1
|
O'Regan PW, Harold-Barry A, O'Mahony AT, Crowley C, Joyce S, Moore N, O'Connor OJ, Henry MT, Ryan DJ, Maher MM. Ultra-low-dose chest computed tomography with model-based iterative reconstruction in the analysis of solid pulmonary nodules: A prospective study. World J Radiol 2024; 16:668-677. [PMID: 39635307 PMCID: PMC11612801 DOI: 10.4329/wjr.v16.i11.668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/10/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Incidental pulmonary nodules are an increasingly common finding on computed tomography (CT) scans of the thorax due to the exponential rise in CT examinations in everyday practice. The majority of incidental pulmonary nodules are benign and correctly identifying the small number of malignant nodules is challenging. Ultra-low-dose CT (ULDCT) has been shown to be effective in diagnosis of respiratory pathology in comparison with traditional standard dose techniques. Our hypothesis was that ULDCT chest combined with model-based iterative reconstruction (MBIR) is comparable to standard dose CT (SDCT) chest in the analysis of pulmonary nodules with significant reduction in radiation dose. AIM To prospectively compare ULDCT chest combined with MBIR with SDCT chest in the analysis of solid pulmonary nodules. METHODS A prospective cohort study was conducted on adult patients (n = 30) attending a respiratory medicine outpatient clinic in a tertiary referral university hospital for surveillance of previously detected indeterminate pulmonary nodules on SDCT chest. This study involved the acquisition of a reference SDCT chest followed immediately by an ULDCT chest. Nodule identification, nodule characterisation, nodule measurement, objective and subjective image quality and radiation dose were compared between ULDCT with MBIR and SDCT chest. RESULTS One hundred solid nodules were detected on ULDCT chest and 98 on SDCT chest. There was no significant difference in the characteristics of correctly identified nodules when comparing SDCT chest to ULDCT chest protocols. Signal-to-noise ratio was significantly increased in the ULDCT chest in all areas except in the paraspinal muscle at the maximum cardiac diameter level (P < 0.001). The mean subjective image quality score for overall diagnostic acceptability was 8.9/10. The mean dose length product, computed tomography volume dose index and effective dose for the ULDCT chest protocol were 5.592 mGy.cm, 0.16 mGy and 0.08 mSv respectively. These were significantly less than the SDCT chest protocol (P < 0.001) and represent a radiation dose reduction of 97.6%. CONCLUSION ULDCT chest combined with MBIR is non-inferior to SDCT chest in the analysis of previously identified solid pulmonary nodules and facilitates a large reduction in radiation dose.
Collapse
Affiliation(s)
- Patrick W O'Regan
- Department of Radiology, School of Medicine, University College Cork, Cork T12 AK54, Ireland
| | | | | | - Claire Crowley
- Department of Radiology, Mercy University Hospital, Cork T12WE28, Ireland
| | - Stella Joyce
- Department of Radiology, Cork University Hospital, Cork T12 DC4A, Ireland
| | - Niamh Moore
- Department of Radiology, School of Medicine, University College Cork, Cork T12 AK54, Ireland
| | - Owen J O'Connor
- Department of Radiology, Cork University Hospital, Cork T12 DC4A, Ireland
| | - Michael T Henry
- Department of Respiratory Medicine, Cork University Hospital, Cork T12 DC4A, Ireland
| | - David J Ryan
- Department of Radiology, School of Medicine, University College Cork, Cork T12 AK54, Ireland
| | - Michael M Maher
- Department of Radiology, School of Medicine, University College Cork, Cork T12 AK54, Ireland
- Department of Radiology, Cork University Hospital, Cork T12 DC4A, Ireland
| |
Collapse
|
2
|
Jerng S, Hong E, Lee G, Lee B, Jeon JH, Kim J, Chun S. Integration of Vertical Graphene Onto a Tunnelling Cathode for Digital X-Ray Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403721. [PMID: 39148365 PMCID: PMC11497061 DOI: 10.1002/advs.202403721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/08/2024] [Indexed: 08/17/2024]
Abstract
As an alternative to thermionic X-ray generators, cold-cathode X-ray tubes are being developed for portable and multichannel tomography. Field emission propagating from needle structures such as carbon nanotubes or Si tips currently dominates related research and development, but various obstacles prevent the widespread of this technology. An old but simple electron emission design is the planar tunnelling cathode using a metal-oxide-semiconductor (MOS) structure, which achieves narrow beam dispersion and low supplying voltage. Directly grown vertical graphene (VG) is employed as the gate electrode of MOS and tests its potential as a new emission source. The emission efficiency of the device is initially ≈1% because of unavoidable fabrication damage during the patterning processes; it drastically improves to >40% after ozone treatment. The resulting emission current obeys the Fowler-Nordheim tunnelling model, and the enhanced emission is attributed to the effective gate thickness reduction by ozone treatment. As a proof-of-concept experiment, a clustered array of 2140 cells is integrated into a system that provides mA-class emission current for X-ray generation. With pulsed digital excitations, X-ray imaging of a chest phantom, demonstrating the feasibility of using a VG MOS electron emission source as a new and innovative X-ray generator is realized.
Collapse
Affiliation(s)
| | - Eunju Hong
- Digital X‐ray taskArtificial Intelligence LabLG ElectronicsSeoul07796South Korea
| | - Giwon Lee
- Digital X‐ray taskArtificial Intelligence LabLG ElectronicsSeoul07796South Korea
| | - Byungkee Lee
- Digital X‐ray taskArtificial Intelligence LabLG ElectronicsSeoul07796South Korea
| | - Jae Ho Jeon
- Department of PhysicsSejong UniversitySeoul05006South Korea
| | - Jinah Kim
- Digital X‐ray taskArtificial Intelligence LabLG ElectronicsSeoul07796South Korea
| | | |
Collapse
|
3
|
Chao L, Wang Y, Zhang T, Shan W, Zhang H, Wang Z, Li Q. Joint denoising and interpolating network for low-dose cone-beam CT reconstruction under hybrid dose-reduction strategy. Comput Biol Med 2024; 168:107830. [PMID: 38086140 DOI: 10.1016/j.compbiomed.2023.107830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/12/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
Cone-beam computed tomography (CBCT) is generally reconstructed with hundreds of two-dimensional X-Ray projections through the FDK algorithm, and its excessive ionizing radiation of X-Ray may impair patients' health. Two common dose-reduction strategies are to either lower the intensity of X-Ray, i.e., low-intensity CBCT, or reduce the number of projections, i.e., sparse-view CBCT. Existing efforts improve the low-dose CBCT images only under a single dose-reduction strategy. In this paper, we argue that applying the two strategies simultaneously can reduce dose in a gentle manner and avoid the extreme degradation of the projection data in a single dose-reduction strategy, especially under ultra-low-dose situations. Therefore, we develop a Joint Denoising and Interpolating Network (JDINet) in projection domain to improve the CBCT quality with the hybrid low-intensity and sparse-view projections. Specifically, JDINet mainly includes two important components, i.e., denoising module and interpolating module, to respectively suppress the noise caused by the low-intensity strategy and interpolate the missing projections caused by the sparse-view strategy. Because FDK actually utilizes the projection information after ramp-filtering, we develop a filtered structural similarity constraint to help JDINet focus on the reconstruction-required information. Afterward, we employ a Postprocessing Network (PostNet) in the reconstruction domain to refine the CBCT images that are reconstructed with denoised and interpolated projections. In general, a complete CBCT reconstruction framework is built with JDINet, FDK, and PostNet. Experiments demonstrate that our framework decreases RMSE by approximately 8 %, 15 %, and 17 %, respectively, on the 1/8, 1/16, and 1/32 dose data, compared to the latest methods. In conclusion, our learning-based framework can be deeply imbedded into the CBCT systems to promote the development of CBCT. Source code is available at https://github.com/LianyingChao/FusionLowDoseCBCT.
Collapse
Affiliation(s)
- Lianying Chao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanli Wang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - TaoTao Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China; Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Wenqi Shan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haobo Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiwei Wang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiang Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Kim CH, Chung MJ, Cha YK, Oh S, Kim KG, Yoo H. The impact of deep learning reconstruction in low dose computed tomography on the evaluation of interstitial lung disease. PLoS One 2023; 18:e0291745. [PMID: 37756357 PMCID: PMC10529569 DOI: 10.1371/journal.pone.0291745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
To evaluate the effect of the deep learning model reconstruction (DLM) method in terms of image quality and diagnostic agreement in low-dose computed tomography (LDCT) for interstitial lung disease (ILD), 193 patients who underwent LDCT for suspected ILD were retrospectively reviewed. Datasets were reconstructed using filtered back projection (FBP), adaptive statistical iterative reconstruction Veo (ASiR-V), and DLM. For image quality analysis, the signal, noise, signal-to-noise ratio (SNR), blind/referenceless image spatial quality evaluator (BRISQUE), and visual scoring were evaluated. Also, CT patterns of usual interstitial pneumonia (UIP) were classified according to the 2022 idiopathic pulmonary fibrosis (IPF) diagnostic criteria. The differences between CT images subjected to FBP, ASiR-V 30%, and DLM were evaluated. The image noise and BRISQUE scores of DLM images was lower and SNR was higher than that of the ASiR-V and FBP images (ASiR-V vs. DLM, p < 0.001 and FBP vs. DLR-M, p < 0.001, respectively). The agreement of the diagnostic categorization of IPF between the three reconstruction methods was almost perfect (κ = 0.992, CI 0.990-0.994). Image quality was improved with DLM compared to ASiR-V and FBP.
Collapse
Affiliation(s)
- Chu hyun Kim
- Center for Health Promotion, Samsung Medical Center, Seoul, Republic of Korea
- Department of Radiology and AI Research Center, Samsung Medical Center, Sungkyunkwan University, Seoul, Korea
| | - Myung Jin Chung
- Department of Radiology and AI Research Center, Samsung Medical Center, Sungkyunkwan University, Seoul, Korea
- Department of Data Convergence and Future Medicine, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yoon Ki Cha
- Department of Radiology and AI Research Center, Samsung Medical Center, Sungkyunkwan University, Seoul, Korea
| | - Seok Oh
- Gil Medical Center, Department of Biomedical Engineering, Gachon University College of Medicine, Incheon, Korea
| | - Kwang gi Kim
- Gil Medical Center, Department of Biomedical Engineering, Gachon University College of Medicine, Incheon, Korea
| | - Hongseok Yoo
- Division of Pulmonary and Critical Care Medicine, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
| |
Collapse
|
5
|
Park MS, Ha HI, Ahn JH, Lee IJ, Lim HK. Reducing contrast-agent volume and radiation dose in CT with 90-kVp tube voltage, high tube current modulation, and advanced iteration algorithm. PLoS One 2023; 18:e0287214. [PMID: 37319309 PMCID: PMC10270572 DOI: 10.1371/journal.pone.0287214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023] Open
Abstract
Increasing utilization of computed tomography (CT) has raised concerns regarding CT radiation dose and technology has been developed to achieve an appropriate balance between image quality, radiation dose, and the amount of contrast material. This study was planned to evaluate the image quality and radiation dose in pancreatic dynamic computed tomography (PDCT) with 90-kVp tube voltage and reduction of the standard amount of contrast agent, compared with 100-kVp PDCT of the research hospital's convention. Total of 51 patients with both CT protocols were included. The average Hounsfield units (HU) values of the abdominal organs and image noise were measured for objective image quality analysis. Two radiologists evaluated five categories of image qualities such as subjective image noise, visibility of small structure, beam hardening or streak artifact, lesion conspicuity and overall diagnostic performance for subjective image quality analysis. The total amount of contrast agent, radiation dose, and image noise decreased in the low-kVp group, by 24.4%, 31.7%, and 20.6%, respectively (p < 0.001). The intraobserver and interobserver agreements were moderate to substantial (k = 0.4-0.8). The contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and figure of merit of the almost organs except psoas muscle in the low-kVp group were significantly higher (p < 0.001). Except for lesion conspicuity, both reviewers judged that subjective image quality of the 90-kVp group was better (p < 0.001). With 90-kVp tube voltage, 25% reduced contrast agent volume with advanced iteration algorithm and high tube current modulation achieved radiation dose reduction of 31.7%, as well as better image quality and diagnostic confidence.
Collapse
Affiliation(s)
- Min Su Park
- Department of Radiology, Hallym University Sacred Heart Hospital, Anyang-si, Gyeonggi-do, Republic of Korea
| | - Hong Il Ha
- Department of Radiology, Hallym University Sacred Heart Hospital, Anyang-si, Gyeonggi-do, Republic of Korea
| | - Jhii-Hyun Ahn
- Department of Radiology, Yonsei University Wonju College of Medicine, Wonju Severance Christian Hospital, Wonju, Gangwon-do, Republic of Korea
| | - In Jae Lee
- Department of Radiology, Hallym University Sacred Heart Hospital, Anyang-si, Gyeonggi-do, Republic of Korea
| | - Hyun Kyung Lim
- Department of Radiology, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| |
Collapse
|
6
|
Agostini A, Borgheresi A, Mariotti F, Ottaviani L, Carotti M, Valenti M, Giovagnoni A. New Frontiers in Oncological Imaging With Computed Tomography: From Morphology to Function. Semin Ultrasound CT MR 2023; 44:214-227. [PMID: 37245886 DOI: 10.1053/j.sult.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The latest evolutions in Computed Tomography (CT) technology have several applications in oncological imaging. The innovations in hardware and software allow for the optimization of the oncological protocol. Low-kV acquisitions are possible thanks to the new powerful tubes. Iterative reconstruction algorithms and artificial intelligence are helpful for the management of image noise during image reconstruction. Functional information is provided by spectral CT (dual-energy and photon counting CT) and perfusion CT.
Collapse
Affiliation(s)
- Andrea Agostini
- Department of Clinical, Special and Dental Sciences. University Politecnica delle Marche, Ancona, Italy; Department of Radiological Sciences, Division of Clinical Radiology, University Hospital "Azienda Ospedaliero Universitaria delle Marche", Ancona, Italy.
| | - Alessandra Borgheresi
- Department of Clinical, Special and Dental Sciences. University Politecnica delle Marche, Ancona, Italy; Department of Radiological Sciences, Division of Clinical Radiology, University Hospital "Azienda Ospedaliero Universitaria delle Marche", Ancona, Italy
| | - Francesco Mariotti
- Department of Radiological Sciences, Division of Medical Physics, University Hospital "Azienda Ospedaliero Universitaria delle Marche", Ancona, Italy
| | - Letizia Ottaviani
- Department of Radiological Sciences, Division of Clinical Radiology, University Hospital "Azienda Ospedaliero Universitaria delle Marche", Ancona, Italy
| | - Marina Carotti
- Department of Clinical, Special and Dental Sciences. University Politecnica delle Marche, Ancona, Italy; Department of Radiological Sciences, Division of Clinical Radiology, University Hospital "Azienda Ospedaliero Universitaria delle Marche", Ancona, Italy
| | - Marco Valenti
- Department of Radiological Sciences, Division of Medical Physics, University Hospital "Azienda Ospedaliero Universitaria delle Marche", Ancona, Italy
| | - Andrea Giovagnoni
- Department of Clinical, Special and Dental Sciences. University Politecnica delle Marche, Ancona, Italy; Department of Radiological Sciences, Division of Clinical Radiology, University Hospital "Azienda Ospedaliero Universitaria delle Marche", Ancona, Italy
| |
Collapse
|
7
|
Koo SA, Jung Y, Um KA, Kim TH, Kim JY, Park CH. Clinical Feasibility of Deep Learning-Based Image Reconstruction on Coronary Computed Tomography Angiography. J Clin Med 2023; 12:jcm12103501. [PMID: 37240607 DOI: 10.3390/jcm12103501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/24/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
This study evaluated the feasibility of deep-learning-based image reconstruction (DLIR) on coronary computed tomography angiography (CCTA). By using a 20 cm water phantom, the noise reduction ratio and noise power spectrum were evaluated according to the different reconstruction methods. Then 46 patients who underwent CCTA were retrospectively enrolled. CCTA was performed using the 16 cm coverage axial volume scan technique. All CT images were reconstructed using filtered back projection (FBP); three model-based iterative reconstructions (MBIR) of 40%, 60%, and 80%; and three DLIR algorithms: low (L), medium (M), and high (H). Quantitative and qualitative image qualities of CCTA were compared according to the reconstruction methods. In the phantom study, the noise reduction ratios of MBIR-40%, MBIR-60%, MBIR-80%, DLIR-L, DLIR-M, and DLIR-H were 26.7 ± 0.2%, 39.5 ± 0.5%, 51.7 ± 0.4%, 33.1 ± 0.8%, 43.2 ± 0.8%, and 53.5 ± 0.1%, respectively. The pattern of the noise power spectrum of the DLIR images was more similar to FBP images than MBIR images. In a CCTA study, CCTA yielded a significantly lower noise index with DLIR-H reconstruction than with the other reconstruction methods. DLIR-H showed a higher SNR and CNR than MBIR (p < 0.05). The qualitative image quality of CCTA with DLIR-H was significantly higher than that of MBIR-80% or FBP. The DLIR algorithm was feasible and yielded a better image quality than the FBP or MBIR algorithms on CCTA.
Collapse
Affiliation(s)
- Seul Ah Koo
- Department of Radiology and The Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Yunsub Jung
- Research Team, GE Healthcare Korea, Seoul 04637, Republic of Korea
| | - Kyoung A Um
- Research Team, GE Healthcare Korea, Seoul 04637, Republic of Korea
| | - Tae Hoon Kim
- Department of Radiology and The Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Ji Young Kim
- Department of Radiology and The Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Chul Hwan Park
- Department of Radiology and The Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| |
Collapse
|
8
|
Ippolito D, Maino C, Pecorelli A, Salemi I, Gandola D, Riva L, Talei Franzesi C, Sironi S. Application of low-dose CT combined with model-based iterative reconstruction algorithm in oncologic patients during follow-up: dose reduction and image quality. Br J Radiol 2021; 94:20201223. [PMID: 34233459 PMCID: PMC8764930 DOI: 10.1259/bjr.20201223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 05/26/2021] [Accepted: 06/21/2021] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES To compare image quality and radiation dose of CT images reconstructed with model-based iterative reconstruction (MBIR) and hybrid-iterative (HIR) algorithm in oncologic patients. METHODS 125 oncologic patients underwent both contrast-enhanced low- (100 kV), and standard (120 kV) dose CT, were enrolled. Image quality was assessed by using a 4-point Likert scale. CT attenuation values, expressed in Hounsfield unit (HU), were recorded within a regions of interest (ROI) of liver, spleen, paraspinal muscle, aortic lumen, and subcutaneous fat tissue. Image noise, expressed as standard deviation (SD), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were calculated. Radiation dose were analyzed. Paired Student's t-test was used to compare all continuous variables. RESULTS The overall median score assessed as image quality for CT images with the MBIR algorithm was significantly higher in comparison with HIR [4 (range 3-4) vs 3 (3-4), p = 0.017].CT attenuation values and SD were significantly higher and lower, respectively, in all anatomic districts in images reconstructed with MBIR in comparison with HIR ones (all p < 0.001). SNR and CNR values were higher in CT images reconstructed with MBIR, reaching a significant difference in all districts (all p < 0.001). Radiation dose were significantly lower in the MBIR group compared with the HIR group (p < 0.001). CONCLUSIONS MBIR combined with low-kV setting allows an important dose reduction in whole-body CT imaging, reaching a better image quality both qualitatively and quantitatively. ADVANCES IN KNOWLEDGE MBIR with low-dose approach allows a reduction of dose exposure, maintaining high image quality, especially in patients which deserve a longlasting follow-up.
Collapse
Affiliation(s)
- Davide Ippolito
- Department of Diagnostic Radiology, San Gerardo Hospital, Monza, MB, Italy
| | - Cesare Maino
- Department of Diagnostic Radiology, San Gerardo Hospital, Monza, MB, Italy
| | - Anna Pecorelli
- Department of Diagnostic Radiology, San Gerardo Hospital, Monza, MB, Italy
| | - Ilaria Salemi
- Department of Diagnostic Radiology, San Gerardo Hospital, Monza, MB, Italy
| | - Davide Gandola
- Department of Diagnostic Radiology, San Gerardo Hospital, Monza, MB, Italy
| | - Luca Riva
- Department of Diagnostic Radiology, San Gerardo Hospital, Monza, MB, Italy
| | | | - Sandro Sironi
- Department of Diagnostic Radiology, H Papa Giovanni XXIII, Bergamo, BG, Italy
| |
Collapse
|
9
|
Singh R, Wu W, Wang G, Kalra MK. Artificial intelligence in image reconstruction: The change is here. Phys Med 2020; 79:113-125. [DOI: 10.1016/j.ejmp.2020.11.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 12/19/2022] Open
|
10
|
Tao S, Rajendran K, Zhou W, Fletcher JG, McCollough CH, Leng S. Noise reduction in CT image using prior knowledge aware iterative denoising. Phys Med Biol 2020; 65. [PMID: 33065559 DOI: 10.1088/1361-6560/abc231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/16/2020] [Indexed: 11/11/2022]
Abstract
The clinical demand for low image noise often limits the slice thickness used in many CT applications. However, a thick-slice image is more susceptible to longitudinal partial volume effects, which can blur key anatomic structures and pathologies of interest. In this work, we develop a prior-knowledge-aware iterative denoising (PKAID) framework that utilizes spatial data redundancy in the slice increment direction to generate low-noise, thin-slice images, and demonstrate its application in non-contrast head CT exams. The proposed technique takes advantage of the low-noise of thicker images and exploits the structural similarity between the thick- and thin-slice images to reduce noise in the thin-slice image. Phantom data and patient cases (n=3) of head CT were used to assess performance of this method. Images were reconstructed at clinically-utilized slice thickness (5 mm) and thinner slice thickness (2 mm). PKAID was used to reduce image noise in 2 mm images using the 5 mm images as low-noise prior. Noise amplitude, noise power spectra (NPS), modulation transfer function (MTF), and slice sensitivity profiles (SSP) of images before/after denoising were analyzed. The NPS and MTF analysis showed that PKAID preserved noise texture and resolution of the original thin-slice image, while reducing noise to the level of thick-slice image. The SSP analysis showed that the slice thickness of the original thin-slice image was retained. Patient examples demonstrated that PKAID-processed, thin-slice images better delineated brain structures and key pathologies such as subdural hematoma compared to the clinical 5 mm images, while additionally reducing image noise. To test an alternative PKAID utilization for dose reduction, a head exam with 40% dose reduction was simulated using projection-domain noise insertion. The image of 5 mm slice thickness was then denoised using PKAID. The results showed that the PKAID-processed reduced-dose images maintained similar noise and image quality compared to the full-dose images.
Collapse
Affiliation(s)
- Shengzhen Tao
- Radiology, Mayo Clinic Minnesota, 200 First St SW, Rochester, Rochester, Minnesota, 55905-0002, UNITED STATES
| | - Kishore Rajendran
- Radiology, Mayo Clinic , 200 First street SW, Rochester, Minnesota, 55905, UNITED STATES
| | - Wei Zhou
- Radiology, University of Colorado Denver, Denver, Colorado, UNITED STATES
| | - Joel G Fletcher
- Radiology, Mayo Clinic , Rochester, Minnesota, UNITED STATES
| | - Cynthia H McCollough
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA, Rochester, Minnesota, UNITED STATES
| | - Shuai Leng
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA, Rochester, UNITED STATES
| |
Collapse
|
11
|
Booij R, Budde RPJ, Dijkshoorn ML, van Straten M. Technological developments of X-ray computed tomography over half a century: User's influence on protocol optimization. Eur J Radiol 2020; 131:109261. [PMID: 32937253 DOI: 10.1016/j.ejrad.2020.109261] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/11/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022]
Abstract
Since the introduction of Computed Tomography (CT), technological improvements have been impressive. At the same time, the number of adjustable acquisition and reconstruction parameters has increased substantially. Overall, these developments led to improved image quality at a reduced radiation dose. However, many parameters are interrelated and part of automated algorithms. This makes it more complicated to adjust them individually and more difficult to comprehend their influence on CT protocol adjustments. Moreover, the user's influence in adapting protocol parameters is sometimes limited by the manufacturer's policy or the user's knowledge. As a consequence, optimization can be a challenge. A literature search in Embase, Medline, Cochrane, and Web of Science was performed. The literature was reviewed with the objective to collect information regarding technological developments in CT over the past five decades and the role of the associated acquisition and reconstruction parameters in the optimization process.
Collapse
Affiliation(s)
- Ronald Booij
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, P.O. Box 2240, 3000 CA, The Netherlands.
| | - Ricardo P J Budde
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, P.O. Box 2240, 3000 CA, The Netherlands.
| | - Marcel L Dijkshoorn
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, P.O. Box 2240, 3000 CA, The Netherlands.
| | - Marcel van Straten
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, P.O. Box 2240, 3000 CA, The Netherlands.
| |
Collapse
|
12
|
Comparison of quantitative image quality of cardiac computed tomography between raw-data-based and model-based iterative reconstruction algorithms with an emphasis on image sharpness. Pediatr Radiol 2020; 50:1570-1578. [PMID: 32591981 DOI: 10.1007/s00247-020-04741-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/12/2020] [Accepted: 05/22/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Image sharpness is commonly degraded on cardiac CT images reconstructed using iterative reconstruction algorithms. OBJECTIVE To compare the image quality of cardiac CT between raw-data-based and model-based iterative reconstruction algorithms developed by the same CT vendor in children and young adults with congenital heart disease. MATERIALS AND METHODS In 29 patients with congenital heart disease, we reconstructed 39 cardiac CT datasets using raw-data-based and model-based iterative reconstruction algorithms. We performed quantitative analysis of image sharpness using distance25-75% and angle25-75% on a line density profile across an edge of the descending thoracic aorta in addition to CT attenuation, image noise, signal-to-noise ratio and contrast-to-noise ratio. We compared these quantitative image-quality measures between the two algorithms. RESULTS CT attenuation did not show significant differences between the algorithms (P>0.05) except in the aorta. Image noise was small but significantly higher in the model-based algorithm than in the raw-data-based algorithm (4.8±2.3 Hounsfield units [HU] vs. 4.7±2.1 HU, P<0.014). Signal-to-noise ratio (110.2±50.9 vs. 108.4±50.4, P=0.050) and contrast-to-noise ratio (91.0±45.7 vs. 89.6±45.1, P=0.063) showed marginal significance between the two algorithms. The model-based algorithm showed a significantly smaller distance25-75% (1.4±0.4 mm vs. 1.6±0.3 mm, P<0.001) and a significantly higher angle25-75% (77.0±4.3° vs. 74.1±5.7°, P<0.001) than the raw-data-based algorithm. CONCLUSION Compared with the raw-data-based algorithm, the model-based iterative reconstruction algorithm demonstrated better image sharpness and higher image noise on cardiac CT in patients with congenital heart disease.
Collapse
|
13
|
Influence of acquisition settings and radiation exposure on CT lung densitometry-An anthropomorphic ex vivo phantom study. PLoS One 2020; 15:e0237434. [PMID: 32797096 PMCID: PMC7428081 DOI: 10.1371/journal.pone.0237434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 07/28/2020] [Indexed: 11/19/2022] Open
Abstract
Objectives To systematically evaluate the influence of acquisition settings in conjunction with raw-data based iterative image reconstruction (IR) on lung densitometry based on multi-row detector computed tomography (CT) in an anthropomorphic chest phantom. Materials and methods Ten porcine heart-lung explants were mounted in an ex vivo chest phantom shell, six with highly and four with low attenuating chest wall. CT (Somatom Definition Flash, Siemens Healthineers) was performed at 120kVp and 80kVp, each combined with current-time products of 120, 60, 30, and 12mAs, and was reconstructed with filtered back projection (FBP) and IR (Safire, Siemens Healthineers). Mean lung density (LD), air density (AD) and noise were measured by semi-automated region-of interest (ROI) analysis, with 120kVp/120 mAs serving as the standard of reference. Results Using IR, noise in lung parenchyma was reduced by ~ 31% at high attenuating chest wall and by ~ 22% at low attenuating chest wall compared to FBP, respectively (p<0.05). IR induced changes in the order of ±1 HU to mean absolute LD and AD compared to corresponding FBP reconstructions which were statistically significant (p<0.05). Conclusions Densitometry is influenced by acquisition parameters and reconstruction algorithms to a degree that may be clinically negligible. However, in longitudinal studies and clinical research identical protocols and potentially other measures for calibration may be required.
Collapse
|
14
|
Li Z, Zhang J, Xia C, Zhao F, Zhang K, Li Y, Li L, Pu J, Peng W, Liu K, Guo Y. Radiation doses in CT examinations from the West China Hospital, Sichuan University and setting local diagnostic references levels. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1010. [PMID: 32953810 PMCID: PMC7475485 DOI: 10.21037/atm-20-5443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/12/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Our study aims to summarize the data of radiation doses collected from consecutive CT examinations by using the Radiometrics software and contributing to the establishment of the region's diagnostic reference levels (DRLs). METHODS The radiation doses in 158,463 CT examinations performed on 106,275 adults between April 2017 and April 2019 were retrospectively analyzed. The median value and interquartile range (IQR) of volumetric CT dose index (CTDIvol), dose-length product (DLP), effective dose (ED), and size-specific dose estimate (SSDE) were calculated according to the scanning region. RESULTS The median CTDIvol (mGy) for each scanning region was 42.3 (head), 6.2 (chest), and 9.0 (abdomen). The median DLPs (mGy.cm) for single-phase, multi-phase, and all examinations were as follows: 607, 794, and 641 for the head; 220, 393, and 237 for the chest; 298, 1,141, and 570 for the abdomen. The median EDs (mSv) for single-phase, multi-phase, and all examinations are as follows: 1.6, 2.6, and 1.8 for the head; 5.1, 8.1, and 5.3 for the chest; 5.8, 20.3, and 10.4 for the abdomen. CONCLUSIONS Our study's results could provide a basis for the evaluation of CT scanning radiation dosage and supply evidence for the establishment of local DRLs in China's Sichuan Province.
Collapse
Affiliation(s)
- Zhenlin Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinge Zhang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Zhao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Zhang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuming Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Pu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wanlin Peng
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Keling Liu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yingkun Guo
- Department of Radiology, West China 2nd University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Warin Fresse K, Isorni MA, Dacher JN, Pontana F, Gorincour G, Boddaert N, Jacquier A, Raimondi F. Cardiac computed tomography angiography in the paediatric population: Expert consensus from the Filiale de cardiologie pédiatrique et congénitale (FCPC) and the Société française d'imagerie cardiaque et vasculaire diagnostique et interventionnelle (SFICV). Arch Cardiovasc Dis 2020; 113:579-586. [PMID: 32522436 DOI: 10.1016/j.acvd.2020.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/30/2022]
Abstract
This paper aims to provide a paediatric cardiac computed tomography angiography expert panel consensus based on the opinions of experts from the Société française d'imagerie cardiaque et vasculaire diagnostique et interventionnelle (SFICV) and the Filiale de cardiologie pédiatrique congénitale (FCPC). This expert panel consensus includes recommendations for indications, patient preparation, computed tomography angiography radiation dose reduction techniques and postprocessing techniques. We think that to realize its full potential and to avoid pitfalls, cardiac computed tomography angiography in children with congenital heart disease requires training and experience. Moreover, paediatric cardiac computed tomography angiography protocols should be standardized to acquire optimal images in this population with the lowest radiation dose possible, to prevent unnecessary radiation exposure. We also provide a suggested structured report and a list of acquisition protocols and technical parameters in relation to specific vendors.
Collapse
Affiliation(s)
- Karine Warin Fresse
- Imagerie cardiovasculaire fédération des cardiopathies congénitales, CHU de Nantes HGRL, 44093 Nantes, France
| | - Marc Antoine Isorni
- Unité de radiologie diagnostique et thérapeutique, hôpital Marie-Lannelongue, 92350 Le Plessis Robinson, France
| | - Jean Nicolas Dacher
- Cardiac MR/CT Unit, University Hospital, 76031 Rouen, France; Inserm U1096, UFR Médecine-Pharmacie, 76183 Rouen, France
| | - François Pontana
- Inserm UMR 1011, Department of Cardiovascular Radiology, EGID (European Genomic Institute for Diabetes), université de Lille, Institut Cœur-Poumon, Institut Pasteur de Lille, CHU de Lille, FR3508, 59000 Lille, France
| | - Guillaume Gorincour
- Image(2), institut méditerranéen d'imagerie médicale appliquée à la gynecologie, grossesse et enfance, 13008 Marseille, France
| | - Nathalie Boddaert
- Paediatric Radiology Unit, Hôpital Universitaire Necker-Enfants Malades, 75743 Paris, France
| | - Alexis Jacquier
- Department of Radiology, University of Marseille Méditerranée, CHU La Timone, Marseille, France
| | - Francesca Raimondi
- Unité médicochirurgicale de cardiologie congénitale et pédiatrique, centre de référence des maladies cardiaques congénitales complexes (M3C), hôpital universitaire Necker-Enfants-Malades, 149, rue de Sèvres, 75743 Paris cedex 15, France.
| |
Collapse
|
16
|
Kim JH, Yoon HJ, Lee E, Kim I, Cha YK, Bak SH. Validation of Deep-Learning Image Reconstruction for Low-Dose Chest Computed Tomography Scan: Emphasis on Image Quality and Noise. Korean J Radiol 2020; 22:131-138. [PMID: 32729277 PMCID: PMC7772377 DOI: 10.3348/kjr.2020.0116] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/20/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Iterative reconstruction degrades image quality. Thus, further advances in image reconstruction are necessary to overcome some limitations of this technique in low-dose computed tomography (LDCT) scan of the chest. Deep-learning image reconstruction (DLIR) is a new method used to reduce dose while maintaining image quality. The purposes of this study was to evaluate image quality and noise of LDCT scan images reconstructed with DLIR and compare with those of images reconstructed with the adaptive statistical iterative reconstruction-Veo at a level of 30% (ASiR-V 30%). MATERIALS AND METHODS This retrospective study included 58 patients who underwent LDCT scan for lung cancer screening. Datasets were reconstructed with ASiR-V 30% and DLIR at medium and high levels (DLIR-M and DLIR-H, respectively). The objective image signal and noise, which represented mean attenuation value and standard deviation in Hounsfield units for the lungs, mediastinum, liver, and background air, and subjective image contrast, image noise, and conspicuity of structures were evaluated. The differences between CT scan images subjected to ASiR-V 30%, DLIR-M, and DLIR-H were evaluated. RESULTS Based on the objective analysis, the image signals did not significantly differ among ASiR-V 30%, DLIR-M, and DLIR-H (p = 0.949, 0.737, 0.366, and 0.358 in the lungs, mediastinum, liver, and background air, respectively). However, the noise was significantly lower in DLIR-M and DLIR-H than in ASiR-V 30% (all p < 0.001). DLIR had higher signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) than ASiR-V 30% (p = 0.027, < 0.001, and < 0.001 in the SNR of the lungs, mediastinum, and liver, respectively; all p < 0.001 in the CNR). According to the subjective analysis, DLIR had higher image contrast and lower image noise than ASiR-V 30% (all p < 0.001). DLIR was superior to ASiR-V 30% in identifying the pulmonary arteries and veins, trachea and bronchi, lymph nodes, and pleura and pericardium (all p < 0.001). CONCLUSION DLIR significantly reduced the image noise in chest LDCT scan images compared with ASiR-V 30% while maintaining superior image quality.
Collapse
Affiliation(s)
- Joo Hee Kim
- Department of Radiology, Veterans Health Service Medical Center, Seoul, Korea
| | - Hyun Jung Yoon
- Department of Radiology, Veterans Health Service Medical Center, Seoul, Korea.
| | - Eunju Lee
- Department of Radiology, Veterans Health Service Medical Center, Seoul, Korea
| | - Injoong Kim
- Department of Radiology, Veterans Health Service Medical Center, Seoul, Korea
| | - Yoon Ki Cha
- Department of Radiology, Dongguk University Ilsan Hospital, Goyang, Korea
| | - So Hyeon Bak
- Department of Radiology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| |
Collapse
|
17
|
Warin-Fresse K, Isornii MA, Dacher JN, Pontana F, Gorincour G, Boddaert N, Jacquier A, Raimondi F. Pediatric cardiac computed tomography angiography: Expert consensus from the Filiale de Cardiologie Pédiatrique et Congénitale (FCPC) and the Société Française d'Imagerie Cardiaque et Vasculaire diagnostique et interventionnelle (SFICV). Diagn Interv Imaging 2020; 101:335-345. [PMID: 32029386 DOI: 10.1016/j.diii.2020.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/11/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023]
Abstract
This article was designed to provide a pediatric cardiac computed tomography angiography (CCTA) expert panel consensus based on opinions of experts of the Société Française d'Imagerie Cardiaque et Vasculaire diagnostique et interventionnelle (SFICV) and of the Filiale de Cardiologie Pédiatrique Congénitale (FCPC). This expert panel consensus includes recommendations for indications, patient preparation, CTA radiation dose reduction techniques, and post-processing techniques. The consensus was based on data from available literature (original papers, reviews and guidelines) and on opinions of a group of specialists with extensive experience in the use of CT imaging in congenital heart disease. In order to reach high potential and avoid pitfalls, CCTA in children with congenital heart disease requires training and experience. Moreover, pediatric cardiac CCTA protocols should be standardized to acquire optimal images in this population with the lowest radiation dose possible to prevent unnecessary radiation exposure. We also provided a suggested structured report and a list of acquisition protocols and technical parameters in relation to specific vendors.
Collapse
Affiliation(s)
- K Warin-Fresse
- Department of Cardiovascular Imaging, CHU Nantes HGRL, 44093 Nantes, France
| | - M-A Isornii
- Department of Radiology, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| | - J-N Dacher
- Department of Radiology, Rouen University Hospital, 76031 Rouen, France; Inserm U1096, UFR Médecine-Pharmacie, University of Rouen, 76000 Rouen, France
| | - F Pontana
- Department of Cardiovascular Radiology, Institut Cœur-Poumon, CHU Lille, INSERM UMR 1011, Institut Pasteur de Lille, EGID, FR3508, Univ Lille, 59000 Lille, France
| | - G Gorincour
- Image2, Mediterranean Institute of Medical Imaging, 13008 Marseille, France
| | - N Boddaert
- Pediatric Radiology Unit, Hôpital Universitaire Necker Enfants-Malades, 75015 Paris, France; Université de Paris, Descartes-Paris 5, 75006 Paris, France
| | - A Jacquier
- Department of Radiology, University of Marseille Méditerranée, CHU la Timone, 13000 Marseille, France
| | - F Raimondi
- Unité Médicochirurgicale de Cardiologie Congénitale et Pédiatrique, Centre de Référence des Maladies Cardiaques Congénitales Complexes - M3C, Hôpital Universitaire Necker Enfants-Malades, 75015 Paris, France.
| |
Collapse
|
18
|
Engelhard N, Hermann KG, Greese J, Fuchs M, Pumberger M, Putzier M, Diekhoff T. Single-source dual-energy computed tomography for the detection of bone marrow lesions: impact of iterative reconstruction and algorithms. Skeletal Radiol 2020; 49:765-772. [PMID: 31822941 DOI: 10.1007/s00256-019-03330-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/29/2019] [Accepted: 10/02/2019] [Indexed: 02/02/2023]
Abstract
PURPOSE To compare the diagnostic performance of different reconstruction algorithms of single-source dual-energy computed tomography (DECT) for the detection of bone marrow lesions (BML) in patients with vertebral compression fracture using MRI as the standard of reference. MATERIAL AND METHODS Seventeen patients with an age over 50 who underwent single-source DECT of the spine were included. The raw data (RD) were reconstructed using filtered back-projection (FBP) and iterative reconstruction (IR) with three iteration levels (IR1-IR3). Bone marrow images were generated using a three-material decomposition (3MD) and a two-material decomposition (2MD) algorithm and an RD-based approach. Three blinded readers scored the images for image quality and the presence of bone marrow lesions (BML). Only vertebrae with height loss were included. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. The different reconstructions were compared using Dunn's multiple comparison test. RESULTS Thirty-nine vertebrae were included. IR(1-3) showed superior sensitivity (87.5%) compared to FBP (75%) using 3MD but was comparable to RD (83.3%). All 2MD images were inferior (sensitivity < 38%). The image quality score was significantly higher for 3MD-IR(1-3) compared to 3MD-FBP (p < 0.0001) and all 2MD data sets (p < 0.03). This pattern was also supported by the SNR and CNR measurements. RD showed no significant improvement compared to IR. CONCLUSION The image quality of bone marrow images acquired with DECT can be improved by using IR compared with FBP. RD-based reconstruction does not offer significant improvement over image data-based reconstruction. 2MD algorithms are not suitable for BML detection.
Collapse
Affiliation(s)
- N Engelhard
- Department of Radiology, Charité - Universitätsmedizin Berlin, Campus Mitte, Humboldt-Universität zu Berlin, Freie Universität Berlin, Berlin, Germany
| | - K G Hermann
- Department of Radiology, Charité - Universitätsmedizin Berlin, Campus Mitte, Humboldt-Universität zu Berlin, Freie Universität Berlin, Berlin, Germany
| | - J Greese
- Department of Radiology, Charité - Universitätsmedizin Berlin, Campus Mitte, Humboldt-Universität zu Berlin, Freie Universität Berlin, Berlin, Germany
| | - M Fuchs
- Department for Orthopaedic Surgery, RKU, University of Ulm, Ulm, Germany
| | - M Pumberger
- Department of Spine Surgery, Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - M Putzier
- Department of Spine Surgery, Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - T Diekhoff
- Department of Radiology, Charité - Universitätsmedizin Berlin, Campus Mitte, Humboldt-Universität zu Berlin, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
19
|
Mohammadinejad P, Ehman EC, Vasconcelos RN, Venkatesh SK, Hough DM, Lowe R, Lee YS, Nehra A, Dirks S, Holmes DR, Carter RE, Schmidt B, Halaweish AF, McCollough CH, Fletcher JG. Prior iterative reconstruction (PIR) to lower radiation dose and preserve radiologist performance for multiphase liver CT: a multi-reader pilot study. Abdom Radiol (NY) 2020; 45:45-54. [PMID: 31705250 DOI: 10.1007/s00261-019-02280-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE Prior iterative reconstruction (PIR) spatially registers CT image data from multiple phases of enhancement to reduce image noise. We evaluated PIR in contrast-enhanced multiphase liver CT. METHODS Patients with archived projection CT data with proven malignant or benign liver lesions, or without lesions, by reference criteria were included. Lower-dose PIR images were reconstructed using validated noise insertion from multiphase CT exams (50% dose in 2 phases, 25% dose in 1 phase). The phase of enhancement most relevant to the diagnostic task was selected for evaluation. Four radiologists reviewed routine-dose and lower-dose PIR images, circumscribing liver lesions and rating confidence for malignancy (0 to 100) and image quality. JAFROC Figures of Merit (FOM) were calculated. RESULTS 31 patients had 60 liver lesions (28 primary hepatic malignancies, 6 hepatic metastases, 26 benign lesions). Pooled JAFROC FOM for malignancy for routine-dose CT was 0.615 (95% CI 0.464, 0.767) compared to 0.662 for PIR (95% CI 0.527, 0.797). The estimated FOM difference between the routine-dose and lower-dose PIR images was + 0.047 (95% CI - 0.023, + 0.116). Pooled sensitivity/specificity for routine-dose images was 70%/68% compared to 73%/66% for lower-dose PIR. Lower-dose PIR had lower diagnostic image quality (mean 3.8 vs. 4.2, p = 0.0009) and sharpness (mean 2.3 vs. 2.0, p = 0.0071). CONCLUSIONS PIR is a promising method to reduce radiation dose for multiphase abdominal CT, preserving observer performance despite small reductions in image quality. Further work is warranted.
Collapse
|
20
|
Tozakidou M, Apine I, Petersen KU, Weinrich JM, Schindera S, Jopp-van Well E, Püschel K, Herrmann J. Comparison of different iterative CT reconstruction techniques and filtered back projection for assessment of the medial clavicular epiphysis in forensic age estimation. Int J Legal Med 2019; 134:355-361. [PMID: 31773319 DOI: 10.1007/s00414-019-02214-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/13/2019] [Indexed: 02/01/2023]
Abstract
PURPOSE To assess the impact of iterative reconstruction and filtered back projection (FBP) on image quality in computed tomography (CT)-based forensic age estimation of the medial clavicular epiphysis. METHODS AND MATERIALS CT of the clavicle was performed in 19 patients due to forensic reasons (70 mAs/140 kVp). Raw data were reconstructed with FBP and with an iterative algorithm at level 4 and 6. Clavicular ossification stage was determined by two radiologists in consensus, firstly on FBP reconstructed images and secondly after reviewing all reconstructions including iDose 4 and 6. In addition, the 3 reconstructions were compared regarding artefacts and delineation of the meta-/epiphyseal interface. Quantitative image noise was measured. RESULTS Quantitative noise was lower in iDose 6 reconstructed images than in FBP (P < 0.042), but not significantly lower between iDose 4 and FBP (P = 0.127). Side by side comparison revealed lesser qualitative image noise on both iDose reconstructed images than for FBP. The meta-/epiphyseal interface delineation was rated better on both iDose levels than with FBP. In 3 of 19 patients, the clavicular ossification stage was reclassified after iterative reconstructions had been additionally reviewed. CONCLUSION Using iterative CT reconstruction algorithms, a reduction of image noise and an enhancement of image quality regarding the meta-/epiphyseal clavicular interface can be achieved. The study highlights the importance of image standardization as variation of reconstruction technique has impact on forensic age estimation.
Collapse
Affiliation(s)
- Magdalini Tozakidou
- Department of Diagnostic and Interventional Radiology and Nuclear medicine, Section of Pediatric Radiology, University Hospital Hamburg-Eppendorf, 20246, Hamburg, Germany.
| | - Ilze Apine
- Children Clinical University Hospital, Riga, Latvia
| | - Kay U Petersen
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Julius Matthias Weinrich
- Department of Diagnostic and Interventional Radiology and Nuclear medicine, University Hospital Hamburg-Eppendorf, 20246, Hamburg, Germany
| | | | - Eilin Jopp-van Well
- Department of Forensic Medicine, University Hospital Hamburg-Eppendorf, 22529, Hamburg, Germany
| | - Klaus Püschel
- Department of Forensic Medicine, University Hospital Hamburg-Eppendorf, 22529, Hamburg, Germany
| | - Jochen Herrmann
- Department of Diagnostic and Interventional Radiology and Nuclear medicine, Section of Pediatric Radiology, University Hospital Hamburg-Eppendorf, 20246, Hamburg, Germany
| |
Collapse
|
21
|
Application of Artificial Intelligence–based Image Optimization for Computed Tomography Angiography of the Aorta With Low Tube Voltage and Reduced Contrast Medium Volume. J Thorac Imaging 2019; 34:393-399. [DOI: 10.1097/rti.0000000000000438] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Tozakidou M, Yang SR, Kovacs BK, Szucs-Farkas Z, Studler U, Schindera S, Hirschmann A. Dose-optimized computed tomography of the cervical spine in patients with shoulder pull-down: Is image quality comparable with a standard dose protocol in an emergency setting? Eur J Radiol 2019; 120:108655. [PMID: 31542699 DOI: 10.1016/j.ejrad.2019.108655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/07/2019] [Accepted: 08/15/2019] [Indexed: 11/19/2022]
Abstract
PURPOSE Superimposing soft tissue and bony structures in computed tomography (CT) of the cervical spine (C-spine) is a limiting factor in optimizing radiation exposure maintaining an acceptable image quality. Therefore, we assessed image quality of dose-optimized (DO) C-spine CT in patients capable of shoulder pull-down in an emergency setting. METHODS AND MATERIALS DO-CT (105mAs/120 kVp) of the C-spine in trauma settings was performed in patients with shoulder pull-down if C5 was not superimposed by soft tissue on the lateral topogram, otherwise standard-dose (SD)-CT (195 mAs/120 kVp) was performed. 34 DO (mean age, 68y ± 21; BMI, 24.2 kg/m2 ± 3.2) and 34 SD (mean age 70y ± 19; BMI 25.7 kg/m2 ± 4.4) iterative reconstructed CTs were evaluated at C2/3 and C6/7 by two musculoskeletal radiologists. Qualitative image noise and morphological characteristics of bony structures (cortex, trabeculae) were assessed on a Likert scale. Quantitative image noise was measured and effective dose (ED) was recorded. Parameters were compared using Mann-Whitney-U-test (p < 0.05). RESULTS At C2/3, DO-CT vs. SD-CT yielded comparable qualitative noise (mean, 1.3 vs. 1.0; p = 0.18) and morphological characteristics, but higher quantitative noise (27.2 ± 8.8HU vs. 19.6 ± 4.5HU; p < 0.001). At C6/7, DO-CT yielded lower subjective noise (1.9; SD-CT 2.2; p = 0.017) and better morphological characteristics with higher visibility scores for cortex (p = 0.001) and trabeculae (p = 0.03). Quantitative noise did not differ (p = 0.24). Radiation dose was 51% lower using DO-CT (EDDO-CT 0.80 ± 0.1 mSv; EDSD-CT 1.63 ± 0.2 mSv; p < 0.001). CONCLUSION C-spine CT with dose reduction of 51% showed no image quality impairment. Additional pull-down of both shoulders allowed better image quality at lower C-spine segments as compared to a standard protocol.
Collapse
Affiliation(s)
- Magdalini Tozakidou
- Clinic of Radiology and Nuclear Medicine, University of Basel Hospital, University of Basel, Switzerland; Department of Radiology and Nuclear Medicine, Devision of Pediatric Radiology, University Hospital Eppendorf, Hamburg, Germany.
| | - Schu-Ren Yang
- Clinic of Radiology and Nuclear Medicine, University of Basel Hospital, University of Basel, Switzerland.
| | - Balazs K Kovacs
- Clinic of Radiology and Nuclear Medicine, University of Basel Hospital, University of Basel, Switzerland.
| | - Zsolt Szucs-Farkas
- Department of Diagnostic Radiology, Hospital Centre of Biel, Switzerland.
| | - Ueli Studler
- Clinic of Radiology and Nuclear Medicine, University of Basel Hospital, University of Basel, Switzerland; Imamed, Radiology Northwest, Basel, Switzerland.
| | - Sebastian Schindera
- Clinic of Radiology and Nuclear Medicine, University of Basel Hospital, University of Basel, Switzerland; Department of Diagnostic Radiology, cantonal hospital Aarau, Switzerland.
| | - Anna Hirschmann
- Clinic of Radiology and Nuclear Medicine, University of Basel Hospital, University of Basel, Switzerland.
| |
Collapse
|
23
|
Lin S, Lin M, Lau KK. Image quality comparison between model-based iterative reconstruction and adaptive statistical iterative reconstruction chest computed tomography in cystic fibrosis patients. J Med Imaging Radiat Oncol 2019; 63:602-609. [PMID: 31090256 DOI: 10.1111/1754-9485.12895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/10/2019] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Cystic fibrosis (CF) predominantly affects young adults. Accurate radiological assessment of pulmonary disease is vital for predicting exacerbations, one of the leading causes of morbidity and mortality. We evaluated the image quality of model-based iterative reconstruction (MBIR) ultra-low-dose CT chest (ULD-CT) in CF evaluation. METHODS We compared ULD-CT with standard adaptive statistical iterative reconstruction (ASIR) low-dose CT (LD-CT). Subjective assessment of contrast and noise were performed for each study. Background noise, signal to noise ratio (SNR) and contrast to noise ratio (CNR) were calculated and compared between the CT studies. Conspicuity of major structures was assessed. These aspects of image quality were compared to determine whether ULD-CT was superior to LD-CT in assessment of CF. RESULTS The ULD-CT achieved median effective dose of 0.073 mSv, comparable to one standard chest radiograph and significantly lower than the median LD-CT dose of 1.22 mSv. ULD-CT had lower subjective contrast and higher subjective noise when compared to LD-CT. Objectively measured background noise was lower in ULD-CT (16.33 HU vs 38.53 HU, P < 0.0001) compared to LD-CT. ULD-CT had higher median CNR (52.65 vs 22.09, P < 0.0001) and SNR in lung (9.08 vs 7.29, P = 0.002) compared to LD-CT. ULD-CT was equal to LD-CT in identification of trachea, bronchi, pleural and pericardium. Interobserver reliability showed agreement of 80-92%. CONCLUSIONS The image quality of ULD-CT is similar to LD-CT, at 1/16th the dose. MBIR constructed ULD-CT is an effective imaging modality for CF surveillance, with potential applications in other disease settings.
Collapse
Affiliation(s)
- Sandra Lin
- Austin Health, Melbourne, Victoria, Australia
| | - Monica Lin
- Department of Diagnostic Imaging, Monash Health, Melbourne, Victoria, Australia
| | - Kenneth K Lau
- Department of Diagnostic Imaging, Monash Health, Melbourne, Victoria, Australia.,Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
24
|
Wang L, Gong S, Yang J, Zhou J, Xiao J, Gu J, Yang H, Zhu J, He B. CARE Dose 4D combined with sinogram-affirmed iterative reconstruction improved the image quality and reduced the radiation dose in low dose CT of the small intestine. J Appl Clin Med Phys 2019; 20:293-307. [PMID: 30508275 PMCID: PMC6333130 DOI: 10.1002/acm2.12502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 08/06/2018] [Accepted: 10/19/2018] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Multislice computed tomography (MSCT) has been used for diagnosis of small intestinal diseases. However, the radiation dose is a big problem. This study was to investigate whether CARE Dose 4D combined with sinogram-affirmed iterative reconstruction (SAFIRE) can provide better image quality at a lower dose for imaging small intestinal diseases compared to MSCT. METHODS The noise reduction ability of SAFIRE was assessed by scanning the plain water mold using SOMATOM Definition Flash double-source spiral CT. CT images at each stage of radiography for 239 patients were obtained. The patients were divided into groups A and B were based on different tube voltage and current or the image recombination methods. The images were restructured using with filtered back projection (FBP) and SAFIRE (S1-S5). The contrast noise ratio (CNR), CT Dose index (CTDI), subjective scoring, and objective scoring were compared to obtain the best image and reformation parameters at different stages of CT. RESULTS Twenty-six restructuring patterns of tube voltage and current were obtained by FBP and SAFIRE. The average radiation dose using CARE Dose 4D combined with SAFIRE (S4-S5) reduced approximately 74.85% compared to conditions where the tube voltage of 100 kV and tube current of 131 mAs for patients with MSCT small intestinal CT enterography at plain CT scan, arterial stage, small intestine, and portal venous phase. The objective and subjective scoring were all significantly different among groups A and B at each stage. CONCLUSIONS Combination of CARE Dose 4D and SAFIRE is shown to decrease the radiation dose while maintaining image quality.
Collapse
Affiliation(s)
- Lin Wang
- Department of RadiologyThe Second Affiliated Hospital of Nantong UniversityJiangsuChina
| | - Shenchu Gong
- Department of RadiologyThe Second Affiliated Hospital of Nantong UniversityJiangsuChina
| | - Jushun Yang
- Department of RadiologyThe Second Affiliated Hospital of Nantong UniversityJiangsuChina
| | - Jie Zhou
- Department of RadiologyThe Second Affiliated Hospital of Nantong UniversityJiangsuChina
| | - Jing Xiao
- Department of Epidemiology and Medical StatisticsSchool of Public Health Nantong UniversityNantongJiangsuChina
| | - Jin‐hua Gu
- Department of PathophysiologyNantong University Medical SchoolNantongJiangsuChina
| | - Hong Yang
- Department of RadiologyThe Second Affiliated Hospital of Nantong UniversityJiangsuChina
| | - Jianfeng Zhu
- Department of RadiologyThe Second Affiliated Hospital of Nantong UniversityJiangsuChina
| | - Bosheng He
- Department of RadiologyThe Second Affiliated Hospital of Nantong UniversityJiangsuChina
- Clinical Medicine Research Centerthe Second Affiliated Hospital of Nantong UniversityNantongJiangsuChina
| |
Collapse
|
25
|
Kubo T. Vendor free basics of radiation dose reduction techniques for CT. Eur J Radiol 2018; 110:14-21. [PMID: 30599851 DOI: 10.1016/j.ejrad.2018.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/19/2018] [Accepted: 11/04/2018] [Indexed: 11/16/2022]
Abstract
Although radiation dose in computed tomography (CT) decreased and CT became safer examinations than before, CT is the most significant source of the medical radiation exposure. Knowledge about available radiation dose reduction methods in CT is essential. Substantial improvement occurred regarding tube current selection (automatic exposure control) and image production method (iterative reconstruction). Optimizing the tube potential selection is expected to contribute to further CT radiation dose reduction. This review article summarizes the principles of radiation dose reduction in CT, principal methods of radiation dose reduction, auxiliary measures of radiation dose saving and recent issues of low dose CT.
Collapse
Affiliation(s)
- Takeshi Kubo
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
26
|
Willemink MJ, Noël PB. The evolution of image reconstruction for CT-from filtered back projection to artificial intelligence. Eur Radiol 2018; 29:2185-2195. [PMID: 30377791 PMCID: PMC6443602 DOI: 10.1007/s00330-018-5810-7] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/12/2018] [Accepted: 09/27/2018] [Indexed: 12/22/2022]
Abstract
Abstract The first CT scanners in the early 1970s already used iterative reconstruction algorithms; however, lack of computational power prevented their clinical use. In fact, it took until 2009 for the first iterative reconstruction algorithms to come commercially available and replace conventional filtered back projection. Since then, this technique has caused a true hype in the field of radiology. Within a few years, all major CT vendors introduced iterative reconstruction algorithms for clinical routine, which evolved rapidly into increasingly advanced reconstruction algorithms. The complexity of algorithms ranges from hybrid-, model-based to fully iterative algorithms. As a result, the number of scientific publications on this topic has skyrocketed over the last decade. But what exactly has this technology brought us so far? And what can we expect from future hardware as well as software developments, such as photon-counting CT and artificial intelligence? This paper will try answer those questions by taking a concise look at the overall evolution of CT image reconstruction and its clinical implementations. Subsequently, we will give a prospect towards future developments in this domain. Key Points • Advanced CT reconstruction methods are indispensable in the current clinical setting. • IR is essential for photon-counting CT, phase-contrast CT, and dark-field CT. • Artificial intelligence will potentially further increase the performance of reconstruction methods.
Collapse
Affiliation(s)
- Martin J Willemink
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Drive, Room M-039, Stanford, CA, 94305-5105, USA. .,Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Peter B Noël
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| |
Collapse
|
27
|
Liu B, Gao S, Chang Z, Wang C, Liu Z, Zheng J. Lower extremity CT angiography at 80 kVp using iterative model reconstruction. Diagn Interv Imaging 2018; 99:561-568. [DOI: 10.1016/j.diii.2018.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 11/28/2022]
|
28
|
CT-angiography of the aorta in patients with Marfan disease - High-pitch MDCT at different levels of tube voltage combined with Sinogram Affirmed Iterative Reconstruction. Clin Imaging 2018; 51:123-132. [DOI: 10.1016/j.clinimag.2018.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/20/2018] [Accepted: 02/06/2018] [Indexed: 01/16/2023]
|
29
|
Chen LH, Jin C, Li JY, Wang GL, Jia YJ, Duan HF, Pan N, Guo J. Image quality comparison of two adaptive statistical iterative reconstruction (ASiR, ASiR-V) algorithms and filtered back projection in routine liver CT. Br J Radiol 2018; 91:20170655. [PMID: 29848018 DOI: 10.1259/bjr.20170655] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To compare image quality of two adaptive statistical iterative reconstruction (ASiR and ASiR-V) algorithms using objective and subjective metrics for routine liver CT, with the conventional filtered back projection (FBP) reconstructions as reference standards. METHODS This institutional review board-approved study included 52 patients with clinically suspected hepatic metastases. Patients were divided equally into ASiR and ASiR-V groups with same scan parameters. Images were reconstructed with ASiR and ASiR-V from 0 (FBP) to 100% blending percentages at 10% interval in its respective group. Mean and standard deviation of CT numbers for liver parenchyma were recorded. Two experienced radiologists reviewed all images for image quality blindly and independently. Data were statistically analyzed. RESULTS There was no difference in CT dose index between ASiR and ASiR-V groups. As the percentage of ASiR and ASiR-V increased from 10 to 100% , image noise reduced by 8.6 -57.9% and 8.9-81.6%, respectively, compared with FBP. There was substantial interobserver agreement in image quality assessment for ASiR and ASiR-V images. Compared with FBP reconstruction, subjective image quality scores of ASiR and ASiR-V improved significantly as percentage increased from 10 to 80% for ASiR (peaked at 50% with 32.2% noise reduction) and from 10 to 90% (peaked at 60% with 51.5% noise reduction) for ASiR-V. CONCLUSION Both ASiR and ASiR-V improved the objective and subjective image quality for routine liver CT compared with FBP. ASiR-V provided further image quality improvement with higher acceptable percentage than ASiR, and ASiR-V60% had the highest image quality score. Advances in knowledge: (1) Both ASiR and ASiR-V significantly reduce image noise compared with conventional FBP reconstruction. (2) ASiR-V with 60 blending percentage provides the highest image quality score in routine liver CT.
Collapse
Affiliation(s)
- Li-Hong Chen
- 1 Department of Diagnostic Radiology, the First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Chao Jin
- 1 Department of Diagnostic Radiology, the First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Jian-Ying Li
- 1 Department of Diagnostic Radiology, the First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Ge-Liang Wang
- 1 Department of Diagnostic Radiology, the First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Yong-Jun Jia
- 2 Department of Radiology, the Affiliated Hospital of Shaanxi University of Chinese Medicine , Xianyang , China
| | - Hai-Feng Duan
- 2 Department of Radiology, the Affiliated Hospital of Shaanxi University of Chinese Medicine , Xianyang , China
| | - Ning Pan
- 1 Department of Diagnostic Radiology, the First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | | |
Collapse
|
30
|
Kandathil A, Kay F, Batra K, Saboo SS, Rajiah P. Advances in Computed Tomography in Thoracic Imaging. Semin Roentgenol 2018; 53:157-170. [PMID: 29861007 DOI: 10.1053/j.ro.2018.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Asha Kandathil
- Cardiothoracic Imaging, Radiology Department, UT Southwestern Medical Center, Dallas, TX
| | - Fernando Kay
- Cardiothoracic Imaging, Radiology Department, UT Southwestern Medical Center, Dallas, TX
| | - Kiran Batra
- Cardiothoracic Imaging, Radiology Department, UT Southwestern Medical Center, Dallas, TX
| | - Sachin S Saboo
- Cardiothoracic Imaging, Radiology Department, UT Southwestern Medical Center, Dallas, TX
| | - Prabhakar Rajiah
- Cardiothoracic Imaging, Radiology Department, UT Southwestern Medical Center, Dallas, TX.
| |
Collapse
|
31
|
Lapointe A, Lalonde A, Bahig H, Carrier J, Bedwani S, Bouchard H. Robust quantitative contrast‐enhanced dual‐energy CT for radiotherapy applications. Med Phys 2018; 45:3086-3096. [DOI: 10.1002/mp.12934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 02/27/2018] [Accepted: 04/11/2018] [Indexed: 01/07/2023] Open
Affiliation(s)
- Andréanne Lapointe
- Département de physique Université de Montréal 2900 boulevard Édouard‐Montpetit Montréal QC H3T 1J4Canada
| | - Arthur Lalonde
- Département de physique Université de Montréal 2900 boulevard Édouard‐Montpetit Montréal QC H3T 1J4Canada
| | - Houda Bahig
- Département de radio‐oncologie Centre hospitalier de l’Université de Montréal (CHUM) 1000 rue Saint‐Denis Montréal Québec H2X 0C1Canada
- Centre de recherche du Centre hospitalier de l’Université de Montréal 900 Rue Saint‐Denis Montréal QC H2X 0A9Canada
| | - Jean‐François Carrier
- Département de physique Université de Montréal 2900 boulevard Édouard‐Montpetit Montréal QC H3T 1J4Canada
- Département de radio‐oncologie Centre hospitalier de l’Université de Montréal (CHUM) 1000 rue Saint‐Denis Montréal Québec H2X 0C1Canada
- Centre de recherche du Centre hospitalier de l’Université de Montréal 900 Rue Saint‐Denis Montréal QC H2X 0A9Canada
| | - Stéphane Bedwani
- Département de physique Université de Montréal 2900 boulevard Édouard‐Montpetit Montréal QC H3T 1J4Canada
- Département de radio‐oncologie Centre hospitalier de l’Université de Montréal (CHUM) 1000 rue Saint‐Denis Montréal Québec H2X 0C1Canada
- Centre de recherche du Centre hospitalier de l’Université de Montréal 900 Rue Saint‐Denis Montréal QC H2X 0A9Canada
| | - Hugo Bouchard
- Département de physique Université de Montréal 2900 boulevard Édouard‐Montpetit Montréal QC H3T 1J4Canada
- Département de radio‐oncologie Centre hospitalier de l’Université de Montréal (CHUM) 1000 rue Saint‐Denis Montréal Québec H2X 0C1Canada
- Centre de recherche du Centre hospitalier de l’Université de Montréal 900 Rue Saint‐Denis Montréal QC H2X 0A9Canada
| |
Collapse
|
32
|
Staniszewska M, Chrusciak D. Iterative Reconstruction as a Method for Optimisation of Computed Tomography Procedures. Pol J Radiol 2018; 82:792-797. [PMID: 29657646 PMCID: PMC5894051 DOI: 10.12659/pjr.903557] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/06/2017] [Indexed: 12/27/2022] Open
Abstract
Background Computed tomography (CT) is still commonly regarded as a method that causes a high radiation exposure. For that reason, producers intensively try to find new solutions for dose reduction while maintaining a high diagnostic value of images. One of the recent strategies focuses on CT image reconstruction. Iterative reconstruction (IR) is an alternative for filtered back projection (FBP) that is commonly used today. The aim of the article is to demonstrate and compare the effects of two IR algorithms on dose value and image details. Material/Methods Investigations were performed on two 128 multi-detector (MDCT) CT scanners: – iCT (Philips Healthcare with iDose4); – Definitions AS+ (Siemens Medical Solutions with SAFIRE system). The measurements involved: – image quality indicators for the CATPHAN 600 phantom; – dosimetric indicators of exposure (DLP i CTDIvol). Results The signal-to-noise ratios (SNR) in the images reconstructed with IR and FBP were analysed, and the SNR(IR)/SNR(FBP) ratios were calculated and correlated with CTDIvol values. The effects of IR and FBP algorithms on low-contrast resolution were also compared in relation to CTDIvol values. The smallest diameter of supra-slice objects in the Catphan phantom were taken into consideration. Both iterative algorithms definitely improved the visibility of low-contrast objects in comparison to a standard algorithm (FBP) with similar exposure parameters. These algorithms allow an 80% reduction of the CTDIvol value while maintaining an acceptable visibility of low-contrast objects. However, the results obtained with each of the studied iterative algorithms differ.
Collapse
Affiliation(s)
- Maria Staniszewska
- Department of Medical Imaging Techniques, Medical University, Łódź, Poland
| | - Dariusz Chrusciak
- Department Radiation Protection, Holy-Cross Oncological Centre, Kielce, Poland
| |
Collapse
|
33
|
Werncke T, Hinrichs JB, Alikhani B, Maschke S, Wacker FK, Meyer BC. Virtual single source CT using dual source acquisition: Clinical applicability in run-off CT-angiography for intra-individual comparison of different scan protocols. Eur J Radiol 2018; 101:149-156. [PMID: 29571789 DOI: 10.1016/j.ejrad.2018.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/06/2018] [Accepted: 02/11/2018] [Indexed: 11/18/2022]
Abstract
PURPOSE Virtual single source computed tomography (VSS-CT) acquisition on a dual source CT (DSCT) has been demonstrated to allow for dose-neutral intra-individual comparison of three acquisition protocols at different radiation dose levels (RDL) within one acquisition in a phantom. The purpose of this study was twofold: first to evaluate the applicability of VSS-CT in patients and second to optimize the task-dependent trade-off between radiation dose and image quality of lower extremity CT angiography (run-off CTA). MATERIAL AND METHODS In this IRB-approved prospective study 52 patients underwent run-off CTA between 06/2012 and 06/2013. VSS-CT acquisition was conducted using a first generation DSCT applying equal X-ray tube settings (120 kVp), collimation (2 × 32 × 0.6 mm), and slice thickness (1.0 mm) but different effective tube current-time products (tube A: 80 mAs, tube B: 40 mAs). Three different image datasets representing three different radiation dose levels (RDL40, RDL80, RDL120) were reconstructed using a soft kernel from the raw data of tube B, tube A or both tubes combined. Dose length products (DLP) of each raw data set were documented. Quantitative image quality (IQ) was assessed for five anatomical levels using image noise and contrast-to-noise ratio (CNR). To investigate dose efficiency of each acquisition, the dose-weighted CNR (CNRD) was determined. Qualitative IQ was evaluated by two blinded readers in consensus using a 5-point Likert scale and compared with a Friedman- and posthoc Wilcoxon test. RESULTS Mean DLP was 200 ± 40, 400 ± 90 and 600 ± 130 mGy·cm for the RDL40, RDL80 and RDL120, respectively. Image noise and CNR were best for RDL120 and decreased significantly for RDL80 and RDL40, independent of the anatomic level (p < 0.001). CNRD showed no significant differences at the abdominal and pelvic level between the investigated radiation dose levels. However, for thigh to foot level a significant increase of CNRD was noted between RDL120, RDL80 and RDL40. Significant differences of qualitative IQ were observed between RDL120 and RDL40 from the abdominal to the foot level, whereas no difference was seen for the other dose levels. CONCLUSION Radiation dose splitting with VSS-CT can be applied to run-off CTA facilitating intra-individual comparison of different acquisition protocols without additional radiation exposure. Furthermore, a radiation dose reduction potential for run-off CTA of approximately 1/3 as compared to the acquisition protocol recommended by the manufacturer could be identified in this study.
Collapse
Affiliation(s)
- T Werncke
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - J B Hinrichs
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - B Alikhani
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - S Maschke
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - F K Wacker
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - B C Meyer
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
34
|
Tominaga C, Azumi H, Goto M, Taura M, Homma N, Mori I. Tilted-wire method for measuring resolution properties of CT images under extremely low-contrast and high-noise conditions. Radiol Phys Technol 2018; 11:125-137. [DOI: 10.1007/s12194-018-0443-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/04/2018] [Accepted: 02/08/2018] [Indexed: 11/29/2022]
|
35
|
Suntharalingam S, Allmendinger T, Blex S, Al-Bayati M, Nassenstein K, Schweiger B, Forsting M, Wetter A. Spectral Beam Shaping in Unenhanced Chest CT Examinations: A Phantom Study on Dose Reduction and Image Quality. Acad Radiol 2018; 25:153-158. [PMID: 29055683 DOI: 10.1016/j.acra.2017.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/12/2017] [Accepted: 08/21/2017] [Indexed: 10/18/2022]
Abstract
RATIONALE AND OBJECTIVES This study aimed to determine the optimal tube potential for unenhanced chest computed tomographies (CTs) with age-related phantoms. MATERIALS AND METHODS Three physical anthropomorphic phantoms (newborn, 5-year-old child, and adult) were scanned on a third-generation dual-source CT using CAREkV in semi-mode and CAREDose4D (ref. KV: 120; ref. mAs 50). Scans were performed with all available tube potentials (70-150 kV and Sn150 kV). The lowest volume computed tomography dose index (CTDIvol) was selected to perform additional Sn100-kV scans with matched and half (Sn100-half) CTDIvol value. Image quality was evaluated on the basis of contrast-to-noise ratio (CNR). RESULTS For the newborn phantom, 70-110 kV was selected as the optimal range (0.36-0.37 mGy). Using Sn150 kV led to an increase in radiation dose (0.75 mGy) without improving CNR (96.9 vs 101.5). Sn100-half showed a decrease in CNR (73.1 vs 101.5). The lowest CTDIvol for the child phantom was achieved between 100 and 120 kV (0.78-0.80 mGy). Using Sn150 kV increased radiation dose (1.02 mGy) without improvement of CNR (92.4 vs 95.8). At Sn100-half CNR was decreased (61.4 vs 95.8). For adults, 140 and 150 kV revealed the lowest CTDIvol (2.68 and 2.67 mGy). The Sn150 kV scan delivered comparable CNR (54.4 vs 56.6), but a lower CTDIvol (2.08 mGy). At Sn100-half CNR was comparable to the 150 kV scan (58.1 vs 56.6). CONCLUSION Unenhanced chest CT performed at 100 kV or 150 kV with tin filtration enables radiation dose reduction for the adult phantom, but not for the pediatric phantoms.
Collapse
|
36
|
Fahlenkamp UL, Diaz Ramirez I, Wagner M, Schwenke C, Huppertz A, Hamm B, Lembcke A. Image quality of low-radiation dose left atrial CT using filtered back projection and an iterative reconstruction algorithm: intra-individual comparison in unselected patients undergoing pulmonary vein isolation. Acta Radiol 2018; 59:161-169. [PMID: 28513211 DOI: 10.1177/0284185117708472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Computed tomography (CT) of the left atrium (LA) is performed prior to pulmonary vein isolation (PVI) to improve success of circumferential ablation for atrial fibrillation. The ablation procedure itself exposes patients to substantial radiation doses, therefore radiation dose reduction in pre-ablational imaging is of concern. Purpose To assess and compare diagnostic performance of low-radiation dose preprocedural CT in patients scheduled for PVI using two types of reconstruction algorithms. Material and Methods Forty-six patients (61 ± 10 years) scheduled for PVI were enrolled in this study irrespective of body-mass-index or cardiac rhythm at examination. An electrocardiographically triggered dual-source CT scan was performed. Filtered back projection (FBP) and iterative reconstruction (IR) algorithms were applied. Images were integrated into an electroanatomic mapping (EAM) system. Subjective image quality was scored independently by two readers on a five-point scale for both reconstruction algorithms (1 = excellent to 5 = non-diagnostic). Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and effective radiation dose were calculated. Results Data acquisition and EAM integration were successful in all patients. Median image quality score was 1 for both FBP (quartiles = 1, 1.62; range = 1-3) and IR (quartiles = 1, 1.5; range = 1-3). Mean SNR was 7.61 ± 2.14 for FBP and 9.02 ± 2.69 for IR. Mean CNR was 5.92 ± 1.80 for FBP and 6.95 ± 2.29 for IR. Mean effective radiation dose was 0.3 ± 0.1 mSv. Conclusion At a radiation dose of 0.3 ± 0.1 mSv, high-pitch dual-source CT yields LA images of consistently high quality using both FBP and IR. IR raises SNR and CNR without significantly improving subjective image quality.
Collapse
Affiliation(s)
- Ute Lina Fahlenkamp
- Department of Radiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Ivan Diaz Ramirez
- Department of Cardiology, Charité – Universitätsmedizin, Berlin, Germany
| | - Moritz Wagner
- Department of Radiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | | | - Alexander Huppertz
- Department of Radiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Present address: Klinikum Ernst von Bergmann, Potsdam, Germany
| | - Bernd Hamm
- Department of Radiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Lembcke
- Department of Radiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
37
|
Lee KB, Goo HW. Quantitative Image Quality and Histogram-Based Evaluations of an Iterative Reconstruction Algorithm at Low-to-Ultralow Radiation Dose Levels: A Phantom Study in Chest CT. Korean J Radiol 2018; 19:119-129. [PMID: 29354008 PMCID: PMC5768492 DOI: 10.3348/kjr.2018.19.1.119] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/28/2017] [Indexed: 01/17/2023] Open
Abstract
Objective To describe the quantitative image quality and histogram-based evaluation of an iterative reconstruction (IR) algorithm in chest computed tomography (CT) scans at low-to-ultralow CT radiation dose levels. Materials and Methods In an adult anthropomorphic phantom, chest CT scans were performed with 128-section dual-source CT at 70, 80, 100, 120, and 140 kVp, and the reference (3.4 mGy in volume CT Dose Index [CTDIvol]), 30%-, 60%-, and 90%-reduced radiation dose levels (2.4, 1.4, and 0.3 mGy). The CT images were reconstructed by using filtered back projection (FBP) algorithms and IR algorithm with strengths 1, 3, and 5. Image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were statistically compared between different dose levels, tube voltages, and reconstruction algorithms. Moreover, histograms of subtraction images before and after standardization in x- and y-axes were visually compared. Results Compared with FBP images, IR images with strengths 1, 3, and 5 demonstrated image noise reduction up to 49.1%, SNR increase up to 100.7%, and CNR increase up to 67.3%. Noteworthy image quality degradations on IR images including a 184.9% increase in image noise, 63.0% decrease in SNR, and 51.3% decrease in CNR, and were shown between 60% and 90% reduced levels of radiation dose (p < 0.0001). Subtraction histograms between FBP and IR images showed progressively increased dispersion with increased IR strength and increased dose reduction. After standardization, the histograms appeared deviated and ragged between FBP images and IR images with strength 3 or 5, but almost normally-distributed between FBP images and IR images with strength 1. Conclusion The IR algorithm may be used to save radiation doses without substantial image quality degradation in chest CT scanning of the adult anthropomorphic phantom, down to approximately 1.4 mGy in CTDIvol (60% reduced dose).
Collapse
Affiliation(s)
- Ki Baek Lee
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Hyun Woo Goo
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| |
Collapse
|
38
|
van der Werf NR, Willemink MJ, Willems TP, Greuter MJW, Leiner T. Influence of iterative reconstruction on coronary calcium scores at multiple heart rates: a multivendor phantom study on state-of-the-art CT systems. Int J Cardiovasc Imaging 2017; 34:947-957. [DOI: 10.1007/s10554-017-1292-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
|
39
|
Tozakidou M, Reisinger C, Harder D, Lieb J, Szucs-Farkas Z, Müller-Gerbl M, Studler U, Schindera S, Hirschmann A. Systematic Radiation Dose Reduction in Cervical Spine CT of Human Cadaveric Specimens: How Low Can We Go? AJNR Am J Neuroradiol 2017; 39:385-391. [PMID: 29269403 DOI: 10.3174/ajnr.a5490] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/23/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE While the use of cervical spine CT in trauma settings has increased, the balance between image quality and dose reduction remains a concern. The purpose of our study was to compare the image quality of CT of the cervical spine of cadaveric specimens at different radiation dose levels. MATERIALS AND METHODS The cervical spine of 4 human cadavers (mean body mass index; 30.5 ± 5.2 kg/m2; range, 24-36 kg/m2) was examined using different reference tube current-time products (45, 75, 105, 135, 150, 165, 195, 275, 355 mAs) and a tube voltage of 120 kV(peak). Data were reconstructed with filtered back-projection and iterative reconstruction. Qualitative image noise and morphologic characteristics of bony structures were quantified on a Likert scale. Quantitative image noise was measured. Statistics included analysis of variance and the Tukey test. RESULTS Compared with filtered back-projection, iterative reconstruction provided significantly lower qualitative (mean noise score: iterative reconstruction = 2.10/filtered back-projection = 2.18; P = .003) and quantitative (mean SD of Hounsfield units in air: iterative reconstruction = 30.2/filtered back-projection = 51.8; P < .001) image noise. Image noise increased as the radiation dose decreased. Qualitative image noise at levels C1-4 was rated as either "no noise" or as "acceptable noise." Any shoulder position was at level C5 and caused more artifacts at lower levels. When we analyzed all spinal levels, scores for morphologic characteristics revealed no significant differences between 105 and 355 mAs (P = .555), but they were worse in scans at 75 mAs (P = .025). CONCLUSIONS Clinically acceptable image quality of cervical spine CTs for evaluation of bony structures of cadaveric specimens with different body habitus can be achieved with a reference mAs of 105 at 120 kVp with iterative reconstruction. Pull-down of shoulders during acquisition could improve image quality but may not be feasible in trauma patients with unknown injuries.
Collapse
Affiliation(s)
- M Tozakidou
- From the Clinic of Radiology and Nuclear Medicine (M.T., C.R., D.H., J.L., U.S., S.S., A.H.), University of Basel Hospital, Basel, Switzerland
| | - C Reisinger
- From the Clinic of Radiology and Nuclear Medicine (M.T., C.R., D.H., J.L., U.S., S.S., A.H.), University of Basel Hospital, Basel, Switzerland
| | - D Harder
- From the Clinic of Radiology and Nuclear Medicine (M.T., C.R., D.H., J.L., U.S., S.S., A.H.), University of Basel Hospital, Basel, Switzerland
| | - J Lieb
- From the Clinic of Radiology and Nuclear Medicine (M.T., C.R., D.H., J.L., U.S., S.S., A.H.), University of Basel Hospital, Basel, Switzerland
| | - Z Szucs-Farkas
- Department of Diagnostic Radiology (Z.S.-F.), Hospital Centre of Biel, Biel, Switzerland
| | - M Müller-Gerbl
- Institute of Anatomy (M.M.-G.), University of Basel, Basel, Switzerland
| | - U Studler
- From the Clinic of Radiology and Nuclear Medicine (M.T., C.R., D.H., J.L., U.S., S.S., A.H.), University of Basel Hospital, Basel, Switzerland
| | - S Schindera
- From the Clinic of Radiology and Nuclear Medicine (M.T., C.R., D.H., J.L., U.S., S.S., A.H.), University of Basel Hospital, Basel, Switzerland
| | - A Hirschmann
- From the Clinic of Radiology and Nuclear Medicine (M.T., C.R., D.H., J.L., U.S., S.S., A.H.), University of Basel Hospital, Basel, Switzerland
| |
Collapse
|
40
|
Nam S, Jeong D, Choo K, Nam K, Hwang JY, Lee J, Kim J, Lim S. Image quality of CT angiography in young children with congenital heart disease: a comparison between the sinogram-affirmed iterative reconstruction (SAFIRE) and advanced modelled iterative reconstruction (ADMIRE) algorithms. Clin Radiol 2017; 72:1060-1065. [DOI: 10.1016/j.crad.2017.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/20/2017] [Accepted: 07/06/2017] [Indexed: 01/21/2023]
|
41
|
Schreiner MM, Platzgummer H, Unterhumer S, Weber M, Mistelbauer G, Loewe C, Schernthaner RE. A BMI-adjusted ultra-low-dose CT angiography protocol for the peripheral arteries—Image quality, diagnostic accuracy and radiation exposure. Eur J Radiol 2017; 93:149-156. [DOI: 10.1016/j.ejrad.2017.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 05/13/2017] [Accepted: 06/01/2017] [Indexed: 11/30/2022]
|
42
|
Kang H, Park JG, Park SK, Kim BS, Lee KN, Oh KS. Performance of Half-dose Chest Computed Tomography in Lung Malignancy Using an Iterative Reconstruction Technique. KOSIN MEDICAL JOURNAL 2017. [DOI: 10.7180/kmj.2017.32.1.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Objectives The purpose of this study was to evaluate the performance of half-dose chest CT using an iterative reconstruction technique in patients with lung malignancies. Methods The Dual-source CT scans were obtained and half-dose datasets were reconstructed with 5 different strengths in 38 adults with lung malignancies. Two radiologists graded subjective image quality; noise, contrast and sharpness at the central/peripheral lung, mediastinum and chest wall of the reconstructed half-dose images, compared with those of standard-dose images, using a three-point scale. A lesion assessment; lesion conspicuity and diagnostic confidence, was also performed. The quantitative image noises; contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) were measured and compared with those of standard-dose images. Results The subjective image noise in the half-dose images was less than that of the standard-dose images. The contrast in strengths 2 to 5 was superior, the sharpness of the lung parenchyma in strengths 3 to 5 was inferior, and the CNR/SNR in all strengths were higher than those of standard-dose images ( P < 0.05). The improvement of subjective image noise and contrast, the decrease in sharpness, were correlated with strength level ( P < 0.05). The lesion conspicuity in half-dose images of strengths 4 and 5 was decreased. The diagnostic confidence of the half-dose images of all strengths was comparable to that of the standard-dose images ( P < 0.05). Conclusions Half-dose chest CT images using an iterative reconstruction technique show decreased image noise, increased contrast, and diagnostic confidence comparable to standard-dose images. Images reconstructed with strength 2 and 3 appear to be the optimal choice in clinical practice.
Collapse
|
43
|
Aschoff AJ, Catalano C, Kirchin MA, Krix M, Albrecht T. Low radiation dose in computed tomography: the role of iodine. Br J Radiol 2017; 90:20170079. [PMID: 28471242 PMCID: PMC5603952 DOI: 10.1259/bjr.20170079] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Recent approaches to reducing radiation exposure during CT examinations typically utilize automated dose modulation strategies on the basis of lower tube voltage combined with iterative reconstruction and other dose-saving techniques. Less clearly appreciated is the potentially substantial role that iodinated contrast media (CM) can play in low-radiation-dose CT examinations. Herein we discuss the role of iodinated CM in low-radiation-dose examinations and describe approaches for the optimization of CM administration protocols to further reduce radiation dose and/or CM dose while maintaining image quality for accurate diagnosis. Similar to the higher iodine attenuation obtained at low-tube-voltage settings, high-iodine-signal protocols may permit radiation dose reduction by permitting a lowering of mAs while maintaining the signal-to-noise ratio. This is particularly feasible in first pass examinations where high iodine signal can be achieved by injecting iodine more rapidly. The combination of low kV and IR can also be used to reduce the iodine dose. Here, in optimum contrast injection protocols, the volume of CM administered rather than the iodine concentration should be reduced, since with high-iodine-concentration CM further reductions of iodine dose are achievable for modern first pass examinations. Moreover, higher concentrations of CM more readily allow reductions of both flow rate and volume, thereby improving the tolerability of contrast administration.
Collapse
Affiliation(s)
- Andrik J Aschoff
- 1 Department for Diagnostic and Interventional Radiology and Neuroradiology, Klinikum Kempten, Kempten, Germany
| | - Carlo Catalano
- 2 Department of Radiological Sciences, University of Rome "La Sapienza", Rome, Italy
| | - Miles A Kirchin
- 3 Bracco Imaging SpA, Global Medical & Regulatory Affairs, Milan, Italy
| | - Martin Krix
- 4 Bracco Imaging Germany, Global Medical & Regulatory Affairs, Konstanz, Germany
| | - Thomas Albrecht
- 5 Institut für Radiologie und Interventionelle Therapie, Vivantes-Klinikum Neukölln, Berlin, Germany
| |
Collapse
|
44
|
Noid G, Tai A, Chen GP, Robbins J, Li XA. Reducing radiation dose and enhancing imaging quality of 4DCT for radiation therapy using iterative reconstruction algorithms. Adv Radiat Oncol 2017; 2:515-521. [PMID: 29114620 PMCID: PMC5605285 DOI: 10.1016/j.adro.2017.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/20/2017] [Accepted: 04/11/2017] [Indexed: 11/16/2022] Open
Abstract
Purpose Four-dimensional computed tomography (CT) images are typically used to quantify the necessary internal target volumes for thoracic and abdominal tumors. However, 4-dimensional CT is typically associated with excessive imaging dose to patients and the situation is exacerbated when using repeat 4-dimensional CT imaging on a weekly or daily basis throughout fractionated therapy. The aim of this work is to evaluate an iterative reconstruction (IR) algorithm that helps reduce the imaging dose to the patient while maintaining imaging quality as quantified by point spread function and contrast-to-noise ratios (CNRs). Methods and materials An IR algorithm, SAFIRE, was applied to CT data of a phantom and patients with varying CT doses and reconstruction kernels. Phantom data enable measurements of spatial resolution, contrast, and noise. The impact of SAFIRE on 4-dimensional CT was assessed with patient data acquired at 2 different dose levels during image guided radiation therapy with an in-room CT. Results Phantom data demonstrate that IR reduces noise approximately in proportion to the number of iterations indicated by the strength (SAFIRE 1 to SAFIRE 5). Spatial resolution and contrast are conserved independent of dose and reconstruction parameters. The CNR increases with an increase of imaging dose or an increase in the number of iterations. The use of IR on CT sets confirms the results that were derived from phantom scans. The IR significantly enhances single breathing phase CTs in 4-dimensional CT sets as assessed by CT number discrimination. Furthermore, the IR of the low dose 4-dimensional CT features a 45% increase in the CNR in comparison with the standard dose 4-dimensional CT. Conclusions The use of IR algorithms reduces noise while preserving spatial resolution and contrast, as evaluated from both phantom and patient CT data sets. For 4-dimensional CT, the IR can significantly improve image quality and reduce imaging dose without compromising image quality.
Collapse
Affiliation(s)
- George Noid
- Medical College of Wisconsin, Department of Radiation Oncology, Milwaukee, Wisconsin
| | - An Tai
- Medical College of Wisconsin, Department of Radiation Oncology, Milwaukee, Wisconsin
| | - Guang-Pei Chen
- Medical College of Wisconsin, Department of Radiation Oncology, Milwaukee, Wisconsin
| | - Jared Robbins
- Medical College of Wisconsin, Department of Radiation Oncology, Milwaukee, Wisconsin
| | - X Allen Li
- Medical College of Wisconsin, Department of Radiation Oncology, Milwaukee, Wisconsin
| |
Collapse
|
45
|
Solomon J, Marin D, Roy Choudhury K, Patel B, Samei E. Effect of Radiation Dose Reduction and Reconstruction Algorithm on Image Noise, Contrast, Resolution, and Detectability of Subtle Hypoattenuating Liver Lesions at Multidetector CT: Filtered Back Projection versus a Commercial Model-based Iterative Reconstruction Algorithm. Radiology 2017; 284:777-787. [PMID: 28170300 DOI: 10.1148/radiol.2017161736] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purpose To determine the effect of radiation dose and iterative reconstruction (IR) on noise, contrast, resolution, and observer-based detectability of subtle hypoattenuating liver lesions and to estimate the dose reduction potential of the IR algorithm in question. Materials and Methods This prospective, single-center, HIPAA-compliant study was approved by the institutional review board. A dual-source computed tomography (CT) system was used to reconstruct CT projection data from 21 patients into six radiation dose levels (12.5%, 25%, 37.5%, 50%, 75%, and 100%) on the basis of two CT acquisitions. A series of virtual liver lesions (five per patient, 105 total, lesion-to-liver prereconstruction contrast of -15 HU, 12-mm diameter) were inserted into the raw CT projection data and images were reconstructed with filtered back projection (FBP) (B31f kernel) and sinogram-affirmed IR (SAFIRE) (I31f-5 kernel). Image noise (pixel standard deviation), lesion contrast (after reconstruction), lesion boundary sharpness (average normalized gradient at lesion boundary), and contrast-to-noise ratio (CNR) were compared. Next, a two-alternative forced choice perception experiment was performed (16 readers [six radiologists, 10 medical physicists]). A linear mixed-effects statistical model was used to compare detection accuracy between FBP and SAFIRE and to estimate the radiation dose reduction potential of SAFIRE. Results Compared with FBP, SAFIRE reduced noise by a mean of 53% ± 5, lesion contrast by 12% ± 4, and lesion sharpness by 13% ± 10 but increased CNR by 89% ± 19. Detection accuracy was 2% higher on average with SAFIRE than with FBP (P = .03), which translated into an estimated radiation dose reduction potential (±95% confidence interval) of 16% ± 13. Conclusion SAFIRE increases detectability at a given radiation dose (approximately 2% increase in detection accuracy) and allows for imaging at reduced radiation dose (16% ± 13), while maintaining low-contrast detectability of subtle hypoattenuating focal liver lesions. This estimated dose reduction is somewhat smaller than that suggested by past studies. © RSNA, 2017 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Justin Solomon
- From the Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, 2424 Erwin Rd, Suite 302, Durham, NC 27705
| | - Daniele Marin
- From the Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, 2424 Erwin Rd, Suite 302, Durham, NC 27705
| | - Kingshuk Roy Choudhury
- From the Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, 2424 Erwin Rd, Suite 302, Durham, NC 27705
| | - Bhavik Patel
- From the Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, 2424 Erwin Rd, Suite 302, Durham, NC 27705
| | - Ehsan Samei
- From the Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, 2424 Erwin Rd, Suite 302, Durham, NC 27705
| |
Collapse
|
46
|
Efficacy of a dynamic collimator for overranging dose reduction in a second- and third-generation dual source CT scanner. Eur Radiol 2017; 27:3618-3624. [PMID: 28127643 PMCID: PMC5544804 DOI: 10.1007/s00330-017-4745-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 11/21/2016] [Accepted: 01/10/2017] [Indexed: 11/05/2022]
Abstract
Objectives The purpose of this study was to assess the efficacy of the renewed dynamic collimator in a third-generation dual source CT (DSCT) scanner and to determine the improvements over the second-generation scanner. Methods Collimator efficacy is defined as the percentage overranging dose in terms of dose–length product (DLP) that is blocked by the dynamic collimator relative to the total overranging dose in case of a static collimator. Efficacy was assessed at various pitch values and different scan lengths. The number of additional rotations due to overranging and effective scan length were calculated on the basis of reported scanning parameters. On the basis of these values, the efficacy of the collimator was calculated. Results The second-generation scanner showed decreased performance of the dynamic collimator at increasing pitch. Efficacy dropped to 10% at the highest pitch. For the third-generation scanner the efficacy remained above 50% at higher pitch. Noise was for some pitch values slightly higher at the edge of the imaged volume, indicating a reduced scan range to reduce the overranging dose. Conclusions The improved dynamic collimator in the third-generation scanner blocks the overranging dose for more than 50% and is more capable of shielding radiation dose, especially in high pitch scan modes. Key points • Overranging dose is to a large extent blocked by the dynamic collimator • Efficacy is strongly improved within the third-generation DSCT scanner • Reducing the number of additional rotations can reduce overranging with increased noise
Collapse
|
47
|
Miyata K, Nagatani Y, Ikeda M, Takahashi M, Nitta N, Matsuo S, Ohta S, Otani H, Nitta-Seko A, Murakami Y, Tsuchiya K, Inoue A, Misaki S, Erdenee K, Kida T, Murata K. A phantom study for ground-glass nodule detectability using chest digital tomosynthesis with iterative reconstruction algorithm by ten observers: association with radiation dose and nodular characteristics. Br J Radiol 2017; 90:20160555. [PMID: 28102693 DOI: 10.1259/bjr.20160555] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To compare detectability of simulated ground-glass nodules (GGNs) on chest digital tomosynthesis (CDT) among 12 images obtained at 6 radiation doses using 2 reconstruction algorithms and to analyze its association with nodular size and density. METHODS 74 simulated GGNs [5, 8 and 10 mm in diameter/-630 and -800 Hounsfield units (HU) in density] were placed in a chest phantom in 14 nodular distribution patterns. 12 sets of coronal images were obtained using CDT at 6 radiation doses: 120 kV-10 mA/20 mA/80 mA/160 mA, 100 kV-80 mA and 80 kV-320 mA with and without iterative reconstruction (IR). 10 radiologists recorded GGN presence and locations by continuously distributed rating. GGN detectability was compared by receiver operating characteristic analysis among 12 images and detection sensitivities (DS) were compared among 12 images in subgroups classified by nodular diameters and densities. RESULTS GGN detectability at 120 kV-160 mA with IR was similar to that at 120 kV-80 mA with IR (0.614 mSv), as area under receiver operating characteristic curve was 0.798 ± 0.024 and 0.788 ± 0.025, respectively, and higher than six images acquired at 120 kV (p < 0.05). For nodules of -630 HU/8 mm, DS at 120 kV-10 mA without IR was 73.5 ± 6.0% and was similar to that by the other 11 data acquisition methods (p = 0.157). For nodules of -800 HU/10 mm, DS both at 120 kV-80 mA and 120 kV-160 mA without IR was improved by IR (56.3 ± 11.9%) (p < 0.05). CONCLUSION CDT demonstrated sufficient detectability for larger more-attenuated GGNs (>8 mm) even in the lowest radiation dose (0.17 mSv) and improved detectability for less-attenuated GGNs with the diameter of 10 mm at submillisievert with IR. Advances in knowledge: IR improved detectability for larger less-attenuated simulated GGNs on CDT.
Collapse
Affiliation(s)
- Katsunori Miyata
- 1 Department of Radiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Yukihiro Nagatani
- 1 Department of Radiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Mitsuru Ikeda
- 2 Department of Radiological Technology, Nagoya University School of Health Science, Higashi-ku, Nagoya, Japan
| | - Masashi Takahashi
- 1 Department of Radiology, Shiga University of Medical Science, Otsu, Shiga, Japan.,3 Department of Radiology, Yujin-Yamazaki Hospital, Hikone, Shiga, Japan
| | - Norihisa Nitta
- 1 Department of Radiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Satoru Matsuo
- 4 Department of Radiological Technology, Kyoto College of Medical Science, Nantan, Kyoto, Japan
| | - Shinichi Ohta
- 1 Department of Radiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hideji Otani
- 1 Department of Radiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Ayumi Nitta-Seko
- 1 Department of Radiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Yoko Murakami
- 1 Department of Radiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Keiko Tsuchiya
- 1 Department of Radiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Akitoshi Inoue
- 1 Department of Radiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Sayaka Misaki
- 5 Department of Radiology, Ijinkai-Takeda General Hospital, Fushimi-ku, Kyoto, Japan
| | - Khishigdorj Erdenee
- 6 Department of Radiology, EMC-KENKO Hospital, Health Science University of Mongolia, Orkhon, Mongolia
| | - Tetsuo Kida
- 1 Department of Radiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Kiyoshi Murata
- 1 Department of Radiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
48
|
Masuda T, Funama Y, Kiguchi M, Imada N, Oku T, Sato T, Awai K. Radiation dose reduction based on CNR index with low-tube voltage scan for pediatric CT scan: experimental study using anthropomorphic phantoms. SPRINGERPLUS 2016; 5:2064. [PMID: 27995041 PMCID: PMC5133217 DOI: 10.1186/s40064-016-3715-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022]
Abstract
Background To figure out the relationship between image noise and contrast noise ratio (CNR) at different tube voltages, using anthropomorphic new-born and 1-year-old phantoms, and to discuss the feasibility of radiation dose reduction, based on the obtained CNR index from image noise. We performed helical scans of the anthropomorphic new-born and 1-year-old phantoms. The CT numbers of the simulated aorta and image noise of the simulated mediastinum were measured; then CNR was calculated on 80, 100, and 120-kVp images reconstructed with filtered back projection (FBP) and iterative reconstruction (IR). We also measured the center and surface dose in the case of CNR of 14 using radio-photoluminescence glass dosimeters. Results The CT number of the simulated aorta was increased with decreasing tube voltage from 120 to 80 kVp (362.5–535.1 HU for the new-born, 358.9–532.6 HU for the 1-year-old). At CNR of 14, the center dose was 0.4, 0.6 and 0.9 mGy at FBP and 0.5, 0.6 and 0.9 mGy at IR and with the new-born phantom acquired at 80, 100 and 120 kVp, respectively. The center dose for FBP image was reduced by 56% at 80 kVp, 34% at 100 kVp for the new-born and 36% at 80 kVp, 22% at 100 kVp for the 1-year-old compared with that at 120 kVp. We obtained a relationship between image noise and CNR at different tube voltages using the anthropomorphic new-born and 1-year-old phantoms. Conclusion The use of index of CNR with low-tube voltage may achieve further radiation dose reduction in pediatric CT examination.
Collapse
Affiliation(s)
- Takanori Masuda
- Department of Radiological Technology, Tsuchiya General Hospital, Nakajima-cho 3-30, Naka-ku, Hiroshima, 730-8655 Japan ; Department of Diagnostic Radiology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshinori Funama
- Department of Medical Physics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masao Kiguchi
- Department of Diagnostic Radiology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Naoyuki Imada
- Department of Radiological Technology, Tsuchiya General Hospital, Nakajima-cho 3-30, Naka-ku, Hiroshima, 730-8655 Japan
| | - Takayuki Oku
- Department of Radiological Technology, Tsuchiya General Hospital, Nakajima-cho 3-30, Naka-ku, Hiroshima, 730-8655 Japan
| | - Tomoyasu Sato
- Department of Diagnostic Radiology, Tsuchiya General Hospital, Nakajima-cho 3-30, Naka-ku, Hiroshima, 730-8655 Japan
| | - Kazuo Awai
- Department of Diagnostic Radiology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
49
|
Notohamiprodjo S, Stahl R, Braunagel M, Kazmierczak PM, Thierfelder KM, Treitl KM, Wirth S, Notohamiprodjo M. Diagnostic accuracy of contemporary multidetector computed tomography (MDCT) for the detection of lumbar disc herniation. Eur Radiol 2016; 27:3443-3451. [PMID: 27988890 DOI: 10.1007/s00330-016-4686-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/23/2016] [Accepted: 11/29/2016] [Indexed: 01/24/2023]
Abstract
OBJECTIVES To evaluate the diagnostic accuracy of multidetector CT (MDCT) for detection of lumbar disc herniation with MRI as standard of reference. METHODS Patients with low back pain underwent indicated MDCT (128-row MDCT, helical pitch), 60 patients with iterative reconstruction (IR) and 67 patients with filtered back projection (FBP). Lumbar spine MRI (1.5 T) was performed within 1 month. Signal-to-noise ratios (SNR) of cerebrospinal fluid (CSF), annulus fibrosus (AF) and the spinal cord (SC) were determined for all modalities. Two readers independently rated image quality (IQ), diagnostic confidence and accuracy in the diagnosis of lumbar disc herniation using MRI as standard of reference. Inter-reader correlation was assessed with weighted κ. RESULTS Sensitivity, specificity, precision and accuracy of MDCT for disc protrusion were 98.8%, 96.5%, 97.1%, 97.8% (disc level), 97.7%, 92.9%, 98.6%, 96.9% (patient level). SNR of IR was significantly higher than FBP. IQ was significantly better in IR owing to visually reduced noise and improved delineation of the discs. κ (>0.90) was excellent for both algorithms. CONCLUSION MDCT of the lumbar spine yields high diagnostic accuracy for detection of lumbar disc herniation. IR improves image quality so that the provided diagnostic accuracy is principally equivalent to MRI. KEY POINTS • MDCT is an accurate alternative to MRI in disc herniation diagnosis. • By IR enhanced image quality improves MDCT diagnostic confidence similar to MRI. • Advances in CT technology contribute to improved diagnostic performance in lumbar spine imaging.
Collapse
Affiliation(s)
- S Notohamiprodjo
- Institute for Clinical Radiology, University Hospital of Munich, LMU Munich, Nussbaumstr. 20, 80336, Munich, Germany.
| | - R Stahl
- Institute for Clinical Radiology, University Hospital of Munich, LMU Munich, Nussbaumstr. 20, 80336, Munich, Germany
| | - M Braunagel
- Institute for Clinical Radiology, University Hospital of Munich, LMU Munich, Nussbaumstr. 20, 80336, Munich, Germany
| | - P M Kazmierczak
- Institute for Clinical Radiology, University Hospital of Munich, LMU Munich, Nussbaumstr. 20, 80336, Munich, Germany
| | - K M Thierfelder
- Institute for Clinical Radiology, University Hospital of Munich, LMU Munich, Nussbaumstr. 20, 80336, Munich, Germany
| | - K M Treitl
- Institute for Clinical Radiology, University Hospital of Munich, LMU Munich, Nussbaumstr. 20, 80336, Munich, Germany
| | - S Wirth
- Institute for Clinical Radiology, University Hospital of Munich, LMU Munich, Nussbaumstr. 20, 80336, Munich, Germany
| | - M Notohamiprodjo
- Diagnostic and Interventional Radiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
50
|
Omotayo A, Elbakri I. Objective performance assessment of five computed tomography iterative reconstruction algorithms. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2016; 24:913-930. [PMID: 27612054 DOI: 10.3233/xst-160601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
OBJECTIVE Iterative algorithms are gaining clinical acceptance in CT. We performed objective phantom-based image quality evaluation of five commercial iterative reconstruction algorithms available on four different multi-detector CT (MDCT) scanners at different dose levels as well as the conventional filtered back-projection (FBP) reconstruction. METHODS Using the Catphan500 phantom, we evaluated image noise, contrast-to-noise ratio (CNR), modulation transfer function (MTF) and noise-power spectrum (NPS). The algorithms were evaluated over a CTDIvol range of 0.75-18.7 mGy on four major MDCT scanners: GE DiscoveryCT750HD (algorithms: ASIR™ and VEO™); Siemens Somatom Definition AS+ (algorithm: SAFIRE™); Toshiba Aquilion64 (algorithm: AIDR3D™); and Philips Ingenuity iCT256 (algorithm: iDose4™). Images were reconstructed using FBP and the respective iterative algorithms on the four scanners. RESULTS Use of iterative algorithms decreased image noise and increased CNR, relative to FBP. In the dose range of 1.3-1.5 mGy, noise reduction using iterative algorithms was in the range of 11%-51% on GE DiscoveryCT750HD, 10%-52% on Siemens Somatom Definition AS+, 49%-62% on Toshiba Aquilion64, and 13%-44% on Philips Ingenuity iCT256. The corresponding CNR increase was in the range 11%-105% on GE, 11%-106% on Siemens, 85%-145% on Toshiba and 13%-77% on Philips respectively. Most algorithms did not affect the MTF, except for VEO™ which produced an increase in the limiting resolution of up to 30%. A shift in the peak of the NPS curve towards lower frequencies and a decrease in NPS amplitude were obtained with all iterative algorithms. VEO™ required long reconstruction times, while all other algorithms produced reconstructions in real time. Compared to FBP, iterative algorithms reduced image noise and increased CNR. CONCLUSIONS The iterative algorithms available on different scanners achieved different levels of noise reduction and CNR increase while spatial resolution improvements were obtained only with VEO™. This study is useful in that it provides performance assessment of the iterative algorithms available from several mainstream CT manufacturers.
Collapse
Affiliation(s)
- Azeez Omotayo
- Division of Medical Physics, CancerCare Manitoba, Winnipeg, MB, Canada
| | - Idris Elbakri
- Division of Medical Physics, CancerCare Manitoba, Winnipeg, MB, Canada
- Department of Radiology, University of Manitoba, Winnipeg, MB, Canada
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|