1
|
Al Chiblak M, Steinbeck F, Thiesen HJ, Lorenz P. DUF3669, a "domain of unknown function" within ZNF746 and ZNF777, oligomerizes and contributes to transcriptional repression. BMC Mol Cell Biol 2019; 20:60. [PMID: 31856708 PMCID: PMC6923878 DOI: 10.1186/s12860-019-0243-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/12/2019] [Indexed: 11/10/2022] Open
Abstract
Background ZNF746 and ZNF777 belong to a subset of the large Krüppel-associated box (KRAB) zinc finger (ZNF) transcription factor family. They contain, like four other members in human, an additional conserved domain, the “domain of unknown function 3669” (DUF3669). Previous work on members of this subfamily suggested involvement in transcriptional regulation and aberrant ZNF746 overexpression leads to neuronal cell death in Parkinson’s disease. Results Here we demonstrate that N-terminal protein segments of the ZNF746a major isoform and ZNF777 act in concert to exert moderate transcriptional repression activities. Full potency depended on the intact configuration consisting of DUF3669, a variant KRAB domain and adjacent sequences. While DUF3669 contributes an intrinsic weak inhibitory activity, the isolated KRAB-AB domains did not repress. Importantly, DUF3669 provides a novel protein-protein interaction interface and mediates direct physical interaction between the members of the subfamily in oligomers. The ZNF746 protein segment encoded by exons 5 and 6 boosted repressor potency, potentially due to the presence of an acceptor lysine for sumoylation at K189. Repressor activity of the potent canonical ZNF10 KRAB domain was not augmented by heterologous transfer of DUF3669, pointing to the importance of context for DUF3669’s impact on transcription. Neither ZNF746a nor ZNF777 protein segments stably associated with TRIM28 within cells. Isoform ZNF746b that contains, unlike the major isoform, a full-length KRAB-A subdomain, displayed substantially increased repressor potency. This increase is due to canonical mechanisms known for KRAB domains since it did not take place in HAP1 knockout models of TRIM28 and SETDB1. A glycine to glutamic acid replacement that complies with a bona fide conserved “MLE” sequence within KRAB-A led to a further strong gain in repressor potency to levels comparable to those of the canonical ZNF10 KRAB domain. Each gain of repressive activity was accompanied by an enhanced interaction with TRIM28 protein. Conclusion DUF3669 adds a protein-protein interaction surface to a subgroup of KRAB-ZNF proteins within an N-terminal configuration with variant KRAB and adjacent sequences likely regulated by sumoylation. DUF3669 contributes to transcriptional repression strength and its homo- and hetero-oligomerization characteristics probably extended the regulatory repertoire of KRAB-ZNF transcription factors during amniote evolution.
Collapse
Affiliation(s)
- Mohannad Al Chiblak
- Institute of Immunology, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | - Felix Steinbeck
- Institute of Immunology, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | - Hans-Jürgen Thiesen
- Institute of Immunology, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | - Peter Lorenz
- Institute of Immunology, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany.
| |
Collapse
|
2
|
Bruno M, Mahgoub M, Macfarlan TS. The Arms Race Between KRAB–Zinc Finger Proteins and Endogenous Retroelements and Its Impact on Mammals. Annu Rev Genet 2019; 53:393-416. [DOI: 10.1146/annurev-genet-112618-043717] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nearly half of the human genome consists of endogenous retroelements (EREs) and their genetic remnants, a small fraction of which carry the potential to propagate in the host genome, posing a threat to genome integrity and cell/organismal survival. The largest family of transcription factors in tetrapods, the Krüppel-associated box domain zinc finger proteins (KRAB-ZFPs), binds to specific EREs and represses their transcription. Since their first appearance over 400 million years ago, KRAB-ZFPs have undergone dramatic expansion and diversification in mammals, correlating with the invasions of new EREs. In this article we review our current understanding of the structure, function, and evolution of KRAB-ZFPs and discuss growing evidence that the arms race between KRAB-ZFPs and the EREs they target is a major driving force for the evolution of new traits in mammals, often accompanied by domestication of EREs themselves.
Collapse
Affiliation(s)
- Melania Bruno
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Mohamed Mahgoub
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Todd S. Macfarlan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
3
|
Han R, Wang X, Wang X, Guo Y, Li D, Li G, Wang Y, Kang X, Li Z. Chicken ZNF764L gene: mRNA expression profile, alternative splicing analysis and association analysis between first exon indel mutation and economic traits. Gene 2019; 695:92-98. [PMID: 30769141 DOI: 10.1016/j.gene.2019.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/09/2019] [Accepted: 02/01/2019] [Indexed: 01/14/2023]
Abstract
Zinc finger proteins are a class of transcription factors with finger-like domains and have diverse uses in biological processes, including development, differentiation, and metabolism. In this study, we identified the absence of the 24 bp sequence in the third exon of the zinc finger protein 764-like (ZNF764L) gene that lead to the production of two new transcripts, ZNF764L-SV1 and ZNF764L-SV2, and the sum of the expression levels of the two transcripts is approximately equal the total RNA expression level. Temporal and spatial expression showed that ZNF764L had higher expression during the embryonic stage. Moreover, the research study revealed a 22-bp indel mutation in the first exon region of ZNF764L gene. Statistically significant results (P < 0.05) were encountered for this indel for chicken growth and carcass traits, which include birth weight, chest breadth and body slanting length at 4 weeks of age and subcutaneous fat weight and others. Genetic parameter analysis showed that D is the predominant allele in the commercial chicken population. Gene expression for each genotype showed that birds carrying the II allele had a higher expression level than the other genotypes. These findings enrich the understanding of ZNF764L gene function and enhance reproduction in the chicken industry.
Collapse
Affiliation(s)
- Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiangnan Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xinlei Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yaping Guo
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Donghua Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Guoxi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanbin Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
4
|
Yang P, Wang Y, Macfarlan TS. The Role of KRAB-ZFPs in Transposable Element Repression and Mammalian Evolution. Trends Genet 2017; 33:871-881. [PMID: 28935117 DOI: 10.1016/j.tig.2017.08.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 12/21/2022]
Abstract
Kruppel-associated box zinc-finger proteins (KRAB-ZFPs) make up the largest family of transcription factors in humans. These proteins emerged in the last common ancestor of coelacanth and tetrapods, and have expanded and diversified in the mammalian lineage. Although their mechanism of transcriptional repression has been well studied for over a decade, the DNA-binding activities and the biological functions of these proteins have been largely unexplored. Recent large-scale ChIP-seq studies and loss-of-function experiments have revealed that KRAB-ZFPs play a major role in the recognition and transcriptional silencing of transposable elements (TEs), consistent with an 'arms race model' of KRAB-ZFP evolution against invading TEs. However, this model is insufficient to explain the evolution of many KRAB-ZFPs that appear to domesticate TEs for novel host functions. We highlight some of the mammalian regulatory innovations driven by specific KRAB-ZFPs, including genomic imprinting, meiotic recombination hotspot choice, and placental growth.
Collapse
Affiliation(s)
- Peng Yang
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD 20892, USA
| | - Yixuan Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, PR China
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
The B-subdomain of the Xenopus laevis XFIN KRAB-AB domain is responsible for its weaker transcriptional repressor activity compared to human ZNF10/Kox1. PLoS One 2014; 9:e87609. [PMID: 24498343 PMCID: PMC3912051 DOI: 10.1371/journal.pone.0087609] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/23/2013] [Indexed: 12/12/2022] Open
Abstract
The Krüppel-associated box (KRAB) domain interacts with the nuclear hub protein TRIM28 to initiate or mediate chromatin-dependent processes like transcriptional repression, imprinting or suppression of endogenous retroviruses. The prototype KRAB domain initially identified in ZNF10/KOX1 encompasses two subdomains A and B that are found in hundreds of zinc finger transcription factors studied in human and murine genomes. Here we demonstrate for the first time transcriptional repressor activity of an amphibian KRAB domain. After sequence correction, the updated KRAB-AB domain of zinc finger protein XFIN from the frog Xenopus laevis was found to confer transcriptional repression in reporter assays in Xenopus laevis A6 kidney cells as well as in human HeLa, but not in the minnow Pimephales promelas fish cell line EPC. Binding of the XFIN KRAB-AB domain to human TRIM28 was demonstrated in a classical co-immunoprecipitation approach and visualized in a single-cell compartmentalization assay. XFIN-AB displayed reduced potency in repression as well as lower strength of interaction with TRIM28 compared to ZNF10 KRAB-AB. KRAB-B subdomain swapping between the two KRAB domains indicated that it was mainly the KRAB-B subdomain of XFIN that was responsible for its lower capacity in repression and binding to human TRIM28. In EPC fish cells, ZNF10 and XFIN KRAB repressor activity could be partially restored to low levels by adding exogenous human TRIM28. In contrast to XFIN, we did not find any transcriptional repression activity for the KRAB-like domain of human PRDM9 in HeLa cells. PRDM9 is thought to harbor an evolutionary older domain related to KRAB whose homologs even occur in invertebrates. Our results support the notion that functional bona fide KRAB domains which confer transcriptional repression and interact with TRIM28 most likely co-evolved together with TRIM28 at the beginning of tetrapode evolution.
Collapse
|
6
|
Razin SV, Borunova VV, Maksimenko OG, Kantidze OL. Cys2His2 zinc finger protein family: classification, functions, and major members. BIOCHEMISTRY (MOSCOW) 2013; 77:217-26. [PMID: 22803940 DOI: 10.1134/s0006297912030017] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cys2His2 (C2H2)-type zinc fingers are widespread DNA binding motifs in eukaryotic transcription factors. Zinc fingers are short protein motifs composed of two or three β-layers and one α-helix. Two cysteine and two histidine residues located in certain positions bind zinc to stabilize the structure. Four other amino acid residues localized in specific positions in the N-terminal region of the α-helix participate in DNA binding by interacting with hydrogen donors and acceptors exposed in the DNA major groove. The number of zinc fingers in a single protein can vary over a wide range, thus enabling variability of target DNA sequences. Besides DNA binding, zinc fingers can also provide protein-protein and RNA-protein interactions. For the most part, proteins containing the C2H2-type zinc fingers are trans regulators of gene expression that play an important role in cellular processes such as development, differentiation, and suppression of malignant cell transformation (oncosuppression).
Collapse
Affiliation(s)
- S V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | | | | | | |
Collapse
|
7
|
Gene expression profiling of oral squamous cell carcinoma by differential display rt-PCR and identification of tumor biomarkers. Indian J Surg Oncol 2011; 1:284-93. [PMID: 22693380 DOI: 10.1007/s13193-011-0054-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Accepted: 01/31/2011] [Indexed: 01/05/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the sixth most common cancer worldwide. Despite progress in therapeutic and surgical treatments, its survival period at 5 years is the lowest among major cancers, and remains unchanged in the last two decades. The growing epidemiological relevance of oral cancer emphasizes the need to better understand the molecular mechanisms underlying this disease and identify predictive tumor markers and therapeutic targets. To this end, we have used the DDRT-PCR analysis to profile the oral tumor transcriptome and identify differentially regulated genes that may be used as potential biomarkers and therapeutic targets. Our DDRT-PCR analysis identified 51 differentially expressed fragments, of which 25 were revalidated by reverse Northern analysis. Northern blot analysis further corroborated these findings for a few genes. In order to ascertain the utility of some of the identified genes as molecular markers and therapeutic targets, semi-quantitative RT-PCR analysis was carried out in a panel of matched oral normal and tumor samples, that confirmed GLTP, PCNA, RBM28, C17orf75 and DIAPH1 as significantly upregulated, whereas TNKS2, PAM and TUBB2C showed significant downregulation in tumor samples. Taken together, our DDRT-PCR analysis has revealed several genes, belonging to diverse cellular pathways, that have been associated with OSCC for the first time. Thus, these genes could be investigated as biomarkers and therapeutic targets for OSCC.
Collapse
|
8
|
Lorenz P, Dietmann S, Wilhelm T, Koczan D, Autran S, Gad S, Wen G, Ding G, Li Y, Rousseau-Merck MF, Thiesen HJ. The ancient mammalian KRAB zinc finger gene cluster on human chromosome 8q24.3 illustrates principles of C2H2 zinc finger evolution associated with unique expression profiles in human tissues. BMC Genomics 2010; 11:206. [PMID: 20346131 PMCID: PMC2865497 DOI: 10.1186/1471-2164-11-206] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 03/26/2010] [Indexed: 11/17/2022] Open
Abstract
Background Expansion of multi-C2H2 domain zinc finger (ZNF) genes, including the Krüppel-associated box (KRAB) subfamily, paralleled the evolution of tetrapodes, particularly in mammalian lineages. Advances in their cataloging and characterization suggest that the functions of the KRAB-ZNF gene family contributed to mammalian speciation. Results Here, we characterized the human 8q24.3 ZNF cluster on the genomic, the phylogenetic, the structural and the transcriptome level. Six (ZNF7, ZNF34, ZNF250, ZNF251, ZNF252, ZNF517) of the seven locus members contain exons encoding KRAB domains, one (ZNF16) does not. They form a paralog group in which the encoded KRAB and ZNF protein domains generally share more similarities with each other than with other members of the human ZNF superfamily. The closest relatives with respect to their DNA-binding domain were ZNF7 and ZNF251. The analysis of orthologs in therian mammalian species revealed strong conservation and purifying selection of the KRAB-A and zinc finger domains. These findings underscore structural/functional constraints during evolution. Gene losses in the murine lineage (ZNF16, ZNF34, ZNF252, ZNF517) and potential protein truncations in primates (ZNF252) illustrate ongoing speciation processes. Tissue expression profiling by quantitative real-time PCR showed similar but distinct patterns for all tested ZNF genes with the most prominent expression in fetal brain. Based on accompanying expression signatures in twenty-six other human tissues ZNF34 and ZNF250 revealed the closest expression profiles. Together, the 8q24.3 ZNF genes can be assigned to a cerebellum, a testis or a prostate/thyroid subgroup. These results are consistent with potential functions of the ZNF genes in morphogenesis and differentiation. Promoter regions of the seven 8q24.3 ZNF genes display common characteristics like missing TATA-box, CpG island-association and transcription factor binding site (TFBS) modules. Common TFBS modules partly explain the observed expression pattern similarities. Conclusions The ZNF genes at human 8q24.3 form a relatively old mammalian paralog group conserved in eutherian mammals for at least 130 million years. The members persisted after initial duplications by undergoing subfunctionalizations in their expression patterns and target site recognition. KRAB-ZNF mediated repression of transcription might have shaped organogenesis in mammalian ontogeny.
Collapse
Affiliation(s)
- Peter Lorenz
- Institute of Immunology, University of Rostock, Schillingallee 70, 18055 Rostock, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Losson R, Nielsen AL. The NIZP1 KRAB and C2HR domains cross-talk for transcriptional regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:463-8. [PMID: 20176155 DOI: 10.1016/j.bbagrm.2010.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 02/08/2010] [Accepted: 02/16/2010] [Indexed: 01/10/2023]
Abstract
The NSD1 histone methyltransferase is involved in the outgrowth disorders Sotos and Weaver syndromes and childhood acute myeloid leukemia. NSD1 is a bona fida transcriptional co-repressor for Nizp1 which is a protein including SCAN, KRAB, C2HR and zinc-finger domains. In this study the Nizp1 KRAB-domain was identified to possess an intrinsic transcriptional activation capacity suppressed in cis by the presence of the C2HR domain. Oppositely, the KRAB-domain supported C2HR domain mediated transcriptional repression. The presence of the KRAB-domain resulted in increased NSD1 co-repressor association with the C2HR domain. This study shows a new function of the KRAB-domain, C2HR-domain, and the associated factors to confer Nizp1 mediated transcriptional regulation.
Collapse
Affiliation(s)
- Regine Losson
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Functional Genomics, Illkirch, France
| | | |
Collapse
|
10
|
Evolution of C2H2-zinc finger genes and subfamilies in mammals: species-specific duplication and loss of clusters, genes and effector domains. BMC Evol Biol 2008; 8:176. [PMID: 18559114 PMCID: PMC2443715 DOI: 10.1186/1471-2148-8-176] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 06/18/2008] [Indexed: 11/26/2022] Open
Abstract
Background C2H2 zinc finger genes (C2H2-ZNF) constitute the largest class of transcription factors in humans and one of the largest gene families in mammals. Often arranged in clusters in the genome, these genes are thought to have undergone a massive expansion in vertebrates, primarily by tandem duplication. However, this view is based on limited datasets restricted to a single chromosome or a specific subset of genes belonging to the large KRAB domain-containing C2H2-ZNF subfamily. Results Here, we present the first comprehensive study of the evolution of the C2H2-ZNF family in mammals. We assembled the complete repertoire of human C2H2-ZNF genes (718 in total), about 70% of which are organized into 81 clusters across all chromosomes. Based on an analysis of their N-terminal effector domains, we identified two new C2H2-ZNF subfamilies encoding genes with a SET or a HOMEO domain. We searched for the syntenic counterparts of the human clusters in other mammals for which complete gene data are available: chimpanzee, mouse, rat and dog. Cross-species comparisons show a large variation in the numbers of C2H2-ZNF genes within homologous mammalian clusters, suggesting differential patterns of evolution. Phylogenetic analysis of selected clusters reveals that the disparity in C2H2-ZNF gene repertoires across mammals not only originates from differential gene duplication but also from gene loss. Further, we discovered variations among orthologs in the number of zinc finger motifs and association of the effector domains, the latter often undergoing sequence degeneration. Combined with phylogenetic studies, physical maps and an analysis of the exon-intron organization of genes from the SCAN and KRAB domains-containing subfamilies, this result suggests that the SCAN subfamily emerged first, followed by the SCAN-KRAB and finally by the KRAB subfamily. Conclusion Our results are in agreement with the "birth and death hypothesis" for the evolution of C2H2-ZNF genes, but also show that this hypothesis alone cannot explain the considerable evolutionary variation within the subfamilies of these genes in mammals. We, therefore, propose a new model involving the interdependent evolution of C2H2-ZNF gene subfamilies.
Collapse
|
11
|
Yang Z, Wood C. The transcriptional repressor K-RBP modulates RTA-mediated transactivation and lytic replication of Kaposi's sarcoma-associated herpesvirus. J Virol 2007; 81:6294-306. [PMID: 17409159 PMCID: PMC1900108 DOI: 10.1128/jvi.02648-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The replication and transcription activator (RTA) protein of Kaposi's sarcoma (KS)-associated herpesvirus (KSHV)/human herpesvirus 8 functions as the key regulator to induce KSHV lytic replication from latency through activation of the lytic cascade of KSHV. Elucidation of the host factors involved in RTA-mediated transcriptional activation is pivotal for understanding the transition between viral latency and lytic replication. KSHV-RTA binding protein (K-RBP) was previously isolated as a cellular RTA binding protein of unknown function. Sequence analysis showed that K-RBP contains a Kruppel-associated box (KRAB) at the N terminus and 12 adjacent zinc finger motifs. In similarity to other KRAB-containing zinc finger proteins, K-RBP is a transcriptional repressor. Mutational analysis revealed that the KRAB domain is responsible for the transcriptional suppression activity of this protein and that the repression is histone deacetylase independent. K-RBP was found to repress RTA-mediated transactivation and interact with TIF1beta (transcription intermediary factor 1beta), a common corepressor of KRAB-containing protein, to synergize with K-RBP in repression. Overexpression and knockdown experiment results suggest that K-RBP is a suppressor of RTA-mediated KSHV reactivation. Our findings suggest that the KRAB-containing zinc finger protein K-RBP can suppress RTA-mediated transactivation and KSHV lytic replication and that KSHV utilizes this protein as a regulator to maintain a balance between latency and lytic replication.
Collapse
Affiliation(s)
- Zhilong Yang
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska, E249 Beadle Center, P.O. Box 880666, Lincoln, NE 68588-0666, USA
| | | |
Collapse
|
12
|
Nikulina K, Bodeker M, Warren J, Matthews P, Margolis TP. A novel Krüppel related factor consisting of only a KRAB domain is expressed in the murine trigeminal ganglion. Biochem Biophys Res Commun 2006; 348:839-49. [PMID: 16904636 DOI: 10.1016/j.bbrc.2006.07.150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 07/18/2006] [Indexed: 10/24/2022]
Abstract
The largest family of zinc-finger (ZnF) transcription factors is that containing the Krüppel-associated box, or KRAB domain. The amino-terminal KRAB domain of these proteins functions as a transcriptional repressor with the downstream ZnF motifs providing DNA-binding specificity. Here we report the identification and characterization of a novel murine Krüppel-related factor (KLF), MIF1, which contains a KRAB domain but lacks a ZnF motif. Western blot analysis identified MIF1-like proteins in the murine trigeminal ganglion (TG) and immunostaining localized these proteins primarily to the cytoplasm of TG neuronal cell bodies. In situ hybridization for Mif1 transcripts confirms the selective expression of Mif1 in TG neurons. Consistent with the non-nuclear localization of MIF1 we could detect no transcriptional repressor activity of the MIF1 protein. However MIF1 appears to be capable of interacting with the co-repressor TIF1beta and exhibits transcription repressor activity when fused to yeast GAL4 binding domain protein. Genomic analysis of Mif1 sequence suggests that the Mif1 transcript may result from splicing of a longer KRAB-ZnF containing transcript.
Collapse
Affiliation(s)
- Karina Nikulina
- F. I. Proctor Foundation and Department of Ophthalmology, University of California San Francisco, 513 Parnassus Avenue, S-310 San Francisco, CA 94143-0412, USA
| | | | | | | | | |
Collapse
|
13
|
Hamilton AT, Huntley S, Tran-Gyamfi M, Baggott DM, Gordon L, Stubbs L. Evolutionary expansion and divergence in the ZNF91 subfamily of primate-specific zinc finger genes. Genome Res 2006; 16:584-94. [PMID: 16606703 PMCID: PMC1457049 DOI: 10.1101/gr.4843906] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Most genes are conserved in mammals, but certain gene families have acquired large numbers of lineage-specific loci through repeated rounds of gene duplication, divergence, and loss that have continued in each mammalian group. One such family encodes KRAB-zinc finger (KRAB-ZNF) proteins, which function as transcriptional repressors. One particular subfamily of KRAB-ZNF genes, including ZNF91, has expanded specifically in primates to comprise more than 110 loci in the human genome. Genes of the ZNF91 subfamily reside in large gene clusters near centromeric regions of human chromosomes 19 and 7 with smaller clusters or isolated copies in other locations. Phylogenetic analysis indicates that many of these genes arose before the split between the New and Old World monkeys, but the ZNF91 subfamily has continued to expand and diversify throughout the evolution of apes and humans. Paralogous loci are distinguished by divergence within their zinc finger arrays, indicating selection for proteins with different regulatory targets. In addition, many loci produce multiple alternatively spliced transcripts encoding proteins that may serve separate and perhaps even opposing regulatory roles because of the modular motif structure of KRAB-ZNF genes. The tissue-specific expression patterns and rapid structural divergence of ZNF91 subfamily genes suggest a role in determining gene expression differences between species and the evolution of novel primate traits.
Collapse
Affiliation(s)
- Aaron T. Hamilton
- Genome Biology Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Stuart Huntley
- Genome Biology Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Mary Tran-Gyamfi
- Genome Biology Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Daniel M. Baggott
- Genome Biology Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Laurie Gordon
- Genome Biology Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Lisa Stubbs
- Genome Biology Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
- Corresponding author.E-mail ; fax (925) 422-2099
| |
Collapse
|
14
|
Huntley S, Baggott DM, Hamilton AT, Tran-Gyamfi M, Yang S, Kim J, Gordon L, Branscomb E, Stubbs L. A comprehensive catalog of human KRAB-associated zinc finger genes: insights into the evolutionary history of a large family of transcriptional repressors. Genome Res 2006; 16:669-77. [PMID: 16606702 PMCID: PMC1457042 DOI: 10.1101/gr.4842106] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Krüppel-type zinc finger (ZNF) motifs are prevalent components of transcription factor proteins in all eukaryotes. KRAB-ZNF proteins, in which a potent repressor domain is attached to a tandem array of DNA-binding zinc-finger motifs, are specific to tetrapod vertebrates and represent the largest class of ZNF proteins in mammals. To define the full repertoire of human KRAB-ZNF proteins, we searched the genome sequence for key motifs and then constructed and manually curated gene models incorporating those sequences. The resulting gene catalog contains 423 KRAB-ZNF protein-coding loci, yielding alternative transcripts that altogether predict at least 742 structurally distinct proteins. Active rounds of segmental duplication, involving single genes or larger regions and including both tandem and distributed duplication events, have driven the expansion of this mammalian gene family. Comparisons between the human genes and ZNF loci mined from the draft mouse, dog, and chimpanzee genomes not only identified 103 KRAB-ZNF genes that are conserved in mammals but also highlighted a substantial level of lineage-specific change; at least 136 KRAB-ZNF coding genes are primate specific, including many recent duplicates. KRAB-ZNF genes are widely expressed and clustered genes are typically not coregulated, indicating that paralogs have evolved to fill roles in many different biological processes. To facilitate further study, we have developed a Web-based public resource with access to gene models, sequences, and other data, including visualization tools to provide genomic context and interaction with other public data sets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Elbert Branscomb
- Microbial Systems Divisions, Biosciences, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Lisa Stubbs
- Genome Biology
- Corresponding author.E-mail ; fax (925) 422-2099
| |
Collapse
|
15
|
Liu F, Zhu C, Xiao J, Wang Y, Tang W, Yuan W, Zhao Y, Li Y, Xiang Z, Wu X, Liu M. A novel human KRAB-containing zinc-finger gene ZNF446 inhibits transcriptional activities of SRE and AP-1. Biochem Biophys Res Commun 2005; 333:5-13. [PMID: 15936718 DOI: 10.1016/j.bbrc.2005.05.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Accepted: 05/05/2005] [Indexed: 11/29/2022]
Abstract
Kruppel-related zinc-finger proteins constitute the largest individual family of transcription factors in mammals [C. Looman, L. Hellman, M. Abrink, A novel Kruppel-associated box identified in a panel of mammalian zinc-finger proteins, Mammalian Genome 15 (1) (2004) 35-40.[1]]. Here we identified and characterized a novel zinc-finger gene named ZNF446. The predicted protein contains a KRAB and three C(2)H(2) zinc fingers. Northern blot analysis shows that ZNF446 is expressed in a variety of human adult tissues with the highest expression level in muscle. ZNF446 is a transcription repressor when fused to GAL4 DNA-binding domain and co-transfected with VP-16. Overexpression of ZNF446 in COS-7 cells inhibits the transcriptional activities of SRE and AP-1, in which the KRAB motif represents the basal transcriptional repressive activity, suggesting that the ZNF446 protein may act as a transcriptional repressor in mitogen-activated protein kinase (MAPK) signaling pathway to mediate cellular functions.
Collapse
Affiliation(s)
- Fang Liu
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|