1
|
Hamon G, Lecler A, Ferré JC, Bourdillon P, Duron L, Savatovsky J. 3-Tesla amide proton transfer-weighted imaging (APT-WI): elevated signal also in tumor mimics. Eur Radiol 2025; 35:3558-3567. [PMID: 39592486 DOI: 10.1007/s00330-024-11202-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 09/12/2024] [Accepted: 10/11/2024] [Indexed: 11/28/2024]
Abstract
OBJECTIVES To explore amide proton transfer-weighted imaging (APTwi) for the initial classification of brain masses in clinical practice by systematically reporting APTwi signal intensity (APT-SI) in tumor mimics and brain tumors. MATERIALS AND METHODS Single-center retrospective analysis (2017-2020) of APTwi in 156 patients (84 men, mean age: 50.9 ± 20) who underwent characterization imaging of a brain mass prior to any treatment, using 3-Tesla MRI. 125/156 (80%) patients presented with brain tumor and 31/156 (20%) with tumor mimics. Regions of interest were manually drawn on 2D axial slices by two readers on APTwi map in lesional and perilesional areas and APT-SI, corresponding to the Magnetization Transfer Ratio asymmetry at 3.5 ppm, was systematically reported. Student's t-test or Wilcoxon-test were used to compare groups of patients. RESULTS The mean APT-SI in lesional and perilesional areas were significantly higher in tumors compared to tumor mimics: 3% [2.10-4] (median [Q1-Q3]) vs 1.7% [0.80-2.55] (p < 0.001) and 1.9% [1.2-2.80] vs. 1.0% [0.55-2.3] (p < 0.01). There were no differences in mean APT-SI in the tumor core between low and high-grade tumors: 2.5% [1.80-4.0] vs. 3.25% [2.5-4.0]. The mean APT-SI was significantly higher in high-grade glioma compared to low-grade glioma: 3.4% [2.7-4] vs. 2.1% [1.7-2.5] (p < 0.001). Highest mean APT-SI in tumor core were found in mesenchymal tumors (5.83% ± 1.45, mean ± SD), embryonal tumors (5.27% ± 3.5) and meningiomas (4.28% ± 0.70). In tumor mimics, highest mean APT-SI was found in the core of infectious lesions (3.52% ± 0.67). CONCLUSION High signal on ATPwi is not exclusive to high-grade brain tumors but can be observed in some tumor mimics and subtypes of low-grade tumors. KEY POINTS Question What is the value of amide proton transfer-weighted imaging (APTwi) in the setting of brain mass classification? Findings High APT-signal intensity in the tumor core of a brain mass could correspond to a high- or low-grade tumor or tumor mimic. Clinical relevance In patients presenting for the initial classification of brain masses, APTwi findings should be interpreted with caution and in conjunction with other MRI parameters, as a high APTwi signal does not necessarily indicate a high-grade tumor.
Collapse
Affiliation(s)
- Guillaume Hamon
- Department of Neuroradiology, University Hospital Pontchaillou, Rennes, France
| | - Augustin Lecler
- Department of Neuroradiology, Rothschild Foundation Hospital, Paris, France.
| | | | - Pierre Bourdillon
- Department of Neurosurgery, Rothschild Foundation Hospital, Paris, France
| | - Loïc Duron
- Department of Neuroradiology, Rothschild Foundation Hospital, Paris, France
| | - Julien Savatovsky
- Department of Neuroradiology, Rothschild Foundation Hospital, Paris, France
| |
Collapse
|
2
|
Vollmuth P, Karschnia P, Sahm F, Park YW, Ahn SS, Jain R. A Radiologist's Guide to IDH-Wildtype Glioblastoma for Efficient Communication With Clinicians: Part I-Essential Information on Preoperative and Immediate Postoperative Imaging. Korean J Radiol 2025; 26:246-268. [PMID: 39999966 PMCID: PMC11865903 DOI: 10.3348/kjr.2024.0982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 02/27/2025] Open
Abstract
The paradigm of isocitrate dehydrogenase (IDH)-wildtype glioblastoma is rapidly evolving, reflecting clinical, pathological, and imaging advancements. Thus, it remains challenging for radiologists, even those who are dedicated to neuro-oncology imaging, to keep pace with this rapidly progressing field and provide useful and updated information to clinicians. Based on current knowledge, radiologists can play a significant role in managing patients with IDH-wildtype glioblastoma by providing accurate preoperative diagnosis as well as preoperative and postoperative treatment planning including accurate delineation of the residual tumor. Through active communication with clinicians, extending far beyond the confines of the radiology reading room, radiologists can impact clinical decision making. This Part 1 review provides an overview about the neuropathological diagnosis of glioblastoma to understand the past, present, and upcoming revisions of the World Health Organization classification. The imaging findings that are noteworthy for radiologists while communicating with clinicians on preoperative and immediate postoperative imaging of IDH-wildtype glioblastomas will be summarized.
Collapse
Affiliation(s)
- Philipp Vollmuth
- Division for Computational Radiology & Clinical AI (CCIBonn.ai), Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany
- Medical Faculty Bonn, University of Bonn, Bonn, Germany
- Division of Medical Image Computing, German Cancer Research Center, Heidelberg, Germany
| | - Philipp Karschnia
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
- Department of Neurosurgery, Friedrich-Alexander-University University, Erlangen-Nuremberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Rajan Jain
- Department of Radiology, New York University Grossman School of Medicine, New York, USA
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, USA
| |
Collapse
|
3
|
Zhang C, Chen J, Liu Y, Yang Y, Xu Y, You R, Li Y, Liu L, Yang L, Li H, Wang G, Li W, Li Z. Amide proton transfer-weighted MRI for assessing rectal adenocarcinoma T-staging and perineural invasion: a prospective study. Eur Radiol 2025; 35:968-978. [PMID: 39122854 DOI: 10.1007/s00330-024-11000-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 06/19/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024]
Abstract
OBJECTIVE To investigate the value of the pre-operative amide proton transfer-weighted (APTw) MRI to assess the prognostic factors in rectal adenocarcinoma (RA). METHODS This prospective study ran from January 2022 to September 2023 and consecutively enrolled participants with RA who underwent pre-operative MRI and radical surgery. The APTw signal intensity (SI) values of RA with various tumor (T), node (N) stages, perineural invasion (PNI), and tumor grade were compared by Mann-Whitney U-test or t-test. The receiver operating characteristic curve was used to evaluate the diagnostic performance of the APTw SI values. RESULTS A total of 51 participants were enrolled (mean age, 58 years ± 10 [standard deviation], 26 men). There were 24 in the T1-T2 stage and 9 with positive PNI. The APTw SI max, 99th, and 95th values were significantly higher in T3-T4 stage tumor than in T1-T2; the median (interquartile range) (M (IQR)) was (4.0% (3.6-4.9%) vs 3.4% (2.9- 4.3%), p = 0.017), (3.7% (3.2-4.1%) vs 3.2% (2.8-3.8%), p = 0.013), and (3.3% (2.8-3.8%) vs 2.9% (2.3-3.5%), p = 0.033), respectively. These indicators also differed significantly between the PNI groups, with the M (IQR) (4.5% (3.6-5.7%) vs 3.7% (3.2-4.2%), p = 0.017), (4.1% (3.4-4.8%) vs 3.3% (3.0-3.9%), p = 0.022), and (3.7% (2.7-4.2%) vs 2.9% (2.6-3.5%), p = 0.045), respectively. CONCLUSION Pre-operative APTw MRI has potential value in the assessment of T-staging and PNI determination in RA. CLINICAL RELEVANCE STATEMENT Pre-operative amide proton transfer-weighted MRI provides a quantitative method for noninvasive assessment of T-staging and PNI in RA aiding in precision treatment planning. KEY POINTS The efficacy of APTw MRI in RA needs further investigation. T3-T4 stage and PNI positive APTw signal intensities were higher than T1-T2 and non-PNI, respectively. APTw MRI provides a quantitative method for assessment of T staging and PNI in RA.
Collapse
Affiliation(s)
- Caixia Zhang
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Jianyou Chen
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Yifan Liu
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Yinrui Yang
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | | | - Ruimin You
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Yanli Li
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Lizhu Liu
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Ling Yang
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Huaxiu Li
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Guanshun Wang
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China.
| | - Wenliang Li
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China.
| | - Zhenhui Li
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China.
| |
Collapse
|
4
|
Gough R, Treffy RW, Krucoff MO, Desai R. Advances in Glioblastoma Diagnosis: Integrating Genetics, Noninvasive Sampling, and Advanced Imaging. Cancers (Basel) 2025; 17:124. [PMID: 39796751 PMCID: PMC11720166 DOI: 10.3390/cancers17010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Glioblastoma is the most common primary brain tumor in adult patients, and despite standard-of-care treatment, median survival has remained less than two years. Advances in our understanding of molecular mutations have led to changes in the diagnostic criteria of glioblastoma, with the WHO classification integrating important mutations into the grading system in 2021. We sought to review the basics of the important genetic mutations associated with glioblastoma, including known mechanisms and roles in disease pathogenesis/treatment. We also examined new advances in image processing as well as less invasive and noninvasive diagnostic tools that can aid in the diagnosis and surveillance of those undergoing treatment for glioblastoma. Our review is intended to serve as an overview of the current state-of-the-art in the diagnosis and management of glioblastoma.
Collapse
Affiliation(s)
| | | | | | - Rupen Desai
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (R.G.); (R.W.T.); (M.O.K.)
| |
Collapse
|
5
|
Zhang X, Lu J, Liu X, Sun P, Qin Q, Xiang Z, Cheng L, Zhang X, Guo X, Wang J. Multipool-CEST and CEST-based pH assessment as predictive tools for glioma grading, IDH mutation, 1p/19q codeletion, and MGMT promoter methylation in gliomas. Front Oncol 2024; 14:1507335. [PMID: 39759149 PMCID: PMC11695364 DOI: 10.3389/fonc.2024.1507335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Objectives To comprehensively and noninvasively predict glioma grade, IDH mutation status, 1p/19q codeletion status, and MGMT promoter methylation status using chemical exchange saturation transfer (CEST)-based tumor pH assessment and metabolic profiling. Methods We analyzed 128 patients with pathologically confirmed adult diffuse glioma. CEST-derived metrics based on tumor regions were obtained using five-pool Lorentzian analysis and pH_weighted analysis. Histogram features of these metrics were computed to characterize tumor heterogeneity. These features were subsequently employed for glioma grading and molecular genotyping of IDH, 1p/19q and MGMT. Logistic regression analysis was used to predict the grade and IDH genotypes. The diagnostic performance was evaluated using receiver operating characteristic (ROC) curves and area under the curve (AUC) analysis. Results The DS, MT and pH_weighted differed significantly between grade II and III, as well as grade III and IV. The amide, NOE, pH_weighted and MTR3.5 showed significantly differences within IDH genotypes. Regression models achieved the highest AUC for differentiating grade II from III (0.80, 95% CI: 0.64-0.91), grade III from IV (0.83, 95% CI: 0.74-0.90), and IDH mutant from wild status (0.84, 95% CI: 0.77-0.90). MT and pH_weighted metrics were the only indicators for identifying 1p/19q codeletion in grade II and grade III gliomas, respectively. MT 90th percentile (0.87, 95% CI: 0.65-0.98) and pH_weighted 25th percentile (0.83, 95% CI: 0.56-0.97) showed the best performance, respectively. The MTR3.5 was the only indicator which can distinguish MGMT promoter methylation and unmethylation gliomas, within MTR3.5 90th percentile performed best (AUC = 0.79, 95% CI: 0.61- 0.91). Conclusion CEST-based tumor pH assessment and metabolic profiling demonstrated promising potential for predicting glioma grade, IDH mutation status, 1p/19q codeletion, and MGMT genotype.
Collapse
Affiliation(s)
- Xinli Zhang
- Department of Radiology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jue Lu
- Department of Radiology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoming Liu
- Department of Radiology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Sun
- Department of Clinical & Technical Solutions, Philips Healthcare, Beijing, China
| | - Qian Qin
- Department of Radiology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengdong Xiang
- Department of Radiology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lan Cheng
- Department of Radiology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiao Zhang
- Department of Clinical & Technical Solutions, Philips Healthcare, Beijing, China
| | - Xiaotong Guo
- Department of Radiology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Department of Radiology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Iacoban CG, Ramaglia A, Severino M, Tortora D, Resaz M, Parodi C, Piccardo A, Rossi A. Advanced imaging techniques and non-invasive biomarkers in pediatric brain tumors: state of the art. Neuroradiology 2024; 66:2093-2116. [PMID: 39382639 DOI: 10.1007/s00234-024-03476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
In the pediatric age group, brain neoplasms are the second most common tumor category after leukemia, with an annual incidence of 6.13 per 100,000. Conventional MRI sequences, complemented by CT whenever necessary, are fundamental for the initial diagnosis and surgical planning as well as for post-operative evaluations, assessment of response to treatment, and surveillance; however, they have limitations, especially concerning histopathologic or biomolecular phenotyping and grading. In recent years, several advanced MRI sequences, including diffusion-weighted imaging, diffusion tensor imaging, arterial spin labelling (ASL) perfusion, and MR spectroscopy, have emerged as a powerful aid to diagnosis as well as prognostication; furthermore, other techniques such as diffusion kurtosis, amide proton transfer imaging, and MR elastography are being translated from the research environment to clinical practice. Molecular imaging, especially PET with amino-acid tracers, complement MRI in several aspects, including biopsy targeting and outcome prediction. Finally, radiomics with radiogenomics are opening entirely new perspectives for a quantitative approach aiming at identifying biomarkers that can be used for personalized, precision management strategies.
Collapse
Affiliation(s)
| | - Antonia Ramaglia
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Mariasavina Severino
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Domenico Tortora
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Martina Resaz
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Costanza Parodi
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Arnoldo Piccardo
- Department of Nuclear Medicine, E.O. Ospedali Galliera, Genoa, Italy
| | - Andrea Rossi
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy.
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.
| |
Collapse
|
7
|
Cronin AE, Liebig P, Detombe SA, Duggal N, Bartha R. Reproducibility of 3D chemical exchange saturation transfer (CEST) contrasts in the healthy brain at 3T. Sci Rep 2024; 14:25637. [PMID: 39465319 PMCID: PMC11514173 DOI: 10.1038/s41598-024-75777-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
Chemical exchange saturation transfer (CEST) imaging may provide novel contrast for the diagnosis, prognosis, and monitoring of the progression or treatment of neurological applications. However, the reproducibility of prominent CEST contrasts like amide CEST and nuclear Overhauser enhancement (NOE) CEST must be characterized in healthy brain gray matter (GM) and white matter (GM) prior to clinical implementation. The objective of this study was to characterize the reproducibility of four different CEST contrasts in the healthy human brain. Using a 3T MRI scanner, two 3D CEST scans were acquired in 12 healthy subjects (7 females, mean age (± SD) 26 ± 4 years) approximately 10 days apart. Scan-rescan reproducibility was measured for four contrasts: amine/amide concentration-independent detection (AACID), Amide*, and inverse magnetization transfer ratio (MTRRex) contrast for amide and NOE. Reproducibility was evaluated between- and within-subjects using coefficients of variation (CV) and the percent difference between measurements. AACID and NOE-MTRRex contrasts demonstrated the lowest within-subject CVs (0.8-1.2% and 1.6-2.0%, respectively), between-subject CVs (1.2-2.1% and 3.4-4.2%, respectively), and percent difference (1.2-1.4% and 2.2-2.8%, respectively) for both GM and WM. AACID and NOE-MTRRex contrasts demonstrated the highest reproducibility and represented stable measurements suitable for characterizing changes in brain tissue caused by pathological processes.
Collapse
Affiliation(s)
- Alicia E Cronin
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, 1151 Richmond St. N, London, N6A 5B7, ON, Canada
| | | | - Sarah A Detombe
- Department of Clinical Neurological Sciences, London Health Sciences Centre, University Hospital, London, ON, Canada
| | - Neil Duggal
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
- Department of Clinical Neurological Sciences, London Health Sciences Centre, University Hospital, London, ON, Canada
| | - Robert Bartha
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada.
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, 1151 Richmond St. N, London, N6A 5B7, ON, Canada.
| |
Collapse
|
8
|
Deng HZ, Zhang HW, Huang B, Deng JH, Luo SP, Li WH, Lei Y, Liu XL, Lin F. Advances in diffuse glioma assessment: preoperative and postoperative applications of chemical exchange saturation transfer. Front Neurosci 2024; 18:1424316. [PMID: 39148521 PMCID: PMC11325484 DOI: 10.3389/fnins.2024.1424316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Chemical Exchange Saturation Transfer (CEST) is a technique that uses specific off-resonance saturation pulses to pre-saturate targeted substances. This process influences the signal intensity of free water, thereby indirectly providing information about the pre-saturated substance. Among the clinical applications of CEST, Amide Proton Transfer (APT) is currently the most well-established. APT can be utilized for the preoperative grading of gliomas. Tumors with higher APTw signals generally indicate a higher likelihood of malignancy. In predicting preoperative molecular typing, APTw values are typically lower in tumors with favorable molecular phenotypes, such as isocitrate dehydrogenase (IDH) mutations, compared to IDH wild-type tumors. For differential diagnosis, the average APTw values of meningiomas are significantly lower than those of high-grade gliomas. Various APTw measurement indices assist in distinguishing central nervous system lesions with similar imaging features, such as progressive multifocal leukoencephalopathy, central nervous system lymphoma, solitary brain metastases, and glioblastoma. Regarding prognosis, APT effectively differentiates between tumor recurrence and treatment effects, and also possesses predictive capabilities for overall survival (OS) and progression-free survival (PFS).
Collapse
Affiliation(s)
- Hua-Zhen Deng
- Shantou University Medical College, Shantou City, China
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Han-Wen Zhang
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Biao Huang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Jin-Huan Deng
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Si-Ping Luo
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Wei-Hua Li
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yi Lei
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiao-Lei Liu
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Fan Lin
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
9
|
Martín-Noguerol T, Santos-Armentia E, Fernandez-Palomino J, López-Úbeda P, Paulano-Godino F, Luna A. Role of advanced MRI sequences for thyroid lesions assessment. A narrative review. Eur J Radiol 2024; 176:111499. [PMID: 38735157 DOI: 10.1016/j.ejrad.2024.111499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/12/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Despite not being the first imaging modality for thyroid gland assessment, Magnetic Resonance Imaging (MRI), thanks to its optimal tissue contrast and spatial resolution, has provided some advancements in detecting and characterizing thyroid abnormalities. Recent research has been focused on improving MRI sequences and employing advanced techniques for a more comprehensive understanding of thyroid pathology. Although not yet standard practice, advanced MRI sequences have shown high accuracy in preliminary studies, correlating well with histopathological results. They particularly show promise in determining malignancy risk in thyroid lesions, which may reduce the need for invasive procedures like biopsies. In this line, functional MRI sequences like Diffusion Weighted Imaging (DWI), Dynamic Contrast-Enhanced MRI (DCE-MRI), and Arterial Spin Labeling (ASL) have demonstrated their potential usefulness in evaluating both diffuse thyroid conditions and focal lesions. Multicompartmental DWI models, such as Intravoxel Incoherent Motion (IVIM) and Diffusion Kurtosis Imaging (DKI), and novel methods like Amide Proton Transfer (APT) imaging or artificial intelligence (AI)-based analyses are being explored for their potential valuable insights into thyroid diseases. This manuscript reviews the critical physical principles and technical requirements for optimal functional MRI sequences of the thyroid and assesses the clinical utility of each technique. It also considers future prospects in the context of advanced MR thyroid imaging and analyzes the current role of advanced MRI sequences in routine practice.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonio Luna
- MRI unit, Radiology department. HT medica, Carmelo Torres 2, 23007 Jaén, Spain.
| |
Collapse
|
10
|
Wu M, Jiang T, Guo M, Duan Y, Zhuo Z, Weng J, Xie C, Sun J, Li J, Cheng D, Liu X, Du J, Zhang X, Zhang Y, Liu Y. Amide proton transfer-weighted imaging and derived radiomics in the classification of adult-type diffuse gliomas. Eur Radiol 2024; 34:2986-2996. [PMID: 37855851 DOI: 10.1007/s00330-023-10343-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/27/2023] [Accepted: 09/05/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVES To evaluate the utility of amide proton transfer-weighted (APTw) MRI imaging and its derived radiomics in classifying adult-type diffuse glioma. MATERIALS AND METHODS In this prospective study, APTw imaging was performed on 129 patients with adult-type diffuse gliomas. The mean APTw-related metrics (chemical exchange saturation transfer ratio (CESTR), CESTR normalized with the reference value (CESTRnr), and relaxation-compensated inverse magnetization transfer ratio (MTRRex)) and radiomic features within 3D tumor masks were extracted. APTw-radiomics models were developed using a support vector machine (SVM) classifier. Sensitivity analysis with tumor area of interest, different histogram cutoff values, and other classifiers were conducted. RESULTS CESTR, CESTRnr, and MTRRex in glioblastomas were all significantly higher (p < 0.0003) than those of oligodendrogliomas and astrocytomas, with no significant difference between oligodendrogliomas and astrocytomas. The APTw-related metrics for IDH-wildtype and high-grade gliomas were significantly higher (p < 0.001) than those for the IDH-mutant and low-grade gliomas, with area under the curve (AUCs) of 0.88 for CESTR. The CESTR-radiomics models demonstrated accuracies of 84% (AUC 0.87), 83% (AUC 0.83), 90% (AUC 0.95), and 84% (AUC 0.86) in predicting the IDH mutation status, differentiating glioblastomas from astrocytomas, distinguishing glioblastomas from oligodendrogliomas, and determining high/low grade prediction, respectively, but showed poor performance in distinguishing oligodendrogliomas from astrocytomas (accuracy 63%, AUC 0.63). The sensitivity analysis affirmed the robustness of the APTw signal and APTw-derived radiomics prediction models. CONCLUSION APTw imaging, along with its derived radiomics, presents a promising quantitative approach for prediction IDH mutation and grading adult-type diffuse glioma. CLINICAL RELEVANCE STATEMENT Amide proton transfer-weighted imaging, a quantitative imaging biomarker, coupled with its derived radiomics, offers a promising non-invasive approach for predicting IDH mutation status and grading adult-type diffuse gliomas, thereby informing individualized clinical diagnostics and treatment strategies. KEY POINTS • This study evaluates the differences of different amide proton transfer-weighted metrics across three molecular subtypes and their efficacy in classifying adult-type diffuse glioma. • Chemical exchange saturation transfer ratio normalized with the reference value and relaxation-compensated inverse magnetization transfer ratio effectively predicts IDH mutation/grading, notably the first one. • Amide proton transfer-weighted imaging and its derived radiomics holds potential to be used as a diagnostic tool in routine clinical characterizing adult-type diffuse glioma.
Collapse
Affiliation(s)
- Minghao Wu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tongling Jiang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min Guo
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yunyun Duan
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhizheng Zhuo
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinyuan Weng
- Department of Medical Imaging Product, Neusoft, Group Ltd, Shenyang, 110179, China
| | - Cong Xie
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jun Sun
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Junjie Li
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dan Cheng
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xing Liu
- Department of Neuropathology, Beijing Neurosurgical Institute, Beijing, 10070, China
| | - Jiang Du
- Department of Neuropathology, Beijing Neurosurgical Institute, Beijing, 10070, China
| | | | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
11
|
Teng M, Wang M, He F, Liang W, Zhang G. Arterial Spin Labeling and Amide Proton Transfer Imaging can Differentiate Glioblastoma from Brain Metastasis: A Systematic Review and Meta-Analysis. World Neurosurg 2024; 182:e702-e711. [PMID: 38072160 DOI: 10.1016/j.wneu.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Currently, arterial spin labeling (ASL) and amide proton transfer (APT) imaging have shown potential for distinguishing glioblastoma from brain metastases. Thus, a meta-analysis was conducted to investigate this further. METHODS An extensive and comprehensive search was conducted in 6 English and Chinese databases according to predefined inclusion and exclusion criteria, encompassing data up to July 2023. Data from eligible literature were extracted, and bivariate models were employed to calculate pooled sensitivities, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the curve (AUC) of the summary receiver operating characteristic curve. RESULTS The meta-analysis included 11 articles. For ASL, the pooled sensitivity was 0.77 (95% confidence interval [CI], 0.63-0.87), and the pooled specificity was 0.87 (95% CI, 0.77-0.93). The pooled PLR was 5.89 (95% CI, 2.97-11.69), the pooled NLR was 0.26 (95% CI, 0.15-0.47), the pooled DOR was 22.33 (95% CI, 6.89-72.34), and AUC was 0.90 (95% CI, 0.87-0.92). For APT imaging, the pooled sensitivity was 0.78 (95% CI, 0.70-0.85), and the pooled specificity was 0.86 (95% CI, 0.77-0.92). The pooled PLR was 5.51 (95% CI, 3.24-9.37), the pooled NLR was 0.25 (95% CI, 0.17-0.37), the pooled DOR was 21.99 (95% CI, 10.28-47.03), and the AUC was 0.90 (95% CI, 0.87-0.92). CONCLUSIONS This meta-analysis suggest that both ASL and APT imaging exhibit high accuracy in distinguishing between glioblastoma and brain metastasis.
Collapse
Affiliation(s)
- Minghao Teng
- Department of Neurosurgery, Minda Hospital of Hubei Minzu University, Enshi, Hubei, China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Enshi, Hubei, China; Hubei Provincial Clinical Medical Research Center for Nephropathy, Enshi, Hubei, China
| | - Minshu Wang
- Department of Neurosurgery, Minda Hospital of Hubei Minzu University, Enshi, Hubei, China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Enshi, Hubei, China; Hubei Provincial Clinical Medical Research Center for Nephropathy, Enshi, Hubei, China
| | - Feng He
- Department of Neurosurgery, Minda Hospital of Hubei Minzu University, Enshi, Hubei, China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Enshi, Hubei, China; Hubei Provincial Clinical Medical Research Center for Nephropathy, Enshi, Hubei, China
| | - Wu Liang
- Department of Neurosurgery, Minda Hospital of Hubei Minzu University, Enshi, Hubei, China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Enshi, Hubei, China; Hubei Provincial Clinical Medical Research Center for Nephropathy, Enshi, Hubei, China
| | - Guisheng Zhang
- Department of Neurosurgery, Minda Hospital of Hubei Minzu University, Enshi, Hubei, China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Enshi, Hubei, China; Hubei Provincial Clinical Medical Research Center for Nephropathy, Enshi, Hubei, China.
| |
Collapse
|
12
|
Zhang N, Song Q, Liang H, Wang Z, Wu Q, Zhang H, Zhang L, Liu A, Wang H, Wang J, Lin L. Early prediction of pathological response to neoadjuvant chemotherapy of breast tumors: a comparative study using amide proton transfer-weighted, diffusion weighted and dynamic contrast enhanced MRI. Front Med (Lausanne) 2024; 11:1295478. [PMID: 38298813 PMCID: PMC10827983 DOI: 10.3389/fmed.2024.1295478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/05/2024] [Indexed: 02/02/2024] Open
Abstract
Objective To examine amide proton transfer-weighted (APTw) combined with diffusion weighed (DWI) and dynamic contrast enhanced (DCE) MRI for early prediction of pathological response to neoadjuvant chemotherapy in invasive breast cancer. Materials In this prospective study, 50 female breast cancer patients (49.58 ± 10.62 years old) administered neoadjuvant chemotherapy (NAC) were enrolled with MRI carried out both before NAC (T0) and at the end of the second cycle of NAC (T1). The patients were divided into 2 groups based on tumor response according to the Miller-Payne Grading (MPG) system. Group 1 included patients with a greater degree of decrease in major histologic responder (MHR, Miller-Payne G4-5), while group 2 included non-MHR cases (Miller-Payne G1-3). Traditional imaging protocols (T1 weighted, T2 weighted, diffusion weighted, and DCE-MRI) and APTw imaging were scanned for each subject before and after treatment. APTw value (APTw0 and APTw1), Dmax (maximum diameter, Dmax0 and Dmax1), V (3D tumor volume, V0 and V1), and ADC (apparent diffusion coefficient, ADC0 and ADC1) before and after treatment, as well as changes between the two times points (ΔAPT, ΔDmax, ΔV, ΔADC) for breast tumors were compared between the two groups. Results APT0 and APT1 values significantly differed between the two groups (p = 0.034 and 0.01). ΔAPTw values were significantly lower in non-MHR tumors compared with MHR tumors (p = 0.015). ΔDmax values were significantly higher in MHR tumors compared with non-MHR tumors (p = 0.005). ADC0 and ADC1 values were significantly higher in MHR tumors than in non-MHR tumors (p = 0.038 and 0.035). AUC (Dmax+DWI + APTw) = AUC (Dmax+APTw) > AUC (APTw) > AUC (Dmax+DWI) > AUC (Dmax). Conclusion APTw imaging along with change of tumor size showed a significant potential in early prediction of MHR for NAC treatment in breast cancer, which might allow timely regimen refinement before definitive surgical treatment.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Radiology, First Affiliated Hospital, Dalian Medical University, Dalian, China
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qingwei Song
- Department of Radiology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Hongbing Liang
- Department of Radiology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Zhuo Wang
- Department of Radiology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qi Wu
- Department of Radiology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Haonan Zhang
- Department of Radiology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Lina Zhang
- Department of Radiology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ailian Liu
- Department of Radiology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Huali Wang
- Department of Pathology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jiazheng Wang
- MSC Clinical and Technical Solutions, Philips Healthcare, Beijing, China
| | - Liangjie Lin
- MSC Clinical and Technical Solutions, Philips Healthcare, Beijing, China
| |
Collapse
|
13
|
Dan Q, Jiang X, Wang R, Dai Z, Sun D. Biogenic Imaging Contrast Agents. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207090. [PMID: 37401173 PMCID: PMC10477908 DOI: 10.1002/advs.202207090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/08/2023] [Indexed: 07/05/2023]
Abstract
Imaging contrast agents are widely investigated in preclinical and clinical studies, among which biogenic imaging contrast agents (BICAs) are developing rapidly and playing an increasingly important role in biomedical research ranging from subcellular level to individual level. The unique properties of BICAs, including expression by cells as reporters and specific genetic modification, facilitate various in vitro and in vivo studies, such as quantification of gene expression, observation of protein interactions, visualization of cellular proliferation, monitoring of metabolism, and detection of dysfunctions. Furthermore, in human body, BICAs are remarkably helpful for disease diagnosis when the dysregulation of these agents occurs and can be detected through imaging techniques. There are various BICAs matched with a set of imaging techniques, including fluorescent proteins for fluorescence imaging, gas vesicles for ultrasound imaging, and ferritin for magnetic resonance imaging. In addition, bimodal and multimodal imaging can be realized through combining the functions of different BICAs, which helps overcome the limitations of monomodal imaging. In this review, the focus is on the properties, mechanisms, applications, and future directions of BICAs.
Collapse
Affiliation(s)
- Qing Dan
- Shenzhen Key Laboratory for Drug Addiction and Medication SafetyDepartment of UltrasoundInstitute of Ultrasonic MedicinePeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhen518036P. R. China
| | - Xinpeng Jiang
- Department of Biomedical EngineeringCollege of Future TechnologyPeking UniversityBeijing100871P. R. China
| | - Run Wang
- Shenzhen Key Laboratory for Drug Addiction and Medication SafetyDepartment of UltrasoundInstitute of Ultrasonic MedicinePeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhen518036P. R. China
| | - Zhifei Dai
- Department of Biomedical EngineeringCollege of Future TechnologyPeking UniversityBeijing100871P. R. China
| | - Desheng Sun
- Shenzhen Key Laboratory for Drug Addiction and Medication SafetyDepartment of UltrasoundInstitute of Ultrasonic MedicinePeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhen518036P. R. China
| |
Collapse
|
14
|
Yu H, Zhu L, Wang Y, Yue X, Wang W, Sun Z, Jiang S, Chen Y, Wen Z. Amide Proton Transfer Weighted MR Imaging for Predicting Meningioma Stiffness: A Feasibility Study. J Magn Reson Imaging 2023; 57:1071-1078. [PMID: 35932167 DOI: 10.1002/jmri.28379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stiffness of meningioma is an important factor affecting the surgical resection and the prognosis of patients. PURPOSE To examine the feasibility of APTw-magnetic resonance imaging (MRI) in evaluating meningioma stiffness. STUDY TYPE Retrospective. POPULATION Seventy-one patient with meningiomas, 39 were male and 32 were female; the mean age was 51 ± 10 years. FIELD STRENGTH/SEQUENCE 3.0T; Turbo-spin-echo T1 -weighted and Gd-T1 -weighted sequence; Turbo-spin-echo T2 -weighted sequence; 2D fat-suppressed, turbo-spin-echo APTw pulse sequence. ASSESSMENT The T1 WI signal intensity score, T2 WI signal intensity score, APTwmin , APTwmax , and APTwmean values were compared between soft, medium stiff and stiff meningiomas or non-stiff meningiomas and stiff meningiomas group. STATISTICAL TESTS Chi-square test, one-way ANOVA analysis, independent-samples t-test, intra-class correlation coefficient, rank-sum test, receiver operating characteristic curve analysis. P < 0.05 was considered statistically significant in all tests. RESULTS APTwmin and APTwmean in the stiff group were significantly lower than that in the non-stiff group (2.79% ± 0.42% vs. 1.90% ± 0.60% and 3.20% ± 0.31% vs. 2.55% ± 0.61%). APTwmin and APTwmean in the stiff group were significantly lower than that in the medium stiff and soft groups (1.90% ± 0.60% vs. 2.69% ± 0.40% and 3.12% ± 0.32%, 2.55% ± 0.61% vs. 3.17% ± 0.33% and 3.39% ± 0.18%), APTwmin in the medium stiff group was significantly lower than in the soft group, there was no significant difference in APTwmean between the medium stiff and soft groups (P = 0.190). APTwmin showed the best diagnostic performance for evaluating meningioma stiffness with an area under the curve of 0.913, when the APTwmin was lower than 2.4%, the meningioma was defined as a stiff tumor, the sensitivity, specificity, and accuracy were 87.1%, 87.5%, and 85.9%, respectively. DATA CONCLUSION APTw-MRI could be used to evaluate meningioma stiffness, with APTwmin having the best evaluative efficiency. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Hao Yu
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Laimin Zhu
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Yanting Wang
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China.,Clinical Medical College of Jining Medical University, Jining, Shandong, China
| | | | - Weiwei Wang
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Zhanguo Sun
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Shanshan Jiang
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yueqin Chen
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Zhibo Wen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Amide Proton Transfer-Chemical Exchange Saturation Transfer Imaging of Intracranial Brain Tumors and Tumor-like Lesions: Our Experience and a Review. Diagnostics (Basel) 2023; 13:diagnostics13050914. [PMID: 36900058 PMCID: PMC10000843 DOI: 10.3390/diagnostics13050914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Chemical exchange saturation transfer (CEST) is a molecular magnetic resonance imaging (MRI) method that can generate image contrast based on the proton exchange between labeled protons in solutes and free, bulk water protons. Amide proton transfer (APT) imaging is the most frequently reported amide-proton-based CEST technique. It generates image contrast by reflecting the associations of mobile proteins and peptides resonating at 3.5 ppm downfield from water. Although the origin of the APT signal intensity in tumors is unclear, previous studies have suggested that the APT signal intensity is increased in brain tumors due to the increased mobile protein concentrations in malignant cells in association with an increased cellularity. High-grade tumors, which demonstrate a higher proliferation than low-grade tumors, have higher densities and numbers of cells (and higher concentrations of intracellular proteins and peptides) than low-grade tumors. APT-CEST imaging studies suggest that the APT-CEST signal intensity can be used to help differentiate between benign and malignant tumors and high-grade gliomas and low-grade gliomas as well as estimate the nature of lesions. In this review, we summarize the current applications and findings of the APT-CEST imaging of various brain tumors and tumor-like lesions. We report that APT-CEST imaging can provide additional information on intracranial brain tumors and tumor-like lesions compared to the information provided by conventional MRI methods, and that it can help indicate the nature of lesions, differentiate between benign and malignant lesions, and determine therapeutic effects. Future research could initiate or improve the lesion-specific clinical applicability of APT-CEST imaging for meningioma embolization, lipoma, leukoencephalopathy, tuberous sclerosis complex, progressive multifocal leukoencephalopathy, and hippocampal sclerosis.
Collapse
|
16
|
Ohba S, Murayama K, Teranishi T, Kumon M, Nakae S, Yui M, Yamamoto K, Yamada S, Abe M, Hasegawa M, Hirose Y. Three-Dimensional Amide Proton Transfer-Weighted Imaging for Differentiating between Glioblastoma, IDH-Wildtype and Primary Central Nervous System Lymphoma. Cancers (Basel) 2023; 15:952. [PMID: 36765909 PMCID: PMC9913574 DOI: 10.3390/cancers15030952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Distinguishing primary central nervous system lymphoma (PCNSL) from glioblastoma, isocitrate dehydrogenase (IDH)-wildtype is sometimes hard. Because the role of operation on them varies, accurate preoperative diagnosis is crucial. In this study, we evaluated whether a specific kind of chemical exchange saturation transfer imaging, i.e., amide proton transfer-weighted (APTw) imaging, was useful to distinguish PCNSL from glioblastoma, IDH-wildtype. A total of 14 PCNSL and 27 glioblastoma, IDH-wildtype cases were evaluated. There was no significant difference in the mean APTw signal values between the two groups. However, the percentile values from the 1st percentile to the 20th percentile APTw signals and the width1-100 APTw signals significantly differed. The highest area under the curve was 0.796, which was obtained from the width1-100 APTw signal values. The sensitivity and specificity values were 64.3% and 88.9%, respectively. APTw imaging was useful to distinguish PCNSL from glioblastoma, IDH-wildtype. To avoid unnecessary aggressive surgical resection, APTw imaging is recommended for cases in which PCNSL is one of the differential diagnoses.
Collapse
Affiliation(s)
- Shigeo Ohba
- Department of Neurosurgery, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Kazuhiro Murayama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Takao Teranishi
- Department of Neurosurgery, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Masanobu Kumon
- Department of Neurosurgery, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Shunsuke Nakae
- Department of Neurosurgery, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Masao Yui
- Canon Medical Systems Corporation, Otawara 324-8550, Tochigi, Japan
| | - Kaori Yamamoto
- Canon Medical Systems Corporation, Otawara 324-8550, Tochigi, Japan
| | - Seiji Yamada
- Department of Diagnostic Pathology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Masato Abe
- Department of Pathology, Fujita Health University School of Health Sciences, Toyoake 470-1192, Aichi, Japan
| | - Mitsuhiro Hasegawa
- Department of Neurosurgery, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Yuichi Hirose
- Department of Neurosurgery, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| |
Collapse
|
17
|
Jabehdar Maralani P, Chan RW, Lam WW, Oakden W, Oglesby R, Lau A, Mehrabian H, Heyn C, Chan AK, Soliman H, Sahgal A, Stanisz GJ. Chemical Exchange Saturation Transfer MRI: What Neuro-Oncology Clinicians Need To Know. Technol Cancer Res Treat 2023; 22:15330338231208613. [PMID: 37872686 PMCID: PMC10594966 DOI: 10.1177/15330338231208613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 10/25/2023] Open
Abstract
Chemical exchange saturation transfer (CEST) is a relatively novel magnetic resonance imaging (MRI) technique with an image contrast designed for in vivo measurement of certain endogenous molecules with protons that are exchangeable with water protons, such as amide proton transfer commonly used for neuro-oncology applications. Recent technological advances have made it feasible to implement CEST on clinical grade scanners within practical acquisition times, creating new opportunities to integrate CEST in clinical workflow. In addition, the majority of CEST applications used in neuro-oncology are performed without the use gadolinium-based contrast agents which are another appealing feature of this technique. This review is written for clinicians involved in neuro-oncologic care (nonphysicists) as the target audience explaining what they need to know as CEST makes its way into practice. The purpose of this article is to (1) review the basic physics and technical principles of CEST MRI, and (2) review the practical applications of CEST in neuro-oncology.
Collapse
Affiliation(s)
- Pejman Jabehdar Maralani
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Rachel W. Chan
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Wilfred W. Lam
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Wendy Oakden
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Ryan Oglesby
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Angus Lau
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Hatef Mehrabian
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Chris Heyn
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Aimee K.M. Chan
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Hany Soliman
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Greg J. Stanisz
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Koike H, Morikawa M, Ishimaru H, Ideguchi R, Uetani M, Hiu T, Matsuo T, Miyoshi M. Amide proton transfer MRI differentiates between progressive multifocal leukoencephalopathy and malignant brain tumors: a pilot study. BMC Med Imaging 2022; 22:227. [PMID: 36572873 PMCID: PMC9793649 DOI: 10.1186/s12880-022-00959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nerve system caused by the John Cunningham virus. On MRI, PML may sometimes appear similar to primary central nervous system lymphoma (PCNSL) and glioblastoma multiforme (GBM). The purpose of this pilot study was to evaluate the potential of amide proton transfer (APT) imaging for differentiating PML from PCNSL and GBM. METHODS Patients with PML (n = 4; two men; mean age 52.3 ± 6.1 years), PCNSL (n = 7; four women; mean age 74.4 ± 5.8 years), or GBM (n = 11; 6 men; mean age 65.0 ± 15.2 years) who underwent APT-CEST MRI between January 2021 and September 2022 were retrospectively evaluated. Magnetization transfer ratio asymmetry (MTRasym) values were measured on APT imaging using a region of interest within the lesion. Receiver operating characteristics curve analysis was used to determine diagnostic cutoffs for MTRasym. RESULTS The mean MTRasym values were 0.005 ± 0.005 in the PML group, 0.025 ± 0.005 in the PCNSL group, and 0.025 ± 0.009 in the GBM group. There were significant differences in MTRasym between PML and PCNSL (P = 0.023), and between PML and GBM (P = 0.015). For differentiating PML from PCNSL, an MTRasym threshold of 0.0165 gave diagnostic sensitivity, specificity, positive predictive value, and negative predictive value of 100% (all). For differentiating PML from GBM, an MTRasym threshold of 0.015 gave diagnostic sensitivity, specificity, positive predictive value, and negative predictive value of 100%, 90.9%, 80.0%, and 100%, respectively. CONCLUSION MTRasym values obtained from APT imaging allowed patients with PML to be clearly discriminated from patients with PCNSL or GBM.
Collapse
Affiliation(s)
- Hirofumi Koike
- grid.174567.60000 0000 8902 2273Department of Radiology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Minoru Morikawa
- grid.411873.80000 0004 0616 1585Department of Radiology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Hideki Ishimaru
- grid.411873.80000 0004 0616 1585Department of Radiology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Reiko Ideguchi
- grid.174567.60000 0000 8902 2273Department of Radioisotope Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8588 Japan
| | - Masataka Uetani
- grid.174567.60000 0000 8902 2273Department of Radiology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Takeshi Hiu
- grid.174567.60000 0000 8902 2273Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Takayuki Matsuo
- grid.174567.60000 0000 8902 2273Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Mitsuharu Miyoshi
- grid.481637.f0000 0004 0377 9208MR Application and Workflow, GE Healthcare Japan, 4-7-127 Asahigaoka, Hino, Tokyo 191-8503 Japan
| |
Collapse
|
19
|
Yuan Y, Yu Y, Guo Y, Chu Y, Chang J, Hsu Y, Liebig PA, Xiong J, Yu W, Feng D, Yang B, Chen L, Wang H, Yue Q, Mao Y. Noninvasive Delineation of Glioma Infiltration with Combined 7T Chemical Exchange Saturation Transfer Imaging and MR Spectroscopy: A Diagnostic Accuracy Study. Metabolites 2022; 12:901. [PMID: 36295803 PMCID: PMC9607140 DOI: 10.3390/metabo12100901] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
For precise delineation of glioma extent, amino acid PET is superior to conventional MR imaging. Since metabolic MR sequences such as chemical exchange saturation transfer (CEST) imaging and MR spectroscopy (MRS) were developed, we aimed to evaluate the diagnostic accuracy of combined CEST and MRS to predict glioma infiltration. Eighteen glioma patients of different tumor grades were enrolled in this study; 18F-fluoroethyltyrosine (FET)-PET, amide proton transfer CEST at 7 Tesla(T), MRS and conventional MR at 3T were conducted preoperatively. Multi modalities and their association were evaluated using Pearson correlation analysis patient-wise and voxel-wise. Both CEST (R = 0.736, p < 0.001) and MRS (R = 0.495, p = 0.037) correlated with FET-PET, while the correlation between CEST and MRS was weaker. In subgroup analysis, APT values were significantly higher in high grade glioma (3.923 ± 1.239) and IDH wildtype group (3.932 ± 1.264) than low grade glioma (3.317 ± 0.868, p < 0.001) or IDH mutant group (3.358 ± 0.847, p < 0.001). Using high FET uptake as the standard, the CEST/MRS combination (AUC, 95% CI: 0.910, 0.907−0.913) predicted tumor infiltration better than CEST (0.812, 0.808−0.815) or MRS (0.888, 0.885−0.891) alone, consistent with contrast-enhancing and T2-hyperintense areas. Probability maps of tumor presence constructed from the CEST/MRS combination were preliminarily verified by multi-region biopsies. The combination of 7T CEST/MRS might serve as a promising non-radioactive alternative to delineate glioma infiltration, thus reshaping the guidance for tumor resection and irradiation.
Collapse
Affiliation(s)
- Yifan Yuan
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 201112, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Fudan University, Shanghai 200032, China
| | - Yang Yu
- National Center for Neurological Disorders, Shanghai 201112, China
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yu Guo
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 201112, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Fudan University, Shanghai 200032, China
| | - Yinghua Chu
- MR Collaboration, Siemens Healthineers Ltd., Shanghai 310000, China
| | - Jun Chang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 201112, China
| | - Yicheng Hsu
- MR Collaboration, Siemens Healthineers Ltd., Shanghai 310000, China
| | | | - Ji Xiong
- National Center for Neurological Disorders, Shanghai 201112, China
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wenwen Yu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Danyang Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Baofeng Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 201112, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Fudan University, Shanghai 200032, China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Human Phenome Institute, Fudan University, Shanghai 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai 200433, China
| | - Qi Yue
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 201112, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Fudan University, Shanghai 200032, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 201112, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Fudan University, Shanghai 200032, China
| |
Collapse
|
20
|
Advanced Neuroimaging Approaches to Pediatric Brain Tumors. Cancers (Basel) 2022; 14:cancers14143401. [PMID: 35884462 PMCID: PMC9318188 DOI: 10.3390/cancers14143401] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary After leukemias, brain tumors are the most common cancers in children, and early, accurate diagnosis is critical to improve patient outcomes. Beyond the conventional imaging methods of computed tomography (CT) and magnetic resonance imaging (MRI), advanced neuroimaging techniques capable of both structural and functional imaging are moving to the forefront to improve the early detection and differential diagnosis of tumors of the central nervous system. Here, we review recent developments in neuroimaging techniques for pediatric brain tumors. Abstract Central nervous system tumors are the most common pediatric solid tumors; they are also the most lethal. Unlike adults, childhood brain tumors are mostly primary in origin and differ in type, location and molecular signature. Tumor characteristics (incidence, location, and type) vary with age. Children present with a variety of symptoms, making early accurate diagnosis challenging. Neuroimaging is key in the initial diagnosis and monitoring of pediatric brain tumors. Conventional anatomic imaging approaches (computed tomography (CT) and magnetic resonance imaging (MRI)) are useful for tumor detection but have limited utility differentiating tumor types and grades. Advanced MRI techniques (diffusion-weighed imaging, diffusion tensor imaging, functional MRI, arterial spin labeling perfusion imaging, MR spectroscopy, and MR elastography) provide additional and improved structural and functional information. Combined with positron emission tomography (PET) and single-photon emission CT (SPECT), advanced techniques provide functional information on tumor metabolism and physiology through the use of radiotracer probes. Radiomics and radiogenomics offer promising insight into the prediction of tumor subtype, post-treatment response to treatment, and prognostication. In this paper, a brief review of pediatric brain cancers, by type, is provided with a comprehensive description of advanced imaging techniques including clinical applications that are currently utilized for the assessment and evaluation of pediatric brain tumors.
Collapse
|
21
|
Chawla S, Bukhari S, Afridi OM, Wang S, Yadav SK, Akbari H, Verma G, Nath K, Haris M, Bagley S, Davatzikos C, Loevner LA, Mohan S. Metabolic and physiologic magnetic resonance imaging in distinguishing true progression from pseudoprogression in patients with glioblastoma. NMR IN BIOMEDICINE 2022; 35:e4719. [PMID: 35233862 PMCID: PMC9203929 DOI: 10.1002/nbm.4719] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 05/15/2023]
Abstract
Pseudoprogression (PsP) refers to treatment-related clinico-radiologic changes mimicking true progression (TP) that occurs in patients with glioblastoma (GBM), predominantly within the first 6 months after the completion of surgery and concurrent chemoradiation therapy (CCRT) with temozolomide. Accurate differentiation of TP from PsP is essential for making informed decisions on appropriate therapeutic intervention as well as for prognostication of these patients. Conventional neuroimaging findings are often equivocal in distinguishing between TP and PsP and present a considerable diagnostic dilemma to oncologists and radiologists. These challenges have emphasized the need for developing alternative imaging techniques that may aid in the accurate diagnosis of TP and PsP. In this review, we encapsulate the current state of knowledge in the clinical applications of commonly used metabolic and physiologic magnetic resonance (MR) imaging techniques such as diffusion and perfusion imaging and proton spectroscopy in distinguishing TP from PsP. We also showcase the potential of promising imaging techniques, such as amide proton transfer and amino acid-based positron emission tomography, in providing useful information about the treatment response. Additionally, we highlight the role of "radiomics", which is an emerging field of radiology that has the potential to change the way in which advanced MR techniques are utilized in assessing treatment response in GBM patients. Finally, we present our institutional experiences and discuss future perspectives on the role of multiparametric MR imaging in identifying PsP in GBM patients treated with "standard-of-care" CCRT as well as novel/targeted therapies.
Collapse
Affiliation(s)
- Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sultan Bukhari
- Rowan School of Osteopathic Medicine at Rowan University, Voorhees, New Jersey, USA
| | - Omar M. Afridi
- Rowan School of Osteopathic Medicine at Rowan University, Voorhees, New Jersey, USA
| | - Sumei Wang
- Department of Cardiology, Lenox Hill Hospital, Northwell Health, New York, New York, USA
| | - Santosh K. Yadav
- Laboratory of Functional and Molecular Imaging, Sidra Medicine, Doha, Qatar
| | - Hamed Akbari
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gaurav Verma
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Kavindra Nath
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mohammad Haris
- Laboratory of Functional and Molecular Imaging, Sidra Medicine, Doha, Qatar
| | - Stephen Bagley
- Department of Hematology-Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christos Davatzikos
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laurie A. Loevner
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Suyash Mohan
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
Joshi A, Deshpande S, Bayaskar M. Primary CNS lymphoma in Immunocompetent patients: Appearances on Conventional and Advanced Imaging with Review of literature. J Radiol Case Rep 2022; 16:1-17. [PMID: 36051362 PMCID: PMC9354935 DOI: 10.3941/jrcr.v16i7.4562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Primary central nervous system lymphoma (PCNSL) constitutes about 3% of all primary brain tumors and nearly 1 to 3% of all Non Hodgkin Lymphomas. In the recent years the incidence of primary CNS lymphoma is increasing in immunocompetent patients. As PCNSL are chemosensitive as well as radiosensitive, its early and accurate diagnosis is imperative for optimal management. Contrast enhanced Magnetic Resonance Imaging (MRI) is the recommended imaging modality for PCNSL; however, contrast enhanced Computed Tomography (CE-CT) is done in cases where MRI is contraindicated. Advanced imaging techniques like DWI (diffusion weighted imaging), MRS (MR Spectroscopy), MR perfusion, DTI (Diffusion tensor imaging) are important in diagnosis and help in its differentiation from other tumors.
Collapse
Affiliation(s)
- Anagha Joshi
- Department of radiodiagnosis, Lokmanya Tilak Municipal Medical College and General hospital, Sion, Mumbai, India
| | - Sneha Deshpande
- Department of radiodiagnosis, Lokmanya Tilak Municipal Medical College and General hospital, Sion, Mumbai, India
| | - Madhura Bayaskar
- Department of radiodiagnosis, Lokmanya Tilak Municipal Medical College and General hospital, Sion, Mumbai, India
| |
Collapse
|
23
|
Kamimura K, Nakajo M, Gohara M, Kawaji K, Bohara M, Fukukura Y, Uchida H, Tabata K, Iwanaga T, Akamine Y, Keupp J, Fukami T, Yoshiura T. Differentiation of hemangioblastoma from brain metastasis using MR amide proton transfer imaging. J Neuroimaging 2022; 32:920-929. [PMID: 35731178 DOI: 10.1111/jon.13019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Differentiation between hemangioblastoma and brain metastasis remains a challenge in neuroradiology using conventional MRI. Amide proton transfer (APT) imaging can provide unique molecular information. This study aimed to evaluate the usefulness of APT imaging in differentiating hemangioblastomas from brain metastases and compare APT imaging with diffusion-weighted imaging and dynamic susceptibility contrast perfusion-weighted imaging. METHODS This retrospective study included 11 patients with hemangioblastoma and 20 patients with brain metastases. Region-of-interest analyses were employed to obtain the mean, minimum, and maximum values of APT signal intensity, apparent diffusion coefficient (ADC), and relative cerebral blood volume (rCBV), and these indices were compared between hemangioblastomas and brain metastases using the unpaired t-test and Mann-Whitney U test. Their diagnostic performances were evaluated using receiver operating characteristic (ROC) analysis and area under the ROC curve (AUC). AUCs were compared using DeLong's method. RESULTS All MRI-derived indices were significantly higher in hemangioblastoma than in brain metastasis. ROC analysis revealed the best performance with APT-related indices (AUC = 1.000), although pairwise comparisons showed no significant difference between the mean ADC and mean rCBV. CONCLUSIONS APT imaging is a useful and robust imaging tool for differentiating hemangioblastoma from metastasis.
Collapse
Affiliation(s)
- Kiyohisa Kamimura
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masanori Nakajo
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Misaki Gohara
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kodai Kawaji
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Manisha Bohara
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yoshihiko Fukukura
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiroyuki Uchida
- Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kazuhiro Tabata
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takashi Iwanaga
- Department of Radiological Technology, Kagoshima University Hospital, Kagoshima, Japan
| | | | | | | | - Takashi Yoshiura
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
24
|
Zhang HW, Liu XL, Zhang HB, Li YQ, Wang YL, Feng YN, Deng K, Lei Y, Huang B, Lin F. Differentiation of Meningiomas and Gliomas by Amide Proton Transfer Imaging: A Preliminary Study of Brain Tumour Infiltration. Front Oncol 2022; 12:886968. [PMID: 35646626 PMCID: PMC9132094 DOI: 10.3389/fonc.2022.886968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/07/2022] [Indexed: 11/22/2022] Open
Abstract
Background Gliomas are more malignant and invasive than meningiomas. Objective To distinguish meningiomas from low-grade/high-grade gliomas (LGGs/HGGs) using amide proton transfer imaging (APT) combined with conventional magnetic resonance imaging (MRI) and to explore the application of APT in evaluating brain tumour invasiveness. Materials and Methods The imaging data of 50 brain tumors confirmed by pathology in patients who underwent APT scanning in our centre were retrospectively analysed. Of these tumors, 25 were meningiomas, 10 were LGGs, and 15 were HGGs. The extent of the tumour-induced range was measured on APT images, T2-weighted imaging (T2WI), and MRI enhancement; additionally, and the degree of enhancement was graded. Ratios (RAPT/T2 and RAPT/E) were obtained by dividing the range of changes observed by APT by the range of changes observed via T2WI and MR enhancement, respectively, and APTmean values were measured. The Mann–Whitney U test was used to compare the above measured values with the pathological results obtained for gliomas and meningiomas, the Kruskal-Wallis test was used to compare LGGs, HGGs and meningiomas, and Dunn’s test was used for pairwise comparisons. In addition, receiver operating characteristic (ROC) curves were drawn. Results The Mann–Whitney U test showed that APTmean (p=0.005), RAPT/T2 (p<0.001), and RAPT/E (p<0.001) values were statistically significant in the identification of meningioma and glioma. The Kruskal-Wallis test showed that the parameters APTmean, RAPT/T2, RAPT/E and the degree of enhancement are statistically significant. Dunn’s test revealed that RAPT/T2 (p=0.004) and RAPT/E (p=0.008) could be used for the identification of LGGs and meningiomas. APTmean (p<0.001), RAPT/T2 (p<0.001), and RAPT/E (p<0.001) could be used for the identification of HGGs and meningiomas. APTmean (p<0.001) was statistically significant in the comparison of LGGs and HGGs. ROC curves showed that RAPT/T2 (area under the curve (AUC)=0.947) and RAPT/E (AUC=0.919) could be used to distinguish gliomas from meningiomas. Conclusion APT can be used for the differential diagnosis of meningioma and glioma, but APTmean values can only be used for the differential diagnosis of HGGs and meningiomas or HGGs and LGGs. Gliomas exhibit more obvious changes than meningiomas in APT images of brain tissue; this outcome may be caused by brain infiltration.
Collapse
Affiliation(s)
- Han-Wen Zhang
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiao-Lei Liu
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Hong-Bo Zhang
- Department of Radiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ying-Qi Li
- Department of Radiology, Songgang People's Hospital, Shenzhen, China
| | - Yu-Li Wang
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yu-Ning Feng
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Kan Deng
- Research Department, Philips Healthcare, Guangzhou, China
| | - Yi Lei
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Biao Huang
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Fan Lin
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
25
|
Zhang N, Zhang H, Gao B, Miao Y, Liu A, Song Q, Lin L, Wang J. 3D Amide Proton Transfer Weighted Brain Tumor Imaging With Compressed SENSE: Effects of Different Acceleration Factors. Front Neurosci 2022; 16:876587. [PMID: 35692419 PMCID: PMC9178274 DOI: 10.3389/fnins.2022.876587] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/13/2022] [Indexed: 12/05/2022] Open
Abstract
Objectives The aim of the current study was to evaluate the performance of compressed SENSE (CS) for 3D amide proton transfer weighted (APTw) brain tumor imaging with different acceleration factors (AFs), and the results were compared with those of conventional SENSE. Methods Approximately 51 patients with brain tumor (22 males, 49.95 ± 10.52 years) with meningiomas (n = 16), metastases (n = 12), or gliomas (n = 23) were enrolled. All the patients received 3D APTw imaging scans on a 3.0 T scanner with acceleration by CS (AFs: CS2, CS3, CS4, and CS5) and SENSE (AF: S1.6). Two readers independently and subjectively evaluated the APTw images relative to image quality and measured confidence concerning image blur, distortion, motion, and ghosting artifacts, lesion recognition, and contour delineation with a 5-point Likert scale. Mean amide proton transfer (APT) values of brain tumors (APTtumor), the contralateral normal-appearing white matter (APTCNAWM), and the peritumoral edema area (if present, APTedema) and the tumor volume (VAPT) were measured for objective evaluation and determination of the optimal AF. The Ki67 labeling index was also measured by using standard immunohistochemical staining procedures in samples from patients with gliomas, and the correlation between tumor APT values and the Ki67 index was analyzed. Results The image quality of AF = CS5 was significantly lower than that of other groups. VAPT showed significant differences among the six sequences in meningiomas (p = 0.048) and gliomas (p = 0.023). The pairwise comparison showed that the VAPT values of meningiomas measured from images by CS5 were significantly lower, and gliomas were significantly larger than those by SENSE1.6 and other CS accelerations, (p < 0.05). APTtumor (p = 0.191) showed no significant difference among the three types of tumors. The APTtumor values of gliomas measured by APTw images with the SENSE factor of 1.6 and the CS factor of 2, 3, and 4 (except for CS5) were all positively correlated with Ki67. Conclusion Compressed SENSE could be successfully extended to accelerated 3D APTw imaging of brain tumors without compromising image quality using the AF of 4.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Radiology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Haonan Zhang
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bingbing Gao
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanwei Miao
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ailian Liu
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qingwei Song
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Qingwei Song,
| | - Liangjie Lin
- MSC Clinical and Technical Solutions, Philips Healthcare, Beijing, China
| | - Jiazheng Wang
- MSC Clinical and Technical Solutions, Philips Healthcare, Beijing, China
| |
Collapse
|
26
|
Abstract
OBJECTIVES The aims of the study are to evaluate the feasibility of using pH-sensitive magnetic resonance imaging, chemical exchange saturation transfer (CEST) in pancreatic imaging and to differentiate pancreatic ductal adenocarcinoma (PDAC) with the nontumor pancreas (upstream and downstream) and normal control pancreas. METHODS Sixteen CEST images with PDAC and 12 CEST images with normal volunteers were acquired and magnetization transfer ratio with asymmetric analysis were measured in areas of PDAC, upstream, downstream, and normal control pancreas. One-way analysis of variance and receiver operating characteristic curve were used to differentiate tumor from nontumor pancreas. RESULTS Areas with PDAC showed higher signal intensity than upstream and downstream on CEST images. The mean (standard deviation) values of magnetization transfer ratio with asymmetric analysis were 0.015 (0.034), -0.044 (0.030), -0.019 (0.027), and -0.037 (0.031), respectively, in PDAC area, upstream, downstream, and nontumor area in patient group and -0.008 (0.024) in normal pancreas. Significant differences were found between PDAC and upstream ( P < 0.001), between upstream and normal pancreas ( P = 0.04). Area under curve is 0.857 in differentiating PDAC with nontumor pancreas. CONCLUSIONS pH-sensitive CEST MRI is feasible in pancreatic imaging and can be used to differentiate PDAC from nontumor pancreas. This provides a novel metabolic imaging method in PDAC.
Collapse
|
27
|
Zhou J, Zaiss M, Knutsson L, Sun PZ, Ahn SS, Aime S, Bachert P, Blakeley JO, Cai K, Chappell MA, Chen M, Gochberg DF, Goerke S, Heo HY, Jiang S, Jin T, Kim SG, Laterra J, Paech D, Pagel MD, Park JE, Reddy R, Sakata A, Sartoretti-Schefer S, Sherry AD, Smith SA, Stanisz GJ, Sundgren PC, Togao O, Vandsburger M, Wen Z, Wu Y, Zhang Y, Zhu W, Zu Z, van Zijl PCM. Review and consensus recommendations on clinical APT-weighted imaging approaches at 3T: Application to brain tumors. Magn Reson Med 2022; 88:546-574. [PMID: 35452155 PMCID: PMC9321891 DOI: 10.1002/mrm.29241] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/16/2022]
Abstract
Amide proton transfer-weighted (APTw) MR imaging shows promise as a biomarker of brain tumor status. Currently used APTw MRI pulse sequences and protocols vary substantially among different institutes, and there are no agreed-on standards in the imaging community. Therefore, the results acquired from different research centers are difficult to compare, which hampers uniform clinical application and interpretation. This paper reviews current clinical APTw imaging approaches and provides a rationale for optimized APTw brain tumor imaging at 3 T, including specific recommendations for pulse sequences, acquisition protocols, and data processing methods. We expect that these consensus recommendations will become the first broadly accepted guidelines for APTw imaging of brain tumors on 3 T MRI systems from different vendors. This will allow more medical centers to use the same or comparable APTw MRI techniques for the detection, characterization, and monitoring of brain tumors, enabling multi-center trials in larger patient cohorts and, ultimately, routine clinical use.
Collapse
Affiliation(s)
- Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Moritz Zaiss
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Institute of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Linda Knutsson
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Medical Radiation Physics, Lund University, Lund, Sweden.,F.M. Kirby Research Center for Functional Brain Imaging, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | - Phillip Zhe Sun
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Silvio Aime
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Peter Bachert
- Department of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Jaishri O Blakeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Michael A Chappell
- Mental Health and Clinical Neurosciences and Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK.,Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Min Chen
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Daniel F Gochberg
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Physics, Vanderbilt University, Nashville, Tennessee, USA
| | - Steffen Goerke
- Department of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Hye-Young Heo
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shanshan Jiang
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tao Jin
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science and Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - John Laterra
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | - Daniel Paech
- Department of Radiology, German Cancer Research Center, Heidelberg, Germany.,Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Mark D Pagel
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Ravinder Reddy
- Center for Advance Metabolic Imaging in Precision Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Akihiko Sakata
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - A Dean Sherry
- Advanced Imaging Research Center and Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas, USA
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Greg J Stanisz
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Pia C Sundgren
- Department of Diagnostic Radiology/Clinical Sciences Lund, Lund University, Lund, Sweden.,Lund University Bioimaging Center, Lund University, Lund, Sweden.,Department of Medical Imaging and Physiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Osamu Togao
- Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Zhibo Wen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yin Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Peter C M van Zijl
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| |
Collapse
|
28
|
Someya Y, Iima M, Imai H, Yoshizawa A, Kataoka M, Isoda H, Le Bihan D, Nakamoto Y. Investigation of breast cancer microstructure and microvasculature from time-dependent DWI and CEST in correlation with histological biomarkers. Sci Rep 2022; 12:6523. [PMID: 35444193 PMCID: PMC9021220 DOI: 10.1038/s41598-022-10081-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/24/2022] [Indexed: 12/24/2022] Open
Abstract
We investigated the associations of time-dependent DWI, non-Gaussian DWI, and CEST parameters with histological biomarkers in a breast cancer xenograft model. 22 xenograft mice (7 MCF-7 and 15 MDA-MB-231) were scanned at 4 diffusion times [Td = 2.5/5 ms with 11 b-values (0–600 s/mm2) and Td = 9/27.6 ms with 17 b-values (0–3000 s/mm2), respectively]. The apparent diffusion coefficient (ADC) was estimated using 2 b-values in different combinations (ADC0–600 using b = 0 and 600 s/mm2 and shifted ADC [sADC200–1500] using b = 200 and 1500 s/mm2) at each of those diffusion times. Then the change (Δ) in ADC/sADC between diffusion times was evaluated. Non-Gaussian diffusion and intravoxel incoherent motion (IVIM) parameters (ADC0, the virtual ADC at b = 0; K, Kurtosis from non-Gaussian diffusion; f, the IVIM perfusion fraction) were estimated. CEST images were acquired and the amide proton transfer signal intensity (APT SI) were measured. The ΔsADC9–27.6 (between \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{sADC}}_{{9\,{\text{ms}}}}^{200{-}1500}$$\end{document}sADC9ms200-1500 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{sADC}}_{{27.6\,{\text{ms}}}}^{200{-}1500}$$\end{document}sADC27.6ms200-1500 and ΔADC2.5_sADC27.6 (between \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{ADC}}_{{2.5\, {\text{ms}}}}^{0{-}600}$$\end{document}ADC2.5ms0-600 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{sADC}}_{{27.6\,{\text{ms}}}}^{200{-}1500}$$\end{document}sADC27.6ms200-1500) was significantly larger for MCF-7 groups, and ΔADC2.5_sADC27.6 was positively correlated with Ki67max and APT SI. ADC0 decreased significantly in MDA-MB-231 group and K increased significantly with Td in MCF-7 group. APT SI and cellular area had a moderately strong positive correlation in MDA-MB-231 and MCF-7 tumors combined, and there was a positive correlation in MDA-MB-231 tumors. There was a significant negative correlation between APT SI and the Ki-67-positive ratio in MDA-MB-231 tumors and when combined with MCF-7 tumors. The associations of ΔADC2.5_sADC27.6 and API SI with Ki-67 parameters indicate that the Td-dependent DW and CEST parameters are useful to predict the histological markers of breast cancers.
Collapse
Affiliation(s)
- Yuko Someya
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| | - Mami Iima
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.,Department of Clinical Innovative Medicine, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, 606-8507, Japan
| | - Hirohiko Imai
- Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, 606-8501, Japan
| | - Akihiko Yoshizawa
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, 606-8507, Japan
| | - Masako Kataoka
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Hiroyoshi Isoda
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Denis Le Bihan
- NeuroSpin/Joliot, CEA-Saclay Center, Paris-Saclay University, 91191, Gif-sur-Yvette, France.,Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan.,National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| |
Collapse
|
29
|
Huang J, Chen Z, Park SW, Lai JHC, Chan KWY. Molecular Imaging of Brain Tumors and Drug Delivery Using CEST MRI: Promises and Challenges. Pharmaceutics 2022; 14:451. [PMID: 35214183 PMCID: PMC8880023 DOI: 10.3390/pharmaceutics14020451] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/10/2022] Open
Abstract
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) detects molecules in their natural forms in a sensitive and non-invasive manner. This makes it a robust approach to assess brain tumors and related molecular alterations using endogenous molecules, such as proteins/peptides, and drugs approved for clinical use. In this review, we will discuss the promises of CEST MRI in the identification of tumors, tumor grading, detecting molecular alterations related to isocitrate dehydrogenase (IDH) and O-6-methylguanine-DNA methyltransferase (MGMT), assessment of treatment effects, and using multiple contrasts of CEST to develop theranostic approaches for cancer treatments. Promising applications include (i) using the CEST contrast of amide protons of proteins/peptides to detect brain tumors, such as glioblastoma multiforme (GBM) and low-grade gliomas; (ii) using multiple CEST contrasts for tumor stratification, and (iii) evaluation of the efficacy of drug delivery without the need of metallic or radioactive labels. These promising applications have raised enthusiasm, however, the use of CEST MRI is not trivial. CEST contrast depends on the pulse sequences, saturation parameters, methods used to analyze the CEST spectrum (i.e., Z-spectrum), and, importantly, how to interpret changes in CEST contrast and related molecular alterations in the brain. Emerging pulse sequence designs and data analysis approaches, including those assisted with deep learning, have enhanced the capability of CEST MRI in detecting molecules in brain tumors. CEST has become a specific marker for tumor grading and has the potential for prognosis and theranostics in brain tumors. With increasing understanding of the technical aspects and associated molecular alterations detected by CEST MRI, this young field is expected to have wide clinical applications in the near future.
Collapse
Affiliation(s)
- Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
| | - Zilin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
| | - Se-Weon Park
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Joseph H. C. Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
| | - Kannie W. Y. Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
- Tung Biomedical Science Centre, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
30
|
Lingl JP, Wunderlich A, Goerke S, Paech D, Ladd ME, Liebig P, Pala A, Kim SY, Braun M, Schmitz BL, Beer M, Rosskopf J. The Value of APTw CEST MRI in Routine Clinical Assessment of Human Brain Tumor Patients at 3T. Diagnostics (Basel) 2022; 12:diagnostics12020490. [PMID: 35204583 PMCID: PMC8871436 DOI: 10.3390/diagnostics12020490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/10/2022] Open
Abstract
Background. With fast-growing evidence in literature for clinical applications of chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI), this prospective study aimed at applying amide proton transfer-weighted (APTw) CEST imaging in a clinical setting to assess its diagnostic potential in differentiation of intracranial tumors at 3 tesla (T). Methods. Using the asymmetry magnetization transfer ratio (MTRasym) analysis, CEST signals were quantitatively investigated in the tumor areas and in a similar sized region of the normal-appearing white matter (NAWM) on the contralateral hemisphere of 27 patients with intracranial tumors. Area under curve (AUC) analyses were used and results were compared to perfusion-weighted imaging (PWI). Results. Using APTw CEST, contrast-enhancing tumor areas showed significantly higher APTw CEST metrics than contralateral NAWM (AUC = 0.82; p < 0.01). In subgroup analyses of each tumor entity vs. NAWM, statistically significant effects were yielded for glioblastomas (AUC = 0.96; p < 0.01) and for meningiomas (AUC = 1.0; p < 0.01) but not for lymphomas as well as metastases (p > 0.05). PWI showed results comparable to APTw CEST in glioblastoma (p < 0.01). Conclusions. This prospective study confirmed the high diagnostic potential of APTw CEST imaging in a routine clinical setting to differentiate brain tumors.
Collapse
Affiliation(s)
- Julia P. Lingl
- Department of Radiology, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (J.P.L.); (A.W.); (S.Y.K.); (M.B.); (B.L.S.); (M.B.)
| | - Arthur Wunderlich
- Department of Radiology, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (J.P.L.); (A.W.); (S.Y.K.); (M.B.); (B.L.S.); (M.B.)
| | - Steffen Goerke
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (S.G.); (M.E.L.)
| | - Daniel Paech
- German Cancer Research Center (DKFZ), Division of Radiology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
- Department of Neuroradiology, Venusberg-Campus 1, Bonn University, 53127 Bonn, Germany
| | - Mark E. Ladd
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (S.G.); (M.E.L.)
- Faculty of Medicine, University of Heidelberg, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
- Faculty of Physics and Astronomy, University of Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
| | - Patrick Liebig
- Siemens Healthcare GmbH, Henkestraße 127, 91052 Erlangen, Germany;
| | - Andrej Pala
- Department of Neurosurgery, Bezirkskrankenhaus Guenzburg, Lindenallee 2, 89312 Guenzburg, Germany;
| | - Soung Yung Kim
- Department of Radiology, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (J.P.L.); (A.W.); (S.Y.K.); (M.B.); (B.L.S.); (M.B.)
- Section of Neuroradiology, Bezirkskrankenhaus Guenzburg, Lindenallee 2, 89312 Guenzburg, Germany
| | - Michael Braun
- Department of Radiology, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (J.P.L.); (A.W.); (S.Y.K.); (M.B.); (B.L.S.); (M.B.)
- Section of Neuroradiology, Bezirkskrankenhaus Guenzburg, Lindenallee 2, 89312 Guenzburg, Germany
| | - Bernd L. Schmitz
- Department of Radiology, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (J.P.L.); (A.W.); (S.Y.K.); (M.B.); (B.L.S.); (M.B.)
- Section of Neuroradiology, Bezirkskrankenhaus Guenzburg, Lindenallee 2, 89312 Guenzburg, Germany
| | - Meinrad Beer
- Department of Radiology, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (J.P.L.); (A.W.); (S.Y.K.); (M.B.); (B.L.S.); (M.B.)
| | - Johannes Rosskopf
- Department of Radiology, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (J.P.L.); (A.W.); (S.Y.K.); (M.B.); (B.L.S.); (M.B.)
- Section of Neuroradiology, Bezirkskrankenhaus Guenzburg, Lindenallee 2, 89312 Guenzburg, Germany
- Correspondence:
| |
Collapse
|
31
|
Zhang H, Zhou J, Peng Y. Amide Proton Transfer-Weighted MR Imaging of Pediatric Central Nervous System Diseases. Magn Reson Imaging Clin N Am 2021; 29:631-641. [PMID: 34717850 DOI: 10.1016/j.mric.2021.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Amide proton transfer-weighted (APTw) imaging is a molecular MR imaging technique that can detect the concentration of the amide protons in mobile cellular proteins and peptides or a pH change in vivo. Previous studies have indicated that APTw MR imaging can be used to detect malignant brain tumors, stroke, and other neurologic diseases, although the clinical application in pediatric patients remains limited. The authors briefly introduce the basic principles of APTw imaging. Then, they review early clinical applications of this approach to pediatric central nervous system diseases, including pediatric brain development, hypoxic-ischemic encephalopathy, intracranial infection, and brain tumors.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nan Li Shi Road, Xi Cheng District, Beijing, 100045, China
| | - Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Park 336, Baltimore, MD 21287, USA
| | - Yun Peng
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nan Li Shi Road, Xi Cheng District, Beijing, 100045, China.
| |
Collapse
|
32
|
Zhang N, Kang J, Wang H, Liu A, Miao Y, Ma X, Song Q, Zhang L, Wang J, Shen Z, Xu X. Differentiation of fibroadenomas versus malignant breast tumors utilizing three-dimensional amide proton transfer weighted magnetic resonance imaging. Clin Imaging 2021; 81:15-23. [PMID: 34597999 DOI: 10.1016/j.clinimag.2021.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To explore the value of amide proton transfer-weighted (APTw) magnetic resonance imaging (MRI) for differential diagnosis of fibroadenomas and malignant breast tumors. MATERIALS AND METHODS This prospective study enrolled 56 patients with suspected breast tumors and performed APTw imaging. Based on the histopathology results, patients were divided into group 1 with malignant breast tumors (n = 41) and group 2 with fibroadenomas (n = 15). The measured image parameters (APTw value, ADC value, type of Time of Intensity Curve, maximum tumor diameter in image) and the maximal diameter of the tumors measured from surgical resection were compared between the two groups, and the diagnostic performance based on these parameters was quantified with ROC curve. Spearman's correlation coefficient was used to analyze the association between APTw or ADC values and ER, PR, HER2, and Ki-67 expressions. RESULTS The intraclass correlation coefficients (ICC = 0.87 and 0.91) indicated a good inter-observer agreement of the measured APTw values. APTw values of malignant lesions were significantly higher than those of fibroadenomas (3.21 ± 1.04% vs 1.50 ± 0.54%, p < 0.001). Area under the curve (AUC) obtained from APTw imaging, DWI, DCE, APTw imaging+DWI, APTw imaging+DWI, and APTw imaging+DWI + DCE was 0.959, 0.897, 0.976, 0.997, and 1 respectively. The APTw value showed a negative correlation with ER expression (r = -0.357). CONCLUSION APTw imaging yielded similar diagnosis performance in discriminating fibroadenomas and malignant breast tumors when compared to the DCE and better than DWI imaging, and provided supplement information on tumor cell activity to DWI images. The APTw value showed correlations with some prognostic factors for breast cancer.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, No 222 zhongshan Road, Xigang district, Dalian, Liaoning 116011, PR China
| | - Jianyun Kang
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, No 222 zhongshan Road, Xigang district, Dalian, Liaoning 116011, PR China
| | - Huali Wang
- Department of Pathology, First Affiliated Hospital of Dalian Medical University, No 222 zhongshan Road, Xigang district, Dalian, Liaoning 116011, PR China
| | - Ailian Liu
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, No 222 zhongshan Road, Xigang district, Dalian, Liaoning 116011, PR China
| | - Yanwei Miao
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, No 222 zhongshan Road, Xigang district, Dalian, Liaoning 116011, PR China
| | - Xiaolu Ma
- Department of Clinical Laboratory, First Affiliated Hospital of Dalian Medical University, No 222 zhongshan Road, Xigang district, Dalian, Liaoning 116011, PR China
| | - Qingwei Song
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, No 222 zhongshan Road, Xigang district, Dalian, Liaoning 116011, PR China.
| | - Lina Zhang
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, No 222 zhongshan Road, Xigang district, Dalian, Liaoning 116011, PR China.
| | - Jiazheng Wang
- MSC Clinical & Technical Solutions, Philips Healthcare, 16 Tianze Road, Beijing, PR China.
| | - Zhiwei Shen
- MSC Clinical & Technical Solutions, Philips Healthcare, 16 Tianze Road, Beijing, PR China.
| | - Xiaofang Xu
- MSC Clinical & Technical Solutions, Philips Healthcare, 16 Tianze Road, Beijing, PR China.
| |
Collapse
|
33
|
Wei RL, Wei XT. Advanced Diagnosis of Glioma by Using Emerging Magnetic Resonance Sequences. Front Oncol 2021; 11:694498. [PMID: 34422648 PMCID: PMC8374052 DOI: 10.3389/fonc.2021.694498] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Glioma, the most common primary brain tumor in adults, can be difficult to discern radiologically from other brain lesions, which affects surgical planning and follow-up treatment. Recent advances in MRI demonstrate that preoperative diagnosis of glioma has stepped into molecular and algorithm-assisted levels. Specifically, the histology-based glioma classification is composed of multiple different molecular subtypes with distinct behavior, prognosis, and response to therapy, and now each aspect can be assessed by corresponding emerging MR sequences like amide proton transfer-weighted MRI, inflow-based vascular-space-occupancy MRI, and radiomics algorithm. As a result of this novel progress, the clinical practice of glioma has been updated. Accurate diagnosis of glioma at the molecular level can be achieved ahead of the operation to formulate a thorough plan including surgery radical level, shortened length of stay, flexible follow-up plan, timely therapy response feedback, and eventually benefit patients individually.
Collapse
Affiliation(s)
- Ruo-Lun Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin-Ting Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
34
|
Martín-Noguerol T, Mohan S, Santos-Armentia E, Cabrera-Zubizarreta A, Luna A. Advanced MRI assessment of non-enhancing peritumoral signal abnormality in brain lesions. Eur J Radiol 2021; 143:109900. [PMID: 34412007 DOI: 10.1016/j.ejrad.2021.109900] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/24/2021] [Accepted: 08/03/2021] [Indexed: 12/30/2022]
Abstract
Evaluation of Central Nervous System (CNS) focal lesions has been classically made focusing on the assessment solid or enhancing component. However, the assessment of solitary peripherally enhancing lesions where the differential diagnosis includes High-Grade Gliomas (HGG) and metastasis, is usually challenging. Several studies have tried to address the characteristics of peritumoral non-enhancing areas, for better characterization of these lesions. Peritumoral hyperintense T2/FLAIR signal abnormality predominantly contains infiltrating tumor cells in HGG whereas CNS metastasis induce pure vasogenic edema. In addition, the accurate determination of the real extension of HGG is critical for treatment selection and outcome. Conventional MRI sequences are limited in distinguishing infiltrating neoplasm from vasogenic edema. Advanced MRI sequences like Diffusion Weighted Imaging (DWI), Diffusion Tensor Imaging (DTI), Perfusion Weighted Imaging (PWI) and MR spectroscopy (MRS) have all been utilized for this aim with acceptable results. Other advanced MRI approaches, less explored for this task such as Arterial Spin Labelling (ASL), Diffusion Kurtosis Imaging (DKI), T2 relaxometry or Amide Proton Transfer (APT) are also showning promising results in this scenario. In this article, we will discuss the physiopathological basis of peritumoral T2/FLAIR signal abnormality and review potential applications of advanced MRI sequences for its evaluation.
Collapse
Affiliation(s)
| | - Suyash Mohan
- Division of Neuroradiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | - Antonio Luna
- MRI Unit, Radiology Department, HT Medica, Jaén, Spain.
| |
Collapse
|
35
|
Kulanthaivelu K, Jabeen S, Saini J, Raju S, Nalini A, Sadashiva N, Hegde S, Rolla NK, Saha I, M N, Vengalil S, Swaroop S, Rao S. Amide proton transfer imaging for differentiation of tuberculomas from high-grade gliomas: Preliminary experience. Neuroradiol J 2021; 34:440-448. [PMID: 33823712 DOI: 10.1177/19714009211002766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Tuberculomas can occasionally masquerade as high-grade gliomas (HGG). Evidence from magnetisation transfer (MT) imaging suggests that there is lower protein content in the tuberculoma microenvironment. Building on the principles of chemical exchange saturation transfer and MT, amide proton transfer (APT) imaging generates tissue contrast as a function of the mobile amide protons in tissue's native peptides and intracellular proteins. This study aimed to further the understanding of tuberculomas using APT and to compare it with HGG. METHOD Twenty-two patients (n = 8 tuberculoma; n = 14 HGG) were included in the study. APT was a 3D turbo spin-echo Dixon sequence with inbuilt B0 correction. A two-second, 2 μT saturation pulse alternating over transmit channels was applied at ±3.5 ppm around water resonance. The APT-weighted image (APTw) was computed as the MT ratio asymmetry (MTRasym) at 3.5 ppm. Mean MTRasym values in regions of interest (areas = 9 mm2; positioned in component with homogeneous enhancement/least apparent diffusion coefficient) were used for the analysis. RESULTS MTRasym values of tuberculomas (n = 14; 8 cases) ranged from 1.34% to 3.11% (M = 2.32 ± 0.50). HGG (n = 17;14 cases) showed MTRasym ranging from 2.40% to 5.70% (M = 4.32 ± 0.84). The inter-group difference in MTRasym was statistically significant (p < 0.001). APTw images in tuberculomas were notable for high MTRasym values in the perilesional oedematous-appearing parenchyma (compared to contralateral white matter; p < 0.001). CONCLUSION Tuberculomas demonstrate lower MTRasym ratios compared to HGG, reflective of a relative paucity of mobile amide protons in the ambient microenvironment. Elevated MTRasym values in perilesional parenchyma in tuberculomas are a unique observation that may be a clue to the inflammatory milieu.
Collapse
Affiliation(s)
- Karthik Kulanthaivelu
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, India
| | - Shumyla Jabeen
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, India
| | - Jitender Saini
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, India
| | - Sanita Raju
- Department of Neurology, National Institute of Mental Health and Neurosciences, India
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences, India
| | - Nishanth Sadashiva
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, India
| | | | | | | | - Netravathi M
- Department of Neurology, National Institute of Mental Health and Neurosciences, India
| | - Seena Vengalil
- Department of Neurology, National Institute of Mental Health and Neurosciences, India
| | - Saikrishna Swaroop
- Department of Neurology, National Institute of Mental Health and Neurosciences, India
| | - Shilpa Rao
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, India
| |
Collapse
|
36
|
Debnath A, Gupta RK, Reddy R, Singh A. Effect of offset-frequency step size and interpolation methods on chemical exchange saturation transfer MRI computation in human brain. NMR IN BIOMEDICINE 2021; 34:e4468. [PMID: 33543519 DOI: 10.1002/nbm.4468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Chemical exchange saturation transfer (CEST) MRI is a non-invasive molecular imaging technique with potential applications in pre-clinical and clinical studies. Applications of amide proton transfer-weighted (APT-w), glutamate-weighted (Glu-w) and creatine-weighted (Cr-w) CEST, among others, have been reported. In general, CEST data are acquired at multiple offset-frequencies. In reported studies, different offset-frequency step sizes and interpolation methods have been used during B0 inhomogeneity correction of data. The objective of the current study was to evaluate the effects of different step sizes and interpolation methods on CEST value computation. In the current study, simulation (Glu-w, Cr-w and APT-w) and experimental data from the brain were used. Experimental CEST data (Glu-w) were acquired from human volunteers at 7 T and brain tumor patients (APT-w) at 3 T. During B0 inhomogeneity correction, different interpolation methods (polynomial [degree-1, 2 and 3], cubic-Hermite, cubic-spline and smoothing-spline) were compared. CEST values were computed using asymmetry analysis. The effects of different step sizes and interpolation methods were evaluated using coefficient of variation (CV), normalized mean square error (nMSE) and coefficient of correlation parameters. Additionally, an optimum interpolation method for APT-w values was selected based upon fitting accuracy, T-test, receiver operating characteristic analysis, and its diagnostic performance in differentiating low-grade and high-grade tumors. CV and nMSE increase with an increase in step size irrespective of the interpolation method (except for cubic-Hermite and cubic-spline). The nMSE of Cr-w and Glu-w CEST values were least for polynomial (degree-2 and 3). The quality of Glu-w CEST maps became coarse with the increase in step size. There was a significant difference (P < .05) between low-grade and high-grade tumors using polynomial interpolation (degree-1, 2 and 3); however, linear interpolation outperforms other methods for APT-w data, providing the highest sensitivity and specificity. In conclusion, depending upon the saturation parameters and field strength, optimization of step size and interpolation should be carried out for different CEST metabolites/molecules. Glu-w, Cr-w and APT-w CEST data should be acquired with a step size of between 0.2 and 0.3 ppm. For B0 inhomogeneity correction, polynomial (degree-2) should be used for Glu-w and Cr-w CEST data at 7 T and linear interpolation should be used for APT-w data at 3 T for a limited frequency range.
Collapse
Affiliation(s)
- Ayan Debnath
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
- CMROI, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Ravinder Reddy
- CMROI, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anup Singh
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
- All India Institute of Medical Science, Delhi, India
| |
Collapse
|
37
|
Mamoune KE, Barantin L, Adriaensen H, Tillet Y. Application of Chemical Exchange Saturation Transfer (CEST) in neuroimaging. J Chem Neuroanat 2021; 114:101944. [PMID: 33716103 DOI: 10.1016/j.jchemneu.2021.101944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022]
Abstract
Since the early eighties MRI has become the most powerful technic for in-vivo imaging particularly in the field of brain research. This non-invasive method allows acute anatomical observations of the living brain similar to post-mortem dissected tissues. However, one of the main limitation of MRI is that it does not make possible the neurochemical identification of the tissues conversely to positron emission tomography scanner which can provide a specific molecular characterization of tissue, in spite of poor anatomical definition. To gain neurochemical information using MRI, new categories of contrast agents were developed from the beginning of the 2000's, particularly using the chemical-exchange saturation transfer (CEST) method. This method induces a significant change in the magnitude of the water proton signal and allows the detection of specific molecules within the tissues like sugars, amino acids, transmitters, and nucleosides. This short review presents several CEST contrast agents and their recent developments for in vivo detection of metabolites and neurotransmitters in the brain for research and clinical purposes.
Collapse
Affiliation(s)
- Kahina El Mamoune
- Physiologie de la Reproduction et des Comportements, UMR 085 INRAE, CNRS 7247, Université de Tours, IFCE, Centre INRAE Val de Loire, 37380 Nouzilly, France; Siemens Healthcare SAS, Saint Denis, France; SFR FED 4226, Université de Tours, 2 Bd Tonnellé, 37032 Tours, France
| | - Laurent Barantin
- iBrain, UMR 1253 INSERM, Université de Tours, 10 Bd Tonnellé, 37032 Tours, France; SFR FED 4226, Université de Tours, 2 Bd Tonnellé, 37032 Tours, France
| | - Hans Adriaensen
- Physiologie de la Reproduction et des Comportements, UMR 085 INRAE, CNRS 7247, Université de Tours, IFCE, Centre INRAE Val de Loire, 37380 Nouzilly, France; CIRE UMR 085 INRAE, CNRS 7247, Université de Tours, IFCE, Centre INRAE Val de Loire, 37380 Nouzilly, France; SFR FED 4226, Université de Tours, 2 Bd Tonnellé, 37032 Tours, France
| | - Yves Tillet
- Physiologie de la Reproduction et des Comportements, UMR 085 INRAE, CNRS 7247, Université de Tours, IFCE, Centre INRAE Val de Loire, 37380 Nouzilly, France; SFR FED 4226, Université de Tours, 2 Bd Tonnellé, 37032 Tours, France.
| |
Collapse
|
38
|
Durmo F, Rydhög A, Testud F, Lätt J, Schmitt B, Rydelius A, Englund E, Bengzon J, van Zijl P, Knutsson L, Sundgren PC. Assessment of Amide proton transfer weighted (APTw) MRI for pre-surgical prediction of final diagnosis in gliomas. PLoS One 2020; 15:e0244003. [PMID: 33373375 PMCID: PMC7771875 DOI: 10.1371/journal.pone.0244003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 12/01/2020] [Indexed: 02/02/2023] Open
Abstract
PURPOSE Radiological assessment of primary brain neoplasms, both high (HGG) and low grade tumors (LGG), based on contrast-enhancement alone can be inaccurate. We evaluated the radiological value of amide proton transfer weighted (APTw) MRI as an imaging complement for pre-surgical radiological diagnosis of brain tumors. METHODS Twenty-six patients were evaluated prospectively; (22 males, 4 females, mean age 55 years, range 26-76 years) underwent MRI at 3T using T1-MPRAGE pre- and post-contrast administration, conventional T2w, FLAIR, and APTw imaging pre-surgically for suspected primary/secondary brain tumor. Assessment of the additional value of APTw imaging compared to conventional MRI for correct pre-surgical brain tumor diagnosis. The initial radiological pre-operative diagnosis was based on the conventional contrast-enhanced MR images. The range, minimum, maximum, and mean APTw signals were evaluated. Conventional normality testing was performed; with boxplots/outliers/skewness/kurtosis and a Shapiro-Wilk's test. Mann-Whitney U for analysis of significance for mean/max/min and range APTw signal. A logistic regression model was constructed for mean, max, range and Receiver Operating Characteristic (ROC) curves calculated for individual and combined APTw signals. RESULTS Conventional radiological diagnosis prior to surgery/biopsy was HGG (8 patients), LGG (12 patients), and metastasis (6 patients). Using the mean and maximum: APTw signal would have changed the pre-operative evaluation the diagnosis in 8 of 22 patients (two LGGs excluded, two METs excluded). Using a cut off value of >2.0% for mean APTw signal integral, 4 of the 12 radiologically suspected LGG would have been diagnosed as high grade glioma, which was confirmed by histopathological diagnosis. APTw mean of >2.0% and max >2.48% outperformed four separate clinical radiological assessments of tumor type, P-values = .004 and = .002, respectively. CONCLUSIONS Using APTw-images as part of the daily clinical pre-operative radiological evaluation may improve diagnostic precision in differentiating LGGs from HGGs, with potential improvement of patient management and treatment.
Collapse
Affiliation(s)
- Faris Durmo
- Division of Radiology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Anna Rydhög
- Center for Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | | | - Jimmy Lätt
- Center for Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | | | - Anna Rydelius
- Division of Neurology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Elisabet Englund
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Johan Bengzon
- Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Peter van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States of America
| | - Linda Knutsson
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Pia C. Sundgren
- Division of Radiology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Center for Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
- LBIC, Lund University Bioimaging Center, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
39
|
Sartoretti E, Sartoretti T, Gutzwiller A, Karrer U, Binkert C, Najafi A, Czell D, Beyeler S, Sartoretti-Schefer S. Advanced multimodality MR imaging of a cerebral nocardiosis abscess in an immunocompetent patient with a focus on Amide Proton Transfer weighted imaging. BJR Case Rep 2020; 6:20190122. [PMID: 33029379 PMCID: PMC7527004 DOI: 10.1259/bjrcr.20190122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/03/2020] [Accepted: 02/17/2020] [Indexed: 01/27/2023] Open
Abstract
Cerebral nocardiosis abscess is a very rare entity in an immunocompetent patient. In this case report multiparametric and multimodality MR imaging characteristics of a pyogenic brain abscess caused by Nocardia Farcinica are discussed with a specific focus on amide proton transfer weighted imaging as a modern non-invasive, molecular MR imaging method which detects endogenous mobile protein and peptide concentration and tissue pH changes in pathologic brain lesions. The imaging characteristics are reviewed and discussed in respect to possible differential diagnoses, especially malignant tumorous lesions.
Collapse
Affiliation(s)
- Elisabeth Sartoretti
- Institut für Radiologie, Kantonsspital Winterthur, Brauerstrasse 15, 8401 Winterthur, Switzerland
| | - Thomas Sartoretti
- Institut für Radiologie, Kantonsspital Winterthur, Brauerstrasse 15, 8401 Winterthur, Switzerland
| | - Annina Gutzwiller
- Klinik für Innere Medizin, Kantonsspital Winterthur, Brauerstrasse 15, 8401 Winterthur, Switzerland
| | - Urs Karrer
- Klinik für Innere Medizin, Kantonsspital Winterthur, Brauerstrasse 15, 8401 Winterthur, Switzerland
| | - Christoph Binkert
- Institut für Radiologie, Kantonsspital Winterthur, Brauerstrasse 15, 8401 Winterthur, Switzerland
| | - Arash Najafi
- Institut für Radiologie, Kantonsspital Winterthur, Brauerstrasse 15, 8401 Winterthur, Switzerland
| | - David Czell
- Klinik für Innere Medizin, Zuger Kantonsspital, Landhausstrasse 11, 6340 Baar, Switzerland
| | - Simon Beyeler
- Institut für Radiologie, Kantonsspital Winterthur, Brauerstrasse 15, 8401 Winterthur, Switzerland
| | | |
Collapse
|
40
|
Amide Proton Transfer-Weighted (APTw) Imaging of Intracranial Infection in Children: Initial Experience and Comparison with Gadolinium-Enhanced T1-Weighted Imaging. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6418343. [PMID: 32509865 PMCID: PMC7251435 DOI: 10.1155/2020/6418343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/21/2020] [Accepted: 04/25/2020] [Indexed: 12/05/2022]
Abstract
Purpose To evaluate the performance of amide proton transfer-weighted (APTw) imaging against the reference standard of gadolinium-enhanced T1-weighted imaging (Gd-T1w) in children with intracranial infection. Materials and Methods Twenty-eight pediatric patients (15 males and 13 females; age range 1-163 months) with intracranial infection were recruited in this study. 2D APTw imaging and conventional MR sequences were conducted using a 3 T MRI scanner. Kappa (κ) statistics and the McNemar test were performed to determine whether the hyperintensity on APTw was related to the enhancement on Gd-T1w. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of APTw imaging to predict lesion enhancement were calculated. Result In twelve patients with brain abscesses, the enhancing rim of the abscesses on the Gd-T1w images was consistently hyperintense on the APTw images. In eight patients with viral encephalitis, three showed slight spotted gadolinium enhancement, while the APTw image also showed a slight spotted high signal. Five of these patients showed no enhancement on Gd-T1w and isointensity on the APTw image. In eleven patients with meningitis, increased APTw signal intensities were clearly visible in gadolinium-enhancing meninges. Sixty infectious lesions (71%) showed enhancement on Gd-T1w images. The sensitivity and specificity of APTw were 93.3% (56/60) and 91.7% (22/24). APTw demonstrated excellent agreement (κ = 0.83) with Gd-T1w, with no significant difference (P = 0.69) in detection of infectious lesions. Conclusions These initial data show that APTw MRI is a noninvasive technique for the detection and characterization of intracranial infectious lesions. APTw MRI enabled similar detection of infectious lesions to Gd-T1w and may provide an injection-free means of evaluation of intracranial infection.
Collapse
|
41
|
Debnath A, Gupta RK, Singh A. Evaluating the Role of Amide Proton Transfer (APT)-Weighted Contrast, Optimized for Normalization and Region of Interest Selection, in Differentiation of Neoplastic and Infective Mass Lesions on 3T MRI. Mol Imaging Biol 2020; 22:384-396. [PMID: 31228076 PMCID: PMC7109008 DOI: 10.1007/s11307-019-01382-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE To evaluate the role of amide proton transfer-weighted (APT-w) magnetic resonance imaging (MRI) in differentiating neoplastic and infective mass lesions using different contrast normalizations, region of interest (ROI) selection, and histogram analysis. PROCEDURES Retrospective study included 32 treatment-naive patients having intracranial mass lesions (ICMLs): low-grade glioma (LGG) = 14, high-grade glioma (HGG) = 10, and infective mass lesions = 8. APT-w MRI images were acquired along with conventional MRI images at 3 T. APT-w contrast, corrected for B0-field inhomogeneity, was computed and optimized with respect to different types of normalizations. Different ROIs on lesion region were selected followed by ROI analysis and histogram analysis. Statistical analysis was performed using Shapiro-Wilk's test, t tests, ANOVA with Tukey's post hoc test, and receiver operation characteristic (ROC) analysis. RESULTS ICMLs showed significantly (p < 0.01) higher APT-w contrast in lesion compared with contralateral side. There was a substantial overlap between mean APT-w contrast of neoplastic and infective mass lesions as well as among different groups of ICMLs irrespective of ROI selection and normalizations. APT-w contrast (using type 4 normalization: normalized with reference signal at negative offset frequency and APT-w contrast in normal-appearing white matter) reduced variability of APT-w contrast across different subjects, and overlap was less compared with other types of normalizations. There was a significant difference (p < 0.05) between neoplastic and infective mass lesions using t test for different histogram parameters of type 4 normalized APT-w contrast. ANOVA with post hoc showed significant difference (p < 0.05) for different histogram parameters of APT-w contrast (Type 4 normalization) between LGG and HGG, LGG, and infective mass lesion. Histogram parameters such as standard deviation, mean of top percentiles, and median provided improved differentiation between neoplastic and infective mass lesions compared with mean APT-w contrast. A greater number of histogram parameters of type 4 normalized APT-w contrast corresponding to active lesion region can significantly differentiate between ICMLs than other types of normalizations and ROIs. CONCLUSIONS APT-w contrast using type 4 normalization and active lesion region (ROI-2) should be used for studying APT. APT-MRI should be combined with other MRI techniques to further improve the differential diagnosis of ICMLs.
Collapse
Affiliation(s)
- Ayan Debnath
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Block II, Room No. 299, New Delhi, 110016, India
| | | | - Anup Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Block II, Room No. 299, New Delhi, 110016, India.
- Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
42
|
Han Y, Wang W, Yang Y, Sun YZ, Xiao G, Tian Q, Zhang J, Cui GB, Yan LF. Amide Proton Transfer Imaging in Predicting Isocitrate Dehydrogenase 1 Mutation Status of Grade II/III Gliomas Based on Support Vector Machine. Front Neurosci 2020; 14:144. [PMID: 32153362 PMCID: PMC7047712 DOI: 10.3389/fnins.2020.00144] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background To compare the efficacies of univariate and radiomics analyses of amide proton transfer weighted (APTW) imaging in predicting isocitrate dehydrogenase 1 (IDH1) mutation of grade II/III gliomas. Methods Fifty-nine grade II/III glioma patients with known IDH1 mutation status were prospectively included (IDH1 wild type, 16; IDH1 mutation, 43). A total of 1044 quantitative radiomics features were extracted from APTW images. The efficacies of univariate and radiomics analyses in predicting IDH1 mutation were compared. Feature values were compared between two groups with independent t-test and receiver operating characteristic (ROC) analysis was applied to evaluate the predicting efficacy of each feature. Cases were randomly assigned to either the training (n = 49) or test cohort (n = 10) for the radiomics analysis. Support vector machine with recursive feature elimination (SVM-RFE) was adopted to select the optimal feature subset. The adverse impact of the imbalance dataset in the training cohort was solved by synthetic minority oversampling technique (SMOTE). Subsequently, the performance of SVM model was assessed on both training and test cohort. Results As for univariate analysis, 18 features were significantly different between IDH1 wild-type and mutant groups (P < 0.05). Among these parameters, High Gray Level Run Emphasis All Direction offset 8 SD achieved the biggest area under the curve (AUC) (0.769) with the accuracy of 0.799. As for radiomics analysis, SVM model was established using 19 features selected with SVM-RFE. The AUC and accuracy for IDH1 mutation on training set were 0.892 and 0.952, while on the testing set were 0.7 and 0.84, respectively. Conclusion Radiomics strategy based on APT image features is potentially useful for preoperative estimating IDH1 mutation status.
Collapse
Affiliation(s)
- Yu Han
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wen Wang
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yang Yang
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Ying-Zhi Sun
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Gang Xiao
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qiang Tian
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jin Zhang
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Guang-Bin Cui
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lin-Feng Yan
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
43
|
Consolino L, Anemone A, Capozza M, Carella A, Irrera P, Corrado A, Dhakan C, Bracesco M, Longo DL. Non-invasive Investigation of Tumor Metabolism and Acidosis by MRI-CEST Imaging. Front Oncol 2020; 10:161. [PMID: 32133295 PMCID: PMC7040491 DOI: 10.3389/fonc.2020.00161] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/29/2020] [Indexed: 12/15/2022] Open
Abstract
Altered metabolism is considered a core hallmark of cancer. By monitoring in vivo metabolites changes or characterizing the tumor microenvironment, non-invasive imaging approaches play a fundamental role in elucidating several aspects of tumor biology. Within the magnetic resonance imaging (MRI) modality, the chemical exchange saturation transfer (CEST) approach has emerged as a new technique that provides high spatial resolution and sensitivity for in vivo imaging of tumor metabolism and acidosis. This mini-review describes CEST-based methods to non-invasively investigate tumor metabolism and important metabolites involved, such as glucose and lactate, as well as measurement of tumor acidosis. Approaches that have been exploited to assess response to anticancer therapies will also be reported for each specific technique.
Collapse
Affiliation(s)
- Lorena Consolino
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany.,Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center, University of Torino, Turin, Italy
| | - Annasofia Anemone
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center, University of Torino, Turin, Italy
| | - Martina Capozza
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center, University of Torino, Turin, Italy
| | - Antonella Carella
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Turin, Italy
| | - Pietro Irrera
- University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessia Corrado
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Turin, Italy
| | - Chetan Dhakan
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Turin, Italy.,University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Martina Bracesco
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center, University of Torino, Turin, Italy
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Turin, Italy
| |
Collapse
|
44
|
Okuchi S, Hammam A, Golay X, Kim M, Thust S. Endogenous Chemical Exchange Saturation Transfer MRI for the Diagnosis and Therapy Response Assessment of Brain Tumors: A Systematic Review. Radiol Imaging Cancer 2020; 2:e190036. [PMID: 33778693 PMCID: PMC7983695 DOI: 10.1148/rycan.2020190036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/13/2019] [Accepted: 10/21/2019] [Indexed: 01/09/2023]
Abstract
Purpose To generate a narrative synthesis of published data on the use of endogenous chemical exchange saturation transfer (CEST) MRI in brain tumors. Materials and Methods A systematic database search (PubMed, Ovid Embase, Cochrane Library) was used to collate eligible studies. Two researchers independently screened publications according to predefined exclusion and inclusion criteria, followed by comprehensive data extraction. All included studies were subjected to a bias risk assessment using the Quality Assessment of Diagnostic Accuracy Studies tool. Results The electronic database search identified 430 studies, of which 36 fulfilled the inclusion criteria. The final selection of included studies was categorized into five groups as follows: grading gliomas, 19 studies (area under the receiver operating characteristic curve [AUC], 0.500-1.000); predicting molecular subtypes of gliomas, five studies (AUC, 0.610-0.920); distinction of different brain tumor types, seven studies (AUC, 0.707-0.905); therapy response assessment, three studies (AUC not given); and differentiating recurrence from treatment-related changes, five studies (AUC, 0.880-0.980). A high bias risk was observed in a substantial proportion of studies. Conclusion Endogenous CEST MRI offers valuable, potentially unique information in brain tumors, but its diagnostic accuracy remains incompletely known. Further research is required to assess the method's role in support of molecular genetic diagnosis, to investigate its use in the posttreatment phase, and to compare techniques with a view to standardization.Keywords: Brain/Brain Stem, MR-Imaging, Neuro-OncologySupplemental material is available for this article.© RSNA, 2020.
Collapse
Affiliation(s)
- Sachi Okuchi
- From the Department of Brain Repair and Rehabilitation, University College London, Institute of Neurology, London, England (S.O., A.H., X.G., M.K., S.T.); Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan (S.O.); and Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, England (S.T.)
| | - Ahmed Hammam
- From the Department of Brain Repair and Rehabilitation, University College London, Institute of Neurology, London, England (S.O., A.H., X.G., M.K., S.T.); Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan (S.O.); and Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, England (S.T.)
| | - Xavier Golay
- From the Department of Brain Repair and Rehabilitation, University College London, Institute of Neurology, London, England (S.O., A.H., X.G., M.K., S.T.); Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan (S.O.); and Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, England (S.T.)
| | - Mina Kim
- From the Department of Brain Repair and Rehabilitation, University College London, Institute of Neurology, London, England (S.O., A.H., X.G., M.K., S.T.); Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan (S.O.); and Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, England (S.T.)
| | - Stefanie Thust
- From the Department of Brain Repair and Rehabilitation, University College London, Institute of Neurology, London, England (S.O., A.H., X.G., M.K., S.T.); Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan (S.O.); and Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, England (S.T.)
| |
Collapse
|
45
|
Heo HY, Xu X, Jiang S, Zhao Y, Keupp J, Redmond KJ, Laterra J, van Zijl PC, Zhou J. Prospective acceleration of parallel RF transmission-based 3D chemical exchange saturation transfer imaging with compressed sensing. Magn Reson Med 2019; 82:1812-1821. [PMID: 31209938 PMCID: PMC6660350 DOI: 10.1002/mrm.27875] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/07/2019] [Accepted: 05/30/2019] [Indexed: 12/26/2022]
Abstract
PURPOSE To develop prospectively accelerated 3D CEST imaging using compressed sensing (CS), combined with a saturation scheme based on time-interleaved parallel transmission. METHODS A variable density pseudo-random sampling pattern with a centric elliptical k-space ordering was used for CS acceleration in 3D. Retrospective CS studies were performed with CEST phantoms to test the reconstruction scheme. Prospectively CS-accelerated 3D-CEST images were acquired in 10 healthy volunteers and 6 brain tumor patients with an acceleration factor (RCS ) of 4 and compared with conventional SENSE reconstructed images. Amide proton transfer weighted (APTw) signals under varied RF saturation powers were compared with varied acceleration factors. RESULTS The APTw signals obtained from the CS with acceleration factor of 4 were well-preserved as compared with the reference image (SENSE R = 2) both in retrospective phantom and prospective healthy volunteer studies. In the patient study, the APTw signals were significantly higher in the tumor region (gadolinium [Gd]-enhancing tumor core) than in the normal tissue (p < .001). There was no significant APTw difference between the CS-accelerated images and the reference image. The scan time of CS-accelerated 3D APTw imaging was dramatically reduced to 2:10 minutes (in-plane spatial resolution of 1.8 × 1.8 mm2 ; 15 slices with 4-mm slice thickness) as compared with SENSE (4:07 minutes). CONCLUSION Compressed sensing acceleration was successfully extended to 3D-CEST imaging without compromising CEST image quality and quantification. The CS-based CEST imaging can easily be integrated into clinical protocols and would be beneficial for a wide range of applications.
Collapse
Affiliation(s)
- Hye-Young Heo
- Divison of MR Research, Department of Radiology, Johns
Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging,
Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Xiang Xu
- Divison of MR Research, Department of Radiology, Johns
Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging,
Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Shanshan Jiang
- Divison of MR Research, Department of Radiology, Johns
Hopkins University, Baltimore, Maryland, USA
| | | | | | - Kristin J. Redmond
- Department of Radiation Oncology and Molecular Radiation
Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - John Laterra
- F.M. Kirby Research Center for Functional Brain Imaging,
Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University,
Baltimore, Maryland, USA
| | - Peter C.M. van Zijl
- Divison of MR Research, Department of Radiology, Johns
Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging,
Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Jinyuan Zhou
- Divison of MR Research, Department of Radiology, Johns
Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging,
Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
46
|
Sartoretti T, Sartoretti E, Wyss M, Schwenk Á, Najafi A, Binkert C, Reischauer C, Zhou J, Jiang S, Becker AS, Sartoretti-Schefer S. Amide Proton Transfer Contrast Distribution in Different Brain Regions in Young Healthy Subjects. Front Neurosci 2019; 13:520. [PMID: 31178687 PMCID: PMC6538817 DOI: 10.3389/fnins.2019.00520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022] Open
Abstract
Objectives To define normal signal intensity values of amide proton transfer-weighted (APTw) magnetic resonance (MR) imaging in different brain regions. Materials and Methods Twenty healthy subjects (9 females, mean age 29 years, range 19 - 37 years) underwent MR imaging at 3 Tesla. 3D APTw (RF saturation B1,rms = 2 μT, duration 2 s, 100% duty cycle) and 2D T2-weighted turbo spin echo (TSE) images were acquired. Postprocessing (image fusion, ROI measurements of APTw intensity values in 22 different brain regions) was performed and controlled by two independent neuroradiologists. Values were measured separately for each brain hemisphere. A subject was scanned both in prone and supine position to investigate differences between hemispheres. A mixed model on a 5% significance level was used to assess the effect of gender, brain region and side on APTw intensity values. Results Mean APTw intensity values in the hippocampus and amygdala varied between 1.13 and 1.57%, in the deep subcortical nuclei (putamen, globus pallidus, head of caudate nucleus, thalamus, red nucleus, substantia nigra) between 0.73 and 1.84%, in the frontal, occipital and parietal cortex between 0.56 and 1.03%; in the insular cortex between 1.11 and 1.15%, in the temporal cortex between 1.22 and 1.37%, in the frontal, occipital and parietal white matter between 0.32 and 0.54% and in the temporal white matter between 0.83 and 0.89%. APTw intensity values were significantly impacted both by brain region (p < 0.001) and by side (p < 0.001), whereby overall values on the left side were higher than on the right side (1.13 vs. 0.9%). Gender did not significantly impact APTw intensity values (p = 0.24). APTw intensity values between the left and the right side were partially reversed after changing the position of one subject from supine to prone. Conclusion We determined normal baseline APTw intensity values in different anatomical localizations in healthy subjects. APTw intensity values differed both between anatomical regions and between left and right brain hemisphere.
Collapse
Affiliation(s)
- Thomas Sartoretti
- Institute of Radiology, Cantonal Hospital Winterthur, Winterthur, Switzerland.,Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Elisabeth Sartoretti
- Institute of Radiology, Cantonal Hospital Winterthur, Winterthur, Switzerland.,Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael Wyss
- Institute of Radiology, Cantonal Hospital Winterthur, Winterthur, Switzerland.,Philips Health Systems, Zurich, Switzerland
| | - Árpád Schwenk
- Institute of Radiology, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | - Arash Najafi
- Institute of Radiology, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | - Christoph Binkert
- Institute of Radiology, Cantonal Hospital Winterthur, Winterthur, Switzerland.,Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Carolin Reischauer
- Institute of Radiology, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | - Jinyuan Zhou
- Department of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, MD, United States
| | - Shanshan Jiang
- Department of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, MD, United States
| | - Anton S Becker
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sabine Sartoretti-Schefer
- Institute of Radiology, Cantonal Hospital Winterthur, Winterthur, Switzerland.,Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
47
|
Meng N, Wang J, Sun J, Liu W, Wang X, Yan M, Dwivedi A, Zheng D, Wang K, Han D. Using amide proton transfer to identify cervical squamous carcinoma/adenocarcinoma and evaluate its differentiation grade. Magn Reson Imaging 2019; 61:9-15. [PMID: 31071471 DOI: 10.1016/j.mri.2019.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/28/2019] [Accepted: 05/04/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE To explore the possibility of using amide proton transfer-weighted imaging (APTWI) for the identification and diagnosis of cervical squamous carcinoma (CSC), cervical adenocarcinoma (CA) and different levels of CSC. MATERIALS AND METHODS Seventy-six patients with newly diagnosed uterine cervical cancer (UCC) were studied prior to treatment, including 20 with poorly differentiated (Grade 3) CSC, 23 with moderately differentiated (Grade 2) CSC, 17 with well-differentiated (Grade 1) CSC, and 16 with CA (13 with poorly differentiated (Grade 3) CA and 3 with moderately differentiated (Grade 2) CA). Differences in the magnetization transfer ratio at 3.5 ppm (MTRasym (3.5 ppm)) were identified between CSC and CA and between high-level (Grade 3) CSC and low-level (Grade 2 and Grade 1) CSC, as well as among all three grades of CSC differentiation. Receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic thresholds and performance of the parameters. Spearman correlation analysis was used to examine the correlation between the MTRasym (3.5 ppm) and histological grade. RESULTS The MTRasym (3.5 ppm) in CA was higher than that in CSC (P = 0.001). The MTRasym (3.5 ppm) in high-level CSC was higher than that in low-level CSC (P = 0.001). The MTRasym (3.5 ppm) was positively correlated with the grade of CSC differentiation (r = 0.498, P = 0.001). The MTRasym (3.5 ppm) in Grade 3 CSC was higher than that in Grade 2 and Grade 1 CSC (P = 0.02/0.01). No significant difference in the MTRasym (3.5 ppm) was found between Grade 2 CSC and Grade 1 CSC (P = 0.173). The area under the ROC curve (AUC) for the MTRasym (3.5 ppm) in distinguishing CSC and CA was 0.779, with a cut-off, sensitivity, and specificity of 2.97%, 60.0% and 82.5%, respectively. The AUC for distinguishing high-/low-level CSC was 0.756, with a cut-off, sensitivity, and specificity of 3.29%, 68.8% and 83.3%, respectively. CONCLUSION APTWI may be a useful technique for the identification and diagnosis of CSC, CA and different levels of CSC, which may have an important impact on clinical strategies for treating patients with UCC.
Collapse
Affiliation(s)
- Nan Meng
- Department of MR, the First Affiliated Hospital, Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, PR China
| | - Jing Wang
- Department of MR, the First Affiliated Hospital, Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, PR China
| | - Jing Sun
- Department of Pediatrics, Zhengzhou Central Hospital, Zhengzhou University, 195 Tongbai Road, Zhengzhou 450000, PR China
| | - Wenling Liu
- Department of MR, the First Affiliated Hospital, Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, PR China
| | - Xuejia Wang
- Department of MR, the First Affiliated Hospital, Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, PR China
| | - Minghuan Yan
- Department of MR, the First Affiliated Hospital, Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, PR China
| | - Akshay Dwivedi
- Department of MR, the First Affiliated Hospital, Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, PR China
| | - Dandan Zheng
- MR Research China, GE Healthcare, Beijing 100000, PR China
| | - Kaiyu Wang
- MR Research China, GE Healthcare, Beijing 100000, PR China.
| | - Dongming Han
- Department of MR, the First Affiliated Hospital, Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, PR China.
| |
Collapse
|
48
|
Yu H, Wen X, Wu P, Chen Y, Zou T, Wang X, Jiang S, Zhou J, Wen Z. Can amide proton transfer-weighted imaging differentiate tumor grade and predict Ki-67 proliferation status of meningioma? Eur Radiol 2019; 29:5298-5306. [PMID: 30887206 DOI: 10.1007/s00330-019-06115-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/15/2019] [Accepted: 02/15/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVES To determine the utility of the amide proton transfer-weighted MR imaging in differentiating the WHO grade and predict proliferative activity of meningioma. METHODS Fifty-three patients with WHO grade I meningiomas and 26 patients with WHO grade II meningiomas underwent conventional and APT-weighted sequences on a 3.0 Tesla MR before clinical intervention. The APT-weighted (APTw) parameters in the solid tumor region were obtained and compared between two grades using the t test; the receiver operating characteristic (ROC) curve was used to assess the best parameter for predicting the grade of meningiomas. Pearson's correlation coefficient was calculated between the APTwmax and Ki-67 labeling index in meningiomas. RESULTS The APTwmax and APTwmean values were not significantly different between WHO grade I and grade II meningiomas (p = 0.103 and p = 0.318). The APTwmin value was higher and the APTwmax-min value was lower in WHO grade II meningiomas than in WHO grade I tumors (p = 0.027 and p = 0.019). But the APTwmin was higher and the APTwmax-min was lower in microcystic meningiomas than in WHO grade II meningiomas (p = 0.001 and p = 0.006). The APTwmin combined with APTwmax-min showed the best diagnostic performance in predicting the grade of meningiomas with an AUC of 0.772. The APTwmax value was positively correlated with Ki-67 labeling index (r = 0.817, p < 0.001) in meningiomas; the regression equation for the Ki-67 labeling index (%) (Y) and APTwmax (%) (X) was Y = 4.9 × X - 12.4 (R2 = 0.667, p < 0.001). CONCLUSION As a noninvasive imaging method, the ability of APTw-MR imaging in differentiating the grade of meningiomas is limited, but the technology can be used to predict the proliferative activity of meningioma. KEY POINTS • The APTw min value was higher and the APTw max-min value was lower in WHO grade II meningioma than in grade I tumors. • The APTw min value was higher and the APTw max-min value was lower in microcystic meningiomas than in WHO grade II meningiomas. • The APTw max value was positively correlated with meningioma proliferation index.
Collapse
Affiliation(s)
- Hao Yu
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining Medical University, Guhuai Road No. 89, Rencheng District, Jining, 272029, Shandong, China.,Department of Radiology, Zhujiang Hospital, Southern Medical University, Gongye Road M No. 253, Haizhu District, Guangzhou, 510282, Guangdong, China
| | - Xinrui Wen
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Gongye Road M No. 253, Haizhu District, Guangzhou, 510282, Guangdong, China
| | - Pingping Wu
- Department of Clinical Laboratory, Jining NO. 1 People's Hospital, 6 Jiankang Road, Jining, 272011, China
| | - Yueqin Chen
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining Medical University, Guhuai Road No. 89, Rencheng District, Jining, 272029, Shandong, China
| | - Tianyu Zou
- Department of Radiology, Weihai Municipal Hospital, Heping Road M No.70, Weihai, 264200, Shandong, China
| | - Xianlong Wang
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Gongye Road M No. 253, Haizhu District, Guangzhou, 510282, Guangdong, China
| | - Shanshan Jiang
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Gongye Road M No. 253, Haizhu District, Guangzhou, 510282, Guangdong, China.,Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, 600N. Wolfe Street, Park 336, Baltimore, MD, 21287, USA
| | - Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, 600N. Wolfe Street, Park 336, Baltimore, MD, 21287, USA
| | - Zhibo Wen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Gongye Road M No. 253, Haizhu District, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
49
|
He Y, Li Y, Lin C, Qi Y, Wang X, Zhou H, Yang J, Xiang Y, Xue H, Jin Z. Three‐dimensional turbo‐spin‐echo amide proton transfer‐weighted mri for cervical cancer: A preliminary study. J Magn Reson Imaging 2019; 50:1318-1325. [DOI: 10.1002/jmri.26710] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/24/2022] Open
Affiliation(s)
- Yong‐Lan He
- Department of Radiology, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences Beijing PR China
| | - Yuan Li
- Department of OB&GYN, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences Beijing PR China
| | - Cheng‐Yu Lin
- Department of Radiology, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences Beijing PR China
| | - Ya‐Fei Qi
- Department of Radiology, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences Beijing PR China
| | | | - Hai‐Long Zhou
- Department of Radiology, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences Beijing PR China
| | - Jun‐Jun Yang
- Department of OB&GYN, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences Beijing PR China
| | - Yang Xiang
- Department of OB&GYN, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences Beijing PR China
| | - Hua‐Dan Xue
- Department of Radiology, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences Beijing PR China
| | - Zheng‐Yu Jin
- Department of Radiology, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences Beijing PR China
| |
Collapse
|
50
|
Zhao J, Huang S, Xie H, Li W. An evidence-based approach to evaluate the accuracy of amide proton transfer-weighted MRI in characterization of gliomas. Medicine (Baltimore) 2019; 98:e14768. [PMID: 30855481 PMCID: PMC6417527 DOI: 10.1097/md.0000000000014768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUD To perform a meta-analysis to evaluate the diagnostic accuracy of the amide proton transfer (APT) technique in differentiating high-grade gliomas (HGGs) from low grade gliomas (LGGs). METHODS Medical literature databases were searched for studies that evaluated the diagnostic accuracy of APT in patients suspected of brain tumor who underwent APT MRI and surgery. Only English language studies and published before September 2018 were considered to be included in this project. Homogeneity was assessed by the inconsistency index. Mean difference (MD) at 95% confidence interval (CI) of all parameters derived from APT was calculated. Publication bias was explored by Egger's funnel plot. RESULTS Six eligible studies were included in the meta-analysis, comprising 144 HGGs and 122 LGGs. The APT-related parameter signal intensity (SI) was significantly higher in the HGG than the LGG (WMD = 0.86 (0.61-1.1), P < .0001); A significant difference was also found between grade II and grade III (WMD = 0.6 (0.4-0.8), P < .0001), and between grade II and grade IV (WMD = 1.07 (0.65-1.49), P < .0001). CONCLUSIONS APT imaging may be a useful imaging biomarker for discriminating between LGGs and HGGs. However, large randomized control trials (RCT) were necessary to evaluate its clinical value.
Collapse
Affiliation(s)
| | - Songtao Huang
- Department of Radiology, Guang’an People's Hospital, Sichuan
| | - Huan Xie
- Department of Radiology, Guang’an People's Hospital, Sichuan
| | - Wenfei Li
- Department of Radiology, First Hospital of Qinhuangdao, Hebei, China
| |
Collapse
|