB) to target GCN5 through adsorptive-mediated transcytosis (AMT). The probe employs dendrimers (Den) as carriers, which are loaded with a small molecule inhibitor specifically designed to target GCN5. This probe enhances the preoperative delineation of GBM boundaries using magnetic resonance imaging (MRI) and facilitates intraoperative fluorescence image-guided surgical procedures. Our work introduces a promising tool for boundary delineation, offering new opportunities for the precise resection of GBM.
Collapse
Affiliation(s)
- Haiyan Zheng
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Zhang
- Nuclear Medical Department, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| | - Xinning Bai
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinchao Zhu
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanshan Liu
- Chenggong Hospital, Xiamen University, Xiamen, China
| | - Yao Ke
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingyuan Lin
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Yuan
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianhai Ji
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Wang X, Dai Y, Lin H, Cheng J, Zhang Y, Cao M, Zhou Y. Shape and texture analyses based on conventional MRI for the preoperative prediction of the aggressiveness of pituitary adenomas. Eur Radiol 2023; 33:3312-3321. [PMID: 36738323 DOI: 10.1007/s00330-023-09412-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Pituitary adenomas can exhibit aggressive behavior, characterized by rapid growth, resistance to conventional treatment, and early recurrence. This study aims to evaluate the clinical value of shape-related features combined with textural features based on conventional MRI in evaluating the aggressiveness of pituitary adenomas and develop the best diagnostic model. METHODS Two hundred forty-six pituitary adenoma patients (84 aggressive, 162 non-aggressive) who underwent preoperative MRI were retrospectively reviewed. The patients were divided into training (n = 193) and testing (n = 53) sets. Clinical information, shape-related, and textural features extracted from the tumor volume on contrast-enhanced T1-weighted images (CE-T1WI), were compared between aggressive and non-aggressive groups. Variables with significant differences were enrolled into Pearson's correlation analysis to weaken multicollinearity. Logistic regression models based on the selected features were constructed to predict tumor aggressiveness under fivefold cross-validation. RESULTS Sixty-five imaging features, including five shape-related and sixty textural features, were extracted from volumetric CE-T1WI. Forty-seven features were significantly different between aggressive and non-aggressive groups (all p values < 0.05). After feature selection, four features (SHAPE_Sphericity, SHAPE_Compacity, DISCRETIZED_Q3, and DISCRETIZED_Kurtosis) were put into logistic regression analysis. Based on the combination of these features and Knosp grade, the model yielded an area under the curve value of 0.935, with a sensitivity of 94.4% and a specificity of 82.9%, to discriminate between aggressive and non-aggressive pituitary adenomas in the testing set. CONCLUSION The radiomic model based on tumor shape and textural features study from CE-T1WI might potentially assist in the preoperative aggressiveness diagnosis of pituitary adenomas. KEY POINTS • Pituitary adenomas with aggressive behavior exhibit rapid growth, resistance to conventional treatment, and early recurrence despite gross resection and may require multiline treatments. • Shape-related features and texture features based on CE-T1WI were significantly correlated with the Ki-67 labeling index, mitotic count, and p53 expression, and the proposed model achieved a favorable prediction of the aggressiveness of PAs with an AUC value of 0.935. • The prediction model might provide valuable guidance for individualized treatment in patients with PAs.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongming Dai
- Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Hai Lin
- Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Jiahui Cheng
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiming Zhang
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengqiu Cao
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Yan Zhou
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Tang R, Chen Y, He N, Li Y, Jin Z, Chen KM, Yan F. Effect of gadopentetate dimeglumine on bone growth in zebrafish caudal fins. Toxicol Lett 2023; 374:11-18. [PMID: 36496117 DOI: 10.1016/j.toxlet.2022.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/17/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Compared with MR plain scanning, gadolinium (Gd)-enhanced MR scanning can provide more diagnostic information. Gadopentetate dimeglumine is generally used as an MR enhancement contrast agent in some countries. It is a member of linear Gd-based contrast agents (GBCAs) which are considered more likely to release free Gd ions (Gd3+) than macrocyclic GBCAs. Gd3+ is one of the most effective known calcium antagonists, and can compete with calcium ions (Ca2+) in Ca2+-related biological reactions. In this study, animal models of tissue regeneration were established by cutting the caudal fins of zebrafish, and the models were exposed with gadopentetate dimeglumine solution for different immersion times of 1, 3, and 5 min. Three GBCA exposures per week were performed in the first 3 weeks of the follow-up time. Morphological parameters such as regenerative area (RA), bone density, bone thickness and regenerative bone volume (RBV) were quantified using a camera and synchrotron radiation micro CT. RA decreased as total Gd intake increased in both the female group (ρ = -0.784, P < 0.0001) and the male group (ρ = -0.471, P = 0.011). The bone density of the regenerated bone increased after Gd exposure in the treated groups. The morphology of the regenerated bone from the treated groups became shorter and thicker. Our results showed that gadopentetate dimeglumine had osteogenic toxicity in zebrafish.
Collapse
Affiliation(s)
- Rongbiao Tang
- Department of Radiology, RuiJin Hospital, Shanghai Jiao Tong University, and School of Medicine, Shanghai, China.
| | - Yi Chen
- Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University, and School of Medicine, Shanghai, China
| | - Naying He
- Department of Radiology, RuiJin Hospital, Shanghai Jiao Tong University, and School of Medicine, Shanghai, China
| | - Yan Li
- Department of Radiology, RuiJin Hospital, Shanghai Jiao Tong University, and School of Medicine, Shanghai, China
| | - Zhijia Jin
- Department of Radiology, RuiJin Hospital, Shanghai Jiao Tong University, and School of Medicine, Shanghai, China
| | - Ke-Min Chen
- Department of Radiology, RuiJin Hospital, Shanghai Jiao Tong University, and School of Medicine, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, RuiJin Hospital, Shanghai Jiao Tong University, and School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Wei Z, Liu Y, Li B, Li J, Lu S, Xing X, Liu K, Wang F, Zhang H. Rare-earth based materials: an effective toolbox for brain imaging, therapy, monitoring and neuromodulation. LIGHT, SCIENCE & APPLICATIONS 2022; 11:175. [PMID: 35688804 PMCID: PMC9187711 DOI: 10.1038/s41377-022-00864-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Brain diseases, including tumors and neurodegenerative disorders, are among the most serious health problems. Non-invasively high-resolution imaging methods are required to gain anatomical structures and information of the brain. In addition, efficient diagnosis technology is also needed to treat brain disease. Rare-earth based materials possess unique optical properties, superior magnetism, and high X-ray absorption abilities, enabling high-resolution imaging of the brain through magnetic resonance imaging, computed tomography imaging, and fluorescence imaging technologies. In addition, rare-earth based materials can be used to detect, treat, and regulate of brain diseases through fine modulation of their structures and functions. Importantly, rare-earth based materials coupled with biomolecules such as antibodies, peptides, and drugs can overcome the blood-brain barrier and be used for targeted treatment. Herein, this review highlights the rational design and application of rare-earth based materials in brain imaging, therapy, monitoring, and neuromodulation. Furthermore, the development prospect of rare-earth based materials is briefly introduced.
Collapse
Affiliation(s)
- Zheng Wei
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Bo Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shuang Lu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Xiwen Xing
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
5
|
Xue T, Ding JS, Li B, Cao DM, Chen G. A narrative review of adjuvant therapy for glioma: hyperbaric oxygen therapy. Med Gas Res 2021; 11:155-157. [PMID: 34213498 PMCID: PMC8374463 DOI: 10.4103/2045-9912.318861] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/23/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
Glioma is a kind of common malignant tumor in neurosurgery and has a high mortality and morbidity rate, which poses a serious threat to the health of people all over the world. Surgery is the preferred treatment for patients with glioma, radiotherapy or chemotherapy can be used after surgery. Although there are clear therapeutic protocols, the efficacy and safety of these protocols are clinically proven, a large number of patients are still dissatisfied with the treatment and the health of the patient remains unsatisfactory. Therefore, it is crucial to look for other treatments or complementary treatments. In the modern medical treatment, hyperbaric oxygen (HBO) therapy is widely used in various kinds of pathological state of adjuvant therapy, and existing studies confirm the efficacy of HBO therapy in combination with surgery, radiotherapy, chemotherapy, and photodynamic therapy. Studies have shown that HBO can inhibit the growth of tumor tissue as an adjunctive therapy. This provides novel insights into the clinical treatment of glioma patients. Although HBO is not licensed for use in cancer treatment, as a kind of adjuvant therapy, the treatment effect of HBO can be accepted by the patients and its cost lower, which could be regarded as an ideal safe treatment.
Collapse
Affiliation(s)
- Tao Xue
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jia-Sheng Ding
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Bing Li
- Department of Neurosurgery, Yancheng City No. 1 People’s Hospital, The Fourth Affiliated Hospital of Nantong University, Yancheng, Jiangsu Province, China
| | - De-Mao Cao
- Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
6
|
Xie R, Wu Z, Zeng F, Cai H, Wang D, Gu L, Zhu H, Lui S, Guo G, Song B, Li J, Wu M, Gong Q. Retro-enantio isomer of angiopep-2 assists nanoprobes across the blood-brain barrier for targeted magnetic resonance/fluorescence imaging of glioblastoma. Signal Transduct Target Ther 2021; 6:309. [PMID: 34413288 PMCID: PMC8377144 DOI: 10.1038/s41392-021-00724-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 07/20/2021] [Accepted: 07/24/2021] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma (GBM), one of the most common primary intracranial malignant tumours, is very difficult to be completely excised by surgery due to its irregular shape. Here, we use an MRI/NIR fluorescence dual-modal imaging nanoprobe that includes superparamagnetic iron oxide nanoparticles (SPIONs) modified with indocyanine (Cy7) molecules and peptides (ANG or DANG) to locate malignant gliomas and guide accurate excision. Both peptides/Cy7-SPIONs probes displayed excellent tumour-homing properties and barrier penetrating abilities in vitro, and both could mediate precise aggregation of the nanoprobes at gliomas sites in in vivo magnetic resonance imaging (MRI) and ex vivo near-infrared (NIR) fluorescence imaging. However, compared with ANG/Cy7-SPIONs probes, DANG/Cy7-SPIONs probes exhibited better enhanced MR imaging effects. Combining all these features together, this MRI/NIR fluorescence imaging dual-modal nanoprobes modified with retro-enantio isomers of the peptide have the potential to accurately display GBMs preoperatively for precise imaging and intraoperatively for real-time imaging.
Collapse
Affiliation(s)
- Ruoxi Xie
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Zijun Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Fanxin Zeng
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Department of Clinic Medical Center, Dazhou Central Hospital, Dazhou, China
| | - Huawei Cai
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Lei Gu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Hongyan Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bin Song
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Jinxing Li
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
| | - Min Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| |
Collapse
|
7
|
Wu B, Deng K, Lu ST, Zhang CJ, Ao YW, Wang H, Mei H, Wang CX, Xu H, Hu B, Huang SW. Reduction-active Fe 3O 4-loaded micelles with aggregation- enhanced MRI contrast for differential diagnosis of Neroglioma. Biomaterials 2020; 268:120531. [PMID: 33253964 DOI: 10.1016/j.biomaterials.2020.120531] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023]
Abstract
Differential diagnosis between inflammatory mass and malignant glioma is of great significance to patients, which is the basis for developing accurate individualized treatment. Due to the lack of non-invasive imaging characterization methods in the clinical application, the current diagnosis grading of glioma mainly depended on the pathological biopsy, which is complicated and risky. This study aims to develop a non-invasive imaging differential diagnosis method of glioma based on the reduction activated strategy of intracellular aggregation of sensitive superparamagnetic Fe3O4 nanoparticles (SIONPs). In vitro and in vivo magnetic resonance imaging results indicated that SIONPs could specifically increase the T2 relaxation rate and enhance MR imaging in tumor with redox microenvironment by the response-aggregation in the tumorous site. In vivo experiments also demonstrate that the substantial improvement of T2-weighted imaging contrast could be used to differentiate inflammatory mass and malignant glioma. The reduction-active MR imaging contrast agent offers a new paradigm for designing "smart" MR imaging probes of differential diagnosis of the tumor.
Collapse
Affiliation(s)
- Bo Wu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, PR China.
| | - Kai Deng
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, PR China; Key Laboratory of Biomedical Polymers, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Shu-Ting Lu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, PR China
| | - Cai-Ju Zhang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, PR China
| | - Ya-Wen Ao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, PR China
| | - Huan Wang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, PR China
| | - Hao Mei
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, PR China
| | - Cai-Xia Wang
- Key Laboratory of Biomedical Polymers, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, PR China
| | - Bin Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China.
| | - Shi-Wen Huang
- Key Laboratory of Biomedical Polymers, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
8
|
Zanardo M, Sardanelli F, Rainford L, Monti CB, Murray JG, Secchi F, Cradock A. Technique and protocols for cardiothoracic time-resolved contrast-enhanced magnetic resonance angiography sequences: a systematic review. Clin Radiol 2020; 76:156.e9-156.e18. [PMID: 33008622 DOI: 10.1016/j.crad.2020.08.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022]
Abstract
AIM To review contrast medium administration protocols used for cardiothoracic applications of time-resolved, contrast-enhanced magnetic resonance angiography (MRA) sequences. MATERIALS AND METHODS A systematic search of the literature (Medline/EMBASE) was performed to identify articles utilising time-resolved MRA sequences, focusing on type of sequence, adopted technical parameters, contrast agent (CA) issues, and acquisition workflow. Study design, year of publication, population, magnetic field strength, type, dose, and injection parameters of CA, as well as technical parameters of time-resolved MRA sequences were extracted. RESULTS Of 117 retrieved articles, 16 matched the inclusion criteria. The study design was prospective in 9/16 (56%) articles, and study population ranged from 5 to 185 patients, for a total of 506 patients who underwent cardiothoracic time-resolved MRA. Magnetic field strength was 1.5 T in 13/16 (81%), and 3 T in 3/16 (19%) articles. The administered CA was gadobutrol (Gadovist) in 6/16 (37%) articles, gadopentetate dimeglumine (Magnevist) in 5/16 (31%), gadobenate dimeglumine (MultiHance) in 2/16 (13%), gadodiamide (Omniscan) in 2/16 (13%), gadofosveset trisodium (Ablavar, previously Vasovist) in 1/16 (6%). CA showed highly variable doses among studies: fixed amount or based on patient body weight (0.02-0.2 mmol/kg) and was injected with a flow rate ranging 1-5 ml/s. Sequences were TWIST in 13/16 (81%), TRICKS in 2/16 (13%), and CENTRA 1/16 articles (6%). CONCLUSION Time-resolved MRA sequences were adopted in different clinical settings with a large spectrum of technical approaches, mostly in association with different CA dose, type, and injection method. Further studies in relation to specific clinical indications are warranted to provide a common standardised acquisition protocol.
Collapse
Affiliation(s)
- M Zanardo
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy.
| | - F Sardanelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy; Unit of Radiology, IRCCS Policlinico San Donato, Via Morandi 30, 20097 San Donato Milanese, Italy
| | - L Rainford
- Radiography and Diagnostic Imaging, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - C B Monti
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
| | - J G Murray
- Department of Radiology, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - F Secchi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy; Unit of Radiology, IRCCS Policlinico San Donato, Via Morandi 30, 20097 San Donato Milanese, Italy
| | - A Cradock
- Radiography and Diagnostic Imaging, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
9
|
Gaudino S, Martucci M, Botto A, Ruberto E, Leone E, Infante A, Ramaglia A, Caldarelli M, Frassanito P, Triulzi FM, Colosimo C. Brain DSC MR Perfusion in Children: A Clinical Feasibility Study Using Different Technical Standards of Contrast Administration. AJNR Am J Neuroradiol 2019; 40:359-365. [PMID: 30655255 DOI: 10.3174/ajnr.a5954] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/01/2018] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Dynamic susceptibility contrast MR perfusion imaging has limited results in children due to difficulties in reproducing technical standards derived from adults. This prospective, multicenter study aimed to determine DSC feasibility and quality in children using custom administration of a standard dose of gadolinium. MATERIALS AND METHODS Eighty-three consecutive children with brain tumors underwent DSC perfusion with a standard dose of gadobutrol administered by an automated power injector. The location and size of intravenous catheters and gadobutrol volume and flow rates were reported, and local and/or systemic adverse effects were recorded. DSC was qualitatively evaluated by CBV maps and signal intensity-time curves and quantitatively by the percentage of signal drop and full width at half-maximum, and the data were compared with the standards reported for adults. Quantitative data were grouped by flow rate, and differences among groups were assessed by analysis of covariance and tested for statistical significance with a t test. RESULTS No local or systemic adverse events were recorded independent of catheter location (63 arm, 14 hand, 6 foot), size (24-18 ga), and flow rates (1-5 mL/s). High-quality CBV maps and signal intensity-time curves were achieved in all patients, and quantitative evaluations were equal or superior to those reported for adults. No significant differences (P ≥ .05) were identified among the higher-flow-rate groups in the quantitative data. CONCLUSIONS A custom administration of a standard dose of gadobutrol allows safe and high-quality DSC MR perfusion imaging in children.
Collapse
Affiliation(s)
- S Gaudino
- From the Operative Unit Radiodiagnostica e Neuroradiologia (S.G.,A.B., E.R., E.L., A.I., A.R., C.C.), Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia
| | - M Martucci
- Operative Unit di Neuroradiologia (M.M.), Azienda Ospedaliera, Università di Padova, Padova, Italy
| | - A Botto
- From the Operative Unit Radiodiagnostica e Neuroradiologia (S.G.,A.B., E.R., E.L., A.I., A.R., C.C.), Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia
| | - E Ruberto
- From the Operative Unit Radiodiagnostica e Neuroradiologia (S.G.,A.B., E.R., E.L., A.I., A.R., C.C.), Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia
- Istituto di Radiologia (E.R., E.L., A.R., C.C), Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
- Università Cattolica del Sacro Cuore (E.R., E.L., A.R., C.C), Milan, Italy
| | - E Leone
- From the Operative Unit Radiodiagnostica e Neuroradiologia (S.G.,A.B., E.R., E.L., A.I., A.R., C.C.), Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia
- Istituto di Radiologia (E.R., E.L., A.R., C.C), Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
- Università Cattolica del Sacro Cuore (E.R., E.L., A.R., C.C), Milan, Italy
| | - A Infante
- From the Operative Unit Radiodiagnostica e Neuroradiologia (S.G.,A.B., E.R., E.L., A.I., A.R., C.C.), Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia
| | - A Ramaglia
- From the Operative Unit Radiodiagnostica e Neuroradiologia (S.G.,A.B., E.R., E.L., A.I., A.R., C.C.), Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia
- Istituto di Radiologia (E.R., E.L., A.R., C.C), Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
- Università Cattolica del Sacro Cuore (E.R., E.L., A.R., C.C), Milan, Italy
| | - M Caldarelli
- Neurochirurgia infantile (M.C., P.F.), Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere, Rome, Italy
| | - P Frassanito
- Neurochirurgia infantile (M.C., P.F.), Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere, Rome, Italy
| | - F M Triulzi
- Neuroradiology Unit (F.M.T.), Foundation Istituto di Ricovero e Cura a Carattere Scientifico, Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation (F.M.T.), University of Milan, Milan, Italy
| | - C Colosimo
- From the Operative Unit Radiodiagnostica e Neuroradiologia (S.G.,A.B., E.R., E.L., A.I., A.R., C.C.), Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia
- Istituto di Radiologia (E.R., E.L., A.R., C.C), Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
- Università Cattolica del Sacro Cuore (E.R., E.L., A.R., C.C), Milan, Italy
| |
Collapse
|
10
|
T1-weighted Grey Matter Signal Intensity Alterations After Multiple Administrations of Gadobutrol in Patients with Multiple Sclerosis, Referenced to White Matter. Sci Rep 2018; 8:16844. [PMID: 30442977 PMCID: PMC6237839 DOI: 10.1038/s41598-018-35186-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/26/2018] [Indexed: 01/28/2023] Open
Abstract
The aim of the study was to investigate the signal-intensity-(SI)-ratio changes in the basal ganglia, the pulvinar thalami (PN), and the dentate nucleus (DN) using frontal white matter (FWM) as reference area, in patients with multiple sclerosis after frequent administrations of gadobutrol. A control group (group I) was compared to three stratified patient groups (group II: mean applications of gadobutrol 3.7; group III: 7.5 applications; group IV: 13.8 applications). SI-ratios of the pallidum, putamen, caudate nucleus, and pulvinar thalami were calculated with: 1. FWM, and 2. PN. DN-to-pons and DN-to-FWM ratios were also calculated. The most significant SI-ratio-changes were found by comparing group I and IV for both reference values. However, by using FWM as reference an SI-ratio increase was observed, while an SI-ratio decrease was seen if referenced to the PN. DN-to-FWM showed an SI-ratio increase, too. The PN revealed a significant SI-ratio increase itself, correlating with the number of gadolinium applications, when referenced to FWM. Therefore, SI-ratio calculations using the thalamus as reference might be flawed. In addition, a minor gadolinium accumulation is possible, if FWM was used as reference area. Further studies are necessary to verify our results.
Collapse
|
11
|
Chen Y, Liu S, Buch S, Hu J, Kang Y, Haacke EM. An interleaved sequence for simultaneous magnetic resonance angiography (MRA), susceptibility weighted imaging (SWI) and quantitative susceptibility mapping (QSM). Magn Reson Imaging 2018; 47:1-6. [DOI: 10.1016/j.mri.2017.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/01/2017] [Accepted: 11/13/2017] [Indexed: 12/14/2022]
|
12
|
Xie Y, Zeng X, Wu X, Hu J, Zhu Y, Yang X. Hyperbaric oxygen as an adjuvant to temozolomide nanoparticle inhibits glioma growth by inducing G2/M phase arrest. Nanomedicine (Lond) 2018; 13:887-898. [PMID: 29473458 DOI: 10.2217/nnm-2017-0395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM To study the effects of combinational treatment of hyperbaric oxygen (HBO) and nanotemozolomide in glioma. MATERIALS & METHODS Temozolomide (TMZ)-loaded porous silicon nanoparticles (TMZ/PSi NPs) were prepared. In vitro and in vivo evaluations were performed. RESULTS The cell uptake of TMZ/PSi NPs could be tracked by autofluorescence of porous silicon. The concentration of oxygen in tumor was improved and the antitumor rate was increased to 84.2% in the TMZ/PSi NPs combined with HBO group. The viability of hypoxia-induced glioma C6 cells was decreased and cell cycle was arrested at G2/M phase in response to TMZ/PSi NPs treatment with HBO compared with continuous treatment with hypoxia. CONCLUSION The combinational treatment of TMZ/PSi NPs and HBO could be a promising therapeutic strategy for glioma.
Collapse
Affiliation(s)
- Yuanyuan Xie
- College of Life Science & Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Xiaofan Zeng
- College of Life Science & Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Xian Wu
- College of Life Science & Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Jun Hu
- College of Life Science & Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Yanhong Zhu
- College of Life Science & Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Xiangliang Yang
- College of Life Science & Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| |
Collapse
|
13
|
Martí-Bonmatí L, Martí-Bonmatí E. Retención de compuestos de gadolinio usados en resonancia magnética: revisión crítica y recomendaciones de las agencias regulatorias. RADIOLOGIA 2017; 59:469-477. [DOI: 10.1016/j.rx.2017.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 08/29/2017] [Accepted: 09/26/2017] [Indexed: 12/17/2022]
|
14
|
Hoelter P, Lang S, Weibart M, Schmidt M, Knott MFX, Engelhorn T, Essig M, Kloska S, Doerfler A. Prospective intraindividual comparison of gadoterate and gadobutrol for cervical and intracranial contrast-enhanced magnetic resonance angiography. Neuroradiology 2017; 59:1233-1239. [PMID: 28913611 DOI: 10.1007/s00234-017-1922-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/06/2017] [Indexed: 12/16/2022]
Abstract
PURPOSE Gadobutrol (GB) is reported to provide improved relaxivity and concentration compared to gadoterate (GT). This study was designed to intraindividually compare quantitative and qualitative enhancement characteristics of GB to GT in cervicocranial magnetic resonance angiography (MRA) of patients with cerebrovascular disease (CVD). METHODS Patients (n = 54) with CVD underwent two identical contrast-enhanced magnetic resonance angiography (CE-MRA) examinations of the cervical and intracranial vasculature in randomized order, using GB and GT in equimolar dose. Signal-to-noise ratios (SNR) and contrast-to-noise ratios (CNR) were obtained by two independent neuroradiologists, blinded to the applied contrast agents. Qualitative assessment was performed using a three-point scale with a focus on M1/M2 segments. RESULTS One thousand and twenty-six vessel segments were analyzed. GB revealed a significantly higher SNR (p = 0.032) and CNR (p = 0.031) in all vessel segments. GB featured a significantly higher SNR and CNR in thoracic (p = 0.022; p = 0.016) and cervical vessels (p = 0.03; p = 0.038), as well as in the posterior circulation (p = 0.012; p = 0.005). In blinded qualitative assessment, overall preference was given to GB (p = 0.02), showing a significant better delineation of the M1/M2 segments (p = 0.041). CONCLUSION Compared to GT, the use of GB results in a significantly higher SNR and CNR in cervical and cerebral CE-MRA, leading to a better delineation of the intracranial vasculature. Present results underline the potential of GB for improved CE-MRA assessment of vasculature in CVD patients.
Collapse
Affiliation(s)
- Philip Hoelter
- Department of Neuroradiology, University Hospital Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany.
| | - Stefan Lang
- Department of Neuroradiology, University Hospital Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Marina Weibart
- Department of Neuroradiology, University Hospital Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Manuel Schmidt
- Department of Neuroradiology, University Hospital Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Michael F X Knott
- Department of Neuroradiology, University Hospital Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Tobias Engelhorn
- Department of Neuroradiology, University Hospital Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Marco Essig
- Department of Radiology, University of Manitoba, GA216-820 Sherbrook Street, Winnipeg, Manitoba, Canada
| | - Stephan Kloska
- Department of Neuroradiology, University Hospital Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, University Hospital Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany
| |
Collapse
|
15
|
Strumia M, Reichardt W, Staszewski O, Heiland DH, Weyerbrock A, Mader I, Bock M. Glioma vessel abnormality quantification using time-of-flight MR angiography. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 29:765-75. [PMID: 27097906 DOI: 10.1007/s10334-016-0558-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/31/2016] [Accepted: 04/05/2016] [Indexed: 02/04/2023]
Abstract
OBJECTIVES To differentiate between abnormal tumor vessels and regular brain vasculature using new quantitative measures in time-of-flight (TOF) MR angiography (MRA) data. MATERIALS AND METHODS In this work time-of-flight (TOF) MR angiography data are acquired in 11 glioma patients to quantify vessel abnormality. Brain vessels are first segmented with a new algorithm, efficient monte-carlo image-analysis for the location of vascular entity (EMILOVE), and are then characterized in three brain regions: tumor, normal-appearing contralateral brain, and the total brain volume without the tumor. For characterization local vessel orientation angles and the dot product between local orientation vectors are calculated and averaged in the 3 regions. Additionally, correlation with histological and genetic markers is performed. RESULTS Both the local vessel orientation angles and the dot product show a statistically significant difference (p < 0.005) between tumor vessels and normal brain vasculature. Furthermore, the connection to both histology and the gene expression of the tumor can be found-here, the measures were compared to the proliferation marker Ki-67 [MIB] and genome-wide expression analysis. The results in a subgroup indicate that the dot product measure may be correlated with activated genetic pathways. CONCLUSION It is possible to define a measure of vessel abnormality based on local vessel orientation angles which can differentiate between normal brain vasculature and glioblastoma vessels.
Collapse
Affiliation(s)
- Maddalena Strumia
- German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, Heidelberg, Germany.,University Medical Center Freiburg, Radiology-Medical Physics, Breisacher Str. 60a, 79106, Freiburg, Germany.,German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Wilfried Reichardt
- German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, Heidelberg, Germany.,University Medical Center Freiburg, Radiology-Medical Physics, Breisacher Str. 60a, 79106, Freiburg, Germany.,German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Ori Staszewski
- University Medical Center Freiburg, Neuropathology, Breisacher Str. 64, Freiburg, Germany
| | - Dieter Henrik Heiland
- University Medical Center Freiburg, Neurosurgery, Breisacher Str. 64, Freiburg, Germany
| | - Astrid Weyerbrock
- University Medical Center Freiburg, Neurosurgery, Breisacher Str. 64, Freiburg, Germany
| | - Irina Mader
- University Medical Center Freiburg, Neuroradiology, Breisacher Str. 64, Freiburg, Germany
| | - Michael Bock
- University Medical Center Freiburg, Radiology-Medical Physics, Breisacher Str. 60a, 79106, Freiburg, Germany.
| |
Collapse
|
16
|
In vivo dentate nucleus MRI relaxometry correlates with previous administration of Gadolinium-based contrast agents. Eur Radiol 2016; 26:4577-4584. [PMID: 26905870 DOI: 10.1007/s00330-016-4245-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 01/19/2016] [Accepted: 01/22/2016] [Indexed: 01/11/2023]
Abstract
OBJECTIVES To evaluate changes in T1 and T2* relaxometry of dentate nuclei (DN) with respect to the number of previous administrations of Gadolinium-based contrast agents (GBCA). METHODS In 74 relapsing-remitting multiple sclerosis (RR-MS) patients with variable disease duration (9.8±6.8 years) and severity (Expanded Disability Status Scale scores:3.1±0.9), the DN R1 (1/T1) and R2* (1/T2*) relaxation rates were measured using two unenhanced 3D Dual-Echo spoiled Gradient-Echo sequences with different flip angles. Correlations of the number of previous GBCA administrations with DN R1 and R2* relaxation rates were tested, including gender and age effect, in a multivariate regression analysis. RESULTS The DN R1 (normalized by brainstem) significantly correlated with the number of GBCA administrations (p<0.001), maintaining the same significance even when including MS-related factors. Instead, the DN R2* values correlated only with age (p=0.003), and not with GBCA administrations (p=0.67). In a subgroup of 35 patients for whom the administered GBCA subtype was known, the effect of GBCA on DN R1 appeared mainly related to linear GBCA. CONCLUSIONS In RR-MS patients, the number of previous GBCA administrations correlates with R1 relaxation rates of DN, while R2* values remain unaffected, suggesting that T1-shortening in these patients is related to the amount of Gadolinium given. KEY POINTS • In multiple sclerosis, previous Gadolinium administrations correlate with dentate nuclei T1 relaxometry. • Such correlation is linked to linear Gadolinium chelates and unrelated to disease duration or severity. • Dentate nuclei T2* relaxometry is age-related and independent of previous Gadolinium administrations. • Changes in dentate nuclei T1 relaxometry are not determined by iron accumulation. • MR relaxometry can quantitatively assess Gadolinium accumulation in dentate nuclei.
Collapse
|
17
|
Stojanov D, Aracki-Trenkic A, Benedeto-Stojanov D. Gadolinium deposition within the dentate nucleus and globus pallidus after repeated administrations of gadolinium-based contrast agents-current status. Neuroradiology 2016; 58:433-41. [PMID: 26873830 DOI: 10.1007/s00234-016-1658-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/02/2016] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Gadolinium-based contrast agents (GBCAs) have been used clinically since 1988 for contrast-enhanced magnetic resonance imaging (CE-MRI). Generally, GBCAs are considered to have an excellent safety profile. However, GBCA administration has been associated with increased occurrence of nephrogenic systemic fibrosis (NSF) in patients with severely compromised renal function, and several studies have shown evidence of gadolinium deposition in specific brain structures, the globus pallidus and dentate nucleus, in patients with normal renal function. METHODS Gadolinium deposition in the brain following repeated CE-MRI scans has been demonstrated in patients using T1-weighted unenhanced MRI and inductively coupled plasma mass spectroscopy. Additionally, rodent studies with controlled GBCA administration also resulted in neural gadolinium deposits. RESULTS Repeated GBCA use is associated with gadolinium deposition in the brain. This is especially true with the use of less-stable, linear GBCAs. In spite of increasing evidence of gadolinium deposits in the brains of patients after multiple GBCA administrations, the clinical significance of these deposits continues to be unclear. CONCLUSION Here, we discuss the current state of scientific evidence surrounding gadolinium deposition in the brain following GBCA use, and the potential clinical significance of gadolinium deposition. There is considerable need for further research, both to understand the mechanism by which gadolinium deposition in the brain occurs and how it affects the patients in which it occurs.
Collapse
Affiliation(s)
- Dragan Stojanov
- Faculty of Medicine, University of Nis, Bul. Dr. Zorana Djindjica 81, Nis, 18000, Serbia.
- Center for Radiology, Clinical Center Nis, Nis, Serbia.
| | | | | |
Collapse
|
18
|
Chronic cerebral hypoperfusion induces vascular plasticity and hemodynamics but also neuronal degeneration and cognitive impairment. J Cereb Blood Flow Metab 2015; 35:1249-59. [PMID: 25853908 PMCID: PMC4528009 DOI: 10.1038/jcbfm.2015.55] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 02/19/2015] [Accepted: 03/10/2015] [Indexed: 12/16/2022]
Abstract
Chronic cerebral hypoperfusion (CCH) induces cognitive impairment, but the compensative mechanism of cerebral blood flow (CBF) is not fully understood. The present study mainly investigated dynamic changes in CBF, angiogenesis, and cellular pathology in the cortex, the striatum, and the cerebellum, and also studied cognitive impairment of rats induced by bilateral common carotid artery occlusion (BCCAO). Magnetic resonance imaging (MRI) techniques, immunochemistry, and Morris water maze were employed to the study. The CBF of the cortex, striatum, and cerebellum dramatically decreased after right common carotid artery occlusion (RCCAO), and remained lower level at 2 weeks after BCCAO. It returned to the sham level from 3 to 6 weeks companied by the dilation of vertebral arteries after BCCAO. The number of microvessels declined at 2, 3, and 4 weeks but increased at 6 weeks after BCCAO. Neuronal degeneration occurred in the cortex and striatum from 2 to 6 weeks, but the number of glial cells dramatically increased at 4 weeks after BCCAO. Cognitive impairment of ischemic rats was directly related to ischemic duration. Our results suggest that CCH induces a compensative mechanism attempting to maintain optimal CBF to the brain. However, this limited compensation cannot prevent neuronal loss and cognitive impairment after permanent ischemia.
Collapse
|
19
|
Iv M, Telischak N, Feng D, Holdsworth SJ, Yeom KW, Daldrup-Link HE. Clinical applications of iron oxide nanoparticles for magnetic resonance imaging of brain tumors. Nanomedicine (Lond) 2015; 10:993-1018. [PMID: 25867862 DOI: 10.2217/nnm.14.203] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Current neuroimaging provides detailed anatomic and functional evaluation of brain tumors, allowing for improved diagnostic and prognostic capabilities. Some challenges persist even with today's advanced imaging techniques, including accurate delineation of tumor margins and distinguishing treatment effects from residual or recurrent tumor. Ultrasmall superparamagnetic iron oxide nanoparticles are an emerging tool that can add clinically useful information due to their distinct physiochemical features and biodistribution, while having a good safety profile. Nanoparticles can be used as a platform for theranostic drugs, which have shown great promise for the treatment of CNS malignancies. This review will provide an overview of clinical ultrasmall superparamagnetic iron oxides and how they can be applied to the diagnostic and therapeutic neuro-oncologic setting.
Collapse
Affiliation(s)
- Michael Iv
- Department of Radiology, Stanford University & Stanford University Medical Center, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
20
|
Hingorani DV, Bernstein AS, Pagel MD. A review of responsive MRI contrast agents: 2005-2014. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 10:245-65. [PMID: 25355685 PMCID: PMC4414668 DOI: 10.1002/cmmi.1629] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/06/2014] [Accepted: 09/18/2014] [Indexed: 12/18/2022]
Abstract
This review focuses on MRI contrast agents that are responsive to a change in a physiological biomarker. The response mechanisms are dependent on six physicochemical characteristics, including the accessibility of water to the agent, tumbling time, proton exchange rate, electron spin state, MR frequency or superparamagnetism of the agent. These characteristics can be affected by changes in concentrations or activities of enzymes, proteins, nucleic acids, metabolites, or metal ions, or changes in redox state, pH, temperature, or light. A total of 117 examples are presented, including ones that employ nuclei other than (1) H, which attests to the creativity of multidisciplinary research efforts to develop responsive MRI contrast agents.
Collapse
Affiliation(s)
- Dina V Hingorani
- Department of Chemistry and Biochemistry, University of Arizona, USA
| | - Adam S Bernstein
- Department of Biomedical Engineering, University of Arizona, USA
| | - Mark D Pagel
- Department of Chemistry and Biochemistry, University of Arizona, USA
- Department of Biomedical Engineering, University of Arizona, USA
- Department of Medical Imaging, University of Arizona, USA
- University of Arizona Cancer Center, University of Arizona, USA
| |
Collapse
|
21
|
Stojanov DA, Aracki-Trenkic A, Vojinovic S, Benedeto-Stojanov D, Ljubisavljevic S. Increasing signal intensity within the dentate nucleus and globus pallidus on unenhanced T1W magnetic resonance images in patients with relapsing-remitting multiple sclerosis: correlation with cumulative dose of a macrocyclic gadolinium-based contrast agent, gadobutrol. Eur Radiol 2015; 26:807-15. [PMID: 26105022 DOI: 10.1007/s00330-015-3879-9] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/23/2015] [Accepted: 06/03/2015] [Indexed: 02/07/2023]
Affiliation(s)
- Dragan A Stojanov
- Faculty of Medicine, University of Nis, Nis, Serbia, Bul. Dr. Z. Djindjica 82.
- Center for Radiology, Clinical Center Nis, Nis, Serbia, Bul. Dr. Z. Djindjica 48.
| | | | - Slobodan Vojinovic
- Faculty of Medicine, University of Nis, Nis, Serbia, Bul. Dr. Z. Djindjica 82.
- Clinic for Neurology, Clinical Center Nis, Nis, Serbia, Bul. Dr. Z. Djindjica 48.
| | | | - Srdjan Ljubisavljevic
- Faculty of Medicine, University of Nis, Nis, Serbia, Bul. Dr. Z. Djindjica 82.
- Clinic for Neurology, Clinical Center Nis, Nis, Serbia, Bul. Dr. Z. Djindjica 48.
| |
Collapse
|
22
|
De León-Rodríguez LM, Martins AF, Pinho MC, Rofsky NM, Sherry AD. Basic MR relaxation mechanisms and contrast agent design. J Magn Reson Imaging 2015; 42:545-65. [PMID: 25975847 DOI: 10.1002/jmri.24787] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/11/2014] [Indexed: 12/22/2022] Open
Abstract
The diagnostic capabilities of magnetic resonance imaging (MRI) have undergone continuous and substantial evolution by virtue of hardware and software innovations and the development and implementation of exogenous contrast media. Thirty years since the first MRI contrast agent was approved for clinical use, a reliance on MR contrast media persists, largely to improve image quality with higher contrast resolution and to provide additional functional characterization of normal and abnormal tissues. Further development of MR contrast media is an important component in the quest for continued augmentation of diagnostic capabilities. In this review we detail the many important considerations when pursuing the design and use of MR contrast media. We offer a perspective on the importance of chemical stability, particularly kinetic stability, and how this influences one's thinking about the safety of metal-ligand-based contrast agents. We discuss the mechanisms involved in MR relaxation in the context of probe design strategies. A brief description of currently available contrast agents is accompanied by an in-depth discussion that highlights promising MRI contrast agents in the development of future clinical and research applications. Our intention is to give a diverse audience an improved understanding of the factors involved in developing new types of safe and highly efficient MR contrast agents and, at the same time, provide an appreciation of the insights into physiology and disease that newer types of responsive agents can provide.
Collapse
Affiliation(s)
| | - André F Martins
- Department of Chemistry, University of Texas at Dallas, Richardson, Texas, USA
| | - Marco C Pinho
- Department of Radiology and the Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Neil M Rofsky
- Department of Radiology and the Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - A Dean Sherry
- Department of Chemistry, University of Texas at Dallas, Richardson, Texas, USA.,Department of Radiology and the Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
23
|
Zhou Q, Mu K, Jiang L, Xie H, Liu W, Li Z, Qi H, Liang S, Xu H, Zhu Y, Zhu W, Yang X. Glioma-targeting micelles for optical/magnetic resonance dual-mode imaging. Int J Nanomedicine 2015; 10:1805-18. [PMID: 25784806 PMCID: PMC4356700 DOI: 10.2147/ijn.s72910] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Surgical resection is the primary mode for glioma treatment, while gross total resection is difficult to achieve, due to the invasiveness of the gliomas. Meanwhile, the tumor-resection region is closely related to survival rate and life quality. Therefore, we developed optical/magnetic resonance imaging (MRI) bifunctional targeted micelles for glioma so as to delineate the glioma location before and during operation. The micelles were constructed through encapsulation of hydrophobic superparamagnetic iron oxide nanoparticles (SPIONs) with polyethylene glycol-block-polycaprolactone (PEG-b-PCL) by using a solvent-evaporation method, and modified with a near-infrared fluorescent probe, Cy5.5, in addition to the glioma-targeting ligand lactoferrin (Lf). Being encapsulated by PEG-b-PCL, the hydrophobic SPIONs dispersed well in phosphate-buffered saline over 4 weeks, and the relaxivity (r 2) of micelles was 215.4 mM(-1)·s(-1), with sustained satisfactory fluorescent imaging ability, which might have been due to the interval formed by PEG-b-PCL for avoiding the fluorescence quenching caused by SPIONs. The in vivo results indicated that the nanoparticles with Lf accumulated efficiently in glioma cells and prolonged the duration of hypointensity at the tumor site over 48 hours in the MR image compared to the nontarget group. Corresponding with the MRI results, the margin of the glioma was clearly demarcated in the fluorescence image, wherein the average fluorescence intensity of the tumor was about fourfold higher than that of normal brain tissue. Furthermore, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay results showed that the micelles were biocompatible at Fe concentrations of 0-100 μg/mL. In general, these optical/MRI bifunctional micelles can specifically target the glioma and provide guidance for surgical resection of the glioma before and during operation.
Collapse
Affiliation(s)
- Qing Zhou
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ketao Mu
- Radiology Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Lingyu Jiang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Hui Xie
- Department of Information Processing, China Patent Information Center, Wuhan, People’s Republic of China
| | - Wei Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zhengzheng Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Hui Qi
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Shuyan Liang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Huibi Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yanhong Zhu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Wenzhen Zhu
- Radiology Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
24
|
Khouri Chalouhi K, Papini GD, Bandirali M, Sconfienza LM, Di Leo G, Sardanelli F. Less is better? Intraindividual and interindividual comparison between 0.075 mmol/kg of gadobenate dimeglumine and 0.1 mmol/kg of gadoterate meglumine for cranial MRI. Eur J Radiol 2014; 83:1245-1249. [DOI: 10.1016/j.ejrad.2014.03.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/17/2014] [Accepted: 03/22/2014] [Indexed: 10/25/2022]
|
25
|
Blezer ELA, Deddens LH, Kooij G, Drexhage J, van der Pol SMA, Reijerkerk A, Dijkhuizen RM, de Vries HE. In vivoMR imaging of intercellular adhesion molecule-1 expression in an animal model of multiple sclerosis. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 10:111-21. [DOI: 10.1002/cmmi.1602] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 01/10/2014] [Accepted: 02/19/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Erwin L. A. Blezer
- Biomedical MR Imaging and Spectroscopy Group, Image Sciences Institute; University Medical Center Utrecht; Yalelaan 2 3584 CM Utrecht The Netherlands
| | - Lisette H. Deddens
- Biomedical MR Imaging and Spectroscopy Group, Image Sciences Institute; University Medical Center Utrecht; Yalelaan 2 3584 CM Utrecht The Netherlands
| | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam; VU University Medical Center; PO Box 7057 1007 MB Amsterdam The Netherlands
| | - Joost Drexhage
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam; VU University Medical Center; PO Box 7057 1007 MB Amsterdam The Netherlands
| | - Susanne M. A. van der Pol
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam; VU University Medical Center; PO Box 7057 1007 MB Amsterdam The Netherlands
| | - Arie Reijerkerk
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam; VU University Medical Center; PO Box 7057 1007 MB Amsterdam The Netherlands
| | - Rick M. Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Image Sciences Institute; University Medical Center Utrecht; Yalelaan 2 3584 CM Utrecht The Netherlands
| | - Helga E. de Vries
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam; VU University Medical Center; PO Box 7057 1007 MB Amsterdam The Netherlands
| |
Collapse
|
26
|
Klohs J, Rudin M, Shimshek DR, Beckmann N. Imaging of cerebrovascular pathology in animal models of Alzheimer's disease. Front Aging Neurosci 2014; 6:32. [PMID: 24659966 PMCID: PMC3952109 DOI: 10.3389/fnagi.2014.00032] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/19/2014] [Indexed: 01/04/2023] Open
Abstract
In Alzheimer's disease (AD), vascular pathology may interact with neurodegeneration and thus aggravate cognitive decline. As the relationship between these two processes is poorly understood, research has been increasingly focused on understanding the link between cerebrovascular alterations and AD. This has at last been spurred by the engineering of transgenic animals, which display pathological features of AD and develop cerebral amyloid angiopathy to various degrees. Transgenic models are versatile for investigating the role of amyloid deposition and vascular dysfunction, and for evaluating novel therapeutic concepts. In addition, research has benefited from the development of novel imaging techniques, which are capable of characterizing vascular pathology in vivo. They provide vascular structural read-outs and have the ability to assess the functional consequences of vascular dysfunction as well as to visualize and monitor the molecular processes underlying these pathological alterations. This article focusses on recent in vivo small animal imaging studies addressing vascular aspects related to AD. With the technical advances of imaging modalities such as magnetic resonance, nuclear and microscopic imaging, molecular, functional and structural information related to vascular pathology can now be visualized in vivo in small rodents. Imaging vascular and parenchymal amyloid-β (Aβ) deposition as well as Aβ transport pathways have been shown to be useful to characterize their dynamics and to elucidate their role in the development of cerebral amyloid angiopathy and AD. Structural and functional imaging read-outs have been employed to describe the deleterious affects of Aβ on vessel morphology, hemodynamics and vascular integrity. More recent imaging studies have also addressed how inflammatory processes partake in the pathogenesis of the disease. Moreover, imaging can be pivotal in the search for novel therapies targeting the vasculature.
Collapse
Affiliation(s)
- Jan Klohs
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich Zurich, Switzerland ; Neuroscience Center Zurich, University of Zurich and ETH Zurich Zurich, Switzerland
| | - Markus Rudin
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich Zurich, Switzerland ; Neuroscience Center Zurich, University of Zurich and ETH Zurich Zurich, Switzerland ; Institute of Pharmacology and Toxicology, University of Zurich Zurich, Switzerland
| | - Derya R Shimshek
- Autoimmunity, Transplantation and Inflammation/Neuroinflammation Department, Novartis Institutes for BioMedical Research Basel, Switzerland
| | - Nicolau Beckmann
- Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research Basel, Switzerland
| |
Collapse
|
27
|
Gutierrez JE, Rosenberg M, Duhaney M, Simon JA, Brueggenwerth G, Agris JM, Knopp EA. Phase 3 efficacy and safety trial of gadobutrol, a 1.0 molar macrocyclic MR imaging contrast agent, in patients referred for contrast-enhanced MR imaging of the central nervous system. J Magn Reson Imaging 2014; 41:788-96. [PMID: 24578298 DOI: 10.1002/jmri.24583] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/14/2014] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Gadobutrol is a 1.0 M macrocyclic magnetic resonance imaging (MRI) contrast agent. A study was performed to evaluate the efficacy and safety of gadobutrol-enhanced versus unenhanced imaging for central nervous system (CNS) lesion visualization and detection. MATERIALS AND METHODS An international, multicenter, open-label, Phase III clinical trial. Patients underwent unenhanced and gadobutrol 1.0 M-enhanced (0.1 mmol/kg BW) MR imaging using a standardized protocol. Unenhanced and combined unenhanced/gadobutrol-enhanced images were scored by three independent, blinded readers for degree of lesion enhancement, border delineation, internal morphology, and total number of lesions detected (primary efficacy variables). Exact match of the MR diagnoses with the final clinical diagnosis, detection of malignant CNS lesions, and confidence in diagnosis were secondary efficacy variables. RESULTS Of 343 enrolled patients, 321 were evaluated for efficacy. All primary efficacy endpoints were met: superiority was demonstrated for gadobutrol-enhanced versus unenhanced MR images (P < 0.0001 in all cases) for lesion enhancement, border delineation, and internal morphology. Noninferiority was met for mean number of lesions detected. There were improvements in the sensitivity of malignant lesion detection, without a loss in specificity, exact-match diagnostic accuracy, and reader confidence. Treatment-related adverse events were reported in 4.1% (n = 14); all were nonserious. CONCLUSION Gadobutrol 1.0M is an effective and well-tolerated contrast agent for CNS MRI.
Collapse
Affiliation(s)
- Juan E Gutierrez
- Neuroradiology Section, The University of Texas Health Science Center at San Antonio, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Ni D, Zhang J, Bu W, Xing H, Han F, Xiao Q, Yao Z, Chen F, He Q, Liu J, Zhang S, Fan W, Zhou L, Peng W, Shi J. Dual-targeting upconversion nanoprobes across the blood-brain barrier for magnetic resonance/fluorescence imaging of intracranial glioblastoma. ACS NANO 2014; 8:1231-42. [PMID: 24397730 DOI: 10.1021/nn406197c] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Surgical resection, one of the main clinical treatments of intracranial glioblastoma, bears the potential risk of incomplete excision due to the inherent infiltrative character of the glioblastoma. To maximize the accuracy of surgical resection, the magnetic resonance (MR) and fluorescence imaging are widely used for the tumor preoperative diagnosis and intraoperative positioning. However, present commercial MR contrast agents and fluorescent dyes can only function for single mode of imaging and are subject to poor blood-brain barrier (BBB) permeability and nontargeting-specificity, resulting in the apparent risks of inefficient diagnosis and resection of glioblastoma. Considering the unique MR/upconversion luminescence (UCL) bimodal imaging feature of upconversion nanoparticles (UCNPs), herein, we have developed a dual-targeting nanoprobe (ANG/PEG-UCNPs) to cross the BBB, target the glioblastoma, and then function as a simultaneous MR/NIR-to-NIR UCL bimodal imaging agent, which showed a much enhanced imaging performance in comparison with the clinically used single MRI contrast (Gd-DTPA) and fluorescent dye (5-ALA). Moreover, their biocompatibility, especially to brains, was systematically assessed by the histological/hematological examination, indicating a negligible in vivo toxicity. As a proof-of-concept, the ANG/PEG-UCNPs hold the great potential in MR diagnosis and fluorescence positioning of glioblastoma for the efficient tumor surgery.
Collapse
Affiliation(s)
- Dalong Ni
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Gianolio E, Cabella C, Colombo Serra S, Valbusa G, Arena F, Maiocchi A, Miragoli L, Tedoldi F, Uggeri F, Visigalli M, Bardini P, Aime S. B25716/1: a novel albumin-binding Gd-AAZTA MRI contrast agent with improved properties in tumor imaging. J Biol Inorg Chem 2014; 19:715-26. [DOI: 10.1007/s00775-014-1111-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/15/2014] [Indexed: 01/09/2023]
|
30
|
Calamante F. Arterial input function in perfusion MRI: a comprehensive review. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 74:1-32. [PMID: 24083460 DOI: 10.1016/j.pnmrs.2013.04.002] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/18/2013] [Accepted: 04/30/2013] [Indexed: 06/02/2023]
Abstract
Cerebral perfusion, also referred to as cerebral blood flow (CBF), is one of the most important parameters related to brain physiology and function. The technique of dynamic-susceptibility contrast (DSC) MRI is currently the most commonly used MRI method to measure perfusion. It relies on the intravenous injection of a contrast agent and the rapid measurement of the transient signal changes during the passage of the bolus through the brain. Central to quantification of CBF using this technique is the so-called arterial input function (AIF), which describes the contrast agent input to the tissue of interest. Due to its fundamental role, there has been a lot of progress in recent years regarding how and where to measure the AIF, how it influences DSC-MRI quantification, what artefacts one should avoid, and the design of automatic methods to measure the AIF. The AIF is also directly linked to most of the major sources of artefacts in CBF quantification, including partial volume effect, bolus delay and dispersion, peak truncation effects, contrast agent non-linearity, etc. While there have been a number of good review articles on DSC-MRI over the years, these are often comprehensive but, by necessity, with limited in-depth discussion of the various topics covered. This review article covers in greater depth the issues associated with the AIF and their implications for perfusion quantification using DSC-MRI.
Collapse
Affiliation(s)
- Fernando Calamante
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia; Department of Medicine, Austin Health and Northern Health, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
31
|
Whole-body diffusion-weighted imaging: is it all we need for detecting metastases in melanoma patients? Eur Radiol 2013; 23:3466-76. [DOI: 10.1007/s00330-013-2968-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/30/2013] [Accepted: 06/22/2013] [Indexed: 02/07/2023]
|
32
|
Klohs J, Politano IW, Deistung A, Grandjean J, Drewek A, Dominietto M, Keist R, Schweser F, Reichenbach JR, Nitsch RM, Knuesel I, Rudin M. Longitudinal Assessment of Amyloid Pathology in Transgenic ArcAβ Mice Using Multi-Parametric Magnetic Resonance Imaging. PLoS One 2013; 8:e66097. [PMID: 23840405 PMCID: PMC3686820 DOI: 10.1371/journal.pone.0066097] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 05/02/2013] [Indexed: 12/20/2022] Open
Abstract
Magnetic resonance imaging (MRI) can be used to monitor pathological changes in Alzheimer's disease (AD). The objective of this longitudinal study was to assess the effects of progressive amyloid-related pathology on multiple MRI parameters in transgenic arcAβ mice, a mouse model of cerebral amyloidosis. Diffusion-weighted imaging (DWI), T1-mapping and quantitative susceptibility mapping (QSM), a novel MRI based technique, were applied to monitor structural alterations and changes in tissue composition imposed by the pathology over time. Vascular function and integrity was studied by assessing blood-brain barrier integrity with dynamic contrast-enhanced MRI and cerebral microbleed (CMB) load with susceptibility weighted imaging and QSM. A linear mixed effects model was built for each MRI parameter to incorporate effects within and between groups (i.e. genotype) and to account for changes unrelated to the disease pathology. Linear mixed effects modelling revealed a strong association of all investigated MRI parameters with age. DWI and QSM in addition revealed differences between arcAβ and wt mice over time. CMBs became apparent in arcAβ mice with 9 month of age; and the CMB load reflected disease stage. This study demonstrates the benefits of linear mixed effects modelling of longitudinal imaging data. Moreover, the diagnostic utility of QSM and assessment of CMB load should be exploited further in studies of AD.
Collapse
Affiliation(s)
- Jan Klohs
- Institute for Biomedical Engineering, ETH and University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- * E-mail:
| | - Igna Wojtyna Politano
- Institute for Biomedical Engineering, ETH and University of Zurich, Zurich, Switzerland
| | - Andreas Deistung
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology I, Jena University Hospital – Friedrich Schiller University Jena, Jena, Germany
| | - Joanes Grandjean
- Institute for Biomedical Engineering, ETH and University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Anna Drewek
- Seminar für Statistik, ETH Zurich, Zurich, Switzerland
| | - Marco Dominietto
- Institute for Biomedical Engineering, ETH and University of Zurich, Zurich, Switzerland
| | - Ruth Keist
- Institute for Biomedical Engineering, ETH and University of Zurich, Zurich, Switzerland
| | - Ferdinand Schweser
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology I, Jena University Hospital – Friedrich Schiller University Jena, Jena, Germany
| | - Jürgen R. Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology I, Jena University Hospital – Friedrich Schiller University Jena, Jena, Germany
| | - Roger M. Nitsch
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Division of Psychiatry Research, University of Zurich, Zurich, Switzerland
| | - Irene Knuesel
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Markus Rudin
- Institute for Biomedical Engineering, ETH and University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
33
|
Dassler K, Scholle FD, Schütz G. Dynamic gadobutrol-enhanced MRI predicts early response to antivascular but not to antiproliferation therapy in a mouse xenograft model. Magn Reson Med 2013; 71:1826-33. [PMID: 23754607 DOI: 10.1002/mrm.24815] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/26/2013] [Accepted: 04/29/2013] [Indexed: 11/10/2022]
Abstract
PURPOSE Dynamic contrast-enhanced magnetic resonance imaging has been described as a method to assess tumor vascularity and, therefore, is discussed as a noninvasive biomarker for drug response prediction in tumor therapies. Because antiangiogenic and antiproliferative drugs are frequently combined for therapy, the aim was to investigate (1) the early response predictability and (2) the extent to which these therapy types influence dynamic contrast-enhanced magnetic resonance imaging with gadobutrol soon after therapy initiation. METHODS Mice bearing a KPL-4 tumor were treated with either bevacizumab as an antiangiogenic drug or trastuzumab as a cytotoxic anti-tumor drug. The gadobutrol-contrast agent exposure of the tumor was recorded before and at several time points after therapy initiation to examine the response prediction by dynamic contrast-enhanced magnetic resonance imaging. RESULTS Both therapies resulted in significant tumor growth attenuation over 30 days of therapy, but the individual response to each therapy was different. Specifically, bevacizumab affected the dynamic gadobutrol-enhanced MRI-derived area under the curve at early time points (≤8 days), while trastuzumab did not. CONCLUSION The area under the curve obtained from dynamic gadobutrol-enhanced MRI predicted early tumor response to the antiangiogenic drug bevacizumab, but not to the anti-tumor cell drug trastuzumab. This indicates that the area under the curve may be useful for assessing early antiangiogenic but not antiproliferative drug effects.
Collapse
Affiliation(s)
- Katrin Dassler
- MR & CT Contrast Media Research, Bayer Pharma AG, Berlin, Germany
| | | | | |
Collapse
|
34
|
Albumin-binding MR blood pool contrast agent improves diagnostic performance in human brain tumour: comparison of two contrast agents for glioblastoma. Eur Radiol 2012; 23:1093-101. [DOI: 10.1007/s00330-012-2678-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 08/30/2012] [Accepted: 09/22/2012] [Indexed: 10/27/2022]
|
35
|
Liang Z, Ma L, Wang D, Huan Y, Li P, Yu J, Yao Z, Chen S, He H, Feng X, Breuer J. Efficacy and Safety of Gadobutrol (1.0 M) versus Gadopentetate Dimeglumine (.5 M) for Enhanced Mri of Cns Lesions: A Phase Iii, Multicenter, Single-blind, Randomized Study in Chinese Patients. MAGNETIC RESONANCE INSIGHTS 2012. [DOI: 10.4137/mri.s9348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The aim of this study was to compare the efficacy and safety of macrocyclic gadobutrol (1.0 M) with linear gadopentetate dimeglumine (0.5 M) for contrast-enhanced magnetic resonance imaging (MRI) of central nervous system (CNS) lesions in Chinese patients (N = 147) with known or suspected CNS lesions, who were enrolled in this single-blind, randomized, parallel-group study. Three blinded independent readers evaluated all efficacy variables. The primary efficacy variable was the difference between the two agents for the change in contrast-to-noise ratio (CNR) between non-enhanced and contrast-enhanced scans of lesions. Secondary outcomes included mean change in number of lesions detected before and after contrast enhancement, diagnostic confidence, and safety and tolerability parameters. Gadobutrol was non-inferior to gadopentetate dimeglumine in respect to the difference in the mean change in CNR (6.94; 95% confidence interval [CI] lower limit: -3.90; predefined maximum 95% CI lower limit: -6.52). The mean change in the number of CNS lesions detected was greater with gadobutrol versus gadopentetate dimeglumine (1.2 vs. 0.2 lesions). Diagnostic confidence was classified as ‘high’ for more patients with gadobutrol versus gadopentetate dimeglumine by the investigators (58.8% vs. 55.4%) and by the three blinded readers (63.6% vs. 55.7%, 23.7% vs. 18.0% and 81.7% vs. 81.0%). Both agents were well tolerated by participating patients. We concluded that in Chinese patients with CNS lesions, gadobutrol (1.0 M) was as effective and well tolerated in contrast-enhanced MRI as gadopentetate dimeglumine (0.5 M). Gadobutrol provided improved visualization of CNS lesions compared with gadopentetate dimeglumine, with a comparable tolerability profile.
Collapse
Affiliation(s)
- Zonghui Liang
- Radiology Department, Huashan Hospital, Fudan University, Shanghai, China
- Radiology Department, Shanghai Jing'an District Centre Hospital (Fudan University Huashan Hospital Jing'an Branch), Shanghai, China
| | - Lin Ma
- Radiology Department, Chinese PLA 301st Hospital, Beijing, China
| | - Dehang Wang
- Radiology Department, The People's Hospital of Jiangsu Province, Jiangsu, China
| | - Yi Huan
- Radiology Department, Xijing Hospital, Shanxi, China
| | - Ping Li
- Bayer Healthcare Company Ltd., Beijing, China
| | - Jun Yu
- Radiology Department, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhenwei Yao
- Radiology Department, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuang Chen
- Radiology Department, Huashan Hospital, Fudan University, Shanghai, China
| | - Huijin He
- Radiology Department, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoyuan Feng
- Radiology Department, Huashan Hospital, Fudan University, Shanghai, China
| | | |
Collapse
|
36
|
Tourdias T, Roggerone S, Filippi M, Kanagaki M, Rovaris M, Miller DH, Petry KG, Brochet B, Pruvo JP, Radüe EW, Dousset V. Assessment of disease activity in multiple sclerosis phenotypes with combined gadolinium- and superparamagnetic iron oxide-enhanced MR imaging. Radiology 2012; 264:225-33. [PMID: 22723563 DOI: 10.1148/radiol.12111416] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To compare magnetic resonance (MR) imaging features of multiple sclerosis (MS) lesions after the administration of a gadolinium-based contrast agent and ultrasmall superparamagnetic iron oxide (USPIO) particles among the clinical phenotypes of MS and over time. MATERIALS AND METHODS This study was approved by the local ethics committee, and written informed consent was obtained from all patients. Twenty-four patients with MS (10 with relapsing and 14 with progressive forms) underwent clinical and gadolinium- and USPIO-enhanced MR examinations at baseline and 6-month follow-up. The number of lesions that enhanced with gadolinium alone, USPIO alone, or both was compared with the Pearson χ2 or Fisher exact test, and lesion sizes were compared with the Wilcoxon Mann-Whitney U test. At 6-month follow-up, the lesion signal intensity on precontrast T1-weighted images and the enhancement after repeat injection of the contrast agent were compared with the baseline postcontrast imaging features by using the McNemar test. RESULTS Fifty-six lesions were considered active owing to contrast enhancement at baseline; 37 lesions (66%) in 10 patients enhanced with gadolinium. The use of USPIO helped detect 19 additional lesions (34%), and two additional patients were classified as having active disease. Thus, the use of both agents enabled detection of 51% (19 of 37 lesions) more lesions than with gadolinium alone. Enhanced lesions were more frequently observed in the relapsing compared with the progressive forms of MS (P<.0001). USPIO enhancement, in the form of ringlike patterns, could also be observed on T1-weighted images in patients with progressive MS, enabling the detection of five lesions in addition to the five detected with gadolinium in this phenotype. Lesions that enhanced with both contrast agents at baseline were larger (mean size, 6.5 mm±3.8; P=.001) and were more likely to persistently enhance at 6-month follow-up (seven of 27 lesions, P<.0001) compared with those that enhanced only with gadolinium (mean size, 4.9 mm±2.2; one of nine lesions) or USPIO (mean size, 3.5 mm±1.5; 0 of 17 lesions). CONCLUSION The combination of gadolinium and USPIO in patients with MS can help identify additional active lesions compared with the current standard, the gadolinium-only approach, even in progressive forms of MS. Lesions that enhance with both agents may exhibit a more aggressive evolution than those that enhance with only one contrast agent.
Collapse
Affiliation(s)
- Thomas Tourdias
- Department of Neuroradiology and INSERM U1049, CHU de Bordeaux, Université Bordeaux Segalen, Bordeaux, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gadolinium-staining reveals amyloid plaques in the brain of Alzheimer's transgenic mice. Neurobiol Aging 2012; 33:1533-44. [DOI: 10.1016/j.neurobiolaging.2011.03.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 03/03/2011] [Accepted: 03/11/2011] [Indexed: 01/05/2023]
|
38
|
Yan H, Wang L, Wang J, Weng X, Lei H, Wang X, Jiang L, Zhu J, Lu W, Wei X, Li C. Two-order targeted brain tumor imaging by using an optical/paramagnetic nanoprobe across the blood brain barrier. ACS NANO 2012; 6:410-420. [PMID: 22148835 DOI: 10.1021/nn203749v] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Surgical resection is a mainstay of brain tumor treatments. However, the completed excision of malignant brain tumor is challenged by its infiltrative nature. Contrast enhanced magnetic resonance imaging is widely used for defining brain tumor in clinic. However its ability in tumor visualization is hindered by the transient circulation lifetime, nontargeting specificity, and poor blood brain barrier (BBB) permeability of the commercially available MR contrast agents. In this work, we developed a two-order targeted nanoprobe in which MR/optical imaging reporters, tumor vasculature targeted cyclic [RGDyK] peptides, and BBB-permeable Angiopep-2 peptides are labeled on the PAMAM-G5 dendrimer. This nanoprobe is supposed to first target the α(V)β(3) integrin on tumor vasculatures. Increased local concentration of nanoprobe facilitates the association between BBB-permeable peptides and the low-density lipoprotein receptor-related protein (LRP) receptors on the vascular endothelial cells, which further accelerates BBB transverse of the nanoprobe via LRP receptor-mediated endocytosis. The nanoprobes that have penetrated the BBB secondly target the brain tumor because both α(V)β(3) integrin and LRP receptor are highly expressed on the tumor cells. In vivo imaging studies demonstrated that this nanoprobe not only efficiently crossed intact BBB in normal mice, but also precisely delineated the boundary of the orthotropic U87MG human glioblastoma xenograft with high target to background signal ratio. Overall, this two-order targeted nanoprobe holds the promise to noninvasively visualize brain tumors with uncompromised BBB and provides the possibility for real-time optical-image-guided brain tumor resection during surgery.
Collapse
Affiliation(s)
- Huihui Yan
- Department of Gastroenterology, Zhongshan Hospital affiliated with Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|