1
|
Chen J, Liu S, Lin Y, Hu W, Shi H, Liao N, Zhou M, Gao W, Chen Y, Shi P. The Quality and Accuracy of Radiomics Model in Diagnosing Osteoporosis: A Systematic Review and Meta-analysis. Acad Radiol 2025; 32:2863-2875. [PMID: 39701845 DOI: 10.1016/j.acra.2024.11.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/05/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024]
Abstract
RATIONALE AND OBJECTIVES The purpose of this study is to conduct a meta-analysis to evaluate the diagnostic performance of current radiomics models for diagnosing osteoporosis, as well as to assess the methodology and reporting quality of these radiomics studies. METHODS According to PRISMA guidelines, four databases including MEDLINE, Web of Science, Embase and the Cochrane Library were searched systematically to select relevant studies published before July 18, 2024. The articles that used radiomics models for diagnosing osteoporosis were considered eligible. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool and radiomics quality score (RQS) were used to assess the quality of included studies. The pooled diagnostic odds ratio (DOR), sensitivity, specificity, area under the summary receiver operator characteristic curve (AUC) were calculated to estimated diagnostic efficiency of pooled model. RESULTS A total of 25 studies were included, of which 24 provided usable data that were utilized for the meta-analysis, including 1553 patients with osteoporosis and 2200 patients without osteoporosis. The mean RQS score of included studies was 11.48 ± 4.92, with an adherence rate of 31.89%. The pooled DOR, sensitivity and specificity for model to diagnose osteoporosis were 81.72 (95% CI: 51.08 - 130.73), 0.90 (95% CI: 0.87-0.93) and 0.90 (95% CI: 0.87-0.93), respectively. The AUC was 0.96, indicating a high diagnostic capability. Subgroup analysis revealed that the use of different imaging modalities to construct radiomics models might be one source of heterogeneity. Radiomics models built using CT images and deep learning algorithms demonstrated higher diagnostic accuracy for osteoporosis. CONCLUSION Radiomics models for the diagnosis of osteoporosis have high diagnostic efficacy. In the future, radiomics models for diagnosing osteoporosis will be an efficient instrument to assist clinical doctors in screening osteoporosis patients. However, relevant guidelines should be followed strictly to improve the quality of radiomics studies.
Collapse
Affiliation(s)
- Jianan Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China (J.C., S.L., Y.L., W.H., H.S., N.L., W.G., Y.C.)
| | - Song Liu
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China (J.C., S.L., Y.L., W.H., H.S., N.L., W.G., Y.C.)
| | - Youxi Lin
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China (J.C., S.L., Y.L., W.H., H.S., N.L., W.G., Y.C.)
| | - Wenjun Hu
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China (J.C., S.L., Y.L., W.H., H.S., N.L., W.G., Y.C.)
| | - Huihong Shi
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China (J.C., S.L., Y.L., W.H., H.S., N.L., W.G., Y.C.)
| | - Nianchun Liao
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China (J.C., S.L., Y.L., W.H., H.S., N.L., W.G., Y.C.)
| | - Miaomiao Zhou
- Department of Endocrinology, People's Hospital of Dingbian, Dingbian, Shanxi, PR China (M.Z.)
| | - Wenjie Gao
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China (J.C., S.L., Y.L., W.H., H.S., N.L., W.G., Y.C.)
| | - Yanbo Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China (J.C., S.L., Y.L., W.H., H.S., N.L., W.G., Y.C.)
| | - Peijie Shi
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China (P.S.).
| |
Collapse
|
2
|
Ceriani L, Milan L, Chauvie S, Zucca E. Understandings 18 FDG PET radiomics and its application to lymphoma. Br J Haematol 2025. [PMID: 40230306 DOI: 10.1111/bjh.20074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/28/2025] [Indexed: 04/16/2025]
Abstract
The early identification of lymphoma patients who fail front-line treatment is crucial for optimizing disease management. Positron emission tomography, a well-established tool for staging and response evaluation in lymphoma, is typically assessed visually or semiquantitatively, leaving much of its latent information unexploited. Radiomic analysis, which employs mathematical descriptors, can enable the extraction of quantitative features from baseline images that correlate with the disease's biological characteristics. Emerging radiomic features such as metabolic tumour volume, total lesion glycolysis and markers of disease dissemination and metabolic heterogeneity are proving to be powerful prognostic biomarkers in lymphoma. Texture analysis, the most advanced area of radiomics, offers highly complex features that require further standardization and validation before being adopted as reliable biomarkers. Combining radiomic features with clinical risk factors and genomic data holds promising potential for improving clinical risk prediction. This review explores the current state of radiomic analysis, progress towards its standardization and its incorporation into clinical practice and trial designs. The integration of radiomic markers with circulating tumour DNA may provide a comprehensive approach to developing baseline and dynamic risk scores, facilitating the testing of novel treatments and advancing personalized treatment of aggressive lymphomas.
Collapse
Affiliation(s)
- Luca Ceriani
- Nuclear Medicine and PET/CT Centre, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Lisa Milan
- Nuclear Medicine and PET/CT Centre, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Stephane Chauvie
- Medical Physics Division, Santa Croce e Carlo Hospital, Cuneo, Italy
| | - Emanuele Zucca
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
- Haematology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Department of Medical Oncology, Bern University Hospital and University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Liu J, Tu J, Yao L, Peng L, Fang R, Lu Y, He F, Xiong J, Li Y. MRI-based radiomics virtual biopsy for BCL6 in primary central nervous system lymphoma. Clin Radiol 2025; 80:106746. [PMID: 39615185 DOI: 10.1016/j.crad.2024.106746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/06/2024] [Accepted: 11/04/2024] [Indexed: 01/18/2025]
Abstract
AIM To establish a machine learning model based on a radiomic signature for predicting B-cell lymphoma 6 (BCL-6) rearrangement in primary central nervous system lymphoma (PCNSL). MATERIALS AND METHODS Retrospective study on 102 PCNSL patients (31 with BCL-6 rearrangement positive, 71 with BCL-6 rearrangement negative) were randomly divided into the training and validation sets at a ratio of 7:3. Radiomics models based on contrast-enhanced T1-weighted imaging (CE-T1WI) and fluid-attenuated inversion recovery (FLAIR) in different regions, including VOItumour core and VOIperitumoural oedema. Radiomics features were extracted and selected using LASSO regression, and radiomics score (rad-score) were calculated using the weighted coefficients. Four machine learning models (logistic regression, random forest, support vector machine, K-nearest neighbours) were developed and evaluated based on rad-score. The optimal radiomics model was integrated into the clinical or radiological factors to construct a predictive model through logistic regression analysis. A nomogram was constructed based on independent significant features for individualised prediction. RESULTS All rad-scores based on CE-T1WI and FLAIR sequences were significantly associated with BCL6 rearrangement (p < 0.05) in univariate regression analysis. The logistic regression machine learning model performed best with AUCs of 0.935 (training) and 0.923 (validation). Rad-scores from CE-T1WI tumour core and peritumoural oedema were independent significant predictors. CONCLUSION Radiomics signatures based on CE-T1WI and FLAIR sequences have significant value in distinguishing BCL6 rearrangement. The CE-T1WI radiomics model based on VOItumour core and VOIperitumoural oedema are robust markers for identifying BCL6 rearrangement.
Collapse
Affiliation(s)
- J Liu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - J Tu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - L Yao
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China
| | - L Peng
- Department of Radiology, Guangdong Provincial People Hospital Nanhai Hospital, Foshan, Guangdong Province, China
| | - R Fang
- Department of Radiology, Chizhou People Hospital, Chizhou, Anhui Province, China
| | - Y Lu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - F He
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - J Xiong
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Y Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Sun Z, Yang T, Ding C, Shi Y, Cheng L, Jia Q, Tao W. Clinical scoring systems, molecular subtypes and baseline [ 18F]FDG PET/CT image analysis for prognosis of diffuse large B-cell lymphoma. Cancer Imaging 2024; 24:168. [PMID: 39696503 DOI: 10.1186/s40644-024-00810-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a highly heterogeneous hematological malignancy resulting in a range of outcomes, and the early prediction of these outcomes has important implications for patient management. Clinical scoring systems provide the most commonly used prognostic evaluation criteria, and the value of genetic testing has also been confirmed by in-depth research on molecular typing. [18F]-fluorodeoxyglucose positron emission tomography / computed tomography ([18F]FDG PET/CT) is an invaluable tool for predicting DLBCL progression. Conventional baseline image-based parameters and machine learning models have been used in prognostic FDG PET/CT studies of DLBCL; however, numerous studies have shown that combinations of baseline clinical scoring systems, molecular subtypes, and parameters and models based on baseline FDG PET/CT image may provide better predictions of patient outcomes and aid clinical decision-making in patients with DLBCL.
Collapse
Affiliation(s)
- Zhuxu Sun
- Department of Nuclear Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Tianshuo Yang
- Department of Nuclear Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Chongyang Ding
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuye Shi
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Luyi Cheng
- Department of Nuclear Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Qingshen Jia
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin, China
| | - Weijing Tao
- Department of Nuclear Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China.
| |
Collapse
|
5
|
Durhan G, Ardalı Düzgün S, Atak F, Karakaya J, Irmak I, Gülsün Akpınar M, Demirkazık F, Arıyürek OM. Can computed tomography findings and radiomics analysis of mediastinal lymph nodes differentiate between sarcoidosis and lymphoma? Clin Radiol 2024; 79:e1466-e1472. [PMID: 39261216 DOI: 10.1016/j.crad.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/12/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
AIMS To assess the ability of computed tomography (CT) findings and radiomics analysis to differentiate mediastinal lymphadenopathies as sarcoidosis versus lymphoma. MATERIALS AND METHODS 94 patients with lymphoma and 97 patients with sarcoidosis, who had > 1cm mediastinal lymph node were included. Size, location of lymph nodes, and distribution of the largest lymph nodes in two groups were compared. A total of 636 lymphadenopathies in four different regions were segmented for radiomics. Lesion segmentation was semiautomatically performed with a dedicated commercial software package on chest CT images. 149 patients were grouped as a training cohort, while 42 patients who underwent CT in the oncology hospital were used for external validation. The least absolute shrinkage and selection operator (LASSO) analysis was used to perform feature selection. Using selected features, the classification performance of various data mining methods in separating groups of sarcoidosis and lymphoma was investigated. RESULTS Distribution and size of lymphadenopathies were significantly different in sarcoidosis and lymphoma groups (<0.05). Radiomics and data mining methods showed excellent performance in differentiating lymph nodes of sarcoidosis and lymphoma according to both the largest lymphadenopathy and lymphadenopathies in four different mediastinal regions (AUC >0,95). CONCLUSIONS Distribution and size of lymphadenopathies can help differential diagnosis in patients with sarcoidosis and lymphoma. CT radiomics analysis can discriminate the lymph nodes of sarcoidosis and lymphoma with great performance regardless of lymph node size and location and it can be used safely in the diagnosis of these diseases, which can sometimes be challenging to distinguish from each other.
Collapse
Affiliation(s)
- G Durhan
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| | - S Ardalı Düzgün
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - F Atak
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - J Karakaya
- Department of Biostatistics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - I Irmak
- Department of Chest Diseases, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - M Gülsün Akpınar
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - F Demirkazık
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - O M Arıyürek
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
6
|
Li H, Xiong M, Li M, Sun C, Zheng D, Yuan L, Chen Q, Lin S, Liu Z, Ren X. Radiomic prediction for durable response to high-dose methotrexate-based chemotherapy in primary central nervous system lymphoma. Cancer Med 2024; 13:e70182. [PMID: 39253996 PMCID: PMC11386301 DOI: 10.1002/cam4.70182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND The rarity of primary central nervous system lymphoma (PCNSL) and treatment heterogeneity contributes to a lack of prognostic models for evaluating posttreatment remission. This study aimed to develop and validate radiomic-based models to predict the durable response (DR) to high-dose methotrexate (HD-MTX)-based chemotherapy in PCNSL patients. METHODS A total of 159 patients pathologically diagnosed with PCNSL between 2011 and 2021 across two institutions were enrolled. According to the NCCN guidelines, the DR was defined as the remission lasting ≥1 year after receiving HD-MTX-based chemotherapy. For each patient, a total of 1218 radiomic features were extracted from prebiopsy T1 contrast-enhanced MR images. Multiple machine-learning algorithms were utilized for feature selection and classification to build a radiomic signature. The radiomic-clinical integrated models were developed using the random forest method. Model performance was externally validated to verify its clinical utility. RESULTS A total of 105 PCNSL patients were enrolled after excluding 54 cases with ineligibility. The training and validation cohorts comprised 76 and 29 individuals, respectively. Among them, 65 patients achieved DR. The radiomic signature, consisting of 8 selected features, demonstrated strong predictive performance, with area under the curves of 0.994 in training cohort and 0.913 in validation cohort. This signature was independently associated with the DR in both cohorts. Both the radiomic signature and integrated models significantly outperformed the clinical models in two cohorts. Decision curve analysis underscored the clinical utility of the established models. CONCLUSIONS This radiomic signature and integrated models have the potential to accurately predict the DR to HD-MTX-based chemotherapy in PCNSL patients, providing valuable therapeutic insights.
Collapse
Affiliation(s)
- Haoyi Li
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Mingming Xiong
- National Genomics Data CenterBeijing Institute of Genomics, Chinese Academy of Sciences and China National Center for BioinformationBeijingChina
- CAS Key Laboratory of Molecular ImagingBeijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of SciencesBeijingChina
| | - Ming Li
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Caixia Sun
- CAS Key Laboratory of Molecular ImagingBeijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of SciencesBeijingChina
| | - Dao Zheng
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Leilei Yuan
- Department of Nuclear MedicineBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Qian Chen
- Department of Nuclear MedicineBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Song Lin
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Zhenyu Liu
- School of Artificial Intelligence, University of Chinese Academy of SciencesBeijingChina
| | - Xiaohui Ren
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
7
|
Yang Z, Liu C. Research on the application of radiomics in breast cancer: A bibliometrics and visualization analysis. Medicine (Baltimore) 2024; 103:e39463. [PMID: 39213225 PMCID: PMC11365679 DOI: 10.1097/md.0000000000039463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Breast cancer is the most prevalent form of cancer worldwide. Therefore, improved disease detection has emerged as a focal point in clinical studies. At the forefront of innovation, radiomics has the capability to extract comprehensive insights from medical images, ultimately enhancing the accuracy of diagnostic procedures. There has been rapid growth in the field of radiomics research on breast cancer in the past few years. We explored pertinent research articles in the Web of Science Core Collection database to gain a thorough understanding of breast cancer radiomics. We used CiteSpace to conduct a bibliometric analysis of the annual distribution of different nations, institutions, journals, authors, keywords, and references in the field of breast cancer radiomics. GraphPad Prism software was used to examine and graph yearly and country-specific trends and the proportions of publications. The tools utilized for the visualization of science mapping included CiteSpace and VOSviewer. Of the 891 publications, most were original articles (731, 91.09%) and a few were reviews (160, 8.91%). Most academic research has been published in China and the United States. The study centers predominantly consisted of major academic institutions, such as Fudan University and the Chinese Academy of Sciences, with some of their members being prominent figures in the field. Pinker, Katja has published the largest number of research papers. The majority of these studies have been published in medical journals focusing on radiology and oncology in recent years. In the realm of cutting-edge medical research, the top two keywords, magnetic resonance imaging and machine learning stand at the forefront as current areas of intense focus. Breast cancer radiomics is advancing rapidly, presenting numerous opportunities and obstacles. Our study of the literature in this academic area aimed to pinpoint the primary themes addressed in the studies and anticipate prospective avenues for research.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Radiology, the Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Chenglong Liu
- Department of Radiology, the Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| |
Collapse
|
8
|
Akinci D'Antonoli T, Cavallo AU, Vernuccio F, Stanzione A, Klontzas ME, Cannella R, Ugga L, Baran A, Fanni SC, Petrash E, Ambrosini I, Cappellini LA, van Ooijen P, Kotter E, Pinto Dos Santos D, Cuocolo R. Reproducibility of radiomics quality score: an intra- and inter-rater reliability study. Eur Radiol 2024; 34:2791-2804. [PMID: 37733025 PMCID: PMC10957586 DOI: 10.1007/s00330-023-10217-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/03/2023] [Accepted: 07/30/2023] [Indexed: 09/22/2023]
Abstract
OBJECTIVES To investigate the intra- and inter-rater reliability of the total radiomics quality score (RQS) and the reproducibility of individual RQS items' score in a large multireader study. METHODS Nine raters with different backgrounds were randomly assigned to three groups based on their proficiency with RQS utilization: Groups 1 and 2 represented the inter-rater reliability groups with or without prior training in RQS, respectively; group 3 represented the intra-rater reliability group. Thirty-three original research papers on radiomics were evaluated by raters of groups 1 and 2. Of the 33 papers, 17 were evaluated twice with an interval of 1 month by raters of group 3. Intraclass coefficient (ICC) for continuous variables, and Fleiss' and Cohen's kappa (k) statistics for categorical variables were used. RESULTS The inter-rater reliability was poor to moderate for total RQS (ICC 0.30-055, p < 0.001) and very low to good for item's reproducibility (k - 0.12 to 0.75) within groups 1 and 2 for both inexperienced and experienced raters. The intra-rater reliability for total RQS was moderate for the less experienced rater (ICC 0.522, p = 0.009), whereas experienced raters showed excellent intra-rater reliability (ICC 0.91-0.99, p < 0.001) between the first and second read. Intra-rater reliability on RQS items' score reproducibility was higher and most of the items had moderate to good intra-rater reliability (k - 0.40 to 1). CONCLUSIONS Reproducibility of the total RQS and the score of individual RQS items is low. There is a need for a robust and reproducible assessment method to assess the quality of radiomics research. CLINICAL RELEVANCE STATEMENT There is a need for reproducible scoring systems to improve quality of radiomics research and consecutively close the translational gap between research and clinical implementation. KEY POINTS • Radiomics quality score has been widely used for the evaluation of radiomics studies. • Although the intra-rater reliability was moderate to excellent, intra- and inter-rater reliability of total score and point-by-point scores were low with radiomics quality score. • A robust, easy-to-use scoring system is needed for the evaluation of radiomics research.
Collapse
Affiliation(s)
- Tugba Akinci D'Antonoli
- Institute of Radiology and Nuclear Medicine, Cantonal Hospital Baselland, Liestal, Switzerland.
| | - Armando Ugo Cavallo
- Division of Radiology, Istituto Dermopatico dell'Immacolata (IDI) IRCCS, Rome, Italy
| | | | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Michail E Klontzas
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece
- Department of Radiology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Roberto Cannella
- Section of Radiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Agah Baran
- MVZ Diagnostikum Berlin Gmbh, Diagnostisches Zentrum, Berlin, Germany
| | | | - Ekaterina Petrash
- Radiology Department, Research Institute of Children Oncology and Haematology of National Medical Research Center of Oncology n.a.N.N. Blokhin of Ministry of Health of RF, Moscow, Russia
| | - Ilaria Ambrosini
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | | | - Peter van Ooijen
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elmar Kotter
- Department of Radiology, University Medical Center Freiburg, Freiburg, Germany
| | - Daniel Pinto Dos Santos
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
- Department of Radiology, University Hospital of Frankfurt, Frankfurt, Germany
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| |
Collapse
|
9
|
Wang X, Zhao L, Wang S, Zhao X, Chen L, Sun X, Liu Y, Liu J, Sun S. Utility of contrast-enhanced MRI radiomics features combined with clinical indicators for predicting induction chemotherapy response in primary central nervous system lymphoma. J Neurooncol 2024; 166:451-460. [PMID: 38308802 DOI: 10.1007/s11060-023-04554-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/23/2023] [Indexed: 02/05/2024]
Abstract
PURPOSE To assess the utility of combining contrast-enhanced magnetic resonance imaging (CE-MRI) radiomics features with clinical variables in predicting the response to induction chemotherapy (IC) for primary central nervous system lymphoma (PCNSL). METHODS A total of 131 patients with PCNSL (101 in the training set and 30 in the testing set) who had undergone contrast-enhanced MRI scans were retrospectively analyzed. Pyradiomics was utilized to extract radiomics features, and the clinical variables of the patients were gathered. Radiomics prediction models were developed using different combinations of feature selection methods and machine learning models, and the best combination was ultimately chosen. We screened clinical variables associated with treatment outcomes and developed clinical prediction models. The predictive performance of radiomics model, clinical model, and combined model, which integrates the best radiomics model and clinical characteristics, was independently assessed and compared using Receiver Operating Characteristic (ROC) curves. RESULTS In total, we extracted 1598 features. The best radiomics model we selected as the best utilized T-test and Recursive Feature Elimination (RFE) for feature selection and logistic regression for model building. Serum Interleukin 2 Receptor (IL-2R) and Eastern Cooperative Oncology Group (ECOG) Score were utilized to develop a clinical predictive model for assessing the response to induction chemotherapy. The results of the testing set revealed that the combined prediction model (radiomics and IL-2R) achieved the highest area under the ROC curve at 0.868 (0.683, 0.967), followed by the radiomics model at 0.857 (0.681, 0.957), and the clinical prediction model (IL-2R and ECOG) at 0.618 (0.413, 0.797). The combined model was significantly more accurate than the clinical model, with an AUC of 0.868 compared to 0.618 (P < 0.05). While the radiomics model had slightly better predictive power than the clinical model, this difference was not statistically significant (AUC, 0.857 vs. 0.618, P > 0.05). CONCLUSIONS Our prediction model, which combines radiomics signatures from CE-MRI with serum IL-2R, can effectively stratify patients with PCNSL before high-dose methotrexate (HD-MTX) -based chemotherapy.
Collapse
Affiliation(s)
- Xiaochen Wang
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neuroradiology, Beijing Neurosurgical Institute, Beijing, China
| | - Litao Zhao
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Sihui Wang
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xuening Zhao
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lingxu Chen
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xuefei Sun
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuanbo Liu
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiangang Liu
- School of Engineering Medicine, Beihang University, Beijing, China.
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, China.
- Beijing Engineering Research Center of Cardiovascular Wisdom Diagnosis and Treatment, Beijing, China.
| | - Shengjun Sun
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Department of Neuroradiology, Beijing Neurosurgical Institute, Beijing, China.
| |
Collapse
|
10
|
Brancato V, Cerrone M, Garbino N, Salvatore M, Cavaliere C. Current status of magnetic resonance imaging radiomics in hepatocellular carcinoma: A quantitative review with Radiomics Quality Score. World J Gastroenterol 2024; 30:381-417. [PMID: 38313230 PMCID: PMC10835534 DOI: 10.3748/wjg.v30.i4.381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Radiomics is a promising tool that may increase the value of magnetic resonance imaging (MRI) for different tasks related to the management of patients with hepatocellular carcinoma (HCC). However, its implementation in clinical practice is still far, with many issues related to the methodological quality of radiomic studies. AIM To systematically review the current status of MRI radiomic studies concerning HCC using the Radiomics Quality Score (RQS). METHODS A systematic literature search of PubMed, Google Scholar, and Web of Science databases was performed to identify original articles focusing on the use of MRI radiomics for HCC management published between 2017 and 2023. The methodological quality of radiomic studies was assessed using the RQS tool. Spearman's correlation (ρ) analysis was performed to explore if RQS was correlated with journal metrics and characteristics of the studies. The level of statistical signi-ficance was set at P < 0.05. RESULTS One hundred and twenty-seven articles were included, of which 43 focused on HCC prognosis, 39 on prediction of pathological findings, 16 on prediction of the expression of molecular markers outcomes, 18 had a diagnostic purpose, and 11 had multiple purposes. The mean RQS was 8 ± 6.22, and the corresponding percentage was 24.15% ± 15.25% (ranging from 0.0% to 58.33%). RQS was positively correlated with journal impact factor (IF; ρ = 0.36, P = 2.98 × 10-5), 5-years IF (ρ = 0.33, P = 1.56 × 10-4), number of patients included in the study (ρ = 0.51, P < 9.37 × 10-10) and number of radiomics features extracted in the study (ρ = 0.59, P < 4.59 × 10-13), and time of publication (ρ = -0.23, P < 0.0072). CONCLUSION Although MRI radiomics in HCC represents a promising tool to develop adequate personalized treatment as a noninvasive approach in HCC patients, our study revealed that studies in this field still lack the quality required to allow its introduction into clinical practice.
Collapse
Affiliation(s)
- Valentina Brancato
- Department of Information Technology, IRCCS SYNLAB SDN, Naples 80143, Italy
| | - Marco Cerrone
- Department of Radiology, IRCCS SYNLAB SDN, Naples 80143, Italy
| | - Nunzia Garbino
- Department of Radiology, IRCCS SYNLAB SDN, Naples 80143, Italy
| | - Marco Salvatore
- Department of Radiology, IRCCS SYNLAB SDN, Naples 80143, Italy
| | - Carlo Cavaliere
- Department of Radiology, IRCCS SYNLAB SDN, Naples 80143, Italy
| |
Collapse
|
11
|
Parmar V, Haubold J, Salhöfer L, Meetschen M, Wrede K, Glas M, Guberina M, Blau T, Bos D, Kureishi A, Hosch R, Nensa F, Forsting M, Deuschl C, Umutlu L. Fully automated MR-based virtual biopsy of primary CNS lymphomas. Neurooncol Adv 2024; 6:vdae022. [PMID: 38516329 PMCID: PMC10956963 DOI: 10.1093/noajnl/vdae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Background Primary central nervous system lymphomas (PCNSL) pose a challenge as they may mimic gliomas on magnetic resonance imaging (MRI) imaging, compelling precise differentiation for appropriate treatment. This study focuses on developing an automated MRI-based workflow to distinguish between PCNSL and gliomas. Methods MRI examinations of 240 therapy-naive patients (141 males and 99 females, mean age: 55.16 years) with cerebral gliomas and PCNSLs (216 gliomas and 24 PCNSLs), each comprising a non-contrast T1-weighted, fluid-attenuated inversion recovery (FLAIR), and contrast-enhanced T1-weighted sequence were included in the study. HD-GLIO, a pre-trained segmentation network, was used to generate segmentations automatically. To validate the segmentation efficiency, 237 manual segmentations were prepared (213 gliomas and 24 PCNSLs). Subsequently, radiomics features were extracted following feature selection and training of an XGBoost algorithm for classification. Results The segmentation models for gliomas and PCNSLs achieved a mean Sørensen-Dice coefficient of 0.82 and 0.80 for whole tumors, respectively. Three classification models were developed in this study to differentiate gliomas from PCNSLs. The first model differentiated PCNSLs from gliomas, with an area under the curve (AUC) of 0.99 (F1-score: 0.75). The second model discriminated between high-grade gliomas and PCNSLs with an AUC of 0.91 (F1-score: 0.6), and the third model differentiated between low-grade gliomas and PCNSLs with an AUC of 0.95 (F1-score: 0.89). Conclusions This study serves as a pilot investigation presenting an automated virtual biopsy workflow that distinguishes PCNSLs from cerebral gliomas. Prior to clinical use, it is necessary to validate the results in a prospective multicenter setting with a larger number of PCNSL patients.
Collapse
Affiliation(s)
- Vicky Parmar
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany
| | - Johannes Haubold
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany
| | - Luca Salhöfer
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany
| | - Mathias Meetschen
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany
| | - Karsten Wrede
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany
| | - Martin Glas
- Department of Neuropathology, University Hospital Essen, Essen, Germany
| | - Maja Guberina
- Department of Radiotherapy, University Hospital Essen, Essen, Germany
| | - Tobias Blau
- Department of Neurology and Neurooncology, University Hospital Essen, Essen, Germany
| | - Denise Bos
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Anisa Kureishi
- Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany
| | - René Hosch
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany
| | - Felix Nensa
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany
| | - Michael Forsting
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Cornelius Deuschl
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| |
Collapse
|
12
|
Liu G, Zhang X, Zhang N, Xiao H, Chen X, Ma L. Detecting Double Expression Status in Primary Central Nervous System Lymphoma Using Multiparametric MRI Based Machine Learning. J Magn Reson Imaging 2024; 59:231-239. [PMID: 37199225 DOI: 10.1002/jmri.28782] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/01/2023] [Accepted: 05/01/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Double expression lymphoma (DEL) is a subtype of primary central nervous system lymphoma (PCNSL) that often has a poor prognosis. Currently, there are limited noninvasive ways to detect protein expression. PURPOSE To detect DEL in PCNSL using multiparametric MRI-based machine learning. STUDY TYPE Retrospective. POPULATION Forty PCNSL patients were enrolled in the study among whom 17 were DEL (9 males and 8 females, 61.29 ± 14.14 years) and 23 were non-DEL (14 males and 9 females, 55.57 ± 14.16 years) with 59 lesions (28 DEL and 31 non-DEL). FIELD STRENGTH/SEQUENCE ADC map derived from DWI (b = 0/1000 s/mm2 ), fast spin echo T2WI, T2FLAIR, and contrast-enhanced T1 weighted imaging (T1CE) were collected at 3.0 T. ASSESSMENT Two raters manually segmented lesions by ITK-SNAP on ADC, T2WI, T2FLAIR and T1CE. A total of 2234 radiomics features from the tumor segmentation area were extracted. The t-test was conducted to filter the features, and elastic net regression algorithm combined with recursive feature elimination was used to calculate the essential features. Finally, 12 groups with combinations of different sequences were fitted to 6 classifiers, and the optimal models were selected. STATISTICAL TESTS Continuous variables were assessed by the t-test, while categorical variables were assessed by the non-parametric test. Interclass correlation coefficient tested variables' consistency. Sensitivity, specificity, accuracy F1-score, and area under the curve (AUC) were used to evaluate model performance. RESULTS DEL status could be identified to varying degrees with 72 models based on radiomics, and model performance could be improved by combining different sequences and classifiers. Both SVMlinear and logistic regression (LR) combined with four sequence group had similar largest AUCmean (0.92 ± 0.09 vs. 0.92 ± 0.05), and SVMlinear was considered as the optimal model in this study since the F1-score of SVMlinear (0.88) was higher than that of LR (0.83). DATA CONCLUSION Multiparametric MRI-based machine learning is promising in DEL detection. EVIDENCE LEVEL 4 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Guoli Liu
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Xinyue Zhang
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Nan Zhang
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Huafeng Xiao
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Xinjing Chen
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Lin Ma
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
13
|
Xu C, Feng J, Yue Y, Cheng W, He D, Qi S, Zhang G. A hybrid few-shot multiple-instance learning model predicting the aggressiveness of lymphoma in PET/CT images. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 243:107872. [PMID: 37922655 DOI: 10.1016/j.cmpb.2023.107872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND AND OBJECTIVE Patients with aggressive non-Hodgkin lymphoma (NHL) undergo distinct therapy strategies compared with indolent NHL patients. However, it is challenging to estimate NHL aggressiveness based on visual inspection of positron emission tomography (PET) or computed tomography (CT) images. Since diffuse large B-cell lymphoma (DLBCL) and Follicular lymphoma (FL) are the most typical and dominant aggressive and indolent NHL, respectively, this study aims to develop an artificial-intelligence-enabled model to distinguish DLBCL from FL in PET/CT images as the first step to tackle this challenge. METHODS We propose a hybrid few-shot multiple-instance learning model to predict the aggressiveness of the NHL. First, rotation-based self-supervision learning (SSL) has been employed to train the encoder on a large-scale, publicly available CT image dataset. Second, hybrid instance-level features are obtained for each NHL lesion by combining deep features with the radiomics features from both PET and CT modalities. Third, instance-level features are transformed into bag-level (or patient-level) representations. Finally, bag-level representations are fed into a distance-based classifier through few-shot learning to predict NHL aggressiveness. RESULTS Our model achieves an accuracy of 0.751 ± 0.008, a sensitivity of 0.787 ± 0.012, a specificity of 0.715 ± 0.013, an F1-score of 0.753 ± 0.009, and an area under the curve (AUC) of 0.795 ± 0.009 at the bag level. It outperforms the typical counterparts that use the radiomic features, random forest for feature selection, and support vector machines (SVMs) as classifiers. The three counterparts yield accuracies of 0.714 ± 0.023, 0.705 ± 0.008, and 0.698 ± 0.008, respectively. Moreover, settings of the SSL training dataset (Deep lesion) and task (rotation), hybrid CT and radiomic PET features, the pool-layer strategy of maximum, and distance-based classifier generate the best model. CONCLUSIONS A hybrid few-shot multiple-instance learning model can predict lymphoma aggressiveness in PET/CT images and could be a potential tool for determining therapy strategies. Hybrid features and the combination of SSL, few-shot learning, and weakly supervised learning are the two powerful pillars of the model, and these can be expanded to other medical applications with limited samples and incomplete annotations.
Collapse
Affiliation(s)
- Caiwen Xu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| | - Jie Feng
- School of Chemical Equipment, Shenyang University of Technology, Liaoyang, China
| | - Yong Yue
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wanjun Cheng
- Neusoft Research of Intelligent Healthcare Technology, Co. Ltd., Shenyang, China
| | - Dianning He
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Shouliang Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China.
| | - Guojun Zhang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
14
|
Samimi R, Shiri I, Ahmadyar Y, van den Hoff J, Kamali-Asl A, Rezaee A, Yousefirizi F, Geramifar P, Rahmim A. Radiomics predictive modeling from dual-time-point FDG PET K i parametric maps: application to chemotherapy response in lymphoma. EJNMMI Res 2023; 13:70. [PMID: 37493872 PMCID: PMC10371962 DOI: 10.1186/s13550-023-01022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND To investigate the use of dynamic radiomics features derived from dual-time-point (DTP-feature) [18F]FDG PET metabolic uptake rate Ki parametric maps to develop a predictive model for response to chemotherapy in lymphoma patients. METHODS We analyzed 126 lesions from 45 lymphoma patients (responding n = 75 and non-responding n = 51) treated with chemotherapy from two different centers. Static and DTP radiomics features were extracted from baseline static PET images and DTP Ki parametric maps. Spearman's rank correlations were calculated between static and DTP features to identify features with potential additional information. We first employed univariate analysis to determine correlations between individual features, and subsequently utilized multivariate analysis to derive predictive models utilizing DTP and static radiomics features before and after ComBat harmonization. For multivariate modeling, we utilized both the minimum redundancy maximum relevance feature selection technique and the XGBoost classifier. To evaluate our model, we partitioned the patient datasets into training/validation and testing sets using an 80/20% split. Different metrics for classification including area under the curve (AUC), sensitivity (SEN), specificity (SPE), and accuracy (ACC) were reported in test sets. RESULTS Via Spearman's rank correlations, there was negligible to moderate correlation between 32 out of 65 DTP features and some static features (ρ < 0.7); all the other 33 features showed high correlations (ρ ≥ 0.7). In univariate modeling, no significant difference between AUC of DTP and static features was observed. GLRLM_RLNU from static features demonstrated a strong correlation (AUC = 0.75, p value = 0.0001, q value = 0.0007) with therapy response. The most predictive DTP features were GLCM_Energy, GLCM_Entropy, and Uniformity, each with AUC = 0.73, p value = 0.0001, and q value < 0.0005. In multivariate analysis, the mean ranges of AUCs increased following harmonization. Use of harmonization plus combining DTP and static features was shown to provide significantly improved predictions (AUC = 0.97 ± 0.02, accuracy = 0.89 ± 0.05, sensitivity = 0.92 ± 0.09, and specificity = 0.88 ± 0.05). All models depicted significant performance in terms of AUC, ACC, SEN, and SPE (p < 0.05, Mann-Whitney test). CONCLUSIONS Our results demonstrate significant value in harmonization of radiomics features as well as combining DTP and static radiomics models for predicting response to chemotherapy in lymphoma patients.
Collapse
Affiliation(s)
- Rezvan Samimi
- Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran, Iran
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211, Geneva 4, Switzerland
| | - Yashar Ahmadyar
- Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran, Iran
| | - Jörg van den Hoff
- PET Center, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Alireza Kamali-Asl
- Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran, Iran.
| | | | - Fereshteh Yousefirizi
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Parham Geramifar
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Arman Rahmim
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Departments of Radiology and Physics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
15
|
Triumbari EKA, Gatta R, Maiolo E, De Summa M, Boldrini L, Mayerhoefer ME, Hohaus S, Nardo L, Morland D, Annunziata S. Baseline 18F-FDG PET/CT Radiomics in Classical Hodgkin's Lymphoma: The Predictive Role of the Largest and the Hottest Lesions. Diagnostics (Basel) 2023; 13:1391. [PMID: 37189492 PMCID: PMC10137254 DOI: 10.3390/diagnostics13081391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
This study investigated the predictive role of baseline 18F-FDG PET/CT (bPET/CT) radiomics from two distinct target lesions in patients with classical Hodgkin's lymphoma (cHL). cHL patients examined with bPET/CT and interim PET/CT between 2010 and 2019 were retrospectively included. Two bPET/CT target lesions were selected for radiomic feature extraction: Lesion_A, with the largest axial diameter, and Lesion_B, with the highest SUVmax. Deauville score at interim PET/CT (DS) and 24-month progression-free-survival (PFS) were recorded. Mann-Whitney test identified the most promising image features (p < 0.05) from both lesions with regards to DS and PFS; all possible radiomic bivariate models were then built through a logistic regression analysis and trained/tested with a cross-fold validation test. The best bivariate models were selected based on their mean area under curve (mAUC). A total of 227 cHL patients were included. The best models for DS prediction had 0.78 ± 0.05 maximum mAUC, with a predominant contribution of Lesion_A features to the combinations. The best models for 24-month PFS prediction reached 0.74 ± 0.12 mAUC and mainly depended on Lesion_B features. bFDG-PET/CT radiomic features from the largest and hottest lesions in patients with cHL may provide relevant information in terms of early response-to-treatment and prognosis, thus representing an earlier and stronger decision-making support for therapeutic strategies. External validations of the proposed model are planned.
Collapse
Affiliation(s)
- Elizabeth Katherine Anna Triumbari
- Section of Nuclear Medicine, Department of Radiological Sciences and Hematology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Department of Radiology, UC Davis, Sacramento, CA 95817, USA;
| | - Roberto Gatta
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy;
- Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
- Radiomics, Dipartimento di Radiologia, Radioterapia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
| | - Elena Maiolo
- Ematologia, Dipartimento di Radiologia, Radioterapia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
| | - Marco De Summa
- Medipass S.p.a. Integrative Service PET/CT–Radiofarmacy TracerGLab, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
| | - Luca Boldrini
- Radiomics, Dipartimento di Radiologia, Radioterapia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
| | - Marius E. Mayerhoefer
- Division of General and Pediatric Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Wien, Austria;
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stefan Hohaus
- Ematologia, Dipartimento di Radiologia, Radioterapia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
- Hematology Section, Department of Radiological Sciences and Hematology, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Lorenzo Nardo
- Department of Radiology, UC Davis, Sacramento, CA 95817, USA;
| | - David Morland
- Unità di Medicina Nucleare, GSTeP Radiofarmacia, TracerGLab, Dipartimento di Radiologia, Radioterapia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
- Médecine Nucléaire, Institut Godinot, 51100 Reims, France
- CReSTIC EA 3804 et Laboratoire de Biophysique, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Salvatore Annunziata
- Unità di Medicina Nucleare, GSTeP Radiofarmacia, TracerGLab, Dipartimento di Radiologia, Radioterapia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
| |
Collapse
|
16
|
Spadarella G, Stanzione A, Akinci D'Antonoli T, Andreychenko A, Fanni SC, Ugga L, Kotter E, Cuocolo R. Systematic review of the radiomics quality score applications: an EuSoMII Radiomics Auditing Group Initiative. Eur Radiol 2023; 33:1884-1894. [PMID: 36282312 PMCID: PMC9935718 DOI: 10.1007/s00330-022-09187-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/31/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The main aim of the present systematic review was a comprehensive overview of the Radiomics Quality Score (RQS)-based systematic reviews to highlight common issues and challenges of radiomics research application and evaluate the relationship between RQS and review features. METHODS The literature search was performed on multiple medical literature archives according to PRISMA guidelines for systematic reviews that reported radiomic quality assessment through the RQS. Reported scores were converted to a 0-100% scale. The Mann-Whitney and Kruskal-Wallis tests were used to compare RQS scores and review features. RESULTS The literature research yielded 345 articles, from which 44 systematic reviews were finally included in the analysis. Overall, the median of RQS was 21.00% (IQR = 11.50). No significant differences of RQS were observed in subgroup analyses according to targets (oncological/not oncological target, neuroradiology/body imaging focus and one imaging technique/more than one imaging technique, characterization/prognosis/detection/other). CONCLUSIONS Our review did not reveal a significant difference of quality of radiomic articles reported in systematic reviews, divided in different subgroups. Furthermore, low overall methodological quality of radiomics research was found independent of specific application domains. While the RQS can serve as a reference tool to improve future study designs, future research should also be aimed at improving its reliability and developing new tools to meet an ever-evolving research space. KEY POINTS • Radiomics is a promising high-throughput method that may generate novel imaging biomarkers to improve clinical decision-making process, but it is an inherently complex analysis and often lacks reproducibility and generalizability. • The Radiomics Quality Score serves a necessary role as the de facto reference tool for assessing radiomics studies. • External auditing of radiomics studies, in addition to the standard peer-review process, is valuable to highlight common limitations and provide insights to improve future study designs and practical applicability of the radiomics models.
Collapse
Affiliation(s)
- Gaia Spadarella
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy.
| | - Tugba Akinci D'Antonoli
- Institute of Radiology and Nuclear Medicine, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Anna Andreychenko
- Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Healthcare Department, Moscow, Russia
| | | | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Elmar Kotter
- Department of Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Renato Cuocolo
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Baronissi, Italy
- Augmented Reality for Health Monitoring Laboratory (ARHeMLab), Department of Electrical Engineering and Information Technology, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
17
|
Du G, Zeng Y, Chen D, Zhan W, Zhan Y. Application of radiomics in precision prediction of diagnosis and treatment of gastric cancer. Jpn J Radiol 2023; 41:245-257. [PMID: 36260211 DOI: 10.1007/s11604-022-01352-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/07/2022] [Indexed: 11/26/2022]
Abstract
Gastric cancer is one of the most common malignant tumors. Although some progress has been made in chemotherapy and surgery, it is still one of the highest mortalities in the world. Therefore, early detection, diagnosis and treatment are very important to improve the prognosis of patients. In recent years, with the proposal of the concept of radiomics, it has been gradually applied to histopathological grading, differential diagnosis, therapeutic efficacy and prognosis evaluation of gastric cancer, whose advantage is to comprehensively quantify the tumor phenotype using a large number of quantitative image features, so as to predict and diagnose the lesion area of gastric cancer early. The purpose of this review is to evaluate the research status and progress of radiomics in gastric cancer, and reviewed the workflow and clinical application of radiomics. The 27 original studies on the application of radiomics in gastric cancer were included from web of science database search results from 2017 to 2021, the number of patients included ranged from 30 to 1680, and the models used were based on the combination of radiomics signature and clinical factors. Most of these studies showed positive results, the median radiomics quality score (RQS) for all studies was 36.1%, and the development prospect and challenges of radiomics development were prospected. In general, radiomics has great potential in improving the early prediction and diagnosis of gastric cancer, and provides an unprecedented opportunity for clinical practice to improve the decision support of gastric cancer treatment at a low cost.
Collapse
Affiliation(s)
- Getao Du
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Yun Zeng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Dan Chen
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Wenhua Zhan
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, China.
| | - Yonghua Zhan
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China.
| |
Collapse
|
18
|
Radiomics-Based Machine Learning Model for Predicting Overall and Progression-Free Survival in Rare Cancer: A Case Study for Primary CNS Lymphoma Patients. Bioengineering (Basel) 2023; 10:bioengineering10030285. [PMID: 36978676 PMCID: PMC10045100 DOI: 10.3390/bioengineering10030285] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Primary Central Nervous System Lymphoma (PCNSL) is an aggressive neoplasm with a poor prognosis. Although therapeutic progresses have significantly improved Overall Survival (OS), a number of patients do not respond to HD–MTX-based chemotherapy (15–25%) or experience relapse (25–50%) after an initial response. The reasons underlying this poor response to therapy are unknown. Thus, there is an urgent need to develop improved predictive models for PCNSL. In this study, we investigated whether radiomics features can improve outcome prediction in patients with PCNSL. A total of 80 patients diagnosed with PCNSL were enrolled. A patient sub-group, with complete Magnetic Resonance Imaging (MRI) series, were selected for the stratification analysis. Following radiomics feature extraction and selection, different Machine Learning (ML) models were tested for OS and Progression-free Survival (PFS) prediction. To assess the stability of the selected features, images from 23 patients scanned at three different time points were used to compute the Interclass Correlation Coefficient (ICC) and to evaluate the reproducibility of each feature for both original and normalized images. Features extracted from Z-score normalized images were significantly more stable than those extracted from non-normalized images with an improvement of about 38% on average (p-value < 10−12). The area under the ROC curve (AUC) showed that radiomics-based prediction overcame prediction based on current clinical prognostic factors with an improvement of 23% for OS and 50% for PFS, respectively. These results indicate that radiomics features extracted from normalized MR images can improve prognosis stratification of PCNSL patients and pave the way for further study on its potential role to drive treatment choice.
Collapse
|
19
|
Gong H, Tang B, Li T, Li J, Tang L, Ding C. The added prognostic values of baseline PET dissemination parameter in patients with angioimmunoblastic T-cell lymphoma. EJHAEM 2023; 4:67-77. [PMID: 36819177 PMCID: PMC9928789 DOI: 10.1002/jha2.610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 11/30/2022]
Abstract
To explore the prognostic values of baseline 2-deoxy-2-[18F] fluoro-D-glucose (FDG) positron emission tomography/computed tomography (PET/CT) dissemination parameter in angioimmunoblastic T-cell lymphoma (AITL) and its added values to total metabolic tumour volume (TMTV). Eighty-one AITL patients with at least two FDG-avid lesions in baseline PET/CT were retrospectively included. PET parameters including TMTV and the distance between the two lesions that are the furthest apart (Dmax) were obtained. Univariate Cox analysis showed that both Dmax and TMTV were risk factors for progression-free survival (PFS) and overall survival (OS). Multivariate Cox analysis models of different combinations showed that high Dmax (> 65.7 cm) could independently predict both PFS and OS, while high TMTV (>456.6 cm3) was only significant for OS. A concise PET model based on TMTV and Dmax can effectively risk-stratify patients. PFS and OS rates were significantly lower in patients with high Dmax and high TMTV than in patients with low Dmax and low TMTV (3-year PFS rate: 15.0% vs. 48.7%, p = 0.001; 3-year OS rate: 27.6% vs. 79.0%, p < 0.001). Dmax can directly reflect the disease dissemination characteristic and has a significant prognostic value for FDG-avid AITL patients. It has the potential to be introduced into new risk stratification models for tailored treatment.
Collapse
Affiliation(s)
- Huanyu Gong
- Department of Nuclear MedicineJiangsu Province HospitalThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Bo Tang
- Department of RadiologyShuyang Hospital of Traditional Chinese MedicineSuqianChina
| | - Tiannv Li
- Department of Nuclear MedicineJiangsu Province HospitalThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jianyong Li
- Department of HematologyJiangsu Province HospitalThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Lijun Tang
- Department of Nuclear MedicineJiangsu Province HospitalThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Chongyang Ding
- Department of Nuclear MedicineJiangsu Province HospitalThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
20
|
Vergote VKJ, Verhoef G, Janssens A, Woei-A-Jin FJSH, Laenen A, Tousseyn T, Dierickx D, Deroose CM. [ 18F]FDG-PET/CT volumetric parameters can predict outcome in untreated mantle cell lymphoma. Leuk Lymphoma 2023; 64:161-170. [PMID: 36223113 DOI: 10.1080/10428194.2022.2131415] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Several studies have shown a strong predictive value for pretreatment [18F]FDG-PET/CT metabolic parameters in different lymphoma subtypes. However, few publications exist concerning the role of metabolic parameters in mantle cell lymphoma (MCL). We retrospectively investigated the prognostic value of baseline metabolic tumor volume (MTV) and lesion dissemination in untreated MCL. We compared it to currently used prognostic factors such as stage, mantle cell lymphoma international prognostic index (MIPI) and KI-67. We report that a higher baseline MTV is a risk factor for worse overall survival (OS), progression-free survival (PFS), and disease-specific survival (DSS) in univariate analysis. In multivariate analysis, MTV was significantly associated with DSS, but not with OS and PFS. We found no correlation between lesion dissemination and outcome. The MIPI score remains the strongest predictor of outcome. These results show that MTV is an important prognostic tool and can improve patient risk stratification at staging of untreated MCL.
Collapse
Affiliation(s)
| | - Gregor Verhoef
- Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Ann Janssens
- Hematology, University Hospitals Leuven, Leuven, Belgium
| | | | - Annouschka Laenen
- Biostatistics and Statistical Bioinformatics Center, Leuven, Belgium
| | | | - Daan Dierickx
- Hematology, University Hospitals Leuven, Leuven, Belgium
| | | |
Collapse
|
21
|
Cao L, Zhang M, Zhang Y, Ji B, Wang X, Wang X. Progress of radiological‑pathological workflows in the differential diagnosis between primary central nervous system lymphoma and high‑grade glioma (Review). Oncol Rep 2022; 49:20. [PMID: 36484403 PMCID: PMC9773014 DOI: 10.3892/or.2022.8457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022] Open
Abstract
Primary central nervous system lymphoma (PCNSL) and high‑grade glioma (HGG) are distinct entities of the CNS with completely distinct treatments. The treatment of PCNSL is chemotherapy‑based, while surgery is the first choice for HGG. However, the clinical features of the two entities often overlap, and a clear pathological diagnosis is important for subsequent management, especially for the management of PCNSL. Stereotactic biopsy is recognized as one of the minimally invasive alternatives for evaluating the involvement of the CNS. However, in the case of limited tissue materials, the differential diagnosis between the two entities is still difficult. In addition, some patients are too ill to tolerate a needle biopsy. Therefore, combining imaging, histopathology and laboratory examinations is essential in order to make a clear diagnosis as soon as possible. The present study reviews the progress of comparative research on both imaging and laboratory tests based on the pathophysiological changes of the two entities, and proposes an integrative and optimized diagnostic process, with the purpose of building a better understanding for neurologists, hematologists, radiologists and pathologists.
Collapse
Affiliation(s)
- Luming Cao
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Mengchao Zhang
- Department of Radiology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Ying Zhang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Bin Ji
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xuemei Wang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xueju Wang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China,Correspondence to: Dr Xueju Wang, Department of Pathology, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun, Jilin 130033, P.R. China, E-mail:
| |
Collapse
|
22
|
Tozzi AE, Fabozzi F, Eckley M, Croci I, Dell’Anna VA, Colantonio E, Mastronuzzi A. Gaps and Opportunities of Artificial Intelligence Applications for Pediatric Oncology in European Research: A Systematic Review of Reviews and a Bibliometric Analysis. Front Oncol 2022; 12:905770. [PMID: 35712463 PMCID: PMC9194810 DOI: 10.3389/fonc.2022.905770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/04/2022] [Indexed: 12/23/2022] Open
Abstract
The application of artificial intelligence (AI) systems is emerging in many fields in recent years, due to the increased computing power available at lower cost. Although its applications in various branches of medicine, such as pediatric oncology, are many and promising, its use is still in an embryonic stage. The aim of this paper is to provide an overview of the state of the art regarding the AI application in pediatric oncology, through a systematic review of systematic reviews, and to analyze current trends in Europe, through a bibliometric analysis of publications written by European authors. Among 330 records found, 25 were included in the systematic review. All papers have been published since 2017, demonstrating only recent attention to this field. The total number of studies included in the selected reviews was 674, with a third including an author with a European affiliation. In bibliometric analysis, 304 out of the 978 records found were included. Similarly, the number of publications began to dramatically increase from 2017. Most explored AI applications regard the use of diagnostic images, particularly radiomics, as well as the group of neoplasms most involved are the central nervous system tumors. No evidence was found regarding the use of AI for process mining, clinical pathway modeling, or computer interpreted guidelines to improve the healthcare process. No robust evidence is yet available in any of the domains investigated by systematic reviews. However, the scientific production in Europe is significant and consistent with the topics covered in systematic reviews at the global level. The use of AI in pediatric oncology is developing rapidly with promising results, but numerous gaps and challenges persist to validate its utilization in clinical practice. An important limitation is the need for large datasets for training algorithms, calling for international collaborative studies.
Collapse
Affiliation(s)
- Alberto Eugenio Tozzi
- Multifactorial and Complex Diseases Research Area, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Francesco Fabozzi
- Department of Onco Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Department of Pediatrics, University of Rome Tor Vergata, Rome, Italy
| | - Megan Eckley
- Department of Onco Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Ileana Croci
- Multifactorial and Complex Diseases Research Area, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Vito Andrea Dell’Anna
- Department of Onco Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Erica Colantonio
- Department of Onco Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Angela Mastronuzzi
- Department of Onco Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- *Correspondence: Angela Mastronuzzi,
| |
Collapse
|
23
|
A Systematic Review of the Current Status and Quality of Radiomics for Glioma Differential Diagnosis. Cancers (Basel) 2022; 14:cancers14112731. [PMID: 35681711 PMCID: PMC9179305 DOI: 10.3390/cancers14112731] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Gliomas can be difficult to discern clinically and radiologically from other brain lesions (either neoplastic or non-neoplastic) since their clinical manifestations as well as preoperative imaging features often overlap and appear misleading. Radiomics could be extremely helpful for non-invasive glioma differential diagnosis (DDx). However, implementation in clinical practice is still distant and concerns have been raised regarding the methodological quality of radiomic studies. In this context, we aimed to summarize the current status and quality of radiomic studies concerning glioma DDx in a systematic review. In total, 42 studies were selected and examined in our work. Our study revealed that, despite promising and encouraging results, current studies on radiomics for glioma DDx still lack the quality required to allow its introduction into clinical practice. This work could provide new insights and help to reach a consensus on the use of the radiomic approach for glioma DDx. Abstract Radiomics is a promising tool that may increase the value of imaging in differential diagnosis (DDx) of glioma. However, implementation in clinical practice is still distant and concerns have been raised regarding the methodological quality of radiomic studies. Therefore, we aimed to systematically review the current status of radiomic studies concerning glioma DDx, also using the radiomics quality score (RQS) to assess the quality of the methodology used in each study. A systematic literature search was performed to identify original articles focused on the use of radiomics for glioma DDx from 2015. Methodological quality was assessed using the RQS tool. Spearman’s correlation (ρ) analysis was performed to explore whether RQS was correlated with journal metrics and the characteristics of the studies. Finally, 42 articles were selected for the systematic qualitative analysis. Selected articles were grouped and summarized in terms of those on DDx between glioma and primary central nervous system lymphoma, those aiming at differentiating glioma from brain metastases, and those based on DDx of glioma and other brain diseases. Median RQS was 8.71 out 36, with a mean RQS of all studies of 24.21%. Our study revealed that, despite promising and encouraging results, current studies on radiomics for glioma DDx still lack the quality required to allow its introduction into clinical practice. This work could provide new insights and help to reach a consensus on the use of the radiomic approach for glioma DDx.
Collapse
|
24
|
Lee S, Han K, Suh YJ. Quality assessment of radiomics research in cardiac CT: a systematic review. Eur Radiol 2022; 32:3458-3468. [PMID: 34981135 DOI: 10.1007/s00330-021-08429-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/13/2021] [Accepted: 10/22/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVES To assess the quality of current radiomics research on cardiac CT using radiomics quality score (RQS) and Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) systems. METHODS Systematic searches of PubMed and EMBASE were performed to identify all potentially relevant original research articles about cardiac CT radiomics. Fifteen original research articles were selected. Two cardiac radiologists assessed the quality of the methodology adopted in those studies according to the RQS and TRIPOD guidelines. Basic adherence rates for the following six key domains were evaluated: image protocol and reproducibility, feature reduction and validation, biologic/clinical utility, performance index, high level of evidence, and open science. RESULTS Among the 15 included articles, six (40%) were about coronary artery disease and six (40%) were about myocardial infarction. The mean RQS was 9.9 ± 7.3 (27.4% of the ideal score of 36), and the basic adherence rate was 44.6%. Fourteen (93.3%) and nine (60%) studies performed feature selection and validation, but only two (13.3%) of them performed external validation. Two studies (13.3%) were prospective, and only one study (6.7%) conducted calibration analysis and stated the potential clinical utility. None of the studies conducted phantom study and cost-effective analysis. The overall adherence rate for TRIPOD was 63%. CONCLUSION The quality of radiomics studies in cardiac CT is currently insufficient. A higher level of evidence is required, and analysis of clinical utility and calibration of model performance need to be improved. KEY POINTS • The quality of science of radiomics studies in cardiac CT is currently insufficient. • No study conducted a phantom study or cost-effective analysis, with further limitations being demonstrated in a high level of evidence for radiomics studies. • Analysis of clinical utility and calibration of model performance need to be improved, and a higher level of evidence is required.
Collapse
Affiliation(s)
- Suji Lee
- Department of Radiology, Center for Clinical Imaging Data Science, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Kyunghwa Han
- Department of Radiology, Center for Clinical Imaging Data Science, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Young Joo Suh
- Department of Radiology, Center for Clinical Imaging Data Science, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
| |
Collapse
|
25
|
Kostakoglu L, Dalmasso F, Berchialla P, Pierce LA, Vitolo U, Martelli M, Sehn LH, Trněný M, Nielsen TG, Bolen CR, Sahin D, Lee C, El‐Galaly TC, Mattiello F, Kinahan PE, Chauvie S. A prognostic model integrating PET-derived metrics and image texture analyses with clinical risk factors from GOYA. EJHAEM 2022; 3:406-414. [PMID: 35846039 PMCID: PMC9175666 DOI: 10.1002/jha2.421] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 11/05/2022]
Abstract
Image texture analysis (radiomics) uses radiographic images to quantify characteristics that may identify tumour heterogeneity and associated patient outcomes. Using fluoro-deoxy-glucose positron emission tomography/computed tomography (FDG-PET/CT)-derived data, including quantitative metrics, image texture analysis and other clinical risk factors, we aimed to develop a prognostic model that predicts survival in patients with previously untreated diffuse large B-cell lymphoma (DLBCL) from GOYA (NCT01287741). Image texture features and clinical risk factors were combined into a random forest model and compared with the international prognostic index (IPI) for DLBCL based on progression-free survival (PFS) and overall survival (OS) predictions. Baseline FDG-PET scans were available for 1263 patients, 832 patients of these were cell-of-origin (COO)-evaluable. Patients were stratified by IPI or radiomics features plus clinical risk factors into low-, intermediate- and high-risk groups. The random forest model with COO subgroups identified a clearer high-risk population (45% 2-year PFS [95% confidence interval (CI) 40%-52%]; 65% 2-year OS [95% CI 59%-71%]) than the IPI (58% 2-year PFS [95% CI 50%-67%]; 69% 2-year OS [95% CI 62%-77%]). This study confirms that standard clinical risk factors can be combined with PET-derived image texture features to provide an improved prognostic model predicting survival in untreated DLBCL.
Collapse
Affiliation(s)
- Lale Kostakoglu
- Department of Radiology and Medical ImagingUniversity of VirginiaCharlottesvilleVirginiaUSA
| | | | - Paola Berchialla
- Department of Clinical and Biological SciencesUniversity of TurinTurinItaly
| | - Larry A. Pierce
- Department of RadiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Umberto Vitolo
- Multidisciplinary Oncology Outpatient ClinicCandiolo Cancer InstituteCandioloItaly
| | - Maurizio Martelli
- HematologyDepartment of Translational and Precision MedicineSapienza UniversityRomeItaly
| | - Laurie H. Sehn
- BC Cancer Center for Lymphoid Cancer and the University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Marek Trněný
- 1st Faculty of MedicineCharles University General HospitalPragueCzech Republic
| | | | | | | | - Calvin Lee
- Genentech, Inc.South San FranciscoCaliforniaUSA
| | | | | | - Paul E. Kinahan
- Department of RadiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Stephane Chauvie
- Department of Clinical and Biological SciencesUniversity of TurinTurinItaly
| |
Collapse
|
26
|
Deep Neural Networks and Machine Learning Radiomics Modelling for Prediction of Relapse in Mantle Cell Lymphoma. Cancers (Basel) 2022; 14:cancers14082008. [PMID: 35454914 PMCID: PMC9028737 DOI: 10.3390/cancers14082008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Mantle cell lymphoma (MCL) is an aggressive lymphoid tumour with a poor prognosis. There exist no routine biomarkers for the early prediction of relapse. Our study compared the potential of radiomics-based machine learning and 3D deep learning models as non-invasive biomarkers to risk-stratify MCL patients, thus promoting precision imaging in clinical oncology. Abstract Mantle cell lymphoma (MCL) is a rare lymphoid malignancy with a poor prognosis characterised by frequent relapse and short durations of treatment response. Most patients present with aggressive disease, but there exist indolent subtypes without the need for immediate intervention. The very heterogeneous behaviour of MCL is genetically characterised by the translocation t(11;14)(q13;q32), leading to Cyclin D1 overexpression with distinct clinical and biological characteristics and outcomes. There is still an unfulfilled need for precise MCL prognostication in real-time. Machine learning and deep learning neural networks are rapidly advancing technologies with promising results in numerous fields of application. This study develops and compares the performance of deep learning (DL) algorithms and radiomics-based machine learning (ML) models to predict MCL relapse on baseline CT scans. Five classification algorithms were used, including three deep learning models (3D SEResNet50, 3D DenseNet, and an optimised 3D CNN) and two machine learning models based on K-nearest Neighbor (KNN) and Random Forest (RF). The best performing method, our optimised 3D CNN, predicted MCL relapse with a 70% accuracy, better than the 3D SEResNet50 (62%) and the 3D DenseNet (59%). The second-best performing method was the KNN-based machine learning model (64%) after principal component analysis for improved accuracy. Our optimised CNN developed by ourselves correctly predicted MCL relapse in 70% of the patients on baseline CT imaging. Once prospectively tested in clinical trials with a larger sample size, our proposed 3D deep learning model could facilitate clinical management by precision imaging in MCL.
Collapse
|
27
|
Schniering J, Maciukiewicz M, Tanadini-Lang S, Maurer B. Reply to: The potential and challenges of radiomics in uncovering prognostic and molecular differences in interstitial lung disease associated with systemic sclerosis. Eur Respir J 2022; 59:13993003.00303-2022. [DOI: 10.1183/13993003.00303-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/13/2022] [Indexed: 11/05/2022]
|
28
|
Chang S, Han K, Suh YJ, Choi BW. Quality of science and reporting for radiomics in cardiac magnetic resonance imaging studies: a systematic review. Eur Radiol 2022; 32:4361-4373. [PMID: 35230519 DOI: 10.1007/s00330-022-08587-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/31/2021] [Accepted: 01/19/2022] [Indexed: 01/06/2023]
Abstract
OBJECTIVES To evaluate the quality of radiomics studies using cardiac magnetic resonance imaging (CMR) according to the radiomics quality score (RQS), Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) guidelines, and the standards defined by the Image Biomarker Standardization Initiative (IBSI) and identify areas needing improvement. MATERIALS AND METHODS PubMed and Embase were searched to identify radiomics studies using CMR until March 10, 2021. Of the 259 identified articles, 32 relevant original research articles were included. Studies were scored according to the RQS, TRIPOD guidelines, and IBSI standards by two cardiac radiologists. RESULTS The mean RQS was 14.3% of the maximum (5.16 out of 36). RQS were low for the demonstration of validation (-60.6%), calibration statistics (1.6%), potential clinical utility (3.1%), and open science (3.1%) items. No study conducted a phantom study or cost-effectiveness analysis. The adherence to TRIPOD guidelines was 55.9%. Studies were deficient in reporting title (3.1%), stating objective in abstract and introduction (6.3% and 9.4%), missing data (0%), discrimination/calibration (3.1%), and how to use the prediction model (3.1%). According to the IBSI standards, non-uniformity correction, image interpolation, grey-level discretization, and signal intensity normalization were performed in two (6.3%), four (12.5%), six (18.8%), and twelve (37.5%) studies, respectively. CONCLUSION The quality of radiomics studies using CMR is suboptimal. Improvements are needed in the areas of validation, calibration, clinical utility, and open science. Complete reporting of study objectives, missing data, discrimination/calibration, how to use the prediction model, and preprocessing steps are necessary. KEY POINTS • The quality of science in radiomics studies using CMR is currently inadequate. • RQS were low for validation, calibration, clinical utility, and open science; no study conducted a phantom study or cost-effectiveness analysis. • In stating the study objective, missing data, discrimination/calibration, how to use the prediction model, and preprocessing steps, improvements are needed.
Collapse
Affiliation(s)
- Suyon Chang
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Kyunghwa Han
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Young Joo Suh
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
| | - Byoung Wook Choi
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| |
Collapse
|
29
|
Chen Y, Xu W, Li YL, Liu W, Sah BK, Wang L, Xu Z, Wels M, Zheng Y, Yan M, Zhang H, Ma Q, Zhu Z, Li C. CT-Based Radiomics Showing Generalization to Predict Tumor Regression Grade for Advanced Gastric Cancer Treated With Neoadjuvant Chemotherapy. Front Oncol 2022; 12:758863. [PMID: 35280802 PMCID: PMC8913538 DOI: 10.3389/fonc.2022.758863] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/25/2022] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE The aim of this study was to develop and validate a radiomics model to predict treatment response in patients with advanced gastric cancer (AGC) sensitive to neoadjuvant therapies and verify its generalization among different regimens, including neoadjuvant chemotherapy (NAC) and molecular targeted therapy. MATERIALS AND METHODS A total of 373 patients with AGC receiving neoadjuvant therapies were enrolled from five cohorts. Four cohorts of patients received different regimens of NAC, including three retrospective cohorts (training cohort and internal and external validation cohorts) and a prospective Dragon III cohort (NCT03636893). Another prospective SOXA (apatinib in combination with S-1 and oxaliplatin) cohort received neoadjuvant molecular targeted therapy (ChiCTR-OPC-16010061). All patients underwent computed tomography before treatment, and thereafter, tumor regression grade (TRG) was assessed. The primary tumor was delineated, and 2,452 radiomics features were extracted for each patient. Mutual information and random forest were used for dimensionality reduction and modeling. The performance of the radiomics model to predict TRG under different neoadjuvant therapies was evaluated. RESULTS There were 28 radiomics features selected. The radiomics model showed generalization to predict TRG for AGC patients across different NAC regimens, with areas under the curve (AUCs) (95% interval confidence) of 0.82 (0.76~0.90), 0.77 (0.63~0.91), 0.78 (0.66~0.89), and 0.72 (0.66~0.89) in the four cohorts, with no statistical difference observed (all p > 0.05). However, the radiomics model showed poor predictive value on the SOXA cohort [AUC, 0.50 (0.27~0.73)], which was significantly worse than that in the training cohort (p = 0.010). CONCLUSION Radiomics is generalizable to predict TRG for AGC patients receiving NAC treatments, which is beneficial to transform appropriate treatment, especially for those insensitive to NAC.
Collapse
Affiliation(s)
- Yong Chen
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Xu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan-Ling Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Wentao Liu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Birendra Kumar Sah
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lan Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihan Xu
- Siemens Healthineers Ltd., Shanghai, China
| | - Michael Wels
- Department of Diagnostic Imaging Computed Tomography Image Analytics, Siemens Healthcare GmbH, Forchheim, Germany
| | - Yanan Zheng
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Yan
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianchen Ma
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenggang Zhu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Li
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Comparison of FDG PET/CT and Bone Marrow Biopsy Results in Patients with Diffuse Large B Cell Lymphoma with Subgroup Analysis of PET Radiomics. Diagnostics (Basel) 2022; 12:diagnostics12010222. [PMID: 35054389 PMCID: PMC8774933 DOI: 10.3390/diagnostics12010222] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 01/06/2023] Open
Abstract
Whether FDG PET/CT can replace bone marrow biopsy (BMBx) is undecided in patients with diffuse large B cell lymphoma (DLBCL). We compared the visual PET findings and PET radiomic features, with BMBx results. A total of 328 patients were included; 269 (82%) were PET-negative and 59 (18%) were PET-positive for bone lesions on visual assessment. A fair degree of agreement was present between PET and BMBx findings (ĸ = 0.362, p < 0.001). Bone involvement on PET/CT lead to stage IV in 12 patients, despite no other evidence of extranodal lesion. Of 35 discordant PET-positive and BMBx-negative cases, 22 (63%) had discrete bone uptake on PET/CT. A total of 144 patients were eligible for radiomic analysis, and two grey-level zone-length matrix derived parameters obtained from the iliac crests showed a trend for higher values in the BMBx-positive group compared to the BMBx-negative group (mean 436.6 ± 449.0 versus 227.2 ± 137.8, unadjusted p = 0.037 for high grey-level zone emphasis; mean 308.8 ± 394.4 versus 135.7 ± 97.2, unadjusted p = 0.048 for short-zone high grey-level emphasis), but statistical significance was not found after multiple comparison correction. Visual FDG PET/CT assessment and BMBx results were discordant in 17% of patients with newly diagnosed DLBCL, and the two tests are complementary in the evaluation of bone involvement.
Collapse
|
31
|
Lisson CS, Lisson CG, Achilles S, Mezger MF, Wolf D, Schmidt SA, Thaiss WM, Bloehdorn J, Beer AJ, Stilgenbauer S, Beer M, Götz M. Longitudinal CT Imaging to Explore the Predictive Power of 3D Radiomic Tumour Heterogeneity in Precise Imaging of Mantle Cell Lymphoma (MCL). Cancers (Basel) 2022; 14:393. [PMID: 35053554 PMCID: PMC8773890 DOI: 10.3390/cancers14020393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
The study's primary aim is to evaluate the predictive performance of CT-derived 3D radiomics for MCL risk stratification. The secondary objective is to search for radiomic features associated with sustained remission. Included were 70 patients: 31 MCL patients and 39 control subjects with normal axillary lymph nodes followed over five years. Radiomic analysis of all targets (n = 745) was performed and features selected using the Mann Whitney U test; the discriminative power of identifying "high-risk MCL" was evaluated by receiver operating characteristics (ROC). The four radiomic features, "Uniformity", "Entropy", "Skewness" and "Difference Entropy" showed predictive significance for relapse (p < 0.05)-in contrast to the routine size measurements, which showed no relevant difference. The best prognostication for relapse achieved the feature "Uniformity" (AUC-ROC-curve 0.87; optimal cut-off ≤0.0159 to predict relapse with 87% sensitivity, 65% specificity, 69% accuracy). Several radiomic features, including the parameter "Short Axis," were associated with sustained remission. CT-derived 3D radiomics improves the predictive estimation of MCL patients; in combination with the ability to identify potential radiomic features that are characteristic for sustained remission, it may assist physicians in the clinical management of MCL.
Collapse
Affiliation(s)
- Catharina Silvia Lisson
- Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Center for Personalized Medicine (ZPM), University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Artificial Intelligence in Experimental Radiology (XAIRAD), Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Christoph Gerhard Lisson
- Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Sherin Achilles
- Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Marc Fabian Mezger
- Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Artificial Intelligence in Experimental Radiology (XAIRAD), Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Visual Computing Group, Institute of Media Informatics, Ulm University, James-Franck-Ring, 89081 Ulm, Germany
| | - Daniel Wolf
- Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Artificial Intelligence in Experimental Radiology (XAIRAD), Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Visual Computing Group, Institute of Media Informatics, Ulm University, James-Franck-Ring, 89081 Ulm, Germany
| | - Stefan Andreas Schmidt
- Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Center for Personalized Medicine (ZPM), University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Wolfgang M Thaiss
- Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Artificial Intelligence in Experimental Radiology (XAIRAD), Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Department of Nuclear Medicine, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Johannes Bloehdorn
- Department of Internal Medicine III, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Ambros J Beer
- Center for Personalized Medicine (ZPM), University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Artificial Intelligence in Experimental Radiology (XAIRAD), Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Department of Nuclear Medicine, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Center for Translational Imaging "From Molecule to Man" (MoMan), Department of Internal Medicine II, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- i2SouI-Innovative Imaging in Surgical Oncology Ulm, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Comprehensive Cancer Center Ulm (CCCU), University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Meinrad Beer
- Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Center for Personalized Medicine (ZPM), University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Artificial Intelligence in Experimental Radiology (XAIRAD), Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Center for Translational Imaging "From Molecule to Man" (MoMan), Department of Internal Medicine II, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- i2SouI-Innovative Imaging in Surgical Oncology Ulm, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Michael Götz
- Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Artificial Intelligence in Experimental Radiology (XAIRAD), Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- German Cancer Research Center (DKFZ), Division Medical Image Computing, 69120 Heidelberg, Germany
| |
Collapse
|
32
|
Furtado FS, Johnson MK, Catalano OA. PET imaging of hematological neoplasia. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00119-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
33
|
Methodological quality of machine learning-based quantitative imaging analysis studies in esophageal cancer: a systematic review of clinical outcome prediction after concurrent chemoradiotherapy. Eur J Nucl Med Mol Imaging 2021; 49:2462-2481. [PMID: 34939174 PMCID: PMC9206619 DOI: 10.1007/s00259-021-05658-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/12/2021] [Indexed: 10/24/2022]
Abstract
PURPOSE Studies based on machine learning-based quantitative imaging techniques have gained much interest in cancer research. The aim of this review is to critically appraise the existing machine learning-based quantitative imaging analysis studies predicting outcomes of esophageal cancer after concurrent chemoradiotherapy in accordance with PRISMA guidelines. METHODS A systematic review was conducted in accordance with PRISMA guidelines. The citation search was performed via PubMed and Embase Ovid databases for literature published before April 2021. From each full-text article, study characteristics and model information were summarized. We proposed an appraisal matrix with 13 items to assess the methodological quality of each study based on recommended best-practices pertaining to quality. RESULTS Out of 244 identified records, 37 studies met the inclusion criteria. Study endpoints included prognosis, treatment response, and toxicity after concurrent chemoradiotherapy with reported discrimination metrics in validation datasets between 0.6 and 0.9, with wide variation in quality. A total of 30 studies published within the last 5 years were evaluated for methodological quality and we found 11 studies with at least 6 "good" item ratings. CONCLUSION A substantial number of studies lacked prospective registration, external validation, model calibration, and support for use in clinic. To further improve the predictive power of machine learning-based models and translate into real clinical applications in cancer research, appropriate methodologies, prospective registration, and multi-institution validation are recommended.
Collapse
|
34
|
Nardone V, Reginelli A, Grassi R, Boldrini L, Vacca G, D'Ippolito E, Annunziata S, Farchione A, Belfiore MP, Desideri I, Cappabianca S. Delta radiomics: a systematic review. Radiol Med 2021; 126:1571-1583. [PMID: 34865190 DOI: 10.1007/s11547-021-01436-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/18/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Radiomics can provide quantitative features from medical imaging that can be correlated with various biological features and clinical endpoints. Delta radiomics, on the other hand, consists in the analysis of feature variation at different acquisition time points, usually before and after therapy. The aim of this study was to provide a systematic review of the different delta radiomics approaches. METHODS Eligible articles were searched in Embase, PubMed, and ScienceDirect using a search string that included free text and/or Medical Subject Headings (MeSH) with three key search terms: "radiomics", "texture", and "delta". Studies were analysed using QUADAS-2 and the RQS tool. RESULTS Forty-eight studies were finally included. The studies were divided into preclinical/methodological (five studies, 10.4%); rectal cancer (six studies, 12.5%); lung cancer (twelve studies, 25%); sarcoma (five studies, 10.4%); prostate cancer (three studies, 6.3%), head and neck cancer (six studies, 12.5%); gastrointestinal malignancies excluding rectum (seven studies, 14.6%), and other disease sites (four studies, 8.3%). The median RQS of all studies was 25% (mean 21% ± 12%), with 13 studies (30.2%) achieving a quality score < 10% and 22 studies (51.2%) < 25%. CONCLUSIONS Delta radiomics shows potential benefit for several clinical endpoints in oncology (differential diagnosis, prognosis and prediction of treatment response, and evaluation of side effects). Nevertheless, the studies included in this systematic review suffer from the bias of overall low quality, so that the conclusions are currently heterogeneous, not robust, and not replicable. Further research with prospective and multicentre studies is needed for the clinical validation of delta radiomics approaches.
Collapse
Affiliation(s)
- Valerio Nardone
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Alfonso Reginelli
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy.
| | - Roberta Grassi
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Luca Boldrini
- Dipartimento Di Diagnostica Per Immagini, Radioterapia Oncologica Ed Ematologia - Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Giovanna Vacca
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Emma D'Ippolito
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Salvatore Annunziata
- Dipartimento Di Diagnostica Per Immagini, Radioterapia Oncologica Ed Ematologia - Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Alessandra Farchione
- Dipartimento Di Diagnostica Per Immagini, Radioterapia Oncologica Ed Ematologia - Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Maria Paola Belfiore
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Isacco Desideri
- Department of Biomedical, Experimental and Clinical Sciences "M. Serio", University of Florence, Florence, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| |
Collapse
|
35
|
de Jesus FM, Yin Y, Mantzorou-Kyriaki E, Kahle XU, de Haas RJ, Yakar D, Glaudemans AWJM, Noordzij W, Kwee TC, Nijland M. Machine learning in the differentiation of follicular lymphoma from diffuse large B-cell lymphoma with radiomic [ 18F]FDG PET/CT features. Eur J Nucl Med Mol Imaging 2021; 49:1535-1543. [PMID: 34850248 DOI: 10.1007/s00259-021-05626-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND One of the challenges in the management of patients with follicular lymphoma (FL) is the identification of individuals with histological transformation, most commonly into diffuse large B-cell lymphoma (DLBCL). [18F]FDG-PET/CT is used for staging of patients with lymphoma, but visual interpretation cannot reliably discern FL from DLBCL. This study evaluated whether radiomic features extracted from clinical baseline [18F]FDG PET/CT and analyzed by machine learning algorithms may help discriminate FL from DLBCL. MATERIALS AND METHODS Patients were selected based on confirmed histopathological diagnosis of primary FL (n=44) or DLBCL (n=76) and available [18F]FDG PET/CT with EARL reconstruction parameters within 6 months of diagnosis. Radiomic features were extracted from the volume of interest on co-registered [18F]FDG PET and CT images. Analysis of selected radiomic features was performed with machine learning classifiers based on logistic regression and tree-based ensemble classifiers (AdaBoosting, Gradient Boosting, and XG Boosting). The performance of radiomic features was compared with a SUVmax-based logistic regression model. RESULTS From the segmented lesions, 121 FL and 227 DLBCL lesions were included for radiomic feature extraction. In total, 79 radiomic features were extracted from the SUVmap, 51 from CT, and 6 shape features. Machine learning classifier Gradient Boosting achieved the best discrimination performance using 136 radiomic features (AUC of 0.86 and accuracy of 80%). SUVmax-based logistic regression model achieved an AUC of 0.79 and an accuracy of 70%. Gradient Boosting classifier had a significantly greater AUC and accuracy compared to the SUVmax-based logistic regression (p≤0.01). CONCLUSION Machine learning analysis of radiomic features may be of diagnostic value for discriminating FL from DLBCL tumor lesions, beyond that of the SUVmax alone.
Collapse
Affiliation(s)
| | - Y Yin
- Universitair Medisch Centrum Groningen, Groningen, Netherlands
| | | | - X U Kahle
- Universitair Medisch Centrum Groningen, Groningen, Netherlands
| | - R J de Haas
- Universitair Medisch Centrum Groningen, Groningen, Netherlands
| | - D Yakar
- Universitair Medisch Centrum Groningen, Groningen, Netherlands
| | | | - W Noordzij
- Universitair Medisch Centrum Groningen, Groningen, Netherlands
| | - T C Kwee
- Universitair Medisch Centrum Groningen, Groningen, Netherlands
| | - M Nijland
- Universitair Medisch Centrum Groningen, Groningen, Netherlands
| |
Collapse
|
36
|
Modiri A, Vogelius I, Rechner LA, Nygård L, Bentzen SM, Specht L. Outcome-based multiobjective optimization of lymphoma radiation therapy plans. Br J Radiol 2021; 94:20210303. [PMID: 34541859 PMCID: PMC8553178 DOI: 10.1259/bjr.20210303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 02/04/2023] Open
Abstract
At its core, radiation therapy (RT) requires balancing therapeutic effects against risk of adverse events in cancer survivors. The radiation oncologist weighs numerous disease and patient-level factors when considering the expected risk-benefit ratio of combined treatment modalities. As part of this, RT plan optimization software is used to find a clinically acceptable RT plan delivering a prescribed dose to the target volume while respecting pre-defined radiation dose-volume constraints for selected organs at risk. The obvious limitation to the current approach is that it is virtually impossible to ensure the selected treatment plan could not be bettered by an alternative plan providing improved disease control and/or reduced risk of adverse events in this individual. Outcome-based optimization refers to a strategy where all planning objectives are defined by modeled estimates of a specific outcome's probability. Noting that various adverse events and disease control are generally incommensurable, leads to the concept of a Pareto-optimal plan: a plan where no single objective can be improved without degrading one or more of the remaining objectives. Further benefits of outcome-based multiobjective optimization are that quantitative estimates of risks and benefit are obtained as are the effects of choosing a different trade-off between competing objectives. Furthermore, patient-level risk factors and combined treatment modalities may be integrated directly into plan optimization. Here, we present this approach in the clinical setting of multimodality therapy for malignant lymphoma, a malignancy with marked heterogeneity in biology, target localization, and patient characteristics. We discuss future research priorities including the potential of artificial intelligence.
Collapse
Affiliation(s)
- Arezoo Modiri
- Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Ivan Vogelius
- Department of Oncology, Section of Radiotherapy, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Laura Ann Rechner
- Department of Oncology, Section of Radiotherapy, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lotte Nygård
- Department of Oncology, Section of Radiotherapy, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Søren M Bentzen
- Department of Epidemiology and Public Health, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Lena Specht
- Department of Oncology, Section of Radiotherapy, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
37
|
Xue C, Yuan J, Lo GG, Chang ATY, Poon DMC, Wong OL, Zhou Y, Chu WCW. Radiomics feature reliability assessed by intraclass correlation coefficient: a systematic review. Quant Imaging Med Surg 2021; 11:4431-4460. [PMID: 34603997 DOI: 10.21037/qims-21-86] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
Radiomics research is rapidly growing in recent years, but more concerns on radiomics reliability are also raised. This review attempts to update and overview the current status of radiomics reliability research in the ever expanding medical literature from the perspective of a single reliability metric of intraclass correlation coefficient (ICC). To conduct this systematic review, Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. After literature search and selection, a total of 481 radiomics studies using CT, PET, or MRI, covering a wide range of subject and disease types, were included for review. In these highly heterogeneous studies, feature reliability to image segmentation was much more investigated than reliability to other factors, such as image acquisition, reconstruction, post-processing, and feature quantification. The reported ICCs also suggested high radiomics feature reliability to image segmentation. Image acquisition was found to introduce much more feature variability than image segmentation, in particular for MRI, based on the reported ICC values. Image post-processing and feature quantification yielded different levels of radiomics reliability and might be used to mitigate image acquisition-induced variability. Some common flaws and pitfalls in ICC use were identified, and suggestions on better ICC use were given. Due to the extremely high study heterogeneities and possible risks of bias, the degree of radiomics feature reliability that has been achieved could not yet be safely synthesized or derived in this review. More future researches on radiomics reliability are warranted.
Collapse
Affiliation(s)
- Cindy Xue
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China.,Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jing Yuan
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Gladys G Lo
- Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Amy T Y Chang
- Comprehensive Oncology Centre, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Darren M C Poon
- Comprehensive Oncology Centre, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Oi Lei Wong
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Yihang Zhou
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Winnie C W Chu
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
38
|
Ferjaoui R, Cherni MA, Boujnah S, Kraiem NEH, Kraiem T. Machine learning for evolutive lymphoma and residual masses recognition in whole body diffusion weighted magnetic resonance images. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 209:106320. [PMID: 34390938 DOI: 10.1016/j.cmpb.2021.106320] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND After the treatment of the patients with malignant lymphoma, there may persist lesions that must be labeled either as evolutive lymphoma requiring new treatments or as residual masses. We present in this work, a machine learning-based computer-aided diagnosis (CAD) applied to whole-body diffusion-weighted magnetic resonance images. METHODS The database consists of a total of 1005 MRI images with evolutive lymphoma and residual masses. More specifically, we propose a novel approach that leverages: (1)-The complementarity of the functional and anatomical criteria of MRI images through a fusion step based on the discrete wavelet transforms (DWT). (2)- The automatic segmentation of the lesions, their localization, and their enumeration using the Chan-Vese algorithm. (3)- The generation of the parametric image which contains the apparent diffusion coefficient value named ADC map. (4)- The features selection through the application of the sequential forward selection (SFS), Entropy, Symmetric uncertainty and Gain Ratio algorithm on 72 extracted features. (5)- The classification of the lesions by applying five well known supervised machine learning classification algorithms: the back-propagation artificial neural network (ANN), the support vector machine (SVM), the K-nearest neighbours (K-NN), Relevance Vectors Machine (RVM), and the random forest (RF) compared to deep learning based on convolutional neural network (CNN). Moreover, this study is achieved with an evaluation of the classification using 335 DW-MR images where 80% of them are used for the training and the remaining 20% for the test. RESULTS The obtained accuracy for the five classifiers recorded a slight superiority to the proposed method based on the back-propagation 3-9-1 ANN model which reaches 96,5%. In addition, we compared the proposed method to five other works from the literature. The proposed method gives much better results in terms of SE, SP, accuracy, F1-measure, and geometric-mean which reaches respectively 96.4%, 90.9%, 95.5%, 0.97, and 91.61%. CONCLUSIONS Our initial results suggest that Combining functional, anatomical, and morphological features of ROI's have very good accuracy (97.01%) for evolutive lymphoma and residual masses recognition when we based on the new proposed approach using the back-propagation 3-9-1 ANN model. Proposed method based on machine learning gives less than Deep learning CNN, which is 98.5%.
Collapse
Affiliation(s)
- Radhia Ferjaoui
- University of Tunis El Manar, Research Laboratory of biophysics and Medical technologies (LRBTM), ISTMT, Tunis, 1006, Tunisia.
| | - Mohamed Ali Cherni
- University of Tunis, LR13 ES03 SIME Laboratory, ENSIT, Montfleury 1008 Tunisia
| | - Sana Boujnah
- University of Tunis El Manar, National Engineering School of Tunis, Tunisia
| | | | - Tarek Kraiem
- University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis, 1007, Tunisia; University of Tunis El Manar, Research Laboratory of biophysics and Medical technologies (LRBTM), ISTMT, Tunis, 1006, Tunisia
| |
Collapse
|
39
|
The Constantly Evolving Role of Medical Image Processing in Oncology: From Traditional Medical Image Processing to Imaging Biomarkers and Radiomics. J Imaging 2021; 7:jimaging7080124. [PMID: 34460760 PMCID: PMC8404911 DOI: 10.3390/jimaging7080124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/06/2023] Open
Abstract
The role of medical image computing in oncology is growing stronger, not least due to the unprecedented advancement of computational AI techniques, providing a technological bridge between radiology and oncology, which could significantly accelerate the advancement of precision medicine throughout the cancer care continuum. Medical image processing has been an active field of research for more than three decades, focusing initially on traditional image analysis tasks such as registration segmentation, fusion, and contrast optimization. However, with the advancement of model-based medical image processing, the field of imaging biomarker discovery has focused on transforming functional imaging data into meaningful biomarkers that are able to provide insight into a tumor’s pathophysiology. More recently, the advancement of high-performance computing, in conjunction with the availability of large medical imaging datasets, has enabled the deployment of sophisticated machine learning techniques in the context of radiomics and deep learning modeling. This paper reviews and discusses the evolving role of image analysis and processing through the lens of the abovementioned developments, which hold promise for accelerating precision oncology, in the sense of improved diagnosis, prognosis, and treatment planning of cancer.
Collapse
|
40
|
Wijetunga NA, Imber BS, Caravelli JF, Mikhaeel NG, Yahalom J. A picture is worth a thousand words: a history of diagnostic imaging for lymphoma. Br J Radiol 2021; 94:20210285. [PMID: 34111961 DOI: 10.1259/bjr.20210285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The journey from early drawings of Thomas Hodgkin's patients to deep learning with radiomics in lymphoma has taken nearly 200 years, and in many ways, it parallels the journey of medicine. By tracing the history of imaging in clinical lymphoma practice, we can better understand the motivations for current imaging practices. The earliest imaging modalities of the 2D era each had varied, site-dependent sensitivity, and the improved accuracy of imaging studies allowed new diagnostic and therapeutic techniques. First, we review the initial imaging technologies that were applied to understand lymphoma spread and achieve practical guidance for the earliest lymphoma treatments. Next, in the 3D era, we describe how anatomical imaging advances replaced and complemented conventional modalities. Afterward, we discuss how the PET era scans were used to understand response of tumors to treatment and risk stratification. Finally, we discuss the emergence of radiomics as a promising area of research in personalized medicine. We are now able to identify involved lymph nodes and body sites both before and after treatment to offer patients improved treatment outcomes. As imaging methods continue to improve sensitivity, we will be able to use personalized medicine approaches to give targeted and highly focused therapies at even earlier time points, and ideally, we can obtain long-term disease control and cures for lymphomas.
Collapse
Affiliation(s)
- N Ari Wijetunga
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brandon Stuart Imber
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James F Caravelli
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - N George Mikhaeel
- Department of Clinical Oncology, Guy's and St. Thomas' Hospital, London, UK
| | - Joachim Yahalom
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
41
|
Abdurixiti M, Nijiati M, Shen R, Ya Q, Abuduxiku N, Nijiati M. Current progress and quality of radiomic studies for predicting EGFR mutation in patients with non-small cell lung cancer using PET/CT images: a systematic review. Br J Radiol 2021; 94:20201272. [PMID: 33882244 DOI: 10.1259/bjr.20201272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES To assess the methodological quality of radiomic studies based on positron emission tomography/computed tomography (PET/CT) images predicting epidermal growth factor receptor (EGFR) mutation status in patients with non-small cell lung cancer (NSCLC). METHODS We systematically searched for eligible studies in the PubMed and Web of Science datasets using the terms "radiomics", "PET/CT", "NSCLC", and "EGFR". The included studies were screened by two reviewers independently. The quality of the radiomic workflow of studies was assessed using the Radiomics Quality Score (RQS). Interclass correlation coefficient (ICC) was used to determine inter rater agreement for the RQS. An overview of the methodologies used in steps of the radiomics workflow and current results are presented. RESULTS Six studies were included with sample sizes of 973 ranging from 115 to 248 patients. Methodologies in the radiomic workflow varied greatly. The first-order statistics were the most reproducible features. The RQS scores varied from 13.9 to 47.2%. All studies were scored below 50% due to defects on multiple segmentations, phantom study on all scanners, imaging at multiple time points, cut-off analyses, calibration statistics, prospective study, potential clinical utility, and cost-effectiveness analysis. The ICC results for majority of RQS items were excellent. The ICC for summed RQS was 0.986 [95% confidence interval (CI): 0.898-0.998]. CONCLUSIONS The PET/CT-based radiomics signature could serve as a diagnostic indicator of EGFR mutation status in NSCLC patients. However, the current conclusions should be interpreted with care due to the suboptimal quality of the studies. Consensus for standardization of PET/CT-based radiomic workflow for EGFR mutation status in NSCLC patients is warranted to further improve research. ADVANCES IN KNOWLEDGE Radiomics can offer clinicians better insight into the prediction of EGFR mutation status in NSCLC patients, whereas the quality of relative studies should be improved before application to the clinical setting.
Collapse
Affiliation(s)
- Meilinuer Abdurixiti
- Department of Nuclear Medicine, The First People's Hospital of Kashi Area, Kashi, Xinjiang, China
| | - Mayila Nijiati
- Department of Otolaryngology, The First People's Hospital of Kashi Area, Kashi, Xinjiang, China
| | - Rongfang Shen
- Department of Nuclear Medicine, The First People's Hospital of Kashi Area, Kashi, Xinjiang, China
| | - Qiu Ya
- Department of Radiology, The First People's Hospital of Kashi Area, Kashi, Xinjiang, China
| | - Naibijiang Abuduxiku
- Department of Nuclear Medicine, The First People's Hospital of Kashi Area, Kashi, Xinjiang, China
| | - Mayidili Nijiati
- Department of Radiology, The First People's Hospital of Kashi Area, Kashi, Xinjiang, China
| |
Collapse
|
42
|
Radiomics-based differentiation between glioblastoma and primary central nervous system lymphoma: a comparison of diagnostic performance across different MRI sequences and machine learning techniques. Eur Radiol 2021; 31:8703-8713. [PMID: 33890149 DOI: 10.1007/s00330-021-07845-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/03/2021] [Accepted: 02/26/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Despite the robust diagnostic performance of MRI-based radiomic features for differentiating between glioblastoma (GBM) and primary central nervous system lymphoma (PCNSL) reported on prior studies, the best sequence or a combination of sequences and model performance across various machine learning pipelines remain undefined. Herein, we compare the diagnostic performance of multiple radiomics-based models to differentiate GBM from PCNSL. METHODS Our retrospective study included 94 patients (34 with PCNSL and 60 with GBM). Model performance was assessed using various MRI sequences across 45 possible model and feature selection combinations for nine different sequence permutations. Predictive performance was assessed using fivefold repeated cross-validation with five repeats. The best and worst performing models were compared to assess differences in performance. RESULTS The predictive performance, both using individual and a combination of sequences, was fairly robust across multiple top performing models (AUC: 0.961-0.977) but did show considerable variation between the best and worst performing models. The top performing individual sequences had comparable performance to multiparametric models. The best prediction model in our study used a combination of ADC, FLAIR, and T1-CE achieving the highest AUC of 0.977, while the second ranked model used T1-CE and ADC, achieving a cross-validated AUC of 0.975. CONCLUSION Radiomics-based predictive accuracy can vary considerably, based on the model and feature selection methods as well as the combination of sequences used. Also, models derived from limited sequences show performance comparable to those derived from all five sequences. KEY POINTS • Radiomics-based diagnostic performance of various machine learning models for differentiating glioblastoma and PCNSL varies considerably. • ML models using limited or multiple MRI sequences can provide comparable performance, based on the chosen model. • Embedded feature selection models perform better than models using a priori feature reduction.
Collapse
|
43
|
Prognostic Value of Baseline Radiomic Features of 18F-FDG PET in Patients with Diffuse Large B-Cell Lymphoma. Diagnostics (Basel) 2020; 11:diagnostics11010036. [PMID: 33379166 PMCID: PMC7824203 DOI: 10.3390/diagnostics11010036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
This study investigates whether baseline 18F-FDG PET radiomic features can predict survival outcomes in patients with diffuse large B-cell lymphoma (DLBCL). We retrospectively enrolled 83 patients diagnosed with DLBCL who underwent 18F-FDG PET scans before treatment. The patients were divided into the training cohort (n = 58) and the validation cohort (n = 25). Eighty radiomic features were extracted from the PET images for each patient. Least absolute shrinkage and selection operator regression were used to reduce the dimensionality within radiomic features. Cox proportional hazards model was used to determine the prognostic factors for progression-free survival (PFS) and overall survival (OS). A prognostic stratification model was built in the training cohort and validated in the validation cohort using Kaplan-Meier survival analysis. In the training cohort, run length non-uniformity (RLN), extracted from a gray level run length matrix (GLRLM), was independently associated with PFS (hazard ratio (HR) = 15.7, p = 0.007) and OS (HR = 8.64, p = 0.040). The International Prognostic Index was an independent prognostic factor for OS (HR = 2.63, p = 0.049). A prognostic stratification model was devised based on both risk factors, which allowed identification of three risk groups for PFS and OS in the training (p < 0.001 and p < 0.001) and validation (p < 0.001 and p = 0.020) cohorts. Our results indicate that the baseline 18F-FDG PET radiomic feature, RLNGLRLM, is an independent prognostic factor for survival outcomes. Furthermore, we propose a prognostic stratification model that may enable tailored therapeutic strategies for patients with DLBCL.
Collapse
|
44
|
Zhong J, Hu Y, Si L, Jia G, Xing Y, Zhang H, Yao W. A systematic review of radiomics in osteosarcoma: utilizing radiomics quality score as a tool promoting clinical translation. Eur Radiol 2020; 31:1526-1535. [PMID: 32876837 DOI: 10.1007/s00330-020-07221-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/12/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To assess the methodological quality and risk of bias in radiomics studies investigating diagnosis, therapy response, and survival of patients with osteosarcoma. METHODS In this systematic review, literatures on radiomics in osteosarcoma were included and assessed for methodological quality through the radiomics quality score (RQS). The risk of bias and concern of application was assessed using the Quality Assessment of Diagnostic Accuracy Studies tool. A meta-analysis of studies focusing on predicting osteosarcoma response to neoadjuvant chemotherapy was performed. RESULTS Twelve radiomics studies exploring osteosarcoma were identified, and five were included in meta-analysis. The RQS reached an average of 20.4% (6.92 of 36) with good inter-rater agreement (ICC 0.95, 95% CI 0.85-0.99). Four studies validated results with an internal dataset, none of which used external dataset; one study was prospectively designed, and another one shared part of the dataset. The risk of bias and concern of application were mainly related to index test aspect. The meta-analysis showed a diagnostic odds ratio of 43.68 (95%CI 13.5-141.31) for predicting response to neoadjuvant chemotherapy with high heterogeneity and low methodological quality. CONCLUSIONS The overall scientific quality of included studies is insufficient; however, radiomics remains a promising technology for predicting treatment response, which might guide therapeutic decision-making and related to prognosis. Improvements in study design, validation, and open science needs to be made to demonstrate the generalizability of findings and to achieve clinical applications. Widespread application of RQS, pre-trained RQS scoring procedure, and modification of RQS in response to clinical needs are necessary. KEY POINTS • Limited radiomics studies were established in osteosarcoma with mean RQS of 20.4%, commonly due to unvalidated results, retrospective study design, and absence of open science. • Meta-analysis of radiomics studies predicting osteosarcoma response to neoadjuvant chemotherapy showed high diagnostic odds ratio 43.68, while high heterogeneity and low methodological quality were the main concerns. • A previously trained data extraction instrument allowed reaching moderate inter-rater agreement in RQS applications, while RQS still needs improvement to become a wide adaptive tool in reviews of radiomics studies, in routine self-check before manuscript submitting and in study design.
Collapse
Affiliation(s)
- Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Changning District, Shanghai, 200050, China
| | - Yangfan Hu
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Liping Si
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Changning District, Shanghai, 200050, China
| | - Geng Jia
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Yue Xing
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin 2nd Road, Huangpu District, Shanghai, 200025, China.
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Changning District, Shanghai, 200050, China.
| |
Collapse
|