1
|
Mao W, Ding Y, Ding X, Fu C, Cao B, Nickel D, Zhou J, Zeng M. Value of T1 Mapping in the Non-invasive Assessment of Renal Pathologic Injury for Chronic Kidney Disease Patients. Magn Reson Med Sci 2025; 24:78-87. [PMID: 38143088 PMCID: PMC11733501 DOI: 10.2463/mrms.mp.2023-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 10/27/2023] [Indexed: 12/26/2023] Open
Abstract
PURPOSE The objective of this study was to evaluate renal function and pathologic injury in chronic kidney disease (CKD) using T1 mapping. METHODS We recruited fifteen healthy volunteers (HV) and seventy-five CKD patients to undergo T1 mapping examination, and renal parenchymal T1 values were measured. Spearman correlation analysis was used to evaluate the relevance between the pathologic injury score, estimated glomerular filtration rate (eGFR), and renal parenchymal T1 values. The diagnostic efficiency of T1 value in evaluating renal pathologic impairment was assessed. RESULTS In all subjects, renal cortical T1 value was remarkably lower than renal medullary T1 value (P < 0.01). The renal medullary T1 value of HV was considerably lower than that of CKD patients in all stages (P < 0.05). The T1 values were negatively correlated with eGFR (cortex, r = -0.718; medulla, r = -0.645). The T1 values were positively correlated with glomerular injury score (cortex, r = 0.692; medulla, r = 0.632), tubulointerstitial injury score (cortex, r = 0.758; medulla, r = 0.690) (all P < 0.01). The area under the curve (AUC) of renal cortical and medullary T1 values were 0.914 and 0.880 to distinguish moderate-severe from mild renal injury groups. To differentiate mild renal injury group from control group, the AUC values of renal cortical and medullary T1 values were 0.879 and 0.856. CONCLUSION T1 mapping has potential application value in non-invasively assessing renal pathologic injury in CKD.
Collapse
Affiliation(s)
- Wei Mao
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, China
| | - Yuqin Ding
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Caixia Fu
- MR Applications Development, Siemens Shenzhen Magnetic Resonance Ltd, Shenzhen, China
| | - Bohong Cao
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, China
| | - Dominik Nickel
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Jianjun Zhou
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, China
| |
Collapse
|
2
|
Tournebize C, Schleef M, De Mul A, Pacaud S, Derain-Dubourg L, Juillard L, Rouvière O, Lemoine S. Multiparametric MRI: can we assess renal function differently? Clin Kidney J 2025; 18:sfae365. [PMID: 40008350 PMCID: PMC11852294 DOI: 10.1093/ckj/sfae365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Indexed: 02/27/2025] Open
Abstract
We are lacking tools to evaluate renal performance. In this review, we presented the current knowledge and potential future applications in nephrology of new magnetic resonance imaging (MRI) techniques, focusing on diffusion-weighted (DWI) MRI, blood oxygen level-dependent (BOLD) MRI, and magnetic resonance relaxometry (T1 and T2 mapping). These sequences are sensitive to early changes in biological processes such as perfusion, oxygenation, edema, or fibrosis without requiring contrast medium injection and avoids irradiation and nephrotoxicity. Combining these different sequences into the so-called "multiparametric MRI" enables noninvasive, repeated exploration of renal performance on each kidney separately. DWI MRI, which evaluates the movement of water molecules, is a promising tool for noninvasive assessment of interstitial fibrosis and the cortical restricted diffusion has a prognostic value for the deterioration of renal function in diabetic nephropathy. BOLD MRI is sensitive to changes in renal tissue oxygenation based on the paramagnetic properties of deoxyhemoglobin and is of particular interest in the setting of renal artery stenosis to assess tissue oxygenation in the post-stenotic kidney. This sequence can be used for predicting degradation of renal function in chronic kidney diseases (CKD) and might be useful in preclinical studies to assess nephroprotective and nephrotoxic effects of drugs in development. T1 and T2 relaxation times change with tissue water content and might help assessing renal fibrosis. A corticomedullary dedifferentiation in T1 has been observed in CKD and negatively correlates with glomerular filtration rate. Data on the significance of T2 values in renal imaging is more limited. Multiparametric MRI has the potential to provide a better understanding of renal physiology and pathophysiology, a better characterization of renal lesions, an earlier and more sensitive detection of renal disease, and an aid to personalized patient-centered therapeutic decision-making. Further data and clinical trials are needed to allow its routine application in clinical practice.
Collapse
Affiliation(s)
- Corentin Tournebize
- Service de néphrologie, dialyse, exploration fonctionnelle rénale, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- Centre de Référence des Maladies Rares Rénales de la Réunion et du Grand-Est «MaReGe», filière ORKID, Lyon, France
- CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon-1, Bron, France
| | - Maxime Schleef
- Service de néphrologie, dialyse, exploration fonctionnelle rénale, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- Centre de Référence des Maladies Rares Rénales de la Réunion et du Grand-Est «MaReGe», filière ORKID, Lyon, France
- CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon-1, Bron, France
| | - Aurélie De Mul
- Service de néphrologie, dialyse, exploration fonctionnelle rénale, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- Centre de Référence des Maladies Rares Rénales de la Réunion et du Grand-Est «MaReGe», filière ORKID, Lyon, France
| | - Sophie Pacaud
- Service d'Imagerie Urinaire et Vasculaire, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Laurence Derain-Dubourg
- Service de néphrologie, dialyse, exploration fonctionnelle rénale, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- Centre de Référence des Maladies Rares Rénales de la Réunion et du Grand-Est «MaReGe», filière ORKID, Lyon, France
| | - Laurent Juillard
- Service de néphrologie, dialyse, exploration fonctionnelle rénale, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- Centre de Référence des Maladies Rares Rénales de la Réunion et du Grand-Est «MaReGe», filière ORKID, Lyon, France
- CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon-1, Bron, France
| | - Olivier Rouvière
- Service d'Imagerie Urinaire et Vasculaire, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- LabTau, INSERM U1052, Université de Lyon, Lyon, France
| | - Sandrine Lemoine
- Service de néphrologie, dialyse, exploration fonctionnelle rénale, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- Centre de Référence des Maladies Rares Rénales de la Réunion et du Grand-Est «MaReGe», filière ORKID, Lyon, France
- CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon-1, Bron, France
| |
Collapse
|
3
|
Wu Z, Hu J, Li Y, Yao X, Ouyang S, Ren K. Assessment of renal pathophysiological processes and protective effect of quercetin on contrast-induced acute kidney injury in type 1 diabetic mice using diffusion tensor imaging. Redox Rep 2024; 29:2398380. [PMID: 39284588 PMCID: PMC11407404 DOI: 10.1080/13510002.2024.2398380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Purpose: To investigate the renal pathophysiological processes and protective effect of quercetin on contrast-induced acute kidney injury (CI-AKI) in mice with type 1 diabetic mellitus(DM) using diffusion tensor imaging(DTI).Methods: Mice with DM were divided into two groups. In the diabetic + contrast medium(DCA) group, the changes of the mice kidneys were monitored at 1, 24, 48, and 72 h after the injection of iodixanol(4gI/kg). The mice in the diabetic + contrast medium + quercetin(DCA + QE) group were orally given different concentrations of quercetin for seven days before injection of iodixanol. In vitro experiments, renal tubular epithelial (HK-2) cells exposed to high glucose conditions were treated with various quercetin concentrations before treatment with iodixanol(250 mgI/mL).Results: DTI-derived mean diffusivity(MD) and fractional anisotropy(FA) values can be used to evaluate CI-AKI effectively. Quercetin significantly increased the expression of Sirt 1 and reduced oxidative stress by increasing Nrf 2/HO-1/SOD1. The antiapoptotic effect of quercetin on CI-AKI was revealed by decreasing proteins level and by reducing the number of apoptosis-positive cells. In addition, flow cytometry indicated quercetin-mediated inhibition of M1 macrophage polarization in the CI-AKI.Conclusions: DTI will be an effective noninvasive tool in diagnosing CI-AKI. Quercetin attenuates CI-AKI on the basis of DM through anti-oxidative stress, apoptosis, and inflammation.
Collapse
Affiliation(s)
- Ziqian Wu
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen Radiological Control Center, Xiamen, People's Republic of China
| | - Jingyi Hu
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen Radiological Control Center, Xiamen, People's Republic of China
| | - Yanfei Li
- Cell Therapy Research Center, Xiamen Humanity Hospital, Xiamen, People's Republic of China
| | - Xiang Yao
- Department of Neurosurgery, Zhongshan Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Siyu Ouyang
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Ke Ren
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen Radiological Control Center, Xiamen, People's Republic of China
| |
Collapse
|
4
|
Pappa O, Astrakas L, Anagnostou N, Bougia CΚ, Maliakas V, Sofikitis N, Argyropoulou MI, Tsili AC. 3.0 T diffusion tensor imaging and fiber tractography of the testes in nonobstructive azoospermia. Abdom Radiol (NY) 2024; 49:4543-4555. [PMID: 38940912 DOI: 10.1007/s00261-024-04457-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
PURPOSE To assess the role of 3.0 T Diffusion Tensor Imaging (DTI) and Fiber Tractography (FT) of the testes in the work-up of nonobstructive azoospermia (NOA). METHODS This prospective study included consecutive NOA men and controls. A 3.0 T scrotal MRI was performed, including DTI. The testicular apparent diffusion coefficient (ADC) and fractional anisotropy (FA) were calculated. FT reconstructions were created. The Kruskal-Wallis test, followed by pairwise comparisons, assessed differences in testicular ADC and FA between NOA histologic phenotypes (group 1: hypospermatogenesis; group 2: maturation arrest; and group 3: Sertoli cell-only syndrome) and normal testes. The Mann-Whitney-U test compared ADC and FA between NOA testes with positive and negative sperm retrieval. Visual assessment of the testicular fiber tracts was performed. Fiber tracts fewer in number, of reduced thickness, disrupted and/or disorganized were considered "abnormal". Chi-square tests and binary logistic regression analysis assessed variations in testicular fiber tracts morphology. RESULTS Twenty-nine NOA men (mean age: 39 ± 5.93 years) and 20 controls (mean age: 26 ± 5.83 years) were included for analysis. Higher ADC (p < 0.001) and FA (p < 0.001) was observed in NOA testes compared to controls. Differences in FA were found between groups 1 and 3 (0.07 vs 0.10, p = 0.26) and groups 2 and 3 (0.07 vs 0.10, p = 0.03), but not between groups 1 and 2 (p = 0.66). An increase in FA was observed in NOA testes with Sertoli cell-only syndrome compared to hypospermatogenesis and maturation arrest. FA was higher in NOA testes with negative results for the presence of sperm compared to those with positive results (0.09 vs 0.07, p = 0.006). FT showed "abnormal" fiber tracts in NOA testes (p < 0.001). CONCLUSION 3.0 T DTI and FT provide an insight into deranged spermatogenesis in NOA testes.
Collapse
Affiliation(s)
- Ourania Pappa
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, University Campus, 45110, Ioannina, Greece
| | - Loukas Astrakas
- Department of Medical Physics, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece
| | - Nikoletta Anagnostou
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, University Campus, 45110, Ioannina, Greece
| | - Christina Κ Bougia
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, University Campus, 45110, Ioannina, Greece
| | - Vasileios Maliakas
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, University Campus, 45110, Ioannina, Greece
- Department of Clinical Radiology, University Hospital of Ioannina, St. Niarchos 45500, Ioannina, Greece
| | - Nikolaos Sofikitis
- Department of Urology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece
| | - Maria I Argyropoulou
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, University Campus, 45110, Ioannina, Greece
| | - Athina C Tsili
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, University Campus, 45110, Ioannina, Greece.
| |
Collapse
|
5
|
Stabinska J, Wittsack HJ, Lerman LO, Ljimani A, Sigmund EE. Probing Renal Microstructure and Function with Advanced Diffusion MRI: Concepts, Applications, Challenges, and Future Directions. J Magn Reson Imaging 2024; 60:1259-1277. [PMID: 37991093 PMCID: PMC11117411 DOI: 10.1002/jmri.29127] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/23/2023] Open
Abstract
Diffusion measurements in the kidney are affected not only by renal microstructure but also by physiological processes (i.e., glomerular filtration, water reabsorption, and urine formation). Because of the superposition of passive tissue diffusion, blood perfusion, and tubular pre-urine flow, the limitations of the monoexponential apparent diffusion coefficient (ADC) model in assessing pathophysiological changes in renal tissue are becoming apparent and motivate the development of more advanced diffusion-weighted imaging (DWI) variants. These approaches take advantage of the fact that the length scale probed in DWI measurements can be adjusted by experimental parameters, including diffusion-weighting, diffusion gradient directions and diffusion time. This forms the basis by which advanced DWI models can be used to capture not only passive diffusion effects, but also microcirculation, compartmentalization, tissue anisotropy. In this review, we provide a comprehensive overview of the recent advancements in the field of renal DWI. Following a short introduction on renal structure and physiology, we present the key methodological approaches for the acquisition and analysis of renal DWI data, including intravoxel incoherent motion (IVIM), diffusion tensor imaging (DTI), non-Gaussian diffusion, and hybrid IVIM-DTI. We then briefly summarize the applications of these methods in chronic kidney disease and renal allograft dysfunction. Finally, we discuss the challenges and potential avenues for further development of renal DWI. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Julia Stabinska
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension and Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alexandra Ljimani
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Eric E. Sigmund
- Bernard and Irene Schwartz Center for Biomedical Imaging Center for Advanced Imaging Innovation and Research (CAI2R), New York University Langone Health, New York City, New York, USA
| |
Collapse
|
6
|
Lim WTH, Ooi EH, Foo JJ, Ng KH, Wong JHD, Leong SS. In silico analysis reveals the prospects of renal anisotropy in improving chronic kidney disease detection using ultrasound shear wave elastography. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3857. [PMID: 39075679 DOI: 10.1002/cnm.3857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/07/2024] [Accepted: 07/20/2024] [Indexed: 07/31/2024]
Abstract
Renal anisotropy is a complex property of the kidney and often poses a challenge in obtaining consistent measurements when using shear wave elastography to detect chronic kidney disease. To circumvent the challenge posed by renal anisotropy in clinical settings, a dimensionless biomarker termed the 'anisotropic ratio' was introduced to establish a correlation between changes in degree of renal anisotropy and progression of chronic kidney disease through an in silico perspective. To achieve this, an efficient model reduction approach was developed to model the anisotropic property of kidneys. Good agreement between the numerical and experimental data were obtained, as percentage errors of less than 5.5% were reported when compared against experimental phantom measurement from the literature. To demonstrate the applicability of the model to clinical measurements, the anisotropic ratio of sheep kidneys was quantified, with both numerical and derived experimental results reporting a value of .667. Analysis of the anisotropic ratio with progression of chronic kidney disease demonstrated that patients with normal kidneys would have a lower anisotropic ratio of .872 as opposed to patients suffering from renal impairment, in which the anisotropic ratio may increase to .904, as determined from this study. The findings demonstrate the potential of the anisotropic ratio in improving the detection of chronic kidney disease using shear wave elastography.
Collapse
Affiliation(s)
- William T H Lim
- Department of Mechanical Engineering, School of Engineering, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Ean H Ooi
- Department of Mechanical Engineering, School of Engineering, Monash University Malaysia, Bandar Sunway, Malaysia
- Medical Engineering and Technology Hub, School of Engineering, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Ji J Foo
- Department of Mechanical Engineering, School of Engineering, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Kwan H Ng
- Faculty of Medicine, Department of Biomedical Imaging, Universiti Malaya, Kuala Lumpur, Malaysia
- Faculty of Medicine and Health Sciences, UCSI University, Springhill, Malaysia
| | - Jeannie H D Wong
- Faculty of Medicine, Department of Biomedical Imaging, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sook S Leong
- Centre of Medical Imaging, Faculty of Health Sciences, Universiti Teknologi MARA Selangor, Bandar Puncak Alam, Malaysia
| |
Collapse
|
7
|
Zhou H, Si Y, Yang L, Wang Y, Xiao Y, Tang Y, Qin W. The clinical and pathological evaluation of patients with immunoglobulin A nephropathy by diffusion tensor imaging and intravoxel incoherent motion diffusion-weighted imaging. Br J Radiol 2024; 97:1577-1587. [PMID: 39073891 PMCID: PMC11332673 DOI: 10.1093/bjr/tqae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024] Open
Abstract
OBJECTIVES To explore the efficacy of diffuse magnetic resonance imaging (MRI) for identifying clinicopathological changes in immunoglobulin A nephropathy (IgAN) patients. METHODS The study enrolled IgAN patients and healthy volunteers. IgAN patients were divided into Group 1 [estimated glomerular filtration rate (eGFR) ≥ 90 mL/min/1.73 m2], Group 2 (60 ≤ eGFR < 90 mL/min/1.73 m2), and Group 3 (eGFR < 60 mL/min/1.73 m2). Intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) and diffusion tensor imaging (DTI) were performed via 3.0 T magnetic resonance. Diffuse MRI, clinical, and pathological indicators were collected and analysed. P < .05 was considered statistically significant. RESULTS Forty-six IgAN patients and twenty-seven volunteers were enrolled. The apparent diffusion coefficient, diffusion coefficient (D), perfusion fraction (f), and fractional anisotropy (FA) were significantly different among IgAN subgroups and controls. These parameters were positively correlated with eGFR and negatively with creatinine, and inversely correlated with glomerular sclerosis, interstitial fibrosis, and tubular atrophy (all P < .05). They had significantly high area under the curve (AUC) for distinguishing IgAN patients from controls, while FA had the highest AUC in identifying Group 1 IgAN patients from volunteers. CONCLUSIONS DTI and IVIM-DWI had the advantage of evaluating clinical and pathological changes in IgAN patients. DTI was superior at distinguishing early IgAN patients and might be a noninvasive marker for screening early IgAN patients from healthy individuals. ADVANCES IN KNOWLEDGE DTI and IVIM-DWI could evaluate clinical and pathological changes and correlated with Oxford classification in IgAN patients. They could also identify IgAN patients from healthy populations, while DTI had superiority in differentiating early IgAN patients.
Collapse
Affiliation(s)
- Huan Zhou
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Medicine, West China School of Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Si
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ling Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Wang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yitian Xiao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Tang
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Medicine, West China School of Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wei Qin
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Medicine, West China School of Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
8
|
Zhu J, Chen A, Gao J, Zou M, Du J, Wu PY, Zhang J, Mao Y, Song Y, Chen M. Diffusion-weighted, intravoxel incoherent motion, and diffusion kurtosis tensor MR imaging in chronic kidney diseases: Correlations with histology. Magn Reson Imaging 2024; 106:1-7. [PMID: 37414367 DOI: 10.1016/j.mri.2023.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
OBJECTIVES To probe the correlations of parameters derived from standard DWI and its extending models including intravoxel incoherent motion (IVIM), diffusion tensor imaging (DTI), and diffusion kurtosis imaging (DKI) with the pathological and functional alterations in CKD. MATERIAL AND METHODS Seventy-nine CKD patients with renal biopsy and 10 volunteers were performed with DWI, IVIM, diffusion kurtosis tensor imaging (DKTI) scanning. Correlations between imaging results and the pathological damage [glomerulosclerosis index (GSI) and tubulointerstitial fibrosis index (TBI)], as well as eGFR, 24 h urinary protein and Scr) were evaluated.CKD patients were divided into 2 groups: group 1: both GSI and TBI scores <2 points (61 cases); group 2: both GSI and TBI scores ≥2 points (18 cases). RESULTS There were significant difference in cortical and medullary MD, and cortical D among 3 groups and between group 1 and 2. Cortical and medullary MD, cortical D, and medullary FA were negatively correlated with GSI score (r = -0.322 to -0.386, P < 0.05). Cortical and medullary MD and D, medullary FA were also negatively correlated with TBI score (r = -0.257 to -0.395, P < 0.05). These parameters were all correlated with eGFR and Scr. Cortical MD and D showed the highest AUC of 0.790 and 0.745 in discriminating mild and moderate-severe glomerulosclerosis and tubular interstitial fibrosis, respectively. CONCLUSIONS The corrected diffusion-related indices, including cortical and medullary D and MD, as well as medullary FA were superior to ADC, perfusion-related and kurtosis indices for evaluating the severity of renal pathology and function in CKD patients.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, PR China
| | - Aiqun Chen
- Department of Nephrology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, PR China
| | - Jiayin Gao
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, PR China
| | - Mingzhu Zou
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, PR China
| | - Jun Du
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, PR China
| | - Pu-Yeh Wu
- GE Healthcare, Beijing 100176, China
| | - Jintao Zhang
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, PR China
| | - Yonghui Mao
- Department of Nephrology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, PR China
| | - Yan Song
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, PR China.
| | - Min Chen
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, PR China.
| |
Collapse
|
9
|
Wang B, Wang Y, Wang J, Jin C, Zhou R, Guo J, Zhang H, Wang M. Multiparametric Magnetic Resonance Investigations on Acute and Long-Term Kidney Injury. J Magn Reson Imaging 2024; 59:43-57. [PMID: 37246343 DOI: 10.1002/jmri.28784] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/30/2023] Open
Abstract
Acute kidney injury (AKI) is a frequent complication of critical illness and carries a significant risk of short- and long-term mortality. The prediction of the progression of AKI to long-term injury has been difficult for renal disease treatment. Radiologists are keen for the early detection of transition from AKI to long-term kidney injury, which would help in the preventive measures. The lack of established methods for early detection of long-term kidney injury underscores the pressing needs of advanced imaging technology that reveals microscopic tissue alterations during the progression of AKI. Fueled by recent advances in data acquisition and post-processing methods of magnetic resonance imaging (MRI), multiparametric MRI is showing great potential as a diagnostic tool for many kidney diseases. Multiparametric MRI studies offer a precious opportunity for real-time noninvasive monitoring of pathological development and progression of AKI to long-term injury. It provides insight into renal vasculature and function (arterial spin labeling, intravoxel incoherent motion), tissue oxygenation (blood oxygen level-dependent), tissue injury and fibrosis (diffusion tensor imaging, diffusion kurtosis imaging, T1 and T2 mapping, quantitative susceptibility mapping). The multiparametric MRI approach is highly promising but the longitudinal investigation on the transition of AKI to irreversible long-term impairment is largely ignored. Further optimization and implementation of renal MR methods in clinical practice will enhance our comprehension of not only AKI but chronic kidney diseases. Novel imaging biomarkers for microscopic renal tissue alterations could be discovered and benefit the preventative interventions. This review explores recent MRI applications on acute and long-term kidney injury while addressing lingering challenges, with emphasis on the potential value of the development of multiparametric MRI for renal imaging on clinical systems. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Bin Wang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yongfang Wang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Jinxia Guo
- GE Healthcare, MR Research China, Beijing, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Min Wang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Bane O, Seeliger E, Cox E, Stabinska J, Bechler E, Lewis S, Hickson LJ, Francis S, Sigmund E, Niendorf T. Renal MRI: From Nephron to NMR Signal. J Magn Reson Imaging 2023; 58:1660-1679. [PMID: 37243378 PMCID: PMC11025392 DOI: 10.1002/jmri.28828] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Renal diseases pose a significant socio-economic burden on healthcare systems. The development of better diagnostics and prognostics is well-recognized as a key strategy to resolve these challenges. Central to these developments are MRI biomarkers, due to their potential for monitoring of early pathophysiological changes, renal disease progression or treatment effects. The surge in renal MRI involves major cross-domain initiatives, large clinical studies, and educational programs. In parallel with these translational efforts, the need for greater (patho)physiological specificity remains, to enable engagement with clinical nephrologists and increase the associated health impact. The ISMRM 2022 Member Initiated Symposium (MIS) on renal MRI spotlighted this issue with the goal of inspiring more solutions from the ISMRM community. This work is a summary of the MIS presentations devoted to: 1) educating imaging scientists and clinicians on renal (patho)physiology and demands from clinical nephrologists, 2) elucidating the connection of MRI parameters with renal physiology, 3) presenting the current state of leading MR surrogates in assessing renal structure and functions as well as their next generation of innovation, and 4) describing the potential of these imaging markers for providing clinically meaningful renal characterization to guide or supplement clinical decision making. We hope to continue momentum of recent years and introduce new entrants to the development process, connecting (patho)physiology with (bio)physics, and conceiving new clinical applications. We envision this process to benefit from cross-disciplinary collaboration and analogous efforts in other body organs, but also to maximally leverage the unique opportunities of renal physiology. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Octavia Bane
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Icahn School of Medicine at Mount Sinai, BioMedical Engineering and Imaging Institute, New York City, New York, USA
| | - Erdmann Seeliger
- Institute of Translational Physiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Eleanor Cox
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Julia Stabinska
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eric Bechler
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sara Lewis
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - LaTonya J Hickson
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, Florida, USA
| | - Sue Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Eric Sigmund
- Bernard and Irene Schwartz Center for Biomedical Imaging Center for Advanced Imaging Innovation and Research (CAI2R), New York University Langone Health, New York City, New York, USA
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
11
|
Abstract
As a sign of chronic kidney disease (CKD) progression, renal fibrosis is an irreversible and alarming pathological change. The accurate diagnosis of renal fibrosis depends on the widely used renal biopsy, but this diagnostic modality is invasive and can easily lead to sampling error. With the development of imaging techniques, an increasing number of noninvasive imaging techniques, such as multipara meter magnetic resonance imaging (MRI) and ultrasound elastography, have gained attention in assessing kidney fibrosis. Depending on their ability to detect changes in tissue stiffness and diffusion of water molecules, ultrasound elastography and some MRI techniques can indirectly assess the degree of fibrosis. The worsening of renal tissue oxygenation and perfusion measured by blood oxygenation level-dependent MRI and arterial spin labeling MRI separately is also an indirect reflection of renal fibrosis. Objective and quantitative indices of fibrosis may be available in the future by using novel techniques, such as photoacoustic imaging and fluorescence microscopy. However, these imaging techniques are susceptible to interference or may not be convenient. Due to the lack of sufficient specificity and sensitivity, these imaging techniques are neither widely accepted nor proposed by clinicians. These obstructions must be overcome by conducting technology research and more prospective studies. In this review, we emphasize the recent advancement of these noninvasive imaging techniques and provide clinicians a continuously updated perspective on the assessment of kidney fibrosis.
Collapse
Affiliation(s)
- Buchun Jiang
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Fei Liu
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Haidong Fu
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China,CONTACT Haidong Fu
| | - Jianhua Mao
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China,Jianhua Mao The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, 3333 Bingsheng Rd, Hangzhou, Zhejiang310052, China
| |
Collapse
|
12
|
Pi S, Li Y, Lin C, Li G, Wen H, Peng H, Wang J. Arterial spin labeling and diffusion-weighted MR imaging: quantitative assessment of renal pathological injury in chronic kidney disease. Abdom Radiol (NY) 2023; 48:999-1010. [PMID: 36598569 DOI: 10.1007/s00261-022-03770-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE The aim of the study was to investigate the performance of arterial spin labeling (ASL), diffusion-weighted imaging (DWI), and clinical biomarkers in assessing renal pathological injury in CKD. MATERIALS AND METHODS Forty-five biopsy-proven CKD patients and 17 healthy volunteers underwent DWI and ASL examinations. Renal cortical blood flow (RBF) and apparent diffusion coefficient (ADC) values were acquired. Correlations between RBF, ADC, serum creatinine (SCr), estimated glomerular filtration rate (eGFR), and pathological scores were assessed. The diagnostic efficacy of SCr, eGFR, RBF, and ADC in assessing renal pathological injury was assessed by ROC curve analysis. RESULTS The cortical RBF, ADC, SCr, and eGFR were significantly correlated with the renal histology score (all p < 0.01). The AUC values of SCr, eGFR, RBF, and ADC were 0.705 (95% confidence interval (CI): 0.536-0.827), 0.718 (0.552-0.839), 0.823 (0.658-0.916), and 0.624 (0.451-0.786), respectively, in discriminating the minimal-mild renal pathological injury group (N = 30) from the control group (N = 17). The diagnostic ability of ASL was significantly higher than that of DWI (p = 0.049) and slightly but not significantly higher than that of eGFR and SCr (p = 0.151 and p = 0.129, respectively). When compared with that of eGFR, the sensitivity of ASL in detecting early renal injury increased from 50 to 70% (p = 0.014). However, in differentiating between the minimal-mild and moderate-severe renal injury groups (N = 15), there was no significant difference in diagnostic ability among the four parameters (all p > 0.05). CONCLUSION ASL is practicable for noninvasive evaluation of renal pathology, especially for predicting early renal pathological injury in CKD patients.
Collapse
Affiliation(s)
- Shan Pi
- Department of Radiology, Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Yin Li
- Department of Nephrology, Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Churong Lin
- Department of Radiology, Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Gang Li
- Department of Radiology, Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Huiquan Wen
- Department of Radiology, Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Hui Peng
- Department of Nephrology, Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, Guangzhou, 510630, Guangdong, People's Republic of China.
| | - Jin Wang
- Department of Radiology, Third Affiliated Hospital, Sun Yat-Sen University (SYSU), Tianhe Road, No 600, Guangzhou, 510630, Guangdong, People's Republic of China.
| |
Collapse
|
13
|
Evaluating the renal mild tubulointerstitial damage and renal function in IgAN patients: a comparative study based on diffusion kurtosis imaging and diffusion tensor imaging. ABDOMINAL RADIOLOGY (NEW YORK) 2023; 48:1350-1362. [PMID: 36749369 DOI: 10.1007/s00261-023-03822-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To compare the performance of 3.0 T magnetic resonance diffusion kurtosis imaging (DKI) and diffusion tensor imaging (DTI) in evaluation of the degree of tubulointerstitial damage and renal function in Immunoglobulin A Nephropathy (IgAN) patients. METHODS Both DKI and DTI were performed in 40 IgAN patients and 17 healthy volunteers. IgAN patients were divided into two groups according to tubulointerstitial lesion score: Mild injury group, n = 24; Moderate-severe injury group, n = 16. DKI characteristic parameters [mean kurtosis (MK), axial kurtosis (Ka), radial kurtosis (Kr)] and DTI parameters [fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (Da), radial diffusivity (Dr)] of renal cortex and medulla were measured and compared among different groups. Correlations between DKI, DTI parameters and clinicopathological characteristics were assessed. Diagnostic performance of DKI and DTI to evaluate tubulointerstitial damage of IgAN was compared. RESULTS Cortical MK, Kr, Da and parenchymal Ka significantly differed among three groups (P < 0.05). Cortical MK, Kr, Ka were negatively correlated with estimated glomerular filtration rate (eGFR) (MK: r = - 0.613; Kr: r = - 0.539; Ka: r = - 0.664) and positively correlated with tubulointerstitial lesion score (MK: r = 0.655; Kr: r = 0.577; Ka: r = 0.661) (all P < 0.001). Lower correlation coefficient was found among cortical FA, MD, Dr and eGFR, tubulointerstitial lesion score (all|r|< 0.350). The AUCs of DKI and DTI parameters for differentiating Mild injury group from control group were (cortical MK 0.822, cortical Ka 0.816; cortical FA 0.515, cortical MD 0.714) and for differentiating Mild injury group from Moderate-severe injury group were (cortical MK 0.813, cortical Ka 0.831; medulla FA 0.784, medulla MD 0.586). CONCLUSION Compared with DTI, DKI was more sensitive and accurate to probe the renal function and the tubulointerstitial damage of IgAN, especially the mild tubulointerstitial damage.
Collapse
|
14
|
Monoexponential, biexponential, stretched-exponential and kurtosis models of diffusion-weighted imaging in kidney assessment: comparison between patients with primary aldosteronism and healthy controls. ABDOMINAL RADIOLOGY (NEW YORK) 2023; 48:1340-1349. [PMID: 36745206 DOI: 10.1007/s00261-023-03833-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/07/2023]
Abstract
PURPOSE This study used various diffusion-weighted imaging (DWI) models (including monoexponential, biexponential, stretched-exponential and kurtosis models) in renal magnetic resonance imaging (MRI) to compare whether there were differences in each diffusion parameter between patients with primary aldosteronism (PA) and healthy volunteers. MATERIALS AND METHODS Twenty-two (female:male, 14:8; age, 48 ± 10 years) patients with PA and 22 age- and sex-matched healthy controls (HCs) underwent MRI examinations of the kidneys. The independent-sample t test or the Mann‒Whitney U test was used to detect differences in the diffusion metrics of the kidneys between the two groups. Univariable and multivariable linear regression were applied to analyze the correlations between diffusion parameters and the clinical indicators. RESULTS The mean diffusivity (MD, p < 0.001) and radial diffusivity (Dr, p < 0.001) values in the medulla were lower in the PA group than in the HC group. The medullary fractional anisotropy (FA, p < 0.001) was higher than that of HCs. The FA (p < 0.001) and axial diffusivity (Da, p < 0.001) values in the cortex were lower in the PA group. The cortical α (anomalous exponent term, p = 0.016) was higher in the PA patients than in the HCs. Linear regression analysis showed that log(plasma aldosterone concentration) and the estimated glomerular filtration rate (eGFR) were correlated with medullary FA. CONCLUSION The stretched-exponential model (cortical α) and the kurtosis model (FA, MD and Dr in the medulla and FA and Da in the cortex) showed significant differences between PA patients and healthy volunteers and may have potential for noninvasive renal assessment in PA patients.
Collapse
|
15
|
Liang P, Yuan G, Li S, He K, Peng Y, Hu D, Li Z, Ma Z, Xu C. Non-invasive evaluation of the pathological and functional characteristics of chronic kidney disease by diffusion kurtosis imaging and intravoxel incoherent motion imaging: comparison with conventional DWI. Br J Radiol 2023; 96:20220644. [PMID: 36400040 PMCID: PMC10997028 DOI: 10.1259/bjr.20220644] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/26/2022] [Accepted: 11/06/2022] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE To explore the diagnostic performance of diffusion kurtosis imaging (DKI) and incoherent intravoxel movement (IVIM) in evaluating the clinical and pathological characteristics in chronic kidney disease (CKD) compared to conventional diffusion-weighted imaging (DWI). METHODS Forty-nine CKD patients and 24 healthy volunteers were included in this retrospective study from September 2020 to September 2021. All participants underwent MRI examinations before percutaneous renal biopsy. Coronal T2WI, axial T1WI and T2WI, and DWI (including IVIM and DKI) sequences obtained in one scan. We measured the apparent diffusion coefficient (ADC), true diffusion coefficient (Dt), pseudo-diffusion coefficient (Dp), perfusion fraction (fp), mean kurtosis (MK), and mean diffusivity (MD) values. One-way analysis of variance, correlation analysis, and receiver operating characteristic curve analysis were used in our study. RESULTS Cortex and medulla ADC, MK, Dt, fp were significantly different between the healthy volunteers and CKD stages 1-2 (all p < 0.05). All diffusion parameters showed significant differences between CKD stages 1-2 and CKD stages 3-5 (all p < 0.05). Except for the uncorrelation between MDMedulla and vascular lesion score, all other diffusion parameters were low-to-moderately related to clinical and pathological indicators. fpMedulla was the best parameter to differentiate healthy volunteers from CKD stages 1-2. MKCortex was the best parameter to differentiate CKD stages 1-2 from that CKD stages 3-5. CONCLUSION Renal cortex and medulla fp, Dt, and MK can provide more valuable information than ADC values for the evaluation of clinical and pathological characteristics of CKD patients, and thus can provide auxiliary diagnosis for fibrosis assessment and clinical management of CKD patients. ADVANCES IN KNOWLEDGE IVIM and DKI can provide more diagnostic valuable information for CKD patients than conventional DWI.
Collapse
Affiliation(s)
- Ping Liang
- Department of Radiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,
Wuhan, China
| | - Guanjie Yuan
- Department of Radiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,
Wuhan, China
| | - Shichao Li
- Department of Radiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,
Wuhan, China
| | - Kangwen He
- Department of Radiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,
Wuhan, China
| | - Yang Peng
- Department of Radiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,
Wuhan, China
| | - Daoyu Hu
- Department of Radiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,
Wuhan, China
| | - Zhen Li
- Department of Radiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,
Wuhan, China
| | - Zufu Ma
- Department of Nephrology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,
Wuhan, China
| | - Chuou Xu
- Department of Radiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,
Wuhan, China
| |
Collapse
|
16
|
Li A, Yuan G, Hu Y, Shen Y, Hu X, Hu D, Li Z. Renal functional and interstitial fibrotic assessment with non-Gaussian diffusion kurtosis imaging. Insights Imaging 2022; 13:70. [PMID: 35394225 PMCID: PMC8993956 DOI: 10.1186/s13244-022-01215-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/21/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES To evaluate the application value of diffusion kurtosis imaging (DKI) for monitoring renal function and interstitial fibrosis. METHODS Forty-two patients suspected of having primary nephropathy, hypertension or diabetes with impaired renal function were examined with DKI. DKI metrics of renal cortex and medulla on both sides of each patient were measured, including mean kurtosis (MK), axial kurtosis (Ka), radial kurtosis (Kr), mean diffusivity (MD) and fractional anisotropy (FA). The differences in DKI metrics between stable and impaired estimated glomerular filtration rate (eGFR) patients as well as between mild and severe interstitial fibrosis patients were compared. Correlations of DKI metrics with clinical indicators and pathology were analyzed. Diagnostic performance of DKI to assess the degree of renal dysfunction was analyzed. RESULTS Cortical MK, parenchymal Ka, MD and medullary FA were different in stable vs impaired eGFR patients and mild vs severe interstitial fibrosis patients (all p < .05). Negative correlation was found between Ka and eGFR (cortex: r = - 0.579; medulla: r = - 0.603), between MD and interstitial fibrosis (cortex: r = - 0.899; medulla: r = - 0.770), and positive correlation was found between MD and eGFR (cortex: r = 0.411; medulla: r = 0.344), between Ka and interstitial fibrosis (cortex: r = 0.871; medulla: r = 0.844) (all p < .05). DKI combined with mean arterial blood pressure (MAP) and urea showed good diagnostic power for assessing the degree of renal dysfunction (sensitivity: 90.5%; specificity: 89.5%). CONCLUSIONS Noninvasive DKI has certain application value for monitoring renal function and interstitial fibrosis.
Collapse
Affiliation(s)
- Anqin Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Guanjie Yuan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yao Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yaqi Shen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Xuemei Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Daoyu Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Zhen Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
17
|
Liang P, Li S, Yuan G, He K, Li A, Hu D, Li Z, Xu C. Noninvasive assessment of clinical and pathological characteristics of patients with IgA nephropathy by diffusion kurtosis imaging. Insights Imaging 2022; 13:18. [PMID: 35092495 PMCID: PMC8800983 DOI: 10.1186/s13244-022-01158-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/07/2022] [Indexed: 11/10/2022] Open
Abstract
Objectives To explore the diagnostic performance of diffusion kurtosis imaging (DKI) in evaluating the clinical and pathological characteristics of patients with immunoglobulin A nephropathy (IgAN) compared with conventional DWI. Materials and methods A total of 28 IgAN patients and 14 healthy volunteers prospectively underwent MRI examinations including coronal T2WI, axial T1WI, T2WI, and DWI sequences from September 2020 to August 2021. We measured mean kurtosis (MK), mean diffusivity (MD), and apparent diffusion coefficient (ADC) by using MR Body Diffusion Toolbox v1.4.0 (Siemens Healthcare). Patients were divided into three groups according to their estimated glomerular filtration rate (eGFR) (Group1, healthy volunteers without kidney disease or other diseases that affect renal function; Group2, IgAN patients with eGFR > 60 mL/min/1.73 m2; Group3, IgAN patients with eGFR < 60 mL/min/1.73 m2). One-way analysis of variance, Pearson or Spearman correlation, and receiver operating characteristic curves were applied in our statistical analysis. Results MKCortex and ADCCortex showed significant differences between the Group1 and Group2. MKCortex, MDCortex, ADCCortex, MKMedulla, and ADCMedulla showed significant differences between Group2 and Group3. MKCortex had the highest correlation with CKD stages (r = 0.749, p < 0.001), and tubulointerstitial lesion score (r = 0.656, p < 0.001). MDCortex had the highest correlation with glomerular lesion score (r = − 0.475, p = 0.011). MKCortex had the highest AUC (AUC = 0.923) for differentiating Group1 from Group2, and MDCortex had the highest AUC (AUC = 0.924) for differentiating Group2 from Group3, followed by MKMedulla (AUC = 0.923). Conclusions DKI is a feasible and reliable technique that can assess the clinical and pathological characteristics of IgAN patients and can provide more valuable information than conventional DWI, especially MKCortex.
Collapse
|
18
|
Zhang H, Wang P, Shi D, Yao X, Li Y, Liu X, Sun Y, Ding J, Wang S, Wang G, Ren K. Capability of intravoxel incoherent motion and diffusion tensor imaging to detect early kidney injury in type 2 diabetes. Eur Radiol 2022; 32:2988-2997. [PMID: 35031840 DOI: 10.1007/s00330-021-08415-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To prospectively investigate the capability of intravoxel incoherent motion (IVIM) and conventional diffusion tensor imaging (DTI) to identify early kidney function injury in type 2 diabetes. METHODS Forty-one diabetes patients (normoalbuminuria: n = 27; microalbuminuria: n = 14) and 28 volunteers were recruited. All participants were examined using DTI and IVIM with 3.0-T MRI. DTI parameters (mean diffusivity [MD], fractional anisotropy [FA]), and IVIM parameters (true diffusion coefficient [D], pseudo-diffusion coefficient [D*], and pseudo-diffusion component fraction [f]) were measured in the renal parenchyma (cortex and medulla) by two experienced radiologists independently. Image features were compared among the groups using separate one-way analyses of variance. Diagnostic performances of various diffusion parameters for predicting diabetic renal damage were compared. RESULTS The medullary D and FA values were significantly different among the microalbuminuria subgroup, normoalbuminuria subgroup, and control group (all p < 0.001). In medulla, area under the curve (AUC) values for combined FA and D were significantly higher than single FA (AUC = 0.938, 0.769, respectively; p = 0.003), and the combined AUC of FA and D was numerically higher than that of single D (0.938 vs 0.878, p > 0.05). AUC of combined FA and D was 0.985, not significantly different from individual AUC for FA and D (AUC = 0.909 and 0.952, respectively; all p > 0.05) in differentiating the microalbuminuria subgroup from the control group. CONCLUSION IVIM-derived D and DTI-derived FA values were better than other parameters for evaluating early kidney impairment of diabetes. The single indicator FA and D performed as well as the combined diagnostic indicator in the medulla for differentiating the microalbuminuria subgroup from the control group. KEY POINTS • We speculated that early renal progression in type 2 diabetes result from restricted tubular flow and kidney tubule dysregulation may precede or at least accompany abnormal glomerular changes. • In medulla, the AUC values of FA and D and the combination of FA and D obtained by comparing the microalbuminuria subgroup with the control group were 0.909, 0.952, and 0.985, respectively. • IVIM-derived D and DTI-derived FA are effective MR biomarkers to evaluate early alterations of the renal function in patients with diabetes.
Collapse
Affiliation(s)
- Haoran Zhang
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China
| | - Peng Wang
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Dafa Shi
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China
| | - Xiang Yao
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China
| | - Yanfei Li
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China
| | - Xuedan Liu
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China
| | - Yang Sun
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China
| | - Jie Ding
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China
| | - Siyuan Wang
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China
| | - Guangsong Wang
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China
| | - Ke Ren
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China. .,Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen, China.
| |
Collapse
|
19
|
Seah JM, Botterill E, MacIsaac RJ, Milne M, Ekinci EI, Lim RP. Functional MRI in assessment of diabetic kidney disease in people with type 1 diabetes. J Diabetes Complications 2022; 36:108076. [PMID: 34802902 DOI: 10.1016/j.jdiacomp.2021.108076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/16/2022]
Abstract
AIMS To compare levels of renal hypoxia measured by Blood Oxygen Level Dependent (BOLD) magnetic resonance imaging (MRI) with measured transverse relaxation rate (R2*) and renal structural changes including apparent diffusion coefficient (ADC) and fractional anisotropy (FA) in patients with type 1 diabetes and healthy controls. METHODS Cohort study comparing MRI metrics in type 1 diabetes (n = 32, GFR 105 (77, 120) ml/min.1.73m2) and controls (n = 10). Renal function and selected inflammatory renal biomarkers were also measured. RESULTS For BOLD, we found reduced cortical [14.7 (13.7,15.8) (1/s) vs 15.7 (15.1,16.6) (1/s), p < 0.001] and medullary [24.8 (21.8,28.2) (1/s) vs. 29.3 (24.3,32.4) (1/s), p < 0.001] R2*, indicating more oxygenated parenchyma, in type 1 diabetes vs. controls, respectively. We observed reduced cortical FA, indicating decreased structural integrity in type 1 diabetes -0.04 (-0.07, -0.01), (p = 0.02). We found reduced cortical ADC, reflecting reduced water diffusion, in non-hyperfiltering [2.40 (2.29,2.53) (103mm2/s)] versus hyperfiltering [2.61 (2.53,2.74) (103mm2/s)] type 1 diabetes patients. MRI parameters correlated with renal function and inflammatory renal biomarkers. CONCLUSIONS MRI derived indices of renal function and structure differed between (i) type 1 diabetes and healthy controls, and (ii) between non-hyperfiltering and hyperfiltering type 1 diabetes patients, providing insight into the role of hypoxia and renal structural, and functional changes in DKD.
Collapse
Affiliation(s)
- Jas-Mine Seah
- Department of Endocrinology and Diabetes, Austin Health, Heidelberg, VIC, Australia; Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Elissa Botterill
- Department of Radiology and Surgery, Austin Health, Heidelberg, VIC, Australia
| | - Richard J MacIsaac
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia; Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Michele Milne
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Elif I Ekinci
- Department of Endocrinology and Diabetes, Austin Health, Heidelberg, VIC, Australia; Department of Medicine, The University of Melbourne, Parkville, VIC, Australia.
| | - Ruth P Lim
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia; Department of Radiology and Surgery, Austin Health, Heidelberg, VIC, Australia
| |
Collapse
|
20
|
Yu B, Huang C, Fan X, Li F, Zhang J, Song Z, Zhi N, Ding J. Application of MR Imaging Features in Differentiation of Renal Changes in Patients With Stage III Type 2 Diabetic Nephropathy and Normal Subjects. Front Endocrinol (Lausanne) 2022; 13:846407. [PMID: 35600605 PMCID: PMC9114464 DOI: 10.3389/fendo.2022.846407] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/21/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The objective of the study was to explore the value of MRI texture features based on T1WI, T2-FS and diffusion-weighted imaging (DWI) in differentiation of renal changes in patients with stage III type 2 diabetic nephropathy (DN) and normal subjects. MATERIALS AND METHODS A retrospective analysis was performed to analyze 44 healthy volunteers (group A) and 40 patients with stage III type 2 diabetic nephropathy (group B) with microalbuminuria. Urinary albumin to creatinine ratio (ACR) <30 mg/g, estimated glomerular filtration rate (eGFR) in the range of 60-120 ml/(min 1.73 m2), and randomly divided into primary cohort and test cohort. Conventional MRI and DWI of kidney were performed using 1.5 T magnetic resonance imaging (MRI). The outline of the renal parenchyma was manually labeled in fat-suppressed T2-weighted imaging (FS-T2WI), and PyRadiomics was used to extract radiomics features. The radiomics features were then selected by the least absolute shrinkage and selection operator (LASSO) method. RESULTS There was a significant difference in sex and body mass index (BMI) (P <0.05) in the primary cohort, with no significant difference in age. In the final results, the wavelet and Laplacian-Gaussian filtering are used to extract 1,892 image features from the original T1WI image, and the LASSO algorithm is used for selection. One first-order feature and six texture features are selected through 10 cross-validations. In the mass, 1,638 imaging extracts features from the original T2WI image.1 first-order feature and 5 texture features were selected. A total of 1,241 imaging features were extracted from the original ADC images, and 5 texture features were selected. Using LASSO-Logistic regression analysis, 10 features were selected for modeling, and a combined diagnosis model of diabetic nephropathy based on texture features was established. The average unit cost in the logistic regression model was 0.98, the 95% confidence interval for the predictive efficacy was 0.9486-1.0, specificity 0.97 and precision 0.93, particularly. ROC curves also revealed that the model could distinguish with high sensitivity of at least 92%. CONCLUSION In consequence, the texture features based on MR have broad application prospects in the early detection of DN as a relatively simple and noninvasive tool without contrast media administration.
Collapse
Affiliation(s)
- Baoting Yu
- Department of Radiology, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Chencui Huang
- Department of Research Collaboration, R&D Center, Beijing Deepwise & League of PHD Technology Co., Ltd., Beijing, China
| | - Xiaofei Fan
- Department of Radiology, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Feng Li
- Department of Research Collaboration, R&D Center, Beijing Deepwise & League of PHD Technology Co., Ltd., Beijing, China
| | - Jianzhong Zhang
- Department of Radiology, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Zihan Song
- Department of Radiology, Chang Chun Central Hospital, Changchun, China
| | - Nan Zhi
- Department of Radiology, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Jun Ding
- Department of Radiology, China–Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Jun Ding,
| |
Collapse
|
21
|
Borrelli P, Zacchia M, Cavaliere C, Basso L, Salvatore M, Capasso G, Aiello M. Diffusion tensor imaging for the study of early renal dysfunction in patients affected by bardet-biedl syndrome. Sci Rep 2021; 11:20855. [PMID: 34675323 PMCID: PMC8531379 DOI: 10.1038/s41598-021-00394-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/11/2021] [Indexed: 11/28/2022] Open
Abstract
Kidney structural abnormalities are common features of Bardet-Biedl syndrome (BBS) patients that lead to a progressive decline in renal function. Magnetic resonance diffusion tensor imaging (DTI) provides useful information on renal microstructures but it has not been applied to these patients. This study investigated using DTI to detect renal abnormalities in BBS patients with no overt renal dysfunction. Ten BBS subjects with estimated glomerular filtration rates over 60 ml/min/1.73m2 and 14 individuals matched for age, gender, body mass index and renal function were subjected to high-field DTI. Fractional anisotropy (FA), and mean, radial and axial diffusivity were evaluated from renal cortex and medulla. Moreover, the corticomedullary differentiation of each DTI parameter was compared between groups. Only cortical FA statistically differed between BBS patients and controls (p = 0.033), but all the medullary DTI parameters discriminated between the two groups with lower FA (p < 0.001) and axial diffusivity (p = 0.021) and higher mean diffusivity (p = 0.043) and radial diffusivity (p < 0.001) in BBS patients compared with controls. Corticomedullary differentiation values were significantly reduced in BBS patients. Thus, DTI is a valuable tool for investigating microstructural alterations in renal disorders when kidney functionality is preserved.
Collapse
Affiliation(s)
| | - Miriam Zacchia
- Department of Medical and Translational Sciences, University of Campania L. Vanvitelli, Naples, Italy
| | | | - Luca Basso
- IRCCS SDN, Via Emanuele Gianturco 113, 80131, Naples, Italy
| | | | - Giovambattista Capasso
- Department of Medical and Translational Sciences, University of Campania L. Vanvitelli, Naples, Italy.,Biogem, Research Institute for Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Marco Aiello
- IRCCS SDN, Via Emanuele Gianturco 113, 80131, Naples, Italy
| |
Collapse
|
22
|
Feng YZ, Dong XN, Lin QT, Chen PK, Xiong XQ, DingKun S, Qian L, Cheng ZY, Cai XR. Multiparametric MRI analysis for the evaluation of renal function in patients with hyperuricemia: a preliminary study. BMC Med Imaging 2021; 21:139. [PMID: 34583652 PMCID: PMC8477479 DOI: 10.1186/s12880-021-00675-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background To investigate the renal dysfunction in patients with hyperuricemia by employing a multiparametric MRI protocol, consisting of quantitative water molecule diffusion, microstructure, microscopic perfusion, and oxygenation measurements in kidneys. Materials and methods A total of 48 patients with hyperuricemia (HU) and 22 age-matched healthy control subjects (HC) were enrolled in the study. For each participant, three different functional magnetic resonance imaging (fMRI) sequences were acquired and analyzed, including intravoxel incoherent motion imaging (IVIM), diffusion tensor imaging (DTI), and blood-oxygen-level-dependent MRI (BOLD). Thereafter, an independent two-sample t-test was applied to discover the significant differences of MRI indices between the hyperuricemia (HU) and HC groups, and the specific potential biomarkers between two subgroups of HU group (asymptomatic hyperuricemia group (AH) and gouty arthritis group (GA)). Further, multivariate logistic regression analyses were performed to classify the AH from the GA group using the MRI indices with significant between-group differences. The receiver operating characteristic (ROC) curve was plotted, and the area under the ROC curve (AUC) was calculated to assess the performance of each MR index for differentiation between the AH and GA groups. Results Ten parametric values of the HU group were significantly lower than those of the HC group among the 14 fMRI parameters (P < 0.05). The cortical D, D*, and f values and medullary D and R2*values had significant differences between the AH and GA groups (P < 0.05). Combining the cortical D and f values and medullary R2* value gave the best diagnostic efficacy, yielding an AUC, sensitivity, and specificity of 0.967 ± 0.022, 91.67%, and 95.83%, respectively. Conclusions A multiparametric MR analysis plays an important role in the evaluation of renal dysfunction in hyperuricemia from multiple perspectives. It could be a promising method for noninvasive detection and identification of the early-stage renal damage induced by hyperuricemia. Supplementary Information The online version contains supplementary material available at 10.1186/s12880-021-00675-4.
Collapse
Affiliation(s)
- You-Zhen Feng
- Medical Imaging Center, First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Xiang-Nan Dong
- Medical Imaging Center, First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China.,Department of Nephrology, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Qi-Ting Lin
- Medical Imaging Center, First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Ping-Kang Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Xiao-Qing Xiong
- Medical Imaging Center, First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - SiTu DingKun
- Medical Imaging Center, First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Long Qian
- MR Research, GE Healthcare, Beijing, China
| | - Zhong-Yuan Cheng
- Medical Imaging Center, First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China.
| | - Xiang-Ran Cai
- Medical Imaging Center, First Affiliated Hospital of Jinan University, No.613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
23
|
Lim WTH, Ooi EH, Foo JJ, Ng KH, Wong JHD, Leong SS. Shear Wave Elastography: A Review on the Confounding Factors and Their Potential Mitigation in Detecting Chronic Kidney Disease. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2033-2047. [PMID: 33958257 DOI: 10.1016/j.ultrasmedbio.2021.03.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Early detection of chronic kidney disease is important to prevent progression of irreversible kidney damage, reducing the need for renal transplantation. Shear wave elastography is ideal as a quantitative imaging modality to detect chronic kidney disease because of its non-invasive nature, low cost and portability, making it highly accessible. However, the complexity of the kidney architecture and its tissue properties give rise to various confounding factors that affect the reliability of shear wave elastography in detecting chronic kidney disease, thus limiting its application to clinical trials. The objective of this review is to highlight the confounding factors presented by the complex properties of the kidney, in addition to outlining potential mitigation strategies, along with the prospect of increasing the versatility and reliability of shear wave elastography in detecting chronic kidney disease.
Collapse
Affiliation(s)
- William T H Lim
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Ean H Ooi
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia.
| | - Ji J Foo
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Kwan H Ng
- Department of Biomedical Imaging, University of Malaya, Kuala Lumpur, Malaysia; University of Malaya Research Imaging Centre, University of Malaya, Kuala Lumpur, Malaysia
| | - Jeannie H D Wong
- Department of Biomedical Imaging, University of Malaya, Kuala Lumpur, Malaysia; University of Malaya Research Imaging Centre, University of Malaya, Kuala Lumpur, Malaysia
| | - Sook S Leong
- Department of Biomedical Imaging, University of Malaya, Kuala Lumpur, Malaysia; Department of Biomedical Imaging, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Diffusion tensor imaging of renal cortex in lupus nephritis. Jpn J Radiol 2021; 39:1069-1076. [PMID: 34125367 DOI: 10.1007/s11604-021-01154-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/08/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE To evaluate the diagnostic value of diffusion tensor imaging (DTI) of renal cortex in assessment of lupus nephritis (LN) and prediction of its pathological subtypes. METHODS Prospective study was performed upon 39 female patients with pathologically proven LN and 16 sex- and age-matched healthy controls. Patients and controls underwent DTI of kidney. Mean diffusivity (MD) and fractional anisotropy (FA) of renal cortex were calculated by two radiologists. LN patients were pathologically classified into either non-proliferative (n = 15) or proliferative (n = 24). RESULTS Mean MD of renal cortex in LN was significantly lower (p = 0.001) than that of controls with cut-off (2.16 and 2.2 X10-3mm2/s), area under curve (AUC) of (0.92, 0.94) and accuracy of (91%, 89%) for both observers. Mean FA of renal cortex in LN was significantly higher (p = 0.001) than that of controls with cut-off (0.20, 0.21), AUC of (0.86, 0.82) and accuracy of (86%, 84%) for both observers. Renal cortex MD and FA in non-proliferative LN were significantly different (p = 0.001) from that of proliferative LN for both observers. There was excellent inter-observer agreement of MD and FA (ICC = 0.96 and 0.81). CONCLUSION MD and FA of renal cortex may help to assess renal affection in LN patients and predict its pathological subtypes.
Collapse
|
25
|
Li XS, Zhang QJ, Zhu J, Zhou QQ, Yu YS, Hu ZC, Xia ZY, Wei L, Yin XD, Zhang H. Assessment of kidney function in chronic kidney disease by combining diffusion tensor imaging and total kidney volume. Int Urol Nephrol 2021; 54:385-393. [PMID: 34024009 DOI: 10.1007/s11255-021-02886-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 05/08/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE This study aimed to investigate the value and feasibility of combining fractional anisotropy (FA) values from diffusion tensor imaging (DTI) and total kidney volume (TKV) for the assessment of kidney function in chronic kidney disease (CKD). MATERIALS AND METHODS Fifty-one patients were included in this study. All MRI examinations were performed with a 3.0 T scanner. DTI was used to measure FA values, and TKV was obtained from DTI and T2-weighted imaging (T2WI). Patients were divided into three groups (mild, moderate, severe) according to eGFR, which was calculated with serum creatinine. Differences in the FA values of the cortex and medulla were analysed among the three groups, and the relationships of FA values, TKV, and the product of the FA values and TKV with eGFR were analysed. Receiver operating characteristic (ROC) curve analysis was used to compare the diagnostic efficiency of the FA values, TKV, and the product of the FA values and TKV for kidney function in different CKD stages. RESULTS Medullary FA values (m-FA), TKV, and the product of the m-FA values and TKV (m-FA-TKV) were significantly correlated with eGFR (r = 0.653, 0.685, and 0.797, respectively; all P < 0.001). ROC curve analysis showed that m-FA-TKV exhibited better diagnostic performance than m-FA values (P = 0.022). CONCLUSION m-FA-TKV obtained by DTI significantly improves the accuracy of kidney function assessment in CKD patients.
Collapse
Affiliation(s)
- Xue-Song Li
- Department of Radiology, The Affiliated Jiangning Hospital with Nanjing Medical University, No. 169, Hushan Road, Nanjing, 211100, Jiangsu Province, China
| | - Qing-Juan Zhang
- Department of Nephrology, The Affiliated Jiangning Hospital with Nanjing Medicine University, No. 169, Hushan Road, Nanjing, 211100, Jiangsu Province, China
| | - Jiang Zhu
- Department of Nephrology, The Affiliated Jiangning Hospital with Nanjing Medicine University, No. 169, Hushan Road, Nanjing, 211100, Jiangsu Province, China
| | - Qing-Qing Zhou
- Department of Radiology, The Affiliated Jiangning Hospital with Nanjing Medical University, No. 169, Hushan Road, Nanjing, 211100, Jiangsu Province, China
| | - Yu-Sheng Yu
- Department of Radiology, The Affiliated Jiangning Hospital with Nanjing Medical University, No. 169, Hushan Road, Nanjing, 211100, Jiangsu Province, China
| | - Zhang-Chun Hu
- Department of Radiology, The Affiliated Jiangning Hospital with Nanjing Medical University, No. 169, Hushan Road, Nanjing, 211100, Jiangsu Province, China
| | - Zi-Yi Xia
- Department of Radiology, The Affiliated Jiangning Hospital with Nanjing Medical University, No. 169, Hushan Road, Nanjing, 211100, Jiangsu Province, China
| | - Liang Wei
- Department of Radiology, The Affiliated Jiangning Hospital with Nanjing Medical University, No. 169, Hushan Road, Nanjing, 211100, Jiangsu Province, China
| | - Xin-Dao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, Jiangsu Province, China
| | - Hong Zhang
- Department of Radiology, The Affiliated Jiangning Hospital with Nanjing Medical University, No. 169, Hushan Road, Nanjing, 211100, Jiangsu Province, China.
| |
Collapse
|
26
|
Cheng ZY, Lin QT, Chen PK, Si-Tu DK, Qian L, Feng YZ, Cai XR. Combined application of DTI and BOLD-MRI in the assessment of renal injury with hyperuricemia. Abdom Radiol (NY) 2021; 46:1694-1702. [PMID: 33074425 DOI: 10.1007/s00261-020-02804-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/20/2020] [Accepted: 09/30/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To explore the value of combined diffusion tensor imaging (DTI) and blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI) in detecting early renal alterations in patients with hyperuricemia. MATERIALS AND METHODS Seventy-one individuals were enrolled in this study and divided into three groups according to their serum uric acid (SUA) level and clinical symptoms: healthy controls (HC, n = 23), asymptomatic hyperuricemia (AH, n = 22) and gouty arthritis (GA, n = 26). All patients underwent both DTI and BOLD-MRI examination. Renal cortical and medullary ADC, FA and R2* values were calculated, respectively, and compared among the three groups. Correlations between ADC, FA and R2* with estimated glomerular filtration rate (eGFR) and SUA in hyperuricemia were evaluated, respectively. RESULT In the renal cortex, the ADC, FA and R2* values of the AH and GA groups were significantly lower than those of the HC groups (p < 0.05). In the renal medulla, the ADC and FA values in AH and GA patients were significantly lower than those in healthy controls (p < 0.05). The R2* value of the GA group significantly decreased, compared to that of the AH and HC groups (p < 0.05). SUA was negatively correlated with cortical ADC, FA and R2* values (p < 0.05) as well as with medullary ADC and FA values. No significant correlation was discovered between the eGFR and ADC, FA and R2* values. CONCLUSION The combined evaluation of DTI and BOLD might provide a sensitive and non-invasive approach for detection of renal microstructural alterations and oxygen metabolism abnormality in hyperuricemia.
Collapse
Affiliation(s)
- Zhong-Yuan Cheng
- Medical Imaging Center, First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Qi-Ting Lin
- Medical Imaging Center, First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Ping-Kang Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Ding-Kun Si-Tu
- Medical Imaging Center, First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Long Qian
- MR Research, GE Healthcare, Beijing, China
| | - You-Zhen Feng
- Medical Imaging Center, First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China.
| | - Xiang-Ran Cai
- Medical Imaging Center, First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
27
|
Lim RP, Lim JC, Teruel JR, Botterill E, Seah JM, Farquharson S, Ekinci EI, Sigmund EE. Geometric Distortion Correction of Renal Diffusion Tensor Imaging Using the Reversed Gradient Method. J Comput Assist Tomogr 2021; 45:218-223. [PMID: 33661149 PMCID: PMC8194095 DOI: 10.1097/rct.0000000000001124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
ABSTRACT Renal echo planar diffusion tensor imaging (DTI) has clinical potential but suffers from geometric distortion. We evaluated feasibility of reversed gradient distortion correction in 10 diabetic patients and 6 volunteers. Renal area, apparent diffusion coefficient, fractional anisotropy, and tensor eigenvalues were measured on uncorrected and distortion-corrected DTI. Corrected DTI correlated better than uncorrected DTI (r = 0.904 vs 0.840, P = 0.002) with reference anatomic T2-weighted imaging, with no significant difference in DTI metrics.
Collapse
Affiliation(s)
- Ruth P. Lim
- Austin Health, Radiology and Surgery, The University of Melbourne, Melbourne, Australia
- Department of Medicine, Radiology and Surgery, The University of Melbourne, Melbourne, Australia
| | - Jeremy C. Lim
- Austin Health, Radiology and Surgery, The University of Melbourne, Melbourne, Australia
| | - Jose R. Teruel
- Department of Radiation Oncology, NYU Langone Health, New York, NY
| | - Elissa Botterill
- Austin Health, Radiology and Surgery, The University of Melbourne, Melbourne, Australia
| | - Jas-mine Seah
- Austin Health, Radiology and Surgery, The University of Melbourne, Melbourne, Australia
| | - Shawna Farquharson
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Elif I. Ekinci
- Austin Health, Radiology and Surgery, The University of Melbourne, Melbourne, Australia
- Department of Medicine, Radiology and Surgery, The University of Melbourne, Melbourne, Australia
| | - Eric E. Sigmund
- Department of Radiology, NYU Langone Medical Center, New York, NY
| |
Collapse
|
28
|
Mao W, Ding Y, Ding X, Wang Y, Fu C, Zeng M, Zhou J. Pathological assessment of chronic kidney disease with DWI: Is there an added value for diffusion kurtosis imaging? J Magn Reson Imaging 2021; 54:508-517. [PMID: 33634937 DOI: 10.1002/jmri.27569] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a worldwide health problem, precise functional and pathological assessment is beneficial to better treatment. Diffusion kurtosis imaging (DKI) can evaluate non-Gaussian diffusion and may help to assess renal pathology and function. PURPOSE To assess pathological and functional alterations in CKD using DKI compared with diffusion-weighted imaging (DWI). STUDY TYPE Prospective study. POPULATION 70 CKD patients and 20 healthy volunteers. FIELD STRENGTH 1.5 T. ASSESSMENT All participants underwent DKI, and apparent diffusion coefficient (ADC), mean diffusivity (MD), and mean kurtosis (MK) of renal parenchyma were acquired. Correlation between renal parenchymal ADC, MD, MK, and estimated glomerular filtration rate (eGFR), pathological scores were assessed. The diagnostic efficacy of ADC, MD, and MK for assessing the degree of renal pathological injury were compared. STATISTICAL TESTS ANOVA, Spearman correlation analysis, and ROC curve analysis. RESULTS The cortical ADC, MD were significantly higher than medulla for all participants, whereas medullary MK was significantly higher than cortex (P < 0.01). Whether eGFR reduced or not, renal parenchymal MK were significantly higher in patients than controls (P < 0.05). Positive correlation was found between eGFR and ADC (cortex, r = 0.562; medulla, r = 0.527), and negative correlation between eGFR and MK (cortex, r = -0.786; medulla, r = -0.709) (all P < 0.001). There was positive correlation between MK and glomerular injury (cortex, r = 0.681; medulla, r = 0.652), tubulointerstitial lesion (cortex, r = 0.650; medulla, r = 0.599) (all P < 0.001). For discrimination between mild and m-s renal injury group, the AUC values of ADC, MD, MK were cortex: 0.723, 0.655, 0.864 and medulla: 0.718, 0.581, 0.829. The AUC values of ADC, MD, MK were cortex: 0.708, 0.679, 0.770 and medulla: 0.713, 0.830, 0.780 for differentiating control group from mild renal injury group. DATA CONCLUSION DKI is practicable for noninvasive assessment of renal pathology and function of CKD, DKI offer better diagnostic performance than DWI. Evidence Level 1 Technical Efficacy 2.
Collapse
Affiliation(s)
- Wei Mao
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Yuqin Ding
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yaqiong Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Caixia Fu
- Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Jianjun Zhou
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, 200032, China.,Department of Radiology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| |
Collapse
|
29
|
He C, Zhou X, Cheng J, Qin L, Dong F, Zhang R, Chen B, Hu H. Diffusion tensor imaging in evaluating testicular injury after unilateral testicular torsion and detorsion in rat model: A preliminary study. Andrologia 2021; 53:e14012. [PMID: 33616285 DOI: 10.1111/and.14012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 11/27/2022] Open
Abstract
Diffusion tensor imaging (DTI) is a functional magnetic resonance sequence based on the movement of water molecules. This study attempted to investigate the feasibility of DTI in evaluating testicular injury after testicular torsion and detorsion. Seventy-two rats were randomly divided into the sham group, torsion group and detorsion group. The left testis in the sham group was brought out through a scrotal incision for 1 hr, and that of the torsion group was twisted 720o clockwise for 1 hr and fixed to the scrotum, while the detorsion group was restored after being twisted 720° for 1 hr. Rats were further divided into four subgroups according to the set time, then performed DTI and histology analysis. The mean diffusion of the torsion and detorsion groups increased within 24 hr (p <.01), while it in the detorsion-1-week-group was lower than that in the detorsion-24-hr-group (p <.05). The fraction anisotropy of both experimental groups decreased in the acute phase (p <.01), while that of the detorsion-1-week-group increased (p <.01). Cosentino score in both experimental groups showed an increasing trend (p <.05). Besides, the spermatogenic ability of the detorsion-1-week-group decreased (p <.05). In conclusion, DTI was able to evaluate the injury after testicular torsion and detorsion.
Collapse
Affiliation(s)
- Chengbin He
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH), Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxuan Zhou
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH), Zhejiang University School of Medicine, Hangzhou, China
| | - Jianmin Cheng
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Le Qin
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Fenglei Dong
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Rui Zhang
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH), Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Chen
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Hongjie Hu
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH), Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
30
|
Renal Diffusion-Weighted Imaging (DWI) for Apparent Diffusion Coefficient (ADC), Intravoxel Incoherent Motion (IVIM), and Diffusion Tensor Imaging (DTI): Basic Concepts. Methods Mol Biol 2021; 2216:187-204. [PMID: 33476001 PMCID: PMC9703200 DOI: 10.1007/978-1-0716-0978-1_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The specialized function of the kidney is reflected in its unique structure, characterized by juxtaposition of disorganized and ordered elements, including renal glomerula, capillaries, and tubules. The key role of the kidney in blood filtration, and changes in filtration rate and blood flow associated with pathological conditions, make it possible to investigate kidney function using the motion of water molecules in renal tissue. Diffusion-weighted imaging (DWI) is a versatile modality that sensitizes observable signal to water motion, and can inform on the complexity of the tissue microstructure. Several DWI acquisition strategies are available, as are different analysis strategies, and models that attempt to capture not only simple diffusion effects, but also perfusion, compartmentalization, and anisotropy. This chapter introduces the basic concepts of DWI alongside common acquisition schemes and models, and gives an overview of specific DWI applications for animal models of renal disease.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction chapter is complemented by two separate chapters describing the experimental procedure and data analysis.
Collapse
|
31
|
Hu X, Kuang M, Peng B, Yang Y, Lin W, Li W, Wu Y. Diffusion Tensor Imaging in Rat Models of Preclinical Diabetic Nephropathy: A Preliminary Study. Front Endocrinol (Lausanne) 2021; 12:701116. [PMID: 34512547 PMCID: PMC8429902 DOI: 10.3389/fendo.2021.701116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/10/2021] [Indexed: 01/12/2023] Open
Abstract
PURPOSE This study aimed to investigate the value of diffusion tensor imaging to assess renal injury in a rat model of preclinical diabetic nephropathy. METHODS Twenty-eight male Sprague Dawley rats were divided into two groups: the normal control (NC) group of 10 rats and the diabetic nephropathy (DN) group of 18 rats. Eight weeks after diabetes induction by streptozotocin, 3.0-T magnetic resonance (MR) imaging (b = 0 and 600 s/mm2, 15 diffusion directions) using a 32-channel knee coil was performed. After MR imaging, we measured serum creatinine, and collected double kidney tissues for pathology. The apparent diffusion coefficients(ADC) and fractional anisotropy(FA) values of the renal cortex and medulla were calculated for all kidneys. Physiological parameters, laboratory parameters, and imaging results were compared between the two groups. RESULTS All DN group animals developed hyperglycemia, polyuria, and emaciation. Serum creatinine was not significantly different between the groups (P > 0.05). Urinary albumin at 2, 4, and 8 weeks was higher in the DN group than in the NC group but <20 µg/min (P < 0.05). Pathologically, renal damage in the DN rats was observed. The ADC value was significantly increased in DN animals in the cortex (1.75×10-3mm2/s),medulla(1.53×10-3mm2/s)compared with NC group(cortex, 1.52×10-3mm2/s; medulla,1.35×10-3mm2/s). The FA value was significantly reduced in DN animals in the cortex (0.21),medulla(0.25)compared with NC group(cortex,0.26;medulla,0.3). CONCLUSIONS Increased apparent diffusion coefficients and decreased fractional anisotropy values on diffusion tensor imaging were associated with preclinical DN. Diffusion tensor imaging may be useful in early, non-invasive, quantitative detection, and therapy monitoring of DN.
Collapse
Affiliation(s)
- Xiaoyan Hu
- Department of Radiology, Chengdu First People’s Hospital, Chengdu, China
| | - Min Kuang
- Department of Radiology, Chengdu Second People’s Hospital, Chengdu, China
| | - Bo Peng
- Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Yang
- Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Lin
- Department of Radiology, Chengdu First People’s Hospital, Chengdu, China
| | - Wenbo Li
- Department of Radiology, Chengdu First People’s Hospital, Chengdu, China
| | - Yinghua Wu
- Sichuan General Practitioner Training Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yinghua Wu,
| |
Collapse
|
32
|
Tian S, Niu M, Xie L, Song Q, Liu A. Diffusion-tensor imaging for differentiating uterine sarcoma from degenerative uterine fibroids. Clin Radiol 2020; 76:313.e27-313.e32. [PMID: 33358441 DOI: 10.1016/j.crad.2020.11.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 11/20/2020] [Indexed: 01/07/2023]
Abstract
AIM To explore the applicability of diffusion-tensor imaging (DTI) sequence quantitative parameters in differentiating uterine sarcoma (USr) from degenerative uterine fibroids (DUF). MATERIALS AND METHODS Fourteen cases of USr and 30 cases of DUF were analysed retrospectively. The diffusion-weighted imaging (DWI) and DTI images were analysed by two observers using Functool software on a ADW4.6 workstation. The images were post-processed to generate an apparent diffusion coefficient (ADC) map of DWI, ADC map of DTI (ADCT map), and fractional anisotropy (FA) map. Three regions of interest (ROI) were selected from the ADC, ADCT, and FA maps to obtain the ADC, ADCT, and FA values. The receiver operating characteristic (ROC) curves of all parameters were used to analyse and compare the diagnostic value of USr and DUF. RESULTS The ADC value, ADCT value, and FA value of USr (1.190 ± 0.262 × 10-3mm2/s, 1.165 ± 0.270 × 10-9mm2/s, 0.168 ± 0.063) were significantly lower compared to the values for DUF (1.525 ± 0.314 × 10-3mm2/s, 1.650 ± 0.332 × 10-9mm2/s, 0.254 ± 0.111; all p<0.001). The diagnostic threshold values for USr were: ADC ≤1.290 × 10-3mm2/s, ADCT ≤1.322 × 10-9mm2/s and FA ≤0.192. The corresponding sensitivities and specificities were 78.6%/90%, 96.7%/92.9%, and 86.7%/85.7%, respectively. The areas under the curve (AUC) were 0.875, 0.974, and 0.831, respectively. CONCLUSIONS DTI quantitative parameters can be used to differentiate USr from DUF. The ADCT value had the highest diagnostic efficacy.
Collapse
Affiliation(s)
- S Tian
- The First Affiliated Hospital of Dalian Medical University, Department of Radiology, Dalian, China
| | - M Niu
- The First Affiliated Hospital of Xiamen University, Department of Radiology, Xiamen, China
| | - L Xie
- GE Healthcare, MR Research, Beijing, China
| | - Q Song
- The First Affiliated Hospital of Dalian Medical University, Department of Radiology, Dalian, China
| | - A Liu
- The First Affiliated Hospital of Dalian Medical University, Department of Radiology, Dalian, China.
| |
Collapse
|
33
|
Kanpittaya J, Apipattarakul W, Chotmongkol V, Sawanyawisuth K. ADC cut points for chronic kidney disease in pathologically-proven cholangiocarcinoma. Eur J Radiol Open 2020; 8:100304. [PMID: 33335955 PMCID: PMC7734226 DOI: 10.1016/j.ejro.2020.100304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 11/18/2022] Open
Abstract
Purpose Apparent diffusion coefficient (ADC) has been shown to indicate renal function in various conditions. As cholangiocarcinoma may have renal involvement due to immune complex-mediated glomerulonephritis, this study aimed to determine whether or not there is any association between ADC values and renal function in these patients. Methods This was a retrospective, analytical study. The inclusion criteria were age over 18 years, pathologically proven cholangiocarcinoma diagnosis and having undergone either 1.5 T or 3.0 T diffusion-weighted MRI. Chronic kidney disease (CKD) was defined as eGFR less than 60 mL/min/1.73m2. Patients’ ADC levels in the CKD and non-CKD groups were compared, and subgroup analysis was performed by MRI field strength and type of cholangiocarcinoma. Results One hundred fifty-eight patients participated in the study. Most were male (66.46 %), and the average age (SD) was 61.59 years (7.91). Average ADC levels in the CDK and non-CDK group differed significantly, regardless of MRI field strength or type of cholangiocarcinoma (2.11 mm/s2 in the ADC group vs 1.91 mm/s2 in the non-ADC group; P < 0.001). An ADC cut-point of 1.75 mm/s2 yielded sensitivities ranging from 66.67–90.00 in almost all study populations. The distal cholangiocarcinoma group had a perfect cut-point at 1.78 mm/s2 with 100 % sensitivity and area under the ROC curve. Conclusions Radiologists can use ADC to detect CKD in cholangiocarcinoma patients regardless of MRI field strength or type of cholangiocarcinoma.
Collapse
Affiliation(s)
| | | | - Verajit Chotmongkol
- Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kittisak Sawanyawisuth
- Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Corresponding author.
| |
Collapse
|
34
|
Gaudiano C, Clementi V, Corcioni B, Renzulli M, Mancini E, Golfieri R. Diffusion tensor imaging in renal artery stenosis: a preliminary report. Br J Radiol 2020; 93:20200101. [DOI: 10.1259/bjr.20200101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Objective: To investigate the diffusion properties in the kidneys affected by renal artery stenosis (RAS) using diffusion tensor imaging (DTI). Methods: In this prospective study, 35 patients with RAS and 15 patients without renal abnormalities were enrolled and examined using DTI. Cortical and medullary regions of interest (ROIs) were located to obtain the corresponding values of the apparent diffusion coefficient (ADC) and fractional anisotropy (FA). The cortical and medullary ADC and FA were compared in the kidney affected by variable degrees of stenosis (RAS 50–75% and >75%) vs controls, using the one-way ANOVA and Student’s t-test. The Spearman correlation test was used to correlate the mean ADC and FA values in the cortex and medulla with the estimate glomerular filtration rate (eGFR). Results: For the controls, the ADC value was significantly (p = 0.03) higher in the cortex than in the medulla; the FA value was significantly (p = 0.001) higher in the medulla than in the cortex. Compared with the controls, a significant reduction in the cortical ADC was present with a RAS of 50–75% and >75% (p = 0.001 and 0.041, respectively); a significant reduction in the medullary FA was verified only for RAS >75% (p = 0.023). The Spearman correlation test did not show a statistically significant correlation between the cortical and medullary ADC and FA, and the eGFR. Conclusion: The alterations of the diffusional parameters caused by RAS can be detected by DTI and could be useful in the diagnostic evaluation of these patients. Advances in knowledge: 1. Magnetic resonance DTI could provide useful information about renal involvement in RAS. 2. Magnetic resonance DTI allows non-invasive repeatable evaluation of the renal parenchyma, without contrast media.
Collapse
Affiliation(s)
- Caterina Gaudiano
- Department of Radiology, Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna- Italia, Bologna, Italy
| | - Valeria Clementi
- Medical Technology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Beniamino Corcioni
- Department of Radiology, Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna- Italia, Bologna, Italy
| | - Matteo Renzulli
- Department of Radiology, Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna- Italia, Bologna, Italy
| | - Elena Mancini
- Nephrology, Dialysis and Hypertension Unit, Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna- Italia, Bologna, Italy
| | - Rita Golfieri
- Department of Radiology, Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna- Italia, Bologna, Italy
| |
Collapse
|
35
|
Wang L. New insights on the role of anisotropy in renal ultrasonic elastography: From trash to treasure. Med Hypotheses 2020; 143:110146. [DOI: 10.1016/j.mehy.2020.110146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 07/25/2020] [Indexed: 12/27/2022]
|
36
|
Abstract
OBJECTIVE To explore whether a radiomics signature based on diffusion tensor imaging (DTI) can detect early kidney damage in diabetic patients. MATERIALS AND METHODS Twenty-eight healthy volunteers (group A) and thirty type 2 diabetic patients (group B) with micro-normoalbuminuria, a urinary albumin-to-creatinine ratio (ACR) < 30 mg/g and an estimated glomerular filtration rate (eGFR) of 60-120 mL/(min 1.73 m2) were recruited. Kidney DTI was performed using 1.5T magnetic resonance imaging (MRI).The radiologist manually drew regions of interest (ROI) on the fractional anisotropy (FA) map of the right kidney ROI including the cortex and medulla. The texture features of the ROIs were extracted using MaZda software. The Fisher coefficient, mutual information (MI), and probability of classification error and average correlation coefficient (POE + ACC) methods were used to select the texture features. The most valuable texture features were further selected by the least absolute shrinkage and selection operator (LASSO) algorithm. A LASSO regression model based on the radiomics signature was established. The diagnostic performance of the model for detecting early diabetic kidney changes was evaluated by the area under the receiver operating characteristic (ROC) curve (AUC). Empower (R), R, and MedCalc15.8 software were used for statistical analysis RESULTS: A total of 279 texture features were extracted from ROI of the kidney, and 30 most valuable texture features were selected from groups A and B using MaZda software. After LASSO-logistic regression, a diagnostic model of diabetic kidney damage based on texture features was established. Model discrimination evaluation: AUC = 0.882 (0.770 ± 0.952). Model calibration evaluation: Hosmer-Lemeshow X2 = 5.3611, P = 0.7184, P > 0.05, the model has good calibration. CONCLUSION The texture features based on DTI could play a promising role in detecting early diabetic kidney damage.
Collapse
|
37
|
Mrđanin T, Nikolić O, Molnar U, Mitrović M, Till V. Diffusion-weighted imaging in the assessment of renal function in patients with diabetes mellitus type 2. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2020; 34:273-283. [DOI: 10.1007/s10334-020-00869-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022]
|
38
|
Cheng ZY, Feng YZ, Liu XL, Ye YJ, Hu JJ, Cai XR. Diffusional kurtosis imaging of kidneys in patients with hyperuricemia: initial study. Acta Radiol 2020; 61:839-847. [PMID: 31610679 DOI: 10.1177/0284185119878362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND At present, there remains a lack of a reliable indicator for monitoring renal function in patients with hyperuricemia. PURPOSE This study aimed to evaluate the feasibility of diffusion kurtosis imaging in the assessment of renal function in patients with hyperuricemia. MATERIAL AND METHODS A total of 75 male participants, including 25 with asymptomatic hyperuricemia, 25 with gouty arthritis, and 25 age-matched male healthy controls, were enrolled in this study. Diffusion kurtosis imaging data were acquired to derive axial (Ka), radial (Kr), and mean kurtosis (MK), fractional anisotropy, axial (Da), radial (Dr), and mean diffusivity (MD) for comparisons among the three groups. They were also correlated with estimated glomerular filtration rate (eGFR). RESULTS The MK values of the renal cortex and medulla and Kr value of the renal medulla in patients with asymptomatic hyperuricemia and gouty arthritis significantly increased compared with those in the controls (P < 0.05). Patients with gouty arthritis showed significant higher cortical and medullary Ka values compared with the other two groups (P < 0.05). The cortical Kr values of the asymptomatic hyperuricemia and gouty arthritis patients were significantly higher than that of the controls (P < 0.05). The medullary fractional anisotropy value showed a significant difference between the control and gouty arthritis groups (P < 0.05). No correlation was found between any diffusion kurtosis imaging parameters and eGFR value. CONCLUSION Diffusion kurtosis imaging is feasible in the assessment of the early changes of renal cortex and medulla in patients with hyperuricemia.
Collapse
Affiliation(s)
- Zhong-Yuan Cheng
- Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, PR China
- *Equal contributors
| | - You-Zhen Feng
- Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, PR China
- *Equal contributors
| | - Xiao-Ling Liu
- Medical Imaging Center, Guangdong Provincial Hospital of Traditional Chinese Medicine Zhuhai Branch, Guangdong, PR China
| | - Yao-Jiang Ye
- Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, PR China
| | - Jun-Jiao Hu
- Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, PR China
| | - Xiang-Ran Cai
- Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, PR China
| |
Collapse
|
39
|
Assessment of renal fibrosis in a rat model of unilateral ureteral obstruction with diffusion kurtosis imaging: Comparison with α-SMA expression and 18F-FDG PET. Magn Reson Imaging 2020; 66:176-184. [DOI: 10.1016/j.mri.2019.08.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 12/11/2022]
|
40
|
Nery F, Szczepankiewicz F, Kerkelä L, Hall MG, Kaden E, Gordon I, Thomas DL, Clark CA. In vivo demonstration of microscopic anisotropy in the human kidney using multidimensional diffusion MRI. Magn Reson Med 2019; 82:2160-2168. [PMID: 31243814 PMCID: PMC6988820 DOI: 10.1002/mrm.27869] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/26/2019] [Accepted: 05/25/2019] [Indexed: 12/23/2022]
Abstract
PURPOSE To demonstrate the feasibility of multidimensional diffusion MRI to probe and quantify microscopic fractional anisotropy (µFA) in human kidneys in vivo. METHODS Linear tensor encoded (LTE) and spherical tensor encoded (STE) renal diffusion MRI scans were performed in 10 healthy volunteers. Respiratory triggering and image registration were used to minimize motion artefacts during the acquisition. Kidney cortex-medulla were semi-automatically segmented based on fractional anisotropy (FA) values. A model-free analysis of LTE and STE signal dependence on b-value in the renal cortex and medulla was performed. Subsequently, µFA was estimated using a single-shell approach. Finally, a comparison of conventional FA and µFA is shown. RESULTS The hallmark effect of µFA (divergence of LTE and STE signal with increasing b-value) was observed in all subjects. A statistically significant difference between LTE and STE signal was found in the cortex and medulla, starting from b = 750 s/mm2 and b = 500 s/mm2 , respectively. This difference was maximal at the highest b-value sampled (b = 1000 s/mm2 ) which suggests that relatively high b-values are required for µFA mapping in the kidney compared to conventional FA. Cortical and medullary µFA were, respectively, 0.53 ± 0.09 and 0.65 ± 0.05, both respectively higher than conventional FA (0.19 ± 0.02 and 0.40 ± 0.02). CONCLUSION The feasibility of combining LTE and STE diffusion MRI to probe and quantify µFA in human kidneys is demonstrated for the first time. By doing so, we show that novel microstructure information-not accessible by conventional diffusion encoding-can be probed by multidimensional diffusion MRI. We also identify relevant technical limitations that warrant further development of the technique for body MRI.
Collapse
Affiliation(s)
- Fabio Nery
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Filip Szczepankiewicz
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Medical Radiation Physics, Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - Leevi Kerkelä
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Matt G. Hall
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Physical Laboratory, Teddington, United Kingdom
| | - Enrico Kaden
- Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Isky Gordon
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - David L. Thomas
- Leonard Wolfson Experimental Neurology Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Chris A. Clark
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
41
|
Diffusion Tensor Imaging of the Kidney: Design and Evaluation of a Reliable Processing Pipeline. Sci Rep 2019; 9:12789. [PMID: 31484949 PMCID: PMC6726597 DOI: 10.1038/s41598-019-49170-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/15/2019] [Indexed: 12/14/2022] Open
Abstract
Diffusion tensor imaging (DTI) is particularly suitable for kidney studies due to tubules, collector ducts and blood vessels in the medulla that produce spatially restricted diffusion of water molecules, thus reflecting the high grade of anisotropy detectable by DTI. Kidney DTI is still a challenging technique where the off-resonance susceptibility artefacts and subject motion can severely affect the reproducibility of results. The aim of this study is to design a reliable processing pipeline by assessing different image processing approaches in terms of reproducibility and image artefacts correction. The results of four different processing pipelines (eddy: correction of eddy-currents and motion between DTI volume; eddy-s2v: eddy and within DTI volume motion correction; topup: eddy and geometric distortion correction; topup-s2v: topup and within DTI volume motion correction) are compared in terms of reproducibility by test-retest analysis in 14 healthy subjects. Within-subject coefficient of variation (wsCV) and intra-class correlation coefficient (ICC) are measured to assess the reproducibility and Dice similarity index is evaluated for the spatial alignment between DTI and anatomical images. Topup-s2v pipeline provides highest reproducibility (wsCV = 0.053, ICC = 0.814) and best correction of image distortion (Dice = 0.83). This study definitely provides a recipe for data processing, enabling for a clinical suitability of kidney DTI.
Collapse
|
42
|
Yu Z, Zhu H, Wu X, Chen Z, Zhang Z, Li J, Ye Q. Acute renal impairment characterization using diffusion magnetic resonance imaging: Validation by histology. NMR IN BIOMEDICINE 2019; 32:e4126. [PMID: 31290588 DOI: 10.1002/nbm.4126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
Diffusion magnetic resonance imaging has been demonstrated to be a simple, noninvasive and accurate method for the detection of renal microstructure and microcirculation, which are closely linked to renal function. Moreover, serum endothelin-1 (ET-1) was also reported as a good indicator of early renal injury. The aim of this study was to evaluate the feasibility and capability of diffusion MRI and ET-1 to detect acute kidney injury by an operation simulating high-pressure renal pelvic perfusion, which is commonly used during ureteroscopic lithotripsy. Histological findings were used as a reference. Fourteen New Zealand rabbits in an experimental group and 14 in a control group were used in this study. Diffusion tensor imaging and intravoxel incoherent motion diffusion-weighted imaging were acquired by a 3.0 T MRI scanner. Significant corticomedullary differences were found in the values of the apparent diffusion coefficient (ADC), pure tissue diffusion, volume fraction of pseudo-diffusion (fp) and fractional anisotropy (FA) (P < 0.05 for all) in both preoperation and postoperation experimental groups. Compared with the control group, the values of cortical fpmean , medullary ADCmean and FAmean decreased significantly (P < 0.05) after the operation in the experimental group. Also, the change rate of medullary ADCmean in the experimental group was more pronounced than that in the control group (P = 0.018). No significant change was found in serum ET-1 concentration after surgery in either the experimental (P = 0.80) or control (P = 0.17) groups. In the experimental group, histological changes were observed in the medulla, while no visible change was found in the cortex. This study demonstrated the feasibility of diffusion MRI to detect the changes of renal microstructure and microcirculation in acute kidney injury, with the potential to evaluate renal function. Moreover, the sensitivity of diffusion MRI to acute kidney injury appears to be superior to that of serum ET-1.
Collapse
Affiliation(s)
- Zhixian Yu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Honghui Zhu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiuling Wu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhongwei Chen
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhao Zhang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiance Li
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qiong Ye
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
43
|
Cheng ZY, Feng YZ, Hu JJ, Lin QT, Li W, Qian L, Cai XR. Intravoxel incoherent motion imaging of the kidney: The application in patients with hyperuricemia. J Magn Reson Imaging 2019; 51:833-840. [PMID: 31318112 DOI: 10.1002/jmri.26861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 06/26/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Hyperuricemia is an independent risk factor for onset and progression of kidney disease. However, there remains a lack of a reliable and noninvasive biomarker to identify and monitor the changes of renal function in patients with hyperuricemia. PURPOSE To assess the utility of intravoxel incoherent motion (IVIM) parameters in identifying the early changes of renal function in patients with hyperuricemia. STUDY TYPE Retrospective case-control study. POPULATION Eighty-four male participants, including asymptomatic hyperuricemia (AH, 27 cases), gouty arthritis (GA, 31 cases), and 26 age-matched healthy controls. FIELD STRENGTH/SEQUENCE 3.0T; intravoxel incoherent motion (IVIM). ASSESSMENT Differences in the IVIM parameters among the three groups were assessed. Pure molecular diffusion (D value); perfusion-related diffusion (D* value); pseudodiffusion fraction (f value); apparent diffusion coefficient (ADC value); estimated glomerular filtration rate (eGFR). Also, they were correlated with eGFR. STATISTICAL TESTS Bonferroni test, Tamhane's T2 method, and Pearson correlation analysis. RESULTS The D values in renal cortex and medulla significantly decreased from the control, AH to GA groups (P < 0.05). The GA patients had a significantly lower cortical f value than the controls and AH patients (P < 0.05). The medullary f values in the AH and GA patients were significantly lower than that in the controls (P < 0.05). Also, the cortical and medullary ADC values had similar results across the three groups (P < 0.05), except for the comparison between the AH and GA groups (P = 0.668, P = 0.111, respectively). No significant correlation was found between any IVIM parameters with eGFR. DATA CONCLUSION IVIM imaging may be helpful for detecting the early changes of renal function induced by hyperuricemia. The D value could be the most sensitive IVIM-derived parameter in the assessment of renal function in patients with hyperuricemia in this study. LEVEL OF EVIDENCE 3 Technical Efficacy Stage: 3 J. Magn. Reson. Imaging 2020;51:833-840.
Collapse
Affiliation(s)
- Zhong-Yuan Cheng
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - You-Zhen Feng
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jun-Jiao Hu
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Qi-Ting Lin
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Wei Li
- Medical Imaging Center, Zhuhai People's Hospital, Zhuhai, China
| | | | - Xiang-Ran Cai
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
44
|
Jiang K, Ferguson CM, Lerman LO. Noninvasive assessment of renal fibrosis by magnetic resonance imaging and ultrasound techniques. Transl Res 2019; 209:105-120. [PMID: 31082371 PMCID: PMC6553637 DOI: 10.1016/j.trsl.2019.02.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/12/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023]
Abstract
Renal fibrosis is a useful biomarker for diagnosis and guidance of therapeutic interventions of chronic kidney disease (CKD), a worldwide disease that affects more than 10% of the population and is one of the major causes of death. Currently, tissue biopsy is the gold standard for assessment of renal fibrosis. However, it is invasive, and prone to sampling error and observer variability, and may also result in complications. Recent advances in diagnostic imaging techniques, including magnetic resonance imaging (MRI) and ultrasonography, have shown promise for noninvasive assessment of renal fibrosis. These imaging techniques measure renal fibrosis by evaluating its impacts on the functional, mechanical, and molecular properties of the kidney, such as water mobility by diffusion MRI, tissue hypoxia by blood oxygenation level dependent MRI, renal stiffness by MR and ultrasound elastography, and macromolecule content by magnetization transfer imaging. Other MR techniques, such as T1/T2 mapping and susceptibility-weighted imaging have also been explored for measuring renal fibrosis. Promising findings have been reported in both preclinical and clinical studies using these techniques. Nevertheless, limited specificity, sensitivity, and practicality in these techniques may hinder their immediate application in clinical routine. In this review, we will introduce methodologies of these techniques, outline their applications in fibrosis imaging, and discuss their limitations and pitfalls.
Collapse
Affiliation(s)
- Kai Jiang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
45
|
Delgado J, Berman JI, Maya C, Carson RH, Back SJ, Darge K. Pilot study on renal magnetic resonance diffusion tensor imaging: are quantitative diffusion tensor imaging values useful in the evaluation of children with ureteropelvic junction obstruction? Pediatr Radiol 2019; 49:175-186. [PMID: 30298211 DOI: 10.1007/s00247-018-4268-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/23/2018] [Accepted: 09/24/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Ureteropelvic junction (UPJ) obstruction is a common cause of renal injury in children. Indications for surgery are still controversial. Currently, there is no threshold to differentiate patients with suspected UPJ obstruction requiring surgery from the ones that do not, or to predict renal outcome after surgery. Several studies have demonstrated that diffusion tensor imaging (DTI) results may correlate with microstructural changes in the kidneys. OBJECTIVE To evaluate the feasibility of using DTI to identify UPJ obstruction kidneys. MATERIALS AND METHODS We analyzed functional MR urography (fMRU) with renal DTI (b=0 and b=400, 20 directions, 1.5 Tesla, no respiratory triggering) in 26 kidneys of 19 children (mean age: 6.15 years) by comparing 13 kidneys with UPJ obstruction configuration that underwent pyeloplasty following the fMRU, and 13 anatomically normal age- and gender-matched kidneys. DTI tractography was reconstructed using a fractional anisotropy threshold of 0.10 and an angle threshold of 55°. User-defined regions of interest (ROIs) of the renal parenchyma (excluding collecting system) were drawn to quantify DTI parameters: fractional anisotropy, apparent diffusion coefficient (ADC), track length and track volume. The failure rate was evaluated. RESULTS All DTI parameters changed with age; fractional anisotropy decreased (P<0.032). Track volume and track length increased (P<0.05). ADC increased with age in normal kidneys (P<0.001) but not in UPJ obstruction kidneys (P=0.11). After controlling for age, the fractional anisotropy (UPJ obstruction mean: 0.18, normal kidney mean: 0.21; P=0.001) and track length (UPJ obstruction mean: 11.9 mm, normal kidney mean: 15.4 mm; P<0.001) were lower in UPJ obstruction vs. normal kidneys. There was a trend toward a higher ADC in UPJ obstruction kidneys vs. normal kidneys (P=0.062). The failure rate in UPJ obstruction kidneys due to technical limitations of DTI was 13/26 (50%). CONCLUSION We demonstrated that fractional anisotropy is lower in UPJ obstruction than in normal kidneys. It is necessary to improve this technique to increase the success rate and to perform more studies to evaluate if a decrease in fractional anisotropy can differentiate UPJ obstruction kidneys from hydronephrotic kidneys without UPJ obstruction.
Collapse
Affiliation(s)
- Jorge Delgado
- Department of Radiology, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA.
| | - Jeffrey I Berman
- Department of Radiology, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
- Department of Radiology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carolina Maya
- Department of Radiology, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Robert H Carson
- Department of Radiology, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Susan J Back
- Department of Radiology, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
- Department of Radiology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kassa Darge
- Department of Radiology, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
- Department of Radiology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
46
|
Berchtold L, Friedli I, Crowe LA, Martinez C, Moll S, Hadaya K, de Perrot T, Combescure C, Martin PY, Vallée JP, de Seigneux S. Validation of the corticomedullary difference in magnetic resonance imaging-derived apparent diffusion coefficient for kidney fibrosis detection: a cross-sectional study. Nephrol Dial Transplant 2019; 35:937-945. [DOI: 10.1093/ndt/gfy389] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022] Open
Abstract
Abstract
Background
Kidney cortical interstitial fibrosis (IF) is highly predictive of renal prognosis and is currently assessed by the evaluation of a biopsy. Diffusion magnetic resonance imaging (MRI) is a promising tool to evaluate kidney fibrosis via the apparent diffusion coefficient (ADC), but suffers from inter-individual variability. We recently applied a novel MRI protocol to allow calculation of the corticomedullary ADC difference (ΔADC). We here present the validation of ΔADC for fibrosis assessment in a cohort of 164 patients undergoing biopsy and compare it with estimated glomerular filtration rate (eGFR) and other plasmatic parameters for the detection of fibrosis.
Methods
This monocentric cross-sectional study included 164 patients undergoing renal biopsy at the Nephrology Department of the University Hospital of Geneva between October 2014 and May 2018. Patients underwent diffusion-weighted imaging, and T1 and T2 mappings, within 1 week after biopsy. MRI results were compared with gold standard histology for fibrosis assessment.
Results
Absolute cortical ADC or cortical T1 values correlated poorly to IF assessed by the biopsy, whereas ΔADC was highly correlated to IF (r=−0.52, P < 0.001) and eGFR (r = 0.37, P < 0.01), in both native and allograft patients. ΔT1 displayed a lower, but significant, correlation to IF and eGFR, whereas T2 did not correlate to IF nor to eGFR. ΔADC, ΔT1 and eGFR were independently associated with kidney fibrosis, and their combination allowed detection of extensive fibrosis with good specificity.
Conclusion
ΔADC is better correlated to IF than absolute cortical or medullary ADC values. ΔADC, ΔT1 and eGFR are independently associated to IF and allow the identification of patients with extensive IF.
Collapse
Affiliation(s)
- Lena Berchtold
- Service and Laboratory of Nephrology, Department for Statistics, Department of Internal Medicine Specialties and of Physiology and Metabolism, University Hospital and University of Geneva, Geneva, Switzerland
| | - Iris Friedli
- Service of Radiology, Department for Statistics, Department of Radiology and Medical Informatics, University Hospital and University of Geneva, Geneva, Switzerland
| | - Lindsey A Crowe
- Service of Radiology, Department for Statistics, Department of Radiology and Medical Informatics, University Hospital and University of Geneva, Geneva, Switzerland
| | - Chantal Martinez
- Service and Laboratory of Nephrology, Department for Statistics, Department of Internal Medicine Specialties and of Physiology and Metabolism, University Hospital and University of Geneva, Geneva, Switzerland
| | - Solange Moll
- Department of Clinical Pathology, Institute of Clinical Pathology, University Hospital of Geneva, Geneva, Switzerland
| | - Karine Hadaya
- Service and Laboratory of Nephrology, Department for Statistics, Department of Internal Medicine Specialties and of Physiology and Metabolism, University Hospital and University of Geneva, Geneva, Switzerland
| | - Thomas de Perrot
- Service of Radiology, Department for Statistics, Department of Radiology and Medical Informatics, University Hospital and University of Geneva, Geneva, Switzerland
| | - Christophe Combescure
- CRC & Division of Clinical-Epidemiology, Department of Health and Community Medicine, University of Geneva and University Hospitals of Geneva, Geneva, Switzerland
| | - Pierre-Yves Martin
- Service and Laboratory of Nephrology, Department for Statistics, Department of Internal Medicine Specialties and of Physiology and Metabolism, University Hospital and University of Geneva, Geneva, Switzerland
| | - Jean-Paul Vallée
- Service of Radiology, Department for Statistics, Department of Radiology and Medical Informatics, University Hospital and University of Geneva, Geneva, Switzerland
| | - Sophie de Seigneux
- Service and Laboratory of Nephrology, Department for Statistics, Department of Internal Medicine Specialties and of Physiology and Metabolism, University Hospital and University of Geneva, Geneva, Switzerland
| |
Collapse
|
47
|
Palmucci S, Mammino L, Caltabiano DC, Costanzo V, Foti PV, Mauro LA, Farina R, Profitta ME, Sinagra N, Ettorre GC, Veroux M, Basile A. Diffusion-MR in kidney transplant recipients: is diuretic stimulation a useful diagnostic tool for improving differentiation between functioning and non-functioning kidneys? Clin Imaging 2019; 53:97-104. [PMID: 30317137 DOI: 10.1016/j.clinimag.2018.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 08/27/2018] [Accepted: 10/01/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To evaluate the effects of diuretic stimulation on Diffusion Weighted Imaging (DWI) and Diffusion Tensor Imaging (DTI) techniques in transplanted kidneys. METHODS 33 transplanted kidney recipients underwent DWI and DTI sequences before and after furosemide. Cortical and medullary Apparent Diffusion Coefficient (ADC) and Fractional Anisotropy (FA) values were calculated in transplanted kidneys. Patients were divided into two groups according to their estimated glomerular rate filtration (Group A ≥ 60 ml/min and Group B < 60 ml/min). Wilcoxon matched pairs signed rank test was applied to compare pre- and post-furosemide values. ADC and FA values were compared between the 2 groups using a Mann-Whitney U test. Receiver Operating Curves (ROC) analysis was performed to predict normal renal function. RESULTS Wilcoxon test revealed a statistically significant difference for all pre- and post- ADC and FA values in group B. For group A, a significant difference was found comparing pre- and post-medullary ADC and FA values (p = 0.0151 and p = 0.0054). In the comparison between group A and group B, cortical and medullary mean ADC values were significantly different before and after furosemide. With regard to medullary FA values, a significant difference was found between groups before and after diuretic stimulation (p respectively of 0.004 and 0.042). Comparing cortical FA mean values, no statistical difference was observed between groups before and after furosemide. The highest Area Under Curve values were reported for cortical ADC (0.878) and medullary ADC (0.863) before diuretic bolus. CONCLUSIONS In transplanted kidneys, furosemide did not improve the differentiation between normal and reduced function.
Collapse
Affiliation(s)
- Stefano Palmucci
- Department of Medical Surgical Sciences and Advanced Technologies - Radiology I Unit, University Hospital "Policlinico-Vittorio Emanuele", Via Santa Sofia 78, Catania 95123, Italy.
| | - Luca Mammino
- Department of Medical Surgical Sciences and Advanced Technologies - Radiology I Unit, University Hospital "Policlinico-Vittorio Emanuele", Via Santa Sofia 78, Catania 95123, Italy
| | - Daniele Carmelo Caltabiano
- Department of Medical Surgical Sciences and Advanced Technologies - Radiology I Unit, University Hospital "Policlinico-Vittorio Emanuele", Via Santa Sofia 78, Catania 95123, Italy
| | - Valeria Costanzo
- Department of Medical Surgical Sciences and Advanced Technologies - Radiology I Unit, University Hospital "Policlinico-Vittorio Emanuele", Via Santa Sofia 78, Catania 95123, Italy
| | - Pietro Valerio Foti
- Department of Medical Surgical Sciences and Advanced Technologies - Radiology I Unit, University Hospital "Policlinico-Vittorio Emanuele", Via Santa Sofia 78, Catania 95123, Italy
| | - Letizia Antonella Mauro
- Department of Medical Surgical Sciences and Advanced Technologies - Radiology I Unit, University Hospital "Policlinico-Vittorio Emanuele", Via Santa Sofia 78, Catania 95123, Italy
| | - Renato Farina
- Department of Medical Surgical Sciences and Advanced Technologies - Radiology I Unit, University Hospital "Policlinico-Vittorio Emanuele", Via Santa Sofia 78, Catania 95123, Italy
| | - Maria Elena Profitta
- Department of Medical Surgical Sciences and Advanced Technologies - Radiology I Unit, University Hospital "Policlinico-Vittorio Emanuele", Via Santa Sofia 78, Catania 95123, Italy
| | - Nunziata Sinagra
- Vascular Surgery Unit - University Hospital "Policlinico-Vittorio Emanuele", 95123 Catania, Italy
| | | | - Massimiliano Veroux
- Department of Medical Surgical Sciences and Advanced Technologies - Vascular Surgery and Organ Transplant Unit, University Hospital "Policlinico-Vittorio Emanuele", 95123 Catania, Italy
| | - Antonio Basile
- Department of Medical Surgical Sciences and Advanced Technologies - Radiology I Unit, University Hospital "Policlinico-Vittorio Emanuele", Via Santa Sofia 78, Catania 95123, Italy
| |
Collapse
|
48
|
Abstract
Kidney diseases can be caused by a wide range of genetic, hemodynamic, toxic, infectious, and autoimmune factors. The diagnosis of kidney disease usually involves the biochemical analysis of serum and blood, but these tests are often insufficiently sensitive or specific to make a definitive diagnosis. Although radiologic imaging currently has a limited role in the evaluation of most kidney diseases, several new imaging methods hold great promise for improving our ability to non-invasively detect structural, functional, and molecular changes within the kidney. New methods, such as dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and blood oxygen level-dependent (BOLD) MRI, allow functional imaging of the kidney. The use of novel contrast agents, such as microbubbles and nanoparticles, allows the detection of specific molecules in the kidney. These methods could greatly advance our ability to diagnose disease and also to safely monitor patients over time. This could improve the care of individual patients, and it could also facilitate the evaluation of new treatment strategies.
Collapse
Affiliation(s)
- Joshua Thurman
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Faikah Gueler
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
49
|
Using magnetic resonance diffusion tensor imaging to evaluate renal function changes in diabetic patients with early-stage chronic kidney disease. Clin Radiol 2018; 74:116-122. [PMID: 30360880 DOI: 10.1016/j.crad.2018.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/25/2018] [Indexed: 12/15/2022]
Abstract
AIM To investigate the clinical value of diffusion tensor imaging (DTI) in assessing renal function changes in diabetic patients with early-stage chronic kidney disease (CKD), and the relationship of DTI parameters with estimated glomerular filtration rate (eGFR) and urinary biomarkers. MATERIALS AND METHODS Thirty-six patients with diabetes mellitus (DM; 30 CKD stage 1 and 6 CKD stage 2) and 26 healthy control subjects were enrolled. DTI was performed using a clinical 3 T MRI system. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were calculated from the renal cortex and medulla. The correlation of the DTI parameters with eGFR and urinary biomarkers was evaluated. RESULTS FA values were significantly reduced in the renal cortex and medulla of DM group compared with the control group (cortical FA, Z=-2.834, p=0.005; medullary FA, t=2.768, p=0.007). In the DM group, FA values in the renal cortex and medulla were positively correlated with eGFR, while FA values in the medulla were negatively correlated with the urinary albumin/creatinine ratio, urinary alpha-1 microglobulin/creatinine ratio, and urinary transferring/creatinine ratio. ADC values in the renal cortex and medulla showed a trend towards an increase in the DM group compared with the control group. CONCLUSIONS Renal DTI is a promising method for assessing early renal function changes in DM patients.
Collapse
|
50
|
Can 3.0 Tesla diffusion tensor Imaging parameters be prognostic indicators in breast cancer? Clin Imaging 2018; 51:240-247. [DOI: 10.1016/j.clinimag.2018.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 03/08/2018] [Accepted: 03/30/2018] [Indexed: 01/17/2023]
|