1
|
Kraff O, May MW. Multi-center QA of ultrahigh-field systems. MAGMA (NEW YORK, N.Y.) 2025:10.1007/s10334-025-01232-8. [PMID: 40126781 DOI: 10.1007/s10334-025-01232-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 03/26/2025]
Abstract
Over the past two decades, ultra-high field (UHF) magnetic resonance imaging (MRI) has evolved from pure investigational devices to now systems with CE and FDA clearance for clinical use. UHF MRI offers enhanced diagnostic value, especially in brain and musculoskeletal imaging, aiding in the differential diagnosis of conditions like multiple sclerosis and epilepsy. However, to fully harness the potential of UHF, multi-center studies and quality assurance (QA) protocols are critical for ensuring reproducibility across different systems and sites. This becomes even more vital as the UHF community comprises three generations of magnet design, and many UHF sites are currently upgrading to the latest system architecture. Hence, this review presents multi-center QA measurements that have been performed at UHF, in particular from larger consortia through their "travelling heads" studies. Despite the technical variability between different vendors and system generations, these studies have shown a high level of reproducibility in structural and quantitative imaging. Furthermore, the review highlights the ongoing challenges in QA, such as transmitter performance drift and the need for a standard reliable multi-tissue phantom for RF coil calibration, which are crucial for advancing UHF MRI in both clinical and research applications.
Collapse
Affiliation(s)
- Oliver Kraff
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Kokereiallee 7, 45141, Essen, Germany.
| | - Markus W May
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Kokereiallee 7, 45141, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| |
Collapse
|
2
|
Cheng KY, Jerban S, Bae WC, Fliszar E, Chung CB. High-Field MRI Advantages and Applications in Rheumatology. Radiol Clin North Am 2024; 62:837-847. [PMID: 39059975 DOI: 10.1016/j.rcl.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Imaging of rheumatologic diseases has historically been performed using conventional radiography. MRI offers an opportunity for detection of altered marrow signal in early disease that is not visible on other imaging modalities such as radiography, computed tomography, or sonography. This review describes the advantages of current MRI techniques in the diagnosis and treatment monitoring of rheumatologic diseases. In addition, this review discusses novel MRI techniques at high-field magnetic strength which may be deployed in the future to allow for improved imaging resolution and quantitative assessment of both axial and peripheral joints.
Collapse
Affiliation(s)
- Karen Y Cheng
- Department of Radiology, University of California, San Diego, 200 W Arbor Drive, San Diego, CA 92103, USA
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, 200 W Arbor Drive, San Diego, CA 92103, USA; Department of Orthopedic Surgery, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Radiology and Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - Won C Bae
- Department of Radiology, University of California, San Diego, 200 W Arbor Drive, San Diego, CA 92103, USA
| | - Evelyne Fliszar
- Department of Radiology, University of California, San Diego, 200 W Arbor Drive, San Diego, CA 92103, USA
| | - Christine B Chung
- Department of Radiology, University of California, San Diego, 200 W Arbor Drive, San Diego, CA 92103, USA; Department of Radiology and Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA.
| |
Collapse
|
3
|
Xie Y, Li H, Chen Y, Cai J, Tao H, Chen S. More severe supraspinatus tendon degeneration on the contralateral shoulders in patients treated for symptomatic rotator cuff tears compared to healthy controls: a quantitative MRI-based study. Acta Radiol 2024; 65:616-624. [PMID: 38232947 DOI: 10.1177/02841851231222812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
BACKGROUND Patients treated for symptomatic rotator cuff tear (RCT) on one shoulder seem to have a higher prevalence of RCT on the contralateral shoulder. PURPOSE To compare the supraspinatus (SSP) tendon and RC muscle properties on the contralateral shoulder in patients after repair surgery to those healthy individuals using quantitative magnetic resonance imaging (MRI). MATERIAL AND METHODS A total of 23 patients treated for RCT (group A) and 23 healthy controls (group B) were recruited. Constant score, visual analog scale score (VAS), and MRI examinations were conducted. The SSP tendon structural status was graded based on the Zlatkin classification and quantified on ultrashort echo time (UTE)-T2* mapping images. Fatty degeneration of RC muscles was classified according to the Goutallier classification and quantified on T2 mapping. RESULTS The Constant and VAS scores were comparable between groups A and B (all P >0.05). No significant differences were observed in tendon structural status between the two groups (P >0.05). However, significant differences were established in UTE-T2* values of the SSP tendon on the distal subregion between groups A and B (16.4 ± 2.4 ms vs. 14.8 ± 1.2 ms; P = 0.01). Regarding muscle degeneration, no significant differences were displayed in T2 values and Goutallier classification of RC muscles (all P >0.05). CONCLUSION Patients with a treated RCT demonstrated inferior SSP tendon in the distal subregion on the contralateral shoulders one year postoperatively compared to that of healthy controls based on quantitative MRI data.
Collapse
Affiliation(s)
- Yuxue Xie
- Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Haoxiong Li
- Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Ye Chen
- Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Jiajie Cai
- Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Hongyue Tao
- Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Shuang Chen
- Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, PR China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, PR China
| |
Collapse
|
4
|
Heiss R, Weber MA, Balbach E, Schmitt R, Rehnitz C, Laqmani A, Sternberg A, Ellermann JJ, Nagel AM, Ladd ME, Englbrecht M, Arkudas A, Horch R, Guermazi A, Uder M, Roemer FW. Clinical Application of Ultrahigh-Field-Strength Wrist MRI: A Multireader 3-T and 7-T Comparison Study. Radiology 2023; 307:e220753. [PMID: 36625744 DOI: 10.1148/radiol.220753] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Ultrahigh-field-strength MRI at 7 T may permit superior visualization of noninflammatory wrist pathologic conditions, particularly due to its high signal-to-noise ratio compared with the clinical standard of 3 T, but direct comparison studies are lacking. Purpose To compare the subjective image quality of 3-T and 7-T ultrahigh-field-strength wrist MRI through semiquantitative scoring of multiple joint tissues in a multireader study. Materials and Methods In this prospective study, healthy controls and participants with chronic wrist pain underwent 3-T and 7-T MRI (coronal T1-weighted turbo spin-echo [TSE], coronal fat-suppressed proton-density [PD]-weighted TSE, transversal T2-weighted TSE) on the same day, from July 2018 to June 2019. Images were scored by seven musculoskeletal radiologists. The overall image quality, presence of artifacts, homogeneity of fat suppression, and visualization of cartilage, the triangular fibrocartilage complex (TFCC), and scapholunate and lunotriquetral ligaments were semiquantitatively assessed. Pairwise differences between 3 T and 7 T were assessed using the Wilcoxon signed-rank test. Interreader reliability was determined using the Fleiss kappa. Results In total, 25 healthy controls (mean age, 25 years ± 4 [SD]; 13 women) and 25 participants with chronic wrist pain (mean age, 39 years ± 16; 14 men) were included. Overall image quality (P = .002) and less presence of artifacts at PD-weighted fat-suppressed MRI were superior at 7 T. T1- and T2-weighted MRI were superior at 3 T (both P < .001), as was fat suppression (P < .001). Visualization of cartilage was superior at 7 T (P < .001), while visualization of the TFCC (P < .001) and scapholunate (P = .048) and lunotriquetral (P = .04) ligaments was superior at 3 T. Interreader reliability showed slight to substantial agreement for the detected pathologic conditions (κ = 0.20-0.64). Conclusion A 7-T MRI of the wrist had potential advantages over 3-T MRI, particularly in cartilage assessment. However, superiority was not shown for all parameters; for example, visualization of the triangular fibrocartilage complex and wrist ligaments was superior at 3 T. © RSNA, 2023 Supplemental material is available for this article.
Collapse
Affiliation(s)
- Rafael Heiss
- Department of Radiology (R. Heiss, E.B., A.M.N., M.U., F.W.R.) and Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine (A.A., R. Horch), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054 Erlangen, Germany; Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, Rostock, Germany (M.A.W.); Department of Radiology, Ludwig Maximilian University of Munich, Munich, Germany (R.S.); Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany (C.R.); Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.L.); Medizinisches Versorgungszentrum am Rotes Kreuz Krankenhaus, Bremen, Germany (A.S.); University of Minnesota Medical School, Minneapolis, Minnesota (J.J.E.); Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany (A.M.N., M.E.L.); Statscoach, Eckental, Germany (M.E.); VA Boston Healthcare System, West Roxbury, Mass (A.G.); and Boston University School of Medicine, Boston, Mass (M.U., F.W.R.)
| | - Marc-André Weber
- Department of Radiology (R. Heiss, E.B., A.M.N., M.U., F.W.R.) and Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine (A.A., R. Horch), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054 Erlangen, Germany; Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, Rostock, Germany (M.A.W.); Department of Radiology, Ludwig Maximilian University of Munich, Munich, Germany (R.S.); Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany (C.R.); Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.L.); Medizinisches Versorgungszentrum am Rotes Kreuz Krankenhaus, Bremen, Germany (A.S.); University of Minnesota Medical School, Minneapolis, Minnesota (J.J.E.); Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany (A.M.N., M.E.L.); Statscoach, Eckental, Germany (M.E.); VA Boston Healthcare System, West Roxbury, Mass (A.G.); and Boston University School of Medicine, Boston, Mass (M.U., F.W.R.)
| | - Eva Balbach
- Department of Radiology (R. Heiss, E.B., A.M.N., M.U., F.W.R.) and Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine (A.A., R. Horch), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054 Erlangen, Germany; Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, Rostock, Germany (M.A.W.); Department of Radiology, Ludwig Maximilian University of Munich, Munich, Germany (R.S.); Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany (C.R.); Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.L.); Medizinisches Versorgungszentrum am Rotes Kreuz Krankenhaus, Bremen, Germany (A.S.); University of Minnesota Medical School, Minneapolis, Minnesota (J.J.E.); Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany (A.M.N., M.E.L.); Statscoach, Eckental, Germany (M.E.); VA Boston Healthcare System, West Roxbury, Mass (A.G.); and Boston University School of Medicine, Boston, Mass (M.U., F.W.R.)
| | - Rainer Schmitt
- Department of Radiology (R. Heiss, E.B., A.M.N., M.U., F.W.R.) and Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine (A.A., R. Horch), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054 Erlangen, Germany; Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, Rostock, Germany (M.A.W.); Department of Radiology, Ludwig Maximilian University of Munich, Munich, Germany (R.S.); Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany (C.R.); Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.L.); Medizinisches Versorgungszentrum am Rotes Kreuz Krankenhaus, Bremen, Germany (A.S.); University of Minnesota Medical School, Minneapolis, Minnesota (J.J.E.); Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany (A.M.N., M.E.L.); Statscoach, Eckental, Germany (M.E.); VA Boston Healthcare System, West Roxbury, Mass (A.G.); and Boston University School of Medicine, Boston, Mass (M.U., F.W.R.)
| | - Christoph Rehnitz
- Department of Radiology (R. Heiss, E.B., A.M.N., M.U., F.W.R.) and Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine (A.A., R. Horch), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054 Erlangen, Germany; Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, Rostock, Germany (M.A.W.); Department of Radiology, Ludwig Maximilian University of Munich, Munich, Germany (R.S.); Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany (C.R.); Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.L.); Medizinisches Versorgungszentrum am Rotes Kreuz Krankenhaus, Bremen, Germany (A.S.); University of Minnesota Medical School, Minneapolis, Minnesota (J.J.E.); Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany (A.M.N., M.E.L.); Statscoach, Eckental, Germany (M.E.); VA Boston Healthcare System, West Roxbury, Mass (A.G.); and Boston University School of Medicine, Boston, Mass (M.U., F.W.R.)
| | - Azien Laqmani
- Department of Radiology (R. Heiss, E.B., A.M.N., M.U., F.W.R.) and Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine (A.A., R. Horch), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054 Erlangen, Germany; Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, Rostock, Germany (M.A.W.); Department of Radiology, Ludwig Maximilian University of Munich, Munich, Germany (R.S.); Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany (C.R.); Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.L.); Medizinisches Versorgungszentrum am Rotes Kreuz Krankenhaus, Bremen, Germany (A.S.); University of Minnesota Medical School, Minneapolis, Minnesota (J.J.E.); Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany (A.M.N., M.E.L.); Statscoach, Eckental, Germany (M.E.); VA Boston Healthcare System, West Roxbury, Mass (A.G.); and Boston University School of Medicine, Boston, Mass (M.U., F.W.R.)
| | - Andreas Sternberg
- Department of Radiology (R. Heiss, E.B., A.M.N., M.U., F.W.R.) and Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine (A.A., R. Horch), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054 Erlangen, Germany; Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, Rostock, Germany (M.A.W.); Department of Radiology, Ludwig Maximilian University of Munich, Munich, Germany (R.S.); Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany (C.R.); Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.L.); Medizinisches Versorgungszentrum am Rotes Kreuz Krankenhaus, Bremen, Germany (A.S.); University of Minnesota Medical School, Minneapolis, Minnesota (J.J.E.); Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany (A.M.N., M.E.L.); Statscoach, Eckental, Germany (M.E.); VA Boston Healthcare System, West Roxbury, Mass (A.G.); and Boston University School of Medicine, Boston, Mass (M.U., F.W.R.)
| | - Jutta J Ellermann
- Department of Radiology (R. Heiss, E.B., A.M.N., M.U., F.W.R.) and Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine (A.A., R. Horch), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054 Erlangen, Germany; Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, Rostock, Germany (M.A.W.); Department of Radiology, Ludwig Maximilian University of Munich, Munich, Germany (R.S.); Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany (C.R.); Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.L.); Medizinisches Versorgungszentrum am Rotes Kreuz Krankenhaus, Bremen, Germany (A.S.); University of Minnesota Medical School, Minneapolis, Minnesota (J.J.E.); Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany (A.M.N., M.E.L.); Statscoach, Eckental, Germany (M.E.); VA Boston Healthcare System, West Roxbury, Mass (A.G.); and Boston University School of Medicine, Boston, Mass (M.U., F.W.R.)
| | - Armin M Nagel
- Department of Radiology (R. Heiss, E.B., A.M.N., M.U., F.W.R.) and Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine (A.A., R. Horch), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054 Erlangen, Germany; Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, Rostock, Germany (M.A.W.); Department of Radiology, Ludwig Maximilian University of Munich, Munich, Germany (R.S.); Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany (C.R.); Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.L.); Medizinisches Versorgungszentrum am Rotes Kreuz Krankenhaus, Bremen, Germany (A.S.); University of Minnesota Medical School, Minneapolis, Minnesota (J.J.E.); Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany (A.M.N., M.E.L.); Statscoach, Eckental, Germany (M.E.); VA Boston Healthcare System, West Roxbury, Mass (A.G.); and Boston University School of Medicine, Boston, Mass (M.U., F.W.R.)
| | - Mark E Ladd
- Department of Radiology (R. Heiss, E.B., A.M.N., M.U., F.W.R.) and Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine (A.A., R. Horch), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054 Erlangen, Germany; Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, Rostock, Germany (M.A.W.); Department of Radiology, Ludwig Maximilian University of Munich, Munich, Germany (R.S.); Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany (C.R.); Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.L.); Medizinisches Versorgungszentrum am Rotes Kreuz Krankenhaus, Bremen, Germany (A.S.); University of Minnesota Medical School, Minneapolis, Minnesota (J.J.E.); Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany (A.M.N., M.E.L.); Statscoach, Eckental, Germany (M.E.); VA Boston Healthcare System, West Roxbury, Mass (A.G.); and Boston University School of Medicine, Boston, Mass (M.U., F.W.R.)
| | - Matthias Englbrecht
- Department of Radiology (R. Heiss, E.B., A.M.N., M.U., F.W.R.) and Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine (A.A., R. Horch), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054 Erlangen, Germany; Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, Rostock, Germany (M.A.W.); Department of Radiology, Ludwig Maximilian University of Munich, Munich, Germany (R.S.); Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany (C.R.); Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.L.); Medizinisches Versorgungszentrum am Rotes Kreuz Krankenhaus, Bremen, Germany (A.S.); University of Minnesota Medical School, Minneapolis, Minnesota (J.J.E.); Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany (A.M.N., M.E.L.); Statscoach, Eckental, Germany (M.E.); VA Boston Healthcare System, West Roxbury, Mass (A.G.); and Boston University School of Medicine, Boston, Mass (M.U., F.W.R.)
| | - Andreas Arkudas
- Department of Radiology (R. Heiss, E.B., A.M.N., M.U., F.W.R.) and Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine (A.A., R. Horch), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054 Erlangen, Germany; Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, Rostock, Germany (M.A.W.); Department of Radiology, Ludwig Maximilian University of Munich, Munich, Germany (R.S.); Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany (C.R.); Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.L.); Medizinisches Versorgungszentrum am Rotes Kreuz Krankenhaus, Bremen, Germany (A.S.); University of Minnesota Medical School, Minneapolis, Minnesota (J.J.E.); Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany (A.M.N., M.E.L.); Statscoach, Eckental, Germany (M.E.); VA Boston Healthcare System, West Roxbury, Mass (A.G.); and Boston University School of Medicine, Boston, Mass (M.U., F.W.R.)
| | - Raymund Horch
- Department of Radiology (R. Heiss, E.B., A.M.N., M.U., F.W.R.) and Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine (A.A., R. Horch), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054 Erlangen, Germany; Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, Rostock, Germany (M.A.W.); Department of Radiology, Ludwig Maximilian University of Munich, Munich, Germany (R.S.); Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany (C.R.); Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.L.); Medizinisches Versorgungszentrum am Rotes Kreuz Krankenhaus, Bremen, Germany (A.S.); University of Minnesota Medical School, Minneapolis, Minnesota (J.J.E.); Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany (A.M.N., M.E.L.); Statscoach, Eckental, Germany (M.E.); VA Boston Healthcare System, West Roxbury, Mass (A.G.); and Boston University School of Medicine, Boston, Mass (M.U., F.W.R.)
| | - Ali Guermazi
- Department of Radiology (R. Heiss, E.B., A.M.N., M.U., F.W.R.) and Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine (A.A., R. Horch), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054 Erlangen, Germany; Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, Rostock, Germany (M.A.W.); Department of Radiology, Ludwig Maximilian University of Munich, Munich, Germany (R.S.); Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany (C.R.); Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.L.); Medizinisches Versorgungszentrum am Rotes Kreuz Krankenhaus, Bremen, Germany (A.S.); University of Minnesota Medical School, Minneapolis, Minnesota (J.J.E.); Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany (A.M.N., M.E.L.); Statscoach, Eckental, Germany (M.E.); VA Boston Healthcare System, West Roxbury, Mass (A.G.); and Boston University School of Medicine, Boston, Mass (M.U., F.W.R.)
| | - Michael Uder
- Department of Radiology (R. Heiss, E.B., A.M.N., M.U., F.W.R.) and Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine (A.A., R. Horch), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054 Erlangen, Germany; Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, Rostock, Germany (M.A.W.); Department of Radiology, Ludwig Maximilian University of Munich, Munich, Germany (R.S.); Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany (C.R.); Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.L.); Medizinisches Versorgungszentrum am Rotes Kreuz Krankenhaus, Bremen, Germany (A.S.); University of Minnesota Medical School, Minneapolis, Minnesota (J.J.E.); Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany (A.M.N., M.E.L.); Statscoach, Eckental, Germany (M.E.); VA Boston Healthcare System, West Roxbury, Mass (A.G.); and Boston University School of Medicine, Boston, Mass (M.U., F.W.R.)
| | - Frank W Roemer
- Department of Radiology (R. Heiss, E.B., A.M.N., M.U., F.W.R.) and Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine (A.A., R. Horch), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054 Erlangen, Germany; Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, Rostock, Germany (M.A.W.); Department of Radiology, Ludwig Maximilian University of Munich, Munich, Germany (R.S.); Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany (C.R.); Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.L.); Medizinisches Versorgungszentrum am Rotes Kreuz Krankenhaus, Bremen, Germany (A.S.); University of Minnesota Medical School, Minneapolis, Minnesota (J.J.E.); Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany (A.M.N., M.E.L.); Statscoach, Eckental, Germany (M.E.); VA Boston Healthcare System, West Roxbury, Mass (A.G.); and Boston University School of Medicine, Boston, Mass (M.U., F.W.R.)
| |
Collapse
|
5
|
Cervelli R, Cencini M, Cacciato Insilla A, Aringhieri G, Boggi U, Campani D, Tosetti M, Crocetti L. Ex-vivo human pancreatic specimen evaluation by 7 Tesla MRI: a prospective radiological-pathological correlation study. Radiol Med 2022; 127:950-959. [DOI: 10.1007/s11547-022-01533-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/25/2022] [Indexed: 10/15/2022]
|
6
|
Platt T, Ladd ME, Paech D. 7 Tesla and Beyond: Advanced Methods and Clinical Applications in Magnetic Resonance Imaging. Invest Radiol 2021; 56:705-725. [PMID: 34510098 PMCID: PMC8505159 DOI: 10.1097/rli.0000000000000820] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/07/2021] [Accepted: 08/07/2021] [Indexed: 12/15/2022]
Abstract
ABSTRACT Ultrahigh magnetic fields offer significantly higher signal-to-noise ratio, and several magnetic resonance applications additionally benefit from a higher contrast-to-noise ratio, with static magnetic field strengths of B0 ≥ 7 T currently being referred to as ultrahigh fields (UHFs). The advantages of UHF can be used to resolve structures more precisely or to visualize physiological/pathophysiological effects that would be difficult or even impossible to detect at lower field strengths. However, with these advantages also come challenges, such as inhomogeneities applying standard radiofrequency excitation techniques, higher energy deposition in the human body, and enhanced B0 field inhomogeneities. The advantages but also the challenges of UHF as well as promising advanced methodological developments and clinical applications that particularly benefit from UHF are discussed in this review article.
Collapse
Affiliation(s)
- Tanja Platt
- From the Medical Physics in Radiology, German Cancer Research Center (DKFZ)
| | - Mark E. Ladd
- From the Medical Physics in Radiology, German Cancer Research Center (DKFZ)
- Faculty of Physics and Astronomy
- Faculty of Medicine, University of Heidelberg, Heidelberg
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen
| | - Daniel Paech
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg
- Clinic for Neuroradiology, University of Bonn, Bonn, Germany
| |
Collapse
|
7
|
Fernquest S, Palmer A, Gammer B, Hirons E, Kendrick B, Taylor A, De Berker H, Bangerter N, Carr A, Glyn-Jones S. Compositional MRI of the Hip: Reproducibility, Effect of Joint Unloading, and Comparison of T2 Relaxometry with Delayed Gadolinium-Enhanced Magnetic Resonance Imaging of Cartilage. Cartilage 2021; 12:418-430. [PMID: 30971110 PMCID: PMC8461155 DOI: 10.1177/1947603519841670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Our aim was to compare T2 with delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) in the hip and assess the reproducibility and effect of joint unloading on T2 mapping. DESIGN Ten individuals at high risk of developing hip osteoarthritis (SibKids) underwent contemporaneous T2 mapping and dGEMRIC in the hip (10 hips). Twelve healthy volunteers underwent T2 mapping of both hips (24 hips) at time points 25, 35, 45, and 55 minutes post offloading. Acetabular and femoral cartilage was manually segmented into regions of interest. The relationship between T2 and dGEMRIC values from anatomically corresponding regions of interests was quantified using Pearson's correlation. The reproducibility of image analysis for T2 and dGEMRIC, and reproducibility of image acquisition for T2, was quantified using the intraclass correlation coefficient (ICC), root mean square coefficient of variance (RMSCoV), smallest detectable difference (SDD), and Bland-Altman plots. The paired t test was used to determine if difference existed in T2 values at different unloading times. RESULTS T2 values correlated most strongly with dGEMRIC values in diseased cartilage (r = -0.61, P = <0.001). T2 image analysis (segmentation) reproducibility was ICC = 0.96 to 0.98, RMSCoV = 3.5% to 5.2%, and SDD = 2.2 to 3.5 ms. T2 values at 25 minutes unloading were not significantly different to longer unloading times (P = 0.132). SDD for T2 image acquisition reproducibility was 7.1 to 7.4 ms. CONCLUSIONS T2 values in the hip correlate well with dGEMRIC in areas of cartilage damage. T2 shows high reproducibility and values do not change beyond 25 minutes of joint unloading.
Collapse
Affiliation(s)
- Scott Fernquest
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK,Scott Fernquest, Botnar Research Centre, Old Road, Oxford OX3 7LD, UK.
| | - Antony Palmer
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Bonnie Gammer
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Emma Hirons
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Benjamin Kendrick
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Adrian Taylor
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Henry De Berker
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Neal Bangerter
- Electrical and Computer Engineering Department, Brigham Young University, Provo, UT, USA
| | - Andrew Carr
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Sion Glyn-Jones
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Soellner ST, Welsch GH, Gelse K, Goldmann A, Kleyer A, Schett G, Pachowsky ML. gagCEST imaging at 3 T MRI in patients with articular cartilage lesions of the knee and intraoperative validation. Osteoarthritis Cartilage 2021; 29:1163-1172. [PMID: 33933584 DOI: 10.1016/j.joca.2021.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/22/2021] [Accepted: 04/05/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim of this study was to compare glycosaminoglycan chemical exchange saturation transfer (gagCEST) of knee cartilage with intraoperative results for the assessment of early osteoarthritis (OA) and to define gagCEST values for the differentiation between healthy and degenerated cartilage. DESIGN Twenty-one patients with cartilage lesions or moderate OA were examined using 3 T Magnetic Resonance Imaging (MRI). In this prospective study, regions of interest (ROIs) were examined by a sagittal gagCEST analysis and a morphological high-resolution three-dimensional, fat-saturated proton-density space sequence. Cartilage lesions were identified arthroscopically, graded by the International Cartilage Repair Society (ICRS) score in 42 defined ROIs per patient and consecutively compared with mean gagCEST values using analysis of variance and Spearman's rank correlation test. Receiver operating characteristics (ROC) curves were applied to identify gagCEST threshold values to differentiate between the ICRS grades. RESULTS A total of 882 ROIs were examined and graduated in ICRS score 0 (67.3%), 1 (25.2%), 2 (6.2%) and the merged ICRS 3 and 4 (1.0%). gagCEST values decreased with increasing grade of cartilage damage with a negative correlation between gagCEST values and ICRS scores. A gagCEST value threshold of 3.55% was identified to differentiate between ICRS score 0 (normal) and all other grades. CONCLUSIONS gagCEST reflects the content of glycosaminoglycan and might provide a diagnostic tool for the detection of early knee-joint cartilage damage and for the non-invasive subtle differentiation between ICRS grades by MRI even at early stages in clinical practice.
Collapse
Affiliation(s)
- S T Soellner
- Department of Trauma and Orthopaedic Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany.
| | - G H Welsch
- UKE Athleticum, and Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - K Gelse
- Klinikum Traunstein, Traunstein, Germany; Department of Trauma and Orthopaedic Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany; University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany.
| | - A Goldmann
- OCE Orthopaedie Centrum Erlangen, Erlangen, Germany.
| | - A Kleyer
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany.
| | - G Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany.
| | - M L Pachowsky
- Department of Trauma and Orthopaedic Surgery and Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Ulmenweg 18, 91054 Erlangen, Germany.
| |
Collapse
|
9
|
Trudel G, Duchesne-Bélanger S, Thomas J, Melkus G, Cron GO, Larson PEZ, Schweitzer M, Sheikh A, Louati H, Laneuville O. Quantitative analysis of repaired rabbit supraspinatus tendons (± channeling) using magnetic resonance imaging at 7 Tesla. Quant Imaging Med Surg 2021; 11:3460-3471. [PMID: 34341723 DOI: 10.21037/qims-20-1343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/26/2021] [Indexed: 01/08/2023]
Abstract
Background The quantitative assessment of supraspinatus tendons by conventional magnetic resonance is limited by low contrast-to-noise ratio (CNR). Magnetic resonance imaging (MRI) scanners operating at 7 Tesla offer high signal-to noise ratio (SNR), low CNR and high spatial resolution that are well-suited for rapidly relaxing tissues like tendons. Few studies have applied T2 and T2* mapping to musculoskeletal imaging and to the rotator cuff tendons. Our objective was to analyze the T2 and T2* relaxation times from surgically repaired supraspinatus tendons and the effect of bone channeling. Methods One supraspinatus tendon of 112 adult female New Zealand white rabbits was surgically detached and repaired one week later. Rabbits were randomly assigned to channeling (n=64) or control (n=48) groups and harvested at 0, 1, 2, and 4 weeks. A 7T magnet was used for signal acquisition. For T2 mapping, a sagittal multi slice 2D multi-echo spin-echo (MESE) CPMG sequence with fat saturation was applied and T2* mapping was performed using a 3D UTE sequence. Magnetic resonance images from supraspinatus tendons were analyzed by two raters. Three regions of interest were manually drawn on the first T2-weighted dataset. For T2 and T2*, different ROI masks were generated to obtain relaxation times. Results T2-weighted maps but not T2*-weighted maps generated reliable signals for relaxation time measurement. Torn supraspinatus tendons had lower T2 than controls at the time of repair (20.0±3.4 vs. 25.6±3.9 ms; P<0.05). T2 increased at 1, 2 and 4 postoperative weeks: 22.7±3.1, 23.3±3.9 and 24.0±5.1 ms, respectively, and values were significantly different from contralateral supraspinatus tendons (24.8±3.1; 26.8±4.3 and 26.5±3.6 ms; all P<0.05). Bone channeling did not affect T2 (P>0.05). Conclusions Supraspinatus tendons detached for 1 week had shorter T2 relaxation time compared to contralateral as measured with 7T MRI.
Collapse
Affiliation(s)
- Guy Trudel
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Medicine, Division of Physiatry, University of Ottawa, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Samuel Duchesne-Bélanger
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Justin Thomas
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Gerd Melkus
- Department of Medical Imaging, The Ottawa Hospital, Ottawa, ON, Canada.,Department of Radiology, University of Ottawa, Ottawa, ON, Canada
| | - Greg O Cron
- Department of Medical Imaging, The Ottawa Hospital, Ottawa, ON, Canada.,Department of Radiology, University of Ottawa, Ottawa, ON, Canada
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA, USA
| | - Mark Schweitzer
- Department of Radiology, Stony Brook University NY, New York, NY, USA
| | - Adnan Sheikh
- Department of Medical Imaging, The Ottawa Hospital, Ottawa, ON, Canada.,Department of Radiology, University of Ottawa, Ottawa, ON, Canada
| | - Hakim Louati
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Odette Laneuville
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
10
|
Kořínek R, Pfleger L, Eckstein K, Beiglböck H, Robinson SD, Krebs M, Trattnig S, Starčuk Z, Krššák M. Feasibility of Hepatic Fat Quantification Using Proton Density Fat Fraction by Multi-Echo Chemical-Shift-Encoded MRI at 7T. FRONTIERS IN PHYSICS 2021; 9:665562. [PMID: 34849373 PMCID: PMC7612048 DOI: 10.3389/fphy.2021.665562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fat fraction quantification and assessment of its distribution in the hepatic tissue become more important with the growing epidemic of obesity, and the increasing prevalence of diabetes mellitus type 2 and non-alcoholic fatty liver disease. At 3Tesla, the multi-echo, chemical-shift-encoded magnetic resonance imaging (CSE-MRI)-based acquisition allows the measurement of proton density fat-fraction (PDFF) even in clinical protocols. Further improvements in SNR can be achieved by the use of phased array coils and increased static magnetic field. The purpose of the study is to evaluate the feasibility of PDFF imaging using a multi-echo CSE-MRI technique at ultra-high magnetic field (7Tesla). Thirteen volunteers (M/F) with a broad range of age, body mass index, and hepatic PDFF were measured at 3 and 7T by multi-gradient-echo MRI and single-voxel spectroscopy MRS. All measurements were performed in breath-hold (exhalation); the MRI protocols were optimized for a short measurement time, thus minimizing motion-related problems. 7T data were processed off-line using Matlab® (MRI:multi-gradient-echo) and jMRUI (MRS), respectively. For quantitative validation of the PDFF results, a similar protocol was performed at 3T, including on-line data processing provided by the system manufacturer, and correlation analyses between 7 and 3T data were performed off-line. The multi-echo CSE-MRI measurements at 7T with a phased-array coil configuration and an optimal post-processing yielded liver volume coverage ranging from 30 to 90% for high- and low-BMI subjects, respectively. PDFFs ranged between 1 and 20%. We found significant correlations between 7T MRI and -MRS measurements (R2 ≅ 0.97; p < 0.005), and between MRI-PDFF at 7T and 3T fields (R2 ≅ 0.94; p < 0.005) in the evaluated volumes. Based on the measurements and analyses performed, the multi-echo CSE-MRI method using a 32-channel coil at 7T showed its aptitude for MRI-based quantitation of PDFF in the investigated volumes. The results are the first step toward qMRI of the whole liver at 7T with further improvements in hardware.
Collapse
Affiliation(s)
- Radim Kořínek
- Magnetic Resonance group, Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czechia
| | - Lorenz Pfleger
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Korbinian Eckstein
- Department of Biomedical Imaging and Image-Guided Therapy, High-Field Magnetic Resonance Centre, Medical University of Vienna, Vienna, Austria
| | - Hannes Beiglböck
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Simon Daniel Robinson
- Department of Biomedical Imaging and Image-Guided Therapy, High-Field Magnetic Resonance Centre, Medical University of Vienna, Vienna, Austria
| | - Michael Krebs
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Siegfried Trattnig
- Department of Biomedical Imaging and Image-Guided Therapy, High-Field Magnetic Resonance Centre, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Clinical Molecular Imaging, CD Laboratory for Clinical Molecular MR Imaging (MOLIMA), Medical University of Vienna, Vienna, Austria
| | - Zenon Starčuk
- Magnetic Resonance group, Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czechia
| | - Martin Krššák
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, High-Field Magnetic Resonance Centre, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Clinical Molecular Imaging, CD Laboratory for Clinical Molecular MR Imaging (MOLIMA), Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Aringhieri G, Zampa V, Tosetti M. Musculoskeletal MRI at 7 T: do we need more or is it more than enough? Eur Radiol Exp 2020; 4:48. [PMID: 32761480 PMCID: PMC7410909 DOI: 10.1186/s41747-020-00174-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022] Open
Abstract
Ultra-high field magnetic resonance imaging (UHF-MRI) provides important diagnostic improvements in musculoskeletal imaging. The higher signal-to-noise ratio leads to higher spatial and temporal resolution which results in improved anatomic detail and higher diagnostic confidence. Several methods, such as T2, T2*, T1rho mapping, delayed gadolinium-enhanced, diffusion, chemical exchange saturation transfer, and magnetisation transfer techniques, permit a better tissue characterisation. Furthermore, UHF-MRI enables in vivo measurements by low-γ nuclei (23Na, 31P, 13C, and 39K) and the evaluation of different tissue metabolic pathways. European Union and Food and Drug Administration approvals for clinical imaging at UHF have been the first step towards a more routinely use of this technology, but some drawbacks are still present limiting its widespread clinical application. This review aims to provide a clinically oriented overview about the application of UHF-MRI in the different anatomical districts and tissues of musculoskeletal system and its pros and cons. Further studies are needed to consolidate the added value of the use of UHF-MRI in the routine clinical practice and promising efforts in technology development are already in progress.
Collapse
Affiliation(s)
- Giacomo Aringhieri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Risorgimento, 36, Pisa, Italy.
| | - Virna Zampa
- Diagnostic and Interventional Radiology, University Hospital of Pisa, Via paradisa, 2, Pisa, Italy
| | | |
Collapse
|
12
|
Abstract
BACKGROUND Cartilage imaging of small joints is increasingly of interest, as early detection of cartilage damage may be relevant regarding individualized surgical therapies and long-term outcomes. PURPOSE The aim of this review is to explain modern cartilage imaging of small joints with emphasis on MRI and to discuss the role of methods such as CT arthrography as well as compositional and high-field MRI. MATERIALS AND METHODS A PubMed literature search was performed for the years 2008-2018. RESULTS Clinically relevant cartilage imaging to detect chondral damage in small joints remains challenging. Conventional MRI at 3 T can still be considered as a reference for cartilage imaging in clinical routine. In terms of sensitivity, MR arthrography (MR-A) and computed tomography arthrography (CT-A) are superior to non-arthrographic MRI at 1.5 T in the detection of chondral damage. Advanced degenerative changes of the fingers and toes are usually sufficiently characterized by conventional radiography. MRI at field strengths of 3 T and ultrahigh-field imaging at 7 T can provide additional quantifiable, functional and metabolic information. CONCLUSION Standardized cartilage imaging plays an important role in clinical diagnostics in the ankle joint due to the availability of different and individualized therapeutic concepts. In contrast, cartilage imaging of other small joints as commonly performed in clinical studies has not yet become standard of care in daily clinical routine. Although individual study results are promising, additional studies with large patient collectives are needed to validate these techniques. With rapid development of new treatment concepts radiological diagnostics will play a more significant role in the diagnosis of cartilage lesions of small joints.
Collapse
|
13
|
Meyer MM, Haneder S, Konstandin S, Budjan J, Morelli JN, Schad LR, Kerl HU, Schoenberg SO, Kabbasch C. Repeatability and reproducibility of cerebral 23Na imaging in healthy subjects. BMC Med Imaging 2019; 19:26. [PMID: 30943911 PMCID: PMC6446283 DOI: 10.1186/s12880-019-0324-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 03/11/2019] [Indexed: 02/04/2023] Open
Abstract
Background Initial reports of 23Na magnetic resonance imaging (MRI) date back to the 1970s. However, methodological challenges of the technique hampered its widespread adoption for many years. Recent technical developments have overcome some of these limitations and have led to more optimal conditions for 23Na-MR imaging. In order to serve as a reliable tool for the assessment of clinical stroke or brain tumor patients, we investigated the repeatability and reproducibility of cerebral sodium (23Na) imaging in healthy subjects. Methods In this prospective, IRB approved study 12 consecutive healthy volunteers (8 female, age 31 ± 8.3) underwent three cerebral 23Na-MRI examinations at 3.0 T (TimTrio, Siemens Healthineers) distributed between two separate visits with an 8 day interval. For each scan a T1w MP-RAGE sequence for anatomical referencing and a 3D-density-adapted, radial GRE-sequence for 23Na-imaging were acquired using a dual-tuned (23Na/1H) head-coil. On 1 day, these scans were repeated consecutively; on the other day, the scans were performed once. 23Na-sequences were reconstructed according to the MP-RAGE sequence, allowing direct cross-referencing of ROIs. Circular ROIs were placed in predetermined anatomic regions: gray and white matter (GM, WM), head of the caudate nucleus (HCN), pons, and cerebellum. External 23Na-reference phantoms were used to calculate the tissue sodium content. Results Excellent correlation was found between repeated measurements on the same day (r2 = 0.94), as well as on a different day (r2 = 0.86). No significant differences were found based on laterality other than in the HCN (63.1 vs. 58.7 mmol/kg WW on the right (p = 0.01)). Pronounced inter-individual differences were identified in all anatomic regions. Moderate to good correlation (0.310 to 0.701) was found between the readers. Conclusion Our study has shown that intra-individual 23Na-concentrations in healthy subjects do not significantly differ after repeated scans on the same day and a pre-set time interval. This confirms the repeatability and reproducibility of cerebral 23Na-imaging. However, with manual ROI placement in predetermined anatomic landmarks, fluctuations in 23Na-concentrations can be observed.
Collapse
Affiliation(s)
- Melissa M Meyer
- Institute of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Stefan Haneder
- Institute of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.,Institute of Diagnostic and Interventional Radiology, University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Johannes Budjan
- Institute of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - John N Morelli
- St. John's Medical Center, 1923 South Utica Ave, Tulsa, OK, 74104, USA
| | - Lothar R Schad
- Department of Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany
| | - Hans U Kerl
- Department of Neuroradiology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan O Schoenberg
- Institute of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Christoph Kabbasch
- Institute of Diagnostic and Interventional Radiology, University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
14
|
Lott J, Platt T, Niesporek SC, Paech D, G. R. Behl N, Niendorf T, Bachert P, Ladd ME, Nagel AM. Corrections of myocardial tissue sodium concentration measurements in human cardiac
23
Na MRI at 7 Tesla. Magn Reson Med 2019; 82:159-173. [DOI: 10.1002/mrm.27703] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Johanna Lott
- German Cancer Research Center (DKFZ), Medical Physics in Radiology Heidelberg Germany
- University of Heidelberg, Faculty of Physics and Astronomy Heidelberg Germany
| | - Tanja Platt
- German Cancer Research Center (DKFZ), Medical Physics in Radiology Heidelberg Germany
| | | | - Daniel Paech
- German Cancer Research Center (DKFZ) Radiology, Heidelberg Germany
| | - Nicolas G. R. Behl
- German Cancer Research Center (DKFZ), Medical Physics in Radiology Heidelberg Germany
| | - Thoralf Niendorf
- Max Delbrueck Center for Molecular Medicine in the Helmholtz Association Berlin Germany
- MRI. TOOLS GmbH Berlin Germany
| | - Peter Bachert
- German Cancer Research Center (DKFZ), Medical Physics in Radiology Heidelberg Germany
- University of Heidelberg, Faculty of Physics and Astronomy Heidelberg Germany
| | - Mark E. Ladd
- German Cancer Research Center (DKFZ), Medical Physics in Radiology Heidelberg Germany
- University of Heidelberg, Faculty of Physics and Astronomy Heidelberg Germany
- University of Heidelberg Faculty of Medicine Heidelberg Germany
| | - Armin M. Nagel
- German Cancer Research Center (DKFZ), Medical Physics in Radiology Heidelberg Germany
- Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU), University Hospital Erlangen Institute of Radiology Erlangen Germany
- Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Institute of Medical Physics Erlangen Germany
| |
Collapse
|
15
|
|
16
|
|
17
|
Fouré A, Pini L, Rappacchi S, Ogier AC, Mattei JC, Bydder M, Guye M, Bendahan D. Ultrahigh-Field Multimodal MRI Assessment of Muscle Damage. J Magn Reson Imaging 2018; 49:904-906. [DOI: 10.1002/jmri.26222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/24/2018] [Indexed: 01/03/2023] Open
Affiliation(s)
- Alexandre Fouré
- Aix-Marseille University CNRS, CRMBM; Marseille France
- APHM, Hôpital Universitaire Timone, CEMEREM; Marseille France
- Laboratoire Interuniversitaire de Biologie de la Motricité; Université Claude Bernard Lyon 1; Villeurbanne France
| | - Lauriane Pini
- Aix-Marseille University CNRS, CRMBM; Marseille France
- APHM, Hôpital Universitaire Timone, CEMEREM; Marseille France
| | | | - Augustin C. Ogier
- Aix-Marseille University, Université de Toulon, CNRS, LIS; Marseille France
| | - Jean-Camille Mattei
- Aix-Marseille University CNRS, CRMBM; Marseille France
- APHM, Hôpital Universitaire Timone, CEMEREM; Marseille France
- APHM, Hôpital Nord, Service d'Orthopédie; Marseille France
| | - Mark Bydder
- Aix-Marseille University CNRS, CRMBM; Marseille France
- APHM, Hôpital Universitaire Timone, CEMEREM; Marseille France
- University of California, David Geffen School of Medicine; Department of Radiological Sciences; Los Angeles California USA
| | - Maxime Guye
- Aix-Marseille University CNRS, CRMBM; Marseille France
- APHM, Hôpital Universitaire Timone, CEMEREM; Marseille France
| | | |
Collapse
|
18
|
Peterson P, Tiderius CJ, Olsson E, Lundin B, Olsson LE, Svensson J. Knee dGEMRIC at 7 T: comparison against 1.5 T and evaluation of T 1-mapping methods. BMC Musculoskelet Disord 2018; 19:149. [PMID: 29769051 PMCID: PMC5956845 DOI: 10.1186/s12891-018-2071-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/30/2018] [Indexed: 12/28/2022] Open
Abstract
Background dGEMRIC (delayed Gadolinium Enhanced Magnetic Resonance Image of Cartilage) is a well-established technique for cartilage quality assessment in osteoarthritis at clinical field strengths. The method is robust, but requires injection of contrast agent and a cumbersome examination procedure. New non-contrast-agent-based techniques for cartilage quality assessment are currently being developed at 7 T. However, dGEMRIC remains an important reference technique during this development. The aim of this work was to compare T1 mapping for dGEMRIC at 7 T and 1.5 T, and to evaluate three T1-mapping methods at 7 T. Methods The knee of 10 healthy volunteers and 9 patients with early signs of cartilage degradation were examined at 1.5 T and 7 T after a single (one) contrast agent injection (Gd-(DTPA)2−). Inversion recovery (IR) sequences were acquired at both field strengths, and at 7 T variable flip angle (VFA) and Look-Locker (LL) sequences were additionally acquired. T1 maps were calculated and average T1 values were estimated within superficial and deep regions-of-interest (ROIs) in the lateral and medial condyles, respectively. Results T1 values were 1.8 (1.4–2.3) times longer at 7 T. A strong correlation was detected between 1.5 T and 7 T T1 values (r = 0.80). For IR, an additional inversion time was required to avoid underestimation (bias±limits of agreement − 127 ± 234 ms) due to the longer T1 values at 7 T. Out of the two 3D sequences tested, LL resulted in more accurate and precise T1 estimation compared to VFA (average bias±limits of agreement LL: 12 ± 202 ms compared to VFA: 25 ± 622 ms). For both, B1 correction improved agreement to IR. Conclusion With an adapted sampling scheme, dGEMRIC T1 mapping is feasible at 7 T and correlates well to 1.5 T. If 3D is to be used for T1 mapping of the knee at 7 T, LL is preferred and VFA is not recommended. For VFA and LL, B1 correction is necessary for accurate T1 estimation.
Collapse
Affiliation(s)
- Pernilla Peterson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Inga Marie Nilssons gata 49, SE-205 02, Malmö, Sweden. .,Department of Oncology and Radiation Physics, Skåne University Hospital, Inga Marie Nilssons gata 49, SE-205 02, Malmö, Sweden.
| | - Carl Johan Tiderius
- Orthopedics, Department of Clinical Sciences, Lund University, Skåne University Hospital, SE-221 85, Lund, Sweden
| | - Emma Olsson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Inga Marie Nilssons gata 49, SE-205 02, Malmö, Sweden
| | - Björn Lundin
- Department of Medical Imaging and Physiology, Skåne University Hospital, SE-221 85, Lund, Sweden
| | - Lars E Olsson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Inga Marie Nilssons gata 49, SE-205 02, Malmö, Sweden.,Department of Oncology and Radiation Physics, Skåne University Hospital, Inga Marie Nilssons gata 49, SE-205 02, Malmö, Sweden
| | - Jonas Svensson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Inga Marie Nilssons gata 49, SE-205 02, Malmö, Sweden.,Department of Medical Imaging and Physiology, Skåne University Hospital, SE-221 85, Lund, Sweden
| |
Collapse
|
19
|
Detection of early cartilage damage: feasibility and potential of gagCEST imaging at 7T. Eur Radiol 2018; 28:2874-2881. [PMID: 29383528 PMCID: PMC5986839 DOI: 10.1007/s00330-017-5277-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 12/04/2022]
Abstract
Objectives The purpose was to implement a fast 3D glycosaminoglycan Chemical Exchange Saturation Transfer (gagCEST) sequence at 7 T, test stability and reproducibility in cartilage in the knee in healthy volunteers, and evaluate clinical applicability in cartilage repair patients. Methods Experiments were carried out on a 7-T scanner using a volume transmit coil and a 32-channel receiver wrap-around knee coil. The 3D gagCEST measurement had an acquisition time of 7 min. Signal stability and reproducibility of the GAG effect were assessed in eight healthy volunteers. Clinical applicability of the method was demonstrated in five patients before cartilage repair surgery. Results Coefficient of variation of the gagCEST signal was 1.9%. The reproducibility of the GAG effect measurements was good in the medial condyle (ICC = 0.87) and excellent in the lateral condyle (ICC = 0.97). GAG effect measurements in healthy cartilage ranged from 2.6%-12.4% compared with 1.3%-5.1% in damaged cartilage. Difference in GAG measurement between healthy cartilage and damaged cartilage was significant (p < 0.05). Conclusions A fast 3D gagCEST sequence was applied at 7 T for use in cartilage in the knee, acquired within a clinically feasible scan time of 7 min. We demonstrated that the method has high stability, reproducibility and clinical applicability. Key Points • gagCEST measurements are stable and reproducible • A non-invasive GAG measurement with gagCEST can be acquired in 7 min • gagCEST is able to discriminate between healthy and damaged cartilage Electronic supplementary material The online version of this article (10.1007/s00330-017-5277-y) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Santini T, Kim J, Wood S, Krishnamurthy N, Farhat N, Maciel C, Raval SB, Zhao T, Ibrahim TS. A new RF transmit coil for foot and ankle imaging at 7T MRI. Magn Reson Imaging 2018; 45:1-6. [PMID: 28893660 PMCID: PMC5935253 DOI: 10.1016/j.mri.2017.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 12/31/2022]
Abstract
A four-channel Tic-Tac-Toe (TTT) transmit RF coil was designed and constructed for foot and ankle imaging at 7T MRI. Numerical simulations using an in-house developed FDTD package and experimental analyses using a homogenous phantom show an excellent agreement in terms of B1+ field distribution and s-parameters. Simulations performed on an anatomically detailed human lower leg model demonstrated an B1+ field distribution with a coefficient of variation (CV) of 23.9%/15.6%/28.8% and average B1+ of 0.33μT/0.56μT/0.43μT for 1W input power (i.e., 0.25W per channel) in the ankle/calcaneus/mid foot respectively. In-vivo B1+ mapping shows an average B1+ of 0.29μT over the entire foot/ankle. This newly developed RF coil also presents acceptable levels of average SAR (0.07W/kg for 10g per 1W of input power) and peak SAR (0.34W/kg for 10g per 1W of input power) over the whole lower leg. Preliminary in-vivo images in the foot/ankle were acquired using the T2-DESS MRI sequence without the use of a dedicated receive-only array.
Collapse
Affiliation(s)
- Tales Santini
- University of Pittsburgh, Department of Bioengineering, United States
| | - Junghwan Kim
- University of Pittsburgh, Department of Bioengineering, United States
| | - Sossena Wood
- University of Pittsburgh, Department of Bioengineering, United States
| | | | - Nadim Farhat
- University of Pittsburgh, Department of Bioengineering, United States
| | - Carlos Maciel
- University of Sao Paulo, Department of Electrical and Computer Engineering, Brazil
| | | | | | - Tamer S Ibrahim
- University of Pittsburgh, Department of Bioengineering, United States; University of Pittsburgh, Department of Radiology, United States.
| |
Collapse
|
21
|
Laader A, Beiderwellen K, Kraff O, Maderwald S, Wrede K, Ladd ME, Lauenstein TC, Forsting M, Quick HH, Nassenstein K, Umutlu L. 1.5 versus 3 versus 7 Tesla in abdominal MRI: A comparative study. PLoS One 2017; 12:e0187528. [PMID: 29125850 PMCID: PMC5695282 DOI: 10.1371/journal.pone.0187528] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 10/21/2017] [Indexed: 01/04/2023] Open
Abstract
Objectives The aim of this study was to investigate and compare the feasibility as well as potential impact of altered magnetic field properties on image quality and potential artifacts of 1.5 Tesla, 3 Tesla and 7 Tesla non-enhanced abdominal MRI. Materials and methods Magnetic Resonance (MR) imaging of the upper abdomen was performed in 10 healthy volunteers on a 1.5 Tesla, a 3 Tesla and a 7 Tesla MR system. The study protocol comprised a (1) T1-weighted fat-saturated spoiled gradient-echo sequence (2D FLASH), (2) T1-weighted fat-saturated volumetric interpolated breath hold examination sequence (3D VIBE), (3) T1-weighted 2D in and opposed phase sequence, (4) True fast imaging with steady-state precession sequence (TrueFISP) and (5) T2-weighted turbo spin-echo (TSE) sequence. For comparison reasons field of view and acquisition times were kept comparable for each correlating sequence at all three field strengths, while trying to achieve the highest possible spatial resolution. Qualitative and quantitative analyses were tested for significant differences. Results While 1.5 and 3 Tesla MRI revealed comparable results in all assessed features and sequences, 7 Tesla MRI yielded considerable differences in T1 and T2 weighted imaging. Benefits of 7 Tesla MRI encompassed an increased higher spatial resolution and a non-enhanced hyperintense vessel signal at 7 Tesla, potentially offering a more accurate diagnosis of abdominal parenchymatous and vasculature disease. 7 Tesla MRI was also shown to be more impaired by artifacts, including residual B1 inhomogeneities, susceptibility and chemical shift artifacts, resulting in reduced overall image quality and overall image impairment ratings. While 1.5 and 3 Tesla T2w imaging showed equivalently high image quality, 7 Tesla revealed strong impairments in its diagnostic value. Conclusions Our results demonstrate the feasibility and overall comparable imaging ability of T1-weighted 7 Tesla abdominal MRI towards 3 Tesla and 1.5 Tesla MRI, yielding a promising diagnostic potential for non-enhanced Magnetic Resonance Angiography (MRA). 1.5 Tesla and 3 Tesla offer comparably high-quality T2w imaging, showing superior diagnostic quality over 7 Tesla MRI.
Collapse
Affiliation(s)
- Anja Laader
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Kokereiallee 7, Essen, Germany
- * E-mail:
| | - Karsten Beiderwellen
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Kokereiallee 7, Essen, Germany
| | - Oliver Kraff
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Kokereiallee 7, Essen, Germany
| | - Stefan Maderwald
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Kokereiallee 7, Essen, Germany
| | - Karsten Wrede
- Department of Neurosurgery, University Hospital Essen, Hufelandstr. 55, Essen, Germany
| | - Mark E. Ladd
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Kokereiallee 7, Essen, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Thomas C. Lauenstein
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, Essen, Germany
- Institute of Radiology, Evangelisches Krankenhaus Düsseldorf, Kirchfeldstr. 40, Düsseldorf, Germany
| | - Michael Forsting
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, Essen, Germany
| | - Harald H. Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Kokereiallee 7, Essen, Germany
- High Field and Hybrid MR Imaging, University Hospital Essen, Hufelandstr. 55, Essen, Germany
| | - Kai Nassenstein
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, Essen, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Kokereiallee 7, Essen, Germany
| |
Collapse
|
22
|
Rietsch SHG, Pfaffenrot V, Bitz AK, Orzada S, Brunheim S, Lazik-Palm A, Theysohn JM, Ladd ME, Quick HH, Kraff O. An 8-channel transceiver 7-channel receive RF coil setup for high SNR ultrahigh-field MRI of the shoulder at 7T. Med Phys 2017; 44:6195-6208. [PMID: 28976586 DOI: 10.1002/mp.12612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/11/2017] [Accepted: 09/15/2017] [Indexed: 12/16/2022] Open
Abstract
PURPOSE In this work, we present an 8-channel transceiver (Tx/Rx) 7-channel receive (Rx) radiofrequency (RF) coil setup for 7 T ultrahigh-field MR imaging of the shoulder. METHODS A C-shaped 8-channel Tx/Rx coil was combined with an anatomically close-fitting 7-channel Rx-only coil. The safety and performance parameters of this coil setup were evaluated on the bench and in phantom experiments. The 7 T MR imaging performance of the shoulder RF coil setup was evaluated in in vivo measurements using a 3D DESS, a 2D PD-weighted TSE sequence, and safety supervision based on virtual observation points. RESULTS Distinct SNR gain and acceleration capabilities provided by the additional 7-channel Rx-only coil were demonstrated in phantom and in vivo measurements. The power efficiency indicated good performance of each channel and a maximum B1+ of 19 μT if the hardware RF power limits of the MR system were exploited. MR imaging of the shoulder was demonstrated with clinically excellent image quality and submillimeter spatial resolution. CONCLUSIONS The presented 8-channel transceiver 7-channel receive RF coil setup was successfully applied for in vivo 7 T MRI of the shoulder providing a clear SNR gain vs the transceiver array without the additional receive array. Homogeneous images across the shoulder region were obtained using 8-channel subject-specific phase-only RF shimming.
Collapse
Affiliation(s)
- Stefan H G Rietsch
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, 45141, Germany.,High Field and Hybrid MR Imaging, University Hospital Essen, Essen, 45147, Germany
| | - Viktor Pfaffenrot
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, 45141, Germany.,High Field and Hybrid MR Imaging, University Hospital Essen, Essen, 45147, Germany
| | - Andreas K Bitz
- Faculty of Electrical Engineering and Information Technology, Electromagnetic Theory and Applied Mathematics, University of Applied Sciences Aachen, Aachen, Germany
| | - Stephan Orzada
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, 45141, Germany
| | - Sascha Brunheim
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, 45141, Germany.,High Field and Hybrid MR Imaging, University Hospital Essen, Essen, 45147, Germany
| | - Andrea Lazik-Palm
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, 45147, Germany
| | - Jens M Theysohn
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, 45147, Germany
| | - Mark E Ladd
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, 45141, Germany.,Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, 45141, Germany.,High Field and Hybrid MR Imaging, University Hospital Essen, Essen, 45147, Germany
| | - Oliver Kraff
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, 45141, Germany
| |
Collapse
|
23
|
Ridley B, Marchi A, Wirsich J, Soulier E, Confort-Gouny S, Schad L, Bartolomei F, Ranjeva JP, Guye M, Zaaraoui W. Brain sodium MRI in human epilepsy: Disturbances of ionic homeostasis reflect the organization of pathological regions. Neuroimage 2017; 157:173-183. [PMID: 28602596 DOI: 10.1016/j.neuroimage.2017.06.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/01/2017] [Accepted: 06/03/2017] [Indexed: 12/15/2022] Open
Abstract
In light of technical advancements supporting exploration of MR signals other than 1H, sodium (23Na) has received attention as a marker of ionic homeostasis and cell viability. Here, we evaluate for the first time the possibility that 23Na-MRI is sensitive to pathological processes occurring in human epilepsy. A normative sample of 27 controls was used to normalize regions of interest (ROIs) from 1424 unique brain locales on quantitative 23Na-MRI and high-resolution 1H-MPRAGE images. ROIs were based on intracerebral electrodes in ten patients undergoing epileptic network mapping. The stereo-EEG gold standard was used to define regions as belonging to primarily epileptogenic, secondarily irritative and to non-involved regions. Estimates of total sodium concentration (TSC) on 23Na-MRI and cerebrospinal fluid (CSF) on 1H imaging were extracted for each patient ROI, and normalized against the same region in controls. ROIs with disproportionate CSF contributions (ZCSF≥1.96) were excluded. TSC levels were found to be elevated in patients relative to controls except in one patient, who suffered non-convulsive seizures during the scan, in whom we found reduced TSC levels. In the remaining patients, an ANOVA (F1100= 12.37, p<0.0001) revealed a highly significant effect of clinically-defined zones (F1100= 11.13, p<0.0001), with higher normalized TSC in the epileptogenic zone relative to both secondarily irritative (F1100= 11, p=0.0009) and non-involved regions (F1100= 17.8, p<0.0001). We provide the first non-invasive, in vivo evidence of a chronic TSC elevation alongside ZCSF levels within the normative range, associated with the epileptogenic region even during the interictal period in human epilepsy, and the possibility of reduced TSC levels due to seizure. In line with modified homeostatic mechanisms in epilepsy - including altered mechanisms underlying ionic gating, clearance and exchange - we provide the first indication of 23Na-MRI as an assay of altered sodium concentrations occurring in epilepsy associated with the organization of clinically relevant divisions of pathological cortex.
Collapse
Affiliation(s)
- Ben Ridley
- Aix-Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France; APHM, Hôpital de la Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France
| | - Angela Marchi
- APHM, Hôpital de la Timone, Clinical Neurophysiology and Epileptology Department, Marseille, France; Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Jonathan Wirsich
- Aix-Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France; APHM, Hôpital de la Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France; Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Elisabeth Soulier
- Aix-Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France; APHM, Hôpital de la Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France
| | - Sylviane Confort-Gouny
- Aix-Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France; APHM, Hôpital de la Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France
| | - Lothar Schad
- Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany
| | - Fabrice Bartolomei
- Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France; APHM, Hôpitaux de la Timone, Service de Neurophysiologie Clinique, Marseille, France
| | - Jean-Philippe Ranjeva
- Aix-Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France; APHM, Hôpital de la Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France
| | - Maxime Guye
- Aix-Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France; APHM, Hôpital de la Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France.
| | - Wafaa Zaaraoui
- Aix-Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France; APHM, Hôpital de la Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France
| |
Collapse
|
24
|
Wang CY, Peng YJ, Hsu YJ, Lee HS, Chang YC, Chang CS, Chiang SW, Hsu YC, Lin MH, Huang GS. Cartilage MRI T2 ∗ relaxation time and perfusion changes of the knee in a 5/6 nephrectomy rat model of chronic kidney disease. Osteoarthritis Cartilage 2017; 25:976-985. [PMID: 28011101 DOI: 10.1016/j.joca.2016.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/28/2016] [Accepted: 12/14/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Chronic kidney disease (CKD) is characterized by metabolic disturbances in calcium and phosphorus homeostasis as kidney function declines. Alterations in blood perfusion in bone resulting from arteriosclerosis of bone vessels may relate to the progression of CKD. Herein, change in dynamic contrast enhanced (DCE) MRI parameters (A: amplitude, kel: elimination constant, and kep: permeability rate constant) and MRI T2∗ relaxation time of the knee cartilage were measured in a rodent nephrectomy model in order to (1) examine the relationship of peripheral blood perfusion to CKD and (2) demonstrate the feasibility of using DCE-MRI parameters and MRI T2∗ as imaging biomarkers to monitor disease progression. DESIGN Two groups of male Sprague-Dawley rats received either (1) no intervention or (2) 5/6 nephrectomy. RESULTS We found that the CKD group (compared with the control group) had lower A and kel values and similar kep value in the lateral and medial articular cartilages beginning at 12 weeks (P < 0.05); statistically significantly higher T2∗ values in the lateral and medial articular cartilages beginning at 18 weeks (P < 0.05); statistically significantly decreased inner luminal diameter of the popliteal artery, and altered structure of the lateral and medial articular cartilages (P < 0.05). CONCLUSION Perfusion deficiency and CKD may be related. DCE parameters and MRI T2∗ could serve as imaging biomarkers of cartilage degeneration in CKD progression.
Collapse
Affiliation(s)
- C-Y Wang
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan; Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Y-J Peng
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Y-J Hsu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - H-S Lee
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Y-C Chang
- Department of Mathematics, Tamkang University, New Taipei City, Taiwan
| | - C-S Chang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - S-W Chiang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan; Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Y-C Hsu
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - M-H Lin
- Institute of Biomedical Sciences, Academic Sinica, Taipei, Taiwan
| | - G-S Huang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
25
|
Kraff O, Quick HH. 7T: Physics, safety, and potential clinical applications. J Magn Reson Imaging 2017; 46:1573-1589. [DOI: 10.1002/jmri.25723] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/17/2017] [Indexed: 12/19/2022] Open
Affiliation(s)
- Oliver Kraff
- Erwin L. Hahn Institute for MR Imaging; University of Duisburg-Essen; Essen Germany
| | - Harald H. Quick
- Erwin L. Hahn Institute for MR Imaging; University of Duisburg-Essen; Essen Germany
- High Field and Hybrid MR Imaging; University Hospital Essen; Essen Germany
| |
Collapse
|
26
|
Evaluating the cartilage adjacent to the site of repair surgery with glycosaminoglycan-specific magnetic resonance imaging. INTERNATIONAL ORTHOPAEDICS 2017; 41:969-974. [DOI: 10.1007/s00264-017-3434-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 02/28/2017] [Indexed: 01/17/2023]
|
27
|
|
28
|
Changes in Cartilage and Tendon Composition of Patients With Type I Diabetes Mellitus: Identification by Quantitative Sodium Magnetic Resonance Imaging at 7 T. Invest Radiol 2016; 51:266-72. [PMID: 26646308 DOI: 10.1097/rli.0000000000000236] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to investigate possible biochemical alterations in tendons and cartilage caused by type 1 diabetes mellitus (DM1), using quantitative in vivo 7 T sodium magnetic resonance (MR) imaging. MATERIALS AND METHODS The institutional review board approved this prospective study, and written informed consent was obtained. Eight DM1 patients with no history of knee trauma and 9 healthy age- and weight-matched volunteers were examined at 7 T using dedicated knee coils.All participants underwent morphological and sodium MR imaging. Region-of-interest analysis was performed manually for the non-weight-bearing area of the femoral condyle cartilage and for the patella tendon. Two readers read the image data sets independently, twice, for intrareader and interreader agreement. Normalized mean sodium signal intensity (NMSI) values were compared between patients and volunteers for each reader using analysis of variance. RESULTS On morphological images, cartilage in the non-weight-bearing area and the patellar tendon was intact in all patients. On sodium MR imaging, bivariate analysis of variance showed significantly lower mean NMSI values in the cartilage (P = 0.008) and significantly higher values in the tendons (P = 0.025) of patients compared with those of volunteers. CONCLUSION Our study showed significantly different NMSI values between DM1 patients and matched volunteers. Differences observed in the cartilage and tendon might be associated with a DM1-related alteration of biochemical composition that occurs before it can be visualized on morphological MR sequences.
Collapse
|
29
|
Fouré A. New Imaging Methods for Non-invasive Assessment of Mechanical, Structural, and Biochemical Properties of Human Achilles Tendon: A Mini Review. Front Physiol 2016; 7:324. [PMID: 27512376 PMCID: PMC4961896 DOI: 10.3389/fphys.2016.00324] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 07/14/2016] [Indexed: 12/30/2022] Open
Abstract
The mechanical properties of tendon play a fundamental role to passively transmit forces from muscle to bone, withstand sudden stretches, and act as a mechanical buffer allowing the muscle to work more efficiently. The use of non-invasive imaging methods for the assessment of human tendon's mechanical, structural, and biochemical properties in vivo is relatively young in sports medicine, clinical practice, and basic science. Non-invasive assessment of the tendon properties may enhance the diagnosis of tendon injury and the characterization of recovery treatments. While ultrasonographic imaging is the most popular tool to assess the tendon's structural and indirectly, mechanical properties, ultrasonographic elastography, and ultra-high field magnetic resonance imaging (UHF MRI) have recently emerged as potentially powerful techniques to explore tendon tissues. This paper highlights some methodological cautions associated with conventional ultrasonography and perspectives for in vivo human Achilles tendon assessment using ultrasonographic elastography and UHF MRI.
Collapse
Affiliation(s)
- Alexandre Fouré
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Résonance Magnétique Biologique et Médicale CRMBM UMR 7339 Marseille, France
| |
Collapse
|
30
|
Topographical variations in zonal properties of canine tibial articular cartilage due to early osteoarthritis: a study using 7-T magnetic resonance imaging at microscopic resolution. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 29:681-90. [PMID: 26886872 DOI: 10.1007/s10334-016-0528-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/14/2016] [Accepted: 01/18/2016] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Our aim was to determine topographical variations in zonal properties of articular cartilage over the medial tibia in an experimental osteoarthritis (OA) model using 7-T magnetic resonance imaging (MRI). MATERIALS AND METHODS An anterior cruciate ligament (ACL)-transection canine model was subjected to study at 8 (six) and 12 (seven) weeks after the surgery. Each medial tibia was divided into five topographical locations. For each specimen, T2 relaxation (at 0° and 55°) was quantified at microscopic resolution. The imaging data grouped the five locations into two topographical areas (meniscus-covered and -uncovered). RESULTS The T2 (55°) bulk values from the meniscus-covered area were significantly lower than those from the uncovered area. The total cartilage thicknesses on the meniscus-covered area were significantly thinner than those on the meniscus-uncovered area. Significant differences in the T2 (0°) values were observed in most thicknesses of the four subtissue zones and whole-tissue from the uncovered area, while the same significant changes were detected in the superficial zone from the meniscus-covered area. CONCLUSION By quantifying high-resolution imaging data both topographically and depth-dependently (zonal-wise), this study demonstrates that the rate of disease progression varies topographically over the medial tibia. Future correlation with OA pathology could lead to better detection of early OA.
Collapse
|
31
|
Retrospectively-gated CINE 23Na imaging of the heart at 7.0 Tesla using density-adapted 3D projection reconstruction. Magn Reson Imaging 2015; 33:1091-1097. [DOI: 10.1016/j.mri.2015.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/28/2015] [Accepted: 06/20/2015] [Indexed: 11/21/2022]
|
32
|
Wang CY, Tsai PH, Siow TY, Lee HS, Chang YC, Hsu YC, Chiang SW, Lin MH, Chung HW, Huang GS. Change in T2* relaxation time of Hoffa fat pad correlates with histologic change in a rat anterior cruciate ligament transection model. J Orthop Res 2015; 33:1348-55. [PMID: 25940708 DOI: 10.1002/jor.22914] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/27/2015] [Indexed: 02/04/2023]
Abstract
The Hoffa fat pad (infrapatellar fat pad) is a source of post-traumatic anterior knee pain, and Hoffa disease is a syndrome leading to chronic inflammation of the fat pad. Herein, change in T2* relaxation time of the fat pad was measured in a rodent anterior cruciate ligament transection (ACLX) model in order to (i) examine the causal relationship of anterior cruciate ligament (ACL) deficiency and Hoffa disease and (ii) demonstrate the feasibility of using T2* as an imaging biomarker to monitor disease progression. Three groups of male Sprague Dawley rats (n = 6 each group), received either (i) no intervention; (ii) sham surgery at the right knee; or (iii) right ACLX. T2* relaxation time was measured and histology was examined in the Hoffa fat pad after surgery. At 13 and 18 weeks after surgery, T2* values were significantly higher in the right fat pad than the left (p < 0.001) and significantly higher in the ACLX group than the control and sham groups (p < 0.001). Histology showed fibrosis and degeneration of adipocytes in the right knees of the ACLX group. We conclude that ACL deficiency and Hoffa disease are causally related and that MRI T2* value can serve as an imaging biomarker of Hoffa disease progression.
Collapse
Affiliation(s)
- Chao-Ying Wang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Ping-Huei Tsai
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Imaging and Imaging Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Tiing Yee Siow
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Institute of Biomedical Sciences, Academic Sinica, Taipei, Taiwan
| | - Herng-Sheng Lee
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yue-Cune Chang
- Department of Mathematics, Tamkang University, Taipei, Taiwan
| | - Yi-Chih Hsu
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Wei Chiang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Ming-Huang Lin
- Institute of Biomedical Sciences, Academic Sinica, Taipei, Taiwan
| | - Hsiao-Wen Chung
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Guo-Shu Huang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
33
|
Gruber S, Minarikova L, Pinker K, Zaric O, Chmelik M, Strasser B, Baltzer P, Helbich T, Trattnig S, Bogner W. Diffusion-weighted imaging of breast tumours at 3 Tesla and 7 Tesla: a comparison. Eur Radiol 2015; 26:1466-73. [PMID: 26310582 DOI: 10.1007/s00330-015-3947-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/13/2015] [Accepted: 07/27/2015] [Indexed: 12/27/2022]
Abstract
OBJECTIVES To compare bilateral diffusion-weighted MR imaging (DWI) at 3 T and 7 T in the same breast tumour patients. METHODS Twenty-eight patients were included in this IRB-approved study (mean age 56 ± 16 years). Before contrast-enhanced imaging, bilateral DWI with b = 0 and 850 s/mm(2) was performed in 2:56 min (3 T) and 3:48 min (7 T), using readout-segmented echo planar imaging (rs-EPI) with a 1.4 × 1.4 mm(2) (3 T)/0.9 × 0.9 mm(2) (7 T) in-plane resolution. Apparent diffusion coefficients (ADC), signal-to-noise (SNR) and contrast-to-noise ratios (CNR) were assessed. RESULTS Twenty-eight lesions were detected (18 malignant, 10 benign). CNR and SNR were comparable at both field strengths (p > 0.3). Mean ADC values at 7 T were 4-22% lower than at 3 T (p ≤ 0.03). An ADC threshold of 1.275 × 10(-3) mm(2)/s resulted in a diagnostic specificity of 90% at both field strengths. The sensitivity was 94% and 100% at 3 T and 7 T, respectively. CONCLUSION 7-T DWI of the breast can be performed with 2.4-fold higher spatial resolution than 3 T, without significant differences in SNR if compared to 3 T. KEY POINTS • 7 T provides a 2.4-fold higher resolution in breast DWI than 3 T • 7 T DWI has a high diagnostic accuracy comparable to that at 3 T • At 7 T malignant lesions had 22 % lower ADC than at 3 T (p < 0.001).
Collapse
Affiliation(s)
- S Gruber
- MRCE, Department of Biomedical imaging and Image-Guided Therapy, Medical University Vienna, Lazarettgasse 14, 1090, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| | - L Minarikova
- MRCE, Department of Biomedical imaging and Image-Guided Therapy, Medical University Vienna, Lazarettgasse 14, 1090, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| | - K Pinker
- Division of Molecular and Gender Imaging, Department of Biomedical imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria
| | - O Zaric
- MRCE, Department of Biomedical imaging and Image-Guided Therapy, Medical University Vienna, Lazarettgasse 14, 1090, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| | - M Chmelik
- MRCE, Department of Biomedical imaging and Image-Guided Therapy, Medical University Vienna, Lazarettgasse 14, 1090, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| | - B Strasser
- MRCE, Department of Biomedical imaging and Image-Guided Therapy, Medical University Vienna, Lazarettgasse 14, 1090, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| | - P Baltzer
- Division of Molecular and Gender Imaging, Department of Biomedical imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria
| | - T Helbich
- Division of Molecular and Gender Imaging, Department of Biomedical imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria
| | - S Trattnig
- MRCE, Department of Biomedical imaging and Image-Guided Therapy, Medical University Vienna, Lazarettgasse 14, 1090, Vienna, Austria. .,Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria.
| | - W Bogner
- MRCE, Department of Biomedical imaging and Image-Guided Therapy, Medical University Vienna, Lazarettgasse 14, 1090, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| |
Collapse
|
34
|
Ji Y, Waiczies H, Winter L, Neumanova P, Hofmann D, Rieger J, Mekle R, Waiczies S, Niendorf T. Eight-channel transceiver RF coil array tailored for ¹H/¹⁹F MR of the human knee and fluorinated drugs at 7.0 T. NMR IN BIOMEDICINE 2015; 28:726-737. [PMID: 25916199 DOI: 10.1002/nbm.3300] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 06/04/2023]
Abstract
The purpose of this study was to evaluate the feasibility of an eight-channel dual-tuned transceiver surface RF coil array for combined (1)H/(19)F MR of the human knee at 7.0 T following application of (19)F-containing drugs. The (1)H/(19)F RF coil array includes a posterior module with two (1)H loop elements and two anterior modules, each consisting of one (1)H and two (19)F elements. The decoupling of neighbor elements is achieved by a shared capacitor. Electromagnetic field simulations were performed to afford uniform transmission fields and to be in accordance with RF safety guidelines. Localized (19)F MRS was conducted with 47 and 101 mmol/L of flufenamic acid (FA) – a (19)F-containing non-steroidal anti-inflammatory drug – to determine T1 and T2 and to study the (19)F signal-to-dose relationship. The suitability of the proposed approach for (1)H/(19)F MR was examined in healthy subjects. Reflection coefficients of each channel were less than -17 dB and coupling between channels was less than -11 dB. Q(L)/Q(U) was less than 0.5 for all elements. MRS results demonstrated signal stability with 1% variation. T1 and T2 relaxation times changed with concentration of FA: T1 /T2 = 673/31 ms at 101 mmol/L and T1 /T2 = 616/26 ms at 47 mmol/L. A uniform signal and contrast across the patella could be observed in proton imaging. The sensitivity of the RF coil enabled localization of FA ointment administrated to the knee with an in-plane spatial resolution of (1.5 × 1.5) mm(2) achieved in a total scan time of approximately three minutes, which is well suited for translational human studies. This study shows the feasibility of combined (1)H/(19)F MRI of the knee at 7.0 T and proposes T1 and T2 mapping methods for quantifying fluorinated drugs in vivo. Further technological developments are necessary to promote real-time bioavailability studies and quantification of (19)F-containing medicinal compounds in vivo.
Collapse
Affiliation(s)
- Yiyi Ji
- Berlin Ultrahigh Field Facility (BUFF), Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon, Lisbon, Portugal
| | - Helmar Waiczies
- Berlin Ultrahigh Field Facility (BUFF), Max Delbrück Center for Molecular Medicine, Berlin, Germany
- MRI.TOOLS GmbH, Berlin, Germany
| | - Lukas Winter
- Berlin Ultrahigh Field Facility (BUFF), Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Pavla Neumanova
- Berlin Ultrahigh Field Facility (BUFF), Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Daniela Hofmann
- Berlin Ultrahigh Field Facility (BUFF), Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Ralf Mekle
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility (BUFF), Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (BUFF), Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
35
|
Towse TF, Childs BT, Sabin SA, Bush EC, Elder CP, Damon BM. Comparison of muscle BOLD responses to arterial occlusion at 3 and 7 Tesla. Magn Reson Med 2015; 75:1333-40. [PMID: 25884888 DOI: 10.1002/mrm.25562] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/21/2014] [Accepted: 11/12/2014] [Indexed: 12/16/2022]
Abstract
PURPOSE The purpose of this study was to determine the feasibility of muscle BOLD (mBOLD) imaging at 7 Tesla (T) by comparing the changes in R2* of muscle at 3 and 7T in response to a brief period of tourniquet-induced ischemia. METHODS Eight subjects (three male), aged 29.5 ± 6.1 years (mean ± standard deviation, SD), 167.0 ± 10.6 cm tall with a body mass of 62.0 ± 18.0 kg, participated in the study. Subjects reported to the lab on four separate occasions including a habituation session, two MRI scans, and in a subset of subjects, a session during which changes in blood flow and blood oxygenation were quantified using Doppler ultrasound (U/S) and near-infrared spectroscopy (NIRS) respectively. For statistical comparisons between 3 and 7T, R2* rate constants were calculated as R2* = 1/T2*. RESULTS The mean preocclusion R2* value was greater at 7T than at 3T (60.16 ± 2.95 vs. 35.17 ± 0.35 s(-1), respectively, P < 0.001). Also, the mean ΔR2 *END and ΔR2*POST values were greater for 7T than for 3T (-2.36 ± 0.25 vs. -1.24 ± 0.39 s(-1), respectively, Table 1). CONCLUSION Muscle BOLD contrast at 7T is as much as six-fold greater than at 3T. In addition to providing greater SNR and CNR, 7T mBOLD studies may offer further advantages in the form of greater sensitivity to pathological changes in the muscle microcirculation.
Collapse
Affiliation(s)
- Theodore F Towse
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Physical Medicine and Rehabilitation, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Benjamin T Childs
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Shea A Sabin
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Emily C Bush
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Christopher P Elder
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Bruce M Damon
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
36
|
Abstract
Excellent morphological imaging of cartilage is now possible and allows the detection of subtle cartilage pathologies. Besides the standard 2D sequences, a multitude of 3D sequences are available for high-resolution cartilage imaging. The first part therefore deals with modern possibilities of morphological imaging. The second part deals with functional cartilage imaging with which it is possible to detect changes in cartilage composition and thus early osteoarthritis as well as to monitor biochemical changes after therapeutic interventions. Validated techniques such as delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) and T2 mapping as well the latest techniques, such as the glycosaminoglycan chemical exchange-dependent saturation transfer (gagCEST) technique will be discussed.
Collapse
|
37
|
Linz P, Santoro D, Renz W, Rieger J, Ruehle A, Ruff J, Deimling M, Rakova N, Muller DN, Luft FC, Titze J, Niendorf T. Skin sodium measured with ²³Na MRI at 7.0 T. NMR IN BIOMEDICINE 2015; 28:54-62. [PMID: 25328128 DOI: 10.1002/nbm.3224] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/10/2014] [Accepted: 09/10/2014] [Indexed: 06/04/2023]
Abstract
Skin sodium (Na(+) ) storage, as a physiologically important regulatory mechanism for blood pressure, volume regulation and, indeed, survival, has recently been rediscovered. This has prompted the development of MRI methods to assess Na(+) storage in humans ((23) Na MRI) at 3.0 T. This work examines the feasibility of high in-plane spatial resolution (23) Na MRI in skin at 7.0 T. A two-channel transceiver radiofrequency (RF) coil array tailored for skin MRI at 7.0 T (f = 78.5 MHz) is proposed. Specific absorption rate (SAR) simulations and a thorough assessment of RF power deposition were performed to meet the safety requirements. Human skin was examined in an in vivo feasibility study using two-dimensional gradient echo imaging. Normal male adult volunteers (n = 17; mean ± standard deviation, 46 ± 18 years; range, 20-79 years) were investigated. Transverse slices of the calf were imaged with (23) Na MRI using a high in-plane resolution of 0.9 × 0.9 mm(2) . Skin Na(+) content was determined using external agarose standards covering a physiological range of Na(+) concentrations. To assess the intra-subject reproducibility, each volunteer was examined three to five times with each session including a 5-min walk and repositioning/preparation of the subject. The age dependence of skin Na(+) content was investigated. The (23) Na RF coil provides improved sensitivity within a range of 1 cm from its surface versus a volume RF coil which facilitates high in-plane spatial resolution imaging of human skin. Intra-subject variability of human skin Na(+) content in the volunteer population was <10.3%. An age-dependent increase in skin Na(+) content was observed (r = 0.78). The assignment of Na(+) stores with (23) Na MRI techniques could be improved at 7.0 T compared with current 3.0 T technology. The benefits of such improvements may have the potential to aid basic research and clinical applications designed to unlock questions regarding the Na(+) balance and Na(+) storage function of skin.
Collapse
Affiliation(s)
- Peter Linz
- Interdisciplinary Center for Clinical Research, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bogner W, Pinker K, Zaric O, Baltzer P, Minarikova L, Porter D, Bago-Horvath Z, Dubsky P, Helbich TH, Trattnig S, Gruber S. Bilateral Diffusion-weighted MR Imaging of Breast Tumors with Submillimeter Resolution Using Readout-segmented Echo-planar Imaging at 7 T. Radiology 2015; 274:74-84. [DOI: 10.1148/radiol.14132340] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Abstract
At ultra-high magnetic fields, such as 7T, MR imaging can noninvasively visualize the brain in unprecedented detail and through enhanced contrast mechanisms. The increased SNR and enhanced contrast available at 7T enable higher resolution anatomic and vascular imaging. Greater spectral separation improves detection and characterization of metabolites in spectroscopic imaging. Enhanced blood oxygen level-dependent contrast affords higher resolution functional MR imaging. Ultra-high-field MR imaging also facilitates imaging of nonproton nuclei such as sodium and phosphorus. These improved imaging methods may be applied to detect subtle anatomic, functional, and metabolic abnormalities associated with a wide range of neurologic disorders, including epilepsy, brain tumors, multiple sclerosis, Alzheimer disease, and psychiatric conditions. At 7T, however, physical and hardware limitations cause conventional MR imaging pulse sequences to generate artifacts, requiring specialized pulse sequences and new hardware solutions to maximize the high-field gain in signal and contrast. Practical considerations for ultra-high-field MR imaging include cost, siting, and patient experience.
Collapse
Affiliation(s)
- P Balchandani
- From the Translational and Molecular Imaging Institute (P.B.) Department of Radiology (P.B., T.P.N.), Icahn School of Medicine at Mount Sinai, New York, New York.
| | - T P Naidich
- Department of Radiology (P.B., T.P.N.), Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
40
|
Forney MC, Gupta A, Minas T, Winalski CS. Magnetic resonance imaging of cartilage repair procedures. Magn Reson Imaging Clin N Am 2014; 22:671-701. [PMID: 25442028 DOI: 10.1016/j.mric.2014.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cartilage injuries in the knee are common and can be a persistent source of pain or dysfunction. Many new surgical strategies have been developed to treat these lesions. It is important for the radiologist to have an understanding of these procedures and their appearance on magnetic resonance (MR) imaging. This article provides the radiologist with an overview of the surgical strategies for repairing cartilage lesions in the knee followed by a discussion of their postoperative appearance on MR imaging in normal and abnormal cases. Guidelines for adequate reporting of the MR imaging findings after cartilage repair in the knee are also included.
Collapse
Affiliation(s)
- Michael C Forney
- Section of Musculoskeletal Imaging, Imaging Institute, Cleveland Clinic, Mail Code: A21, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Amit Gupta
- Section of Musculoskeletal Imaging, Imaging Institute, Cleveland Clinic, Mail Code: A21, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Tom Minas
- Department of Orthopedic Surgery, Cartilage Repair Center, Brigham and Women's Hospital, 850 Boylston Street, Suite 112, Chestnut Hill, MA 02467, USA
| | - Carl S Winalski
- Section of Musculoskeletal Imaging, Imaging Institute, Cleveland Clinic, Mail Code: A21, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
41
|
Winter L, Oberacker E, Özerdem C, Ji Y, von Knobelsdorff-Brenkenhoff F, Weidemann G, Ittermann B, Seifert F, Niendorf T. On the RF heating of coronary stents at 7.0 Tesla MRI. Magn Reson Med 2014; 74:999-1010. [PMID: 25293952 DOI: 10.1002/mrm.25483] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 09/11/2014] [Accepted: 09/11/2014] [Indexed: 12/16/2022]
Abstract
PURPOSE Examine radiofrequency (RF) induced heating of coronary stents at 7.0 Tesla (T) to derive an analytical approach which supports RF heating assessment of arbitrary stent geometries and RF coils. METHODS Simulations are performed to detail electromagnetic fields (EMF), local specific absorption rates (SAR) and temperature changes. For validation E-field measurements and RF heating experiments are conducted. To progress to clinical setups RF coils tailored for cardiac MRI at 7.0T and coronary stents are incorporated into EMF simulations using a human voxel model. RESULTS Our simulations of coronary stents at 297 MHz were confirmed by E-field and temperature measurements. An analytical solution which describes SAR(1g tissue voxel) induced by an arbitrary coronary stent interfering with E-fields generated by an arbitrary RF coil was derived. The analytical approach yielded a conservative estimation of induced SAR(1g tissue voxel) maxima without the need for integrating the stent into EMF simulations of the human voxel model. CONCLUSION The proposed analytical approach can be applied for any patient, coronary stent type, RF coil configuration and RF transmission regime. The generalized approach is of value for RF heating assessment of other passive electrically conductive implants and provides a novel design criterion for RF coils.
Collapse
Affiliation(s)
- Lukas Winter
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Eva Oberacker
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Celal Özerdem
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Yiyi Ji
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Florian von Knobelsdorff-Brenkenhoff
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Gerd Weidemann
- Physikalisch Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Bernd Ittermann
- Physikalisch Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Frank Seifert
- Physikalisch Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
42
|
Friebe B, Wollrab A, Thormann M, Fischbach K, Ricke J, Grueschow M, Kropf S, Fischbach F, Speck O. Sensory perceptions of individuals exposed to the static field of a 7T MRI: A controlled blinded study. J Magn Reson Imaging 2014; 41:1675-81. [PMID: 25236353 DOI: 10.1002/jmri.24748] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/21/2014] [Indexed: 12/16/2022] Open
Abstract
PURPOSE To determine the subjective experience of subjects undergoing 7T magnetic resonance imaging (MRI) compared to a mock scanner with no magnetic field. METHODS AND MATERIALS In all, 44 healthy subjects were exposed to both the B0 field of a 7T whole-body MRI and a realistic mock scanner with no magnetic field. Subjects were blinded to the actual field strength and no scanning was performed. After exposure, subjects rated their experience of potential sensory perceptions. RESULTS The most frequently observed side effect was vertigo while entering the gantry, which was reported by 38.6% (n = 17). Other frequent side effects were the appearance of phosphenes (18.2%, n = 8), thermal heat sensation (15.9%), unsteady gait after exposure (13.6%, n = 6), and dizziness (13.6%). All side effects were reported significantly more often after 7T exposure. Nine subjects (20.5%) did not report any sensory perceptions at all, ie, neither in the 7T scanner nor in the mock scanner. CONCLUSION Light, acute, and transient sensory perceptions can occur in subjects undergoing ultrahighfield MRI, of which vertigo seems to be the most frequently reported. Possible psychological effects might contribute to the emergence of such sensory perceptions, as some subjects also reported them to appear in a realistic mock scanner with no magnetic field.
Collapse
Affiliation(s)
- Björn Friebe
- Department of Radiology and Nuclear Medicine, Otto-von-Guericke University Magdeburg, Germany
| | - Astrid Wollrab
- Department of Biomedical Magnetic Resonance (BMMR), Division Experimental Physics, Faculty of Physics, Otto-von-Guericke University Magdeburg, Germany
| | - Markus Thormann
- Department of Radiology and Nuclear Medicine, Otto-von-Guericke University Magdeburg, Germany
| | - Katharina Fischbach
- Department of Radiology and Nuclear Medicine, Otto-von-Guericke University Magdeburg, Germany
| | - Jens Ricke
- Department of Radiology and Nuclear Medicine, Otto-von-Guericke University Magdeburg, Germany
| | | | - Siegfried Kropf
- Institute for Biometrics and Biomedical Informatics, Otto-von-Guericke University Magdeburg, Germany
| | - Frank Fischbach
- Department of Radiology and Nuclear Medicine, Otto-von-Guericke University Magdeburg, Germany
| | - Oliver Speck
- Department of Biomedical Magnetic Resonance (BMMR), Division Experimental Physics, Faculty of Physics, Otto-von-Guericke University Magdeburg, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
43
|
Zak L, Albrecht C, Wondrasch B, Widhalm H, Vekszler G, Trattnig S, Marlovits S, Aldrian S. Results 2 Years After Matrix-Associated Autologous Chondrocyte Transplantation Using the Novocart 3D Scaffold: An Analysis of Clinical and Radiological Data. Am J Sports Med 2014; 42:1618-27. [PMID: 24817007 DOI: 10.1177/0363546514532337] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND A range of scaffolds is available from various manufacturers for cartilage repair through matrix-associated autologous chondrocyte transplantation (MACT), with good medium- to long-term results. PURPOSE To evaluate clinical and magnetic resonance imaging (MRI) outcomes 2 years after MACT on the knee joint using the Novocart 3D scaffold based on a bilayered collagen type I sponge. STUDY DESIGN Case series; Level of evidence, 4. METHODS Of 28 initial patients, 23 were clinically and radiologically evaluated 24 months after transplantation. Indications for MACT were chondral or osteochondral lesions on the knee joint with a defect size >2 cm2, no instability, and no malalignment (axis deviation <5°). Then, MRI was performed on a 3-T scanner to assess the magnetic resonance observation of cartilage repair tissue (MOCART) and 3-dimensional (3D) MOCART scores. A variety of subjective scores (International Knee Documentation Committee [IKDC], Knee injury and Osteoarthritis Outcome Score [KOOS], Noyes sports activity rating scale, Tegner activity scale, and visual analog scale [VAS] for pain) were used for clinical evaluation. RESULTS Two years after MACT, the MRI evaluation showed a mean MOCART score of 73.2 ± 12.4 and a 3D MOCART score of 73.4 ± 9.7. Clinical results showed mean values of 69.8 ± 15.2 for the IKDC; 51.6 ± 21.2, 86.5 ± 13.9, 54.5 ± 23.6, 65.0 ± 8.0, and 91.5 ± 10.6 for the KOOS subscales (Quality of Life, Pain, Sports and Recreation, Symptoms, and Activities of Daily Living, respectively); 77.5 ± 12.7 for the Noyes scale; 4.4 ± 1.6 for the Tegner activity scale; and 1.8 ± 1.7 for the VAS, with statistically significant improvement in all scores other than KOOS-Symptoms. CONCLUSION Undergoing MACT using the Novocart 3D scaffold is an applicable method to treat large focal chondral and osteochondral defects, with good short-term clinical and radiological results.
Collapse
Affiliation(s)
- Lukas Zak
- Department of Traumatology, Medical University of Vienna, Vienna, Austria
| | - Christian Albrecht
- Department of Traumatology, Medical University of Vienna, Vienna, Austria
| | - Barbara Wondrasch
- Department of Health and Social Sciences, St Pölten University of Applied Sciences, St Pölten, Austria Norwegian Research Center for Active Rehabilitation, Department of Sport Medicine, Norwegian School for Sport Sciences, Oslo, Norway
| | - Harald Widhalm
- Department of Traumatology, Medical University of Vienna, Vienna, Austria
| | - György Vekszler
- Department of Traumatology, Medical University of Vienna, Vienna, Austria
| | - Siegfried Trattnig
- Investigation performed at the Medical University of Vienna, Vienna, Austria
| | - Stefan Marlovits
- Department of Traumatology, Medical University of Vienna, Vienna, Austria
| | - Silke Aldrian
- Department of Traumatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
44
|
|
45
|
Surowiec RK, Lucas EP, Ho CP. Quantitative MRI in the evaluation of articular cartilage health: reproducibility and variability with a focus on T2 mapping. Knee Surg Sports Traumatol Arthrosc 2014; 22:1385-95. [PMID: 24170187 DOI: 10.1007/s00167-013-2714-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 10/08/2013] [Indexed: 01/14/2023]
Abstract
PURPOSE Early diagnosis of cartilage degeneration and longitudinal tracking of cartilage health including repair following surgical intervention would benefit from the ability to detect and monitor changes of the articular cartilage non-invasively and before gross morphological alterations appear. METHODS Quantitative MR imaging has shown promising results with various imaging biomarkers such as T2 mapping, T1 rho and dGEMRIC demonstrating sensitivity in the detection of biochemical alterations within tissues of interest. However, acquiring accurate and clinically valuable quantitative data has proven challenging, and the reproducibility of the quantitative mapping technique and its values are essential. Although T2 mapping has been the focus in this discussion, all quantitative mapping techniques are subject to the same issues including variability in the imaging protocol, unloading and exercise, analysis, scanner and coil, calculation methods, and segmentation and registration concerns. RESULTS The causes for variability between time points longitudinally in a patient, among patients, and among centres need to be understood further and the issues addressed. CONCLUSIONS The potential clinical applications of quantitative mapping are vast, but, before the clinical community can take full advantage of this tool, it must be automated, standardized, validated, and have proven reproducibility prior to its implementation into the standard clinical care routine.
Collapse
Affiliation(s)
- Rachel K Surowiec
- Steadman Philippon Research Institute, 181 W Meadow Dr, Suite 1000, Vail, CO, 81657, USA,
| | | | | |
Collapse
|
46
|
Abstract
MRI has been established as an essential tool for accurate diagnosis in patients with musculoskeletal trauma. Its major advantages include excellent soft tissue contrast, high spatial resolution and lack of ionizing radiation. Although plain radiographs remain the basic tool for diagnosis and treatment planning in bone fractures assisted by CT in pelvic, spine and large joints injuries, there are specific circumstances that require MRI. For instance, tendinous, ligamentous, intraarticular structures such as the cartilage and menisci, and intramedullary injury are seen mostly with MRI. Volumetric 3D techniques are now commercially available and provide higher spatial resolution which improves anatomic detail, allows multiplanar reformations and reduces the acquisition time. Newer applications on quantitative rather than morphologic imaging, such as relaxometry and diffusion tensor imaging, may be of paramount importance in treatment planning in the near future. Software improvements reduce metal induced artefacts, allowing thus imaging of the postoperative patient with metallic implants. A tendency towards a structured reporting pattern and standardised medical communication needs to be further explored for the benefit of orthopaedic surgeons, radiologists and patients.
Collapse
|
47
|
Cartilage repair surgery: outcome evaluation by using noninvasive cartilage biomarkers based on quantitative MRI techniques? BIOMED RESEARCH INTERNATIONAL 2014; 2014:840170. [PMID: 24877139 PMCID: PMC4024422 DOI: 10.1155/2014/840170] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/25/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND New quantitative magnetic resonance imaging (MRI) techniques are increasingly applied as outcome measures after cartilage repair. OBJECTIVE To review the current literature on the use of quantitative MRI biomarkers for evaluation of cartilage repair at the knee and ankle. METHODS Using PubMed literature research, studies on biochemical, quantitative MR imaging of cartilage repair were identified and reviewed. RESULTS Quantitative MR biomarkers detect early degeneration of articular cartilage, mainly represented by an increasing water content, collagen disruption, and proteoglycan loss. Recently, feasibility of biochemical MR imaging of cartilage repair tissue and surrounding cartilage was demonstrated. Ultrastructural properties of the tissue after different repair procedures resulted in differences in imaging characteristics. T2 mapping, T1rho mapping, delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), and diffusion weighted imaging (DWI) are applicable on most clinical 1.5 T and 3 T MR scanners. Currently, a standard of reference is difficult to define and knowledge is limited concerning correlation of clinical and MR findings. The lack of histological correlations complicates the identification of the exact tissue composition. CONCLUSIONS A multimodal approach combining several quantitative MRI techniques in addition to morphological and clinical evaluation might be promising. Further investigations are required to demonstrate the potential for outcome evaluation after cartilage repair.
Collapse
|
48
|
Hip imaging of avascular necrosis at 7 Tesla compared with 3 Tesla. Skeletal Radiol 2014; 43:623-32. [PMID: 24496584 DOI: 10.1007/s00256-014-1818-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/30/2013] [Accepted: 01/02/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To compare ultra-high field, high-resolution bilateral magnetic resonance imaging (MRI) of the hips at 7 Tesla (T) with 3 T MRI in patients with avascular necrosis (AVN) of the femoral head by subjective image evaluations, contrast measurements, and evaluation of the appearance of imaging abnormalities. MATERIALS AND METHODS Thirteen subjects with avascular necrosis treated using advanced core decompression underwent MRI at both 7 T and 3 T. Sequence parameters as well as resolution were kept identical for both field strengths. All MR images (MEDIC, DESS, PD/T2w TSE, T1w TSE, and STIR) were evaluated by two radiologists with regard to subjective image quality, soft tissue contrasts, B1 homogeneity (four-point scale, higher values indicating better image quality) and depiction of imaging abnormalities of the femoral heads (three-point scale, higher values indicating the superiority of 7 T). Contrast ratios of soft tissues were calculated and compared with subjective data. RESULTS 7-T imaging of the femoral joints, as well as 3-T imaging, achieved "good" to "very good" quality in all sequences. 7 T showed significantly higher soft tissue contrasts for T2w and MEDIC compared with 3 T (cartilage/fluid: 2.9 vs 2.2 and 3.6 vs 2.6), better detailed resolution for cartilage defects (PDw, T2w, T1w, MEDIC, DESS > 2.5) and better visibility of joint effusions (MEDIC 2.6; PDw/T2w 2.4; DESS 2.2). Image homogeneity compared with 3 T (3.9-4.0 for all sequences) was degraded, especially in TSE sequences at 7 T through signal variations (7 T: 2.1-2.9); to a lesser extent also GRE sequences (7 T: 2.9-3.5). Imaging findings related to untreated or treated AVN were better delineated at 3 T (≤1.8), while joint effusions (2.2-2.6) and cartilage defects (2.5-3.0) were better visualized at 7 T. STIR performed much more poorly at 7 T, generating large contrast variations (1.5). CONCLUSIONS 7-T hip MRI showed comparable results in hip joint imaging compared with 3 T with slight advantages in contrast detail (cartilage defects) and fluid detection at 7 T when accepting image degradation medially.
Collapse
|
49
|
Anz AW, Lucas EP, Fitzcharles EK, Surowiec RK, Millett PJ, Ho CP. MRI T2 mapping of the asymptomatic supraspinatus tendon by age and imaging plane using clinically relevant subregions. Eur J Radiol 2014; 83:801-5. [PMID: 24613548 DOI: 10.1016/j.ejrad.2014.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 12/16/2013] [Accepted: 02/03/2014] [Indexed: 12/22/2022]
Abstract
PURPOSE Diagnosis of partial rotator cuff tears and tendonopathy using conventional MRI has proven variable. Quantitative T2 mapping may have application for assessing rotator cuff health. In order to evaluate the usefulness of T2 mapping for the rotator cuff, methods must be refined for mapping the supraspinatus tendon, and normative T2 values must first be acquired. MATERIALS AND METHODS This study was IRB approved. Thirty asymptomatic volunteers (age: 18-62) were evaluated with sagittal and coronal T2 mapping sequences. Manual segmentation of tendon and muscle as a unit and tendon alone was performed twice by two independent raters. Segmentations were divided into medial, middle and lateral subregions and mean T2 values calculated. RESULTS Anatomic comparison of mean T2 values illustrated highest values in the medial region, lowest values in the lateral region, and intermediate values for the middle region upon coronal segmentation (p<0.001). In sagittal segmentations, there were higher values in the medial region and no significant differences between the lateral and middle subregions. No significant differences were found with comparison across age groups. Inter and intra-rater segmentation repeatability was excellent, with coefficients ranging from 0.85 to 0.99. CONCLUSION T2 mapping illustrated anatomic variation along the supraspinatus muscle-tendon unit with low standard deviations and excellent repeatability, suggesting that changes in structure due to degeneration or changes associated with healing after repair may be detectable.
Collapse
Affiliation(s)
- Adam W Anz
- The Steadman Clinic, Vail, CO, United States.
| | - Erin P Lucas
- Steadman Philippon Research Institute, Vail, CO, United States.
| | | | | | | | - Charles P Ho
- Steadman Philippon Research Institute, Vail, CO, United States.
| |
Collapse
|
50
|
|