1
|
Szymańska H, Dzika E, Zabolewicz TJ, Życzko K. The Relationship between Complement Components C1R and C5 Gene Polymorphism and the Values of Blood Indices in Suckling Piglets. Genes (Basel) 2023; 14:2015. [PMID: 38002958 PMCID: PMC10671359 DOI: 10.3390/genes14112015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
The main mechanism of innate immunity is the complement system. Its components include the protein products of the C1R and C5 genes, which are involved in the classical activation pathway as well as the inflammatory and cytolytic immune responses, respectively. The aim of this study was to determine the relationship between PCR-restriction fragment length polymorphism in C1R (726T > C) and C5 (1044A > C) genes, and the values of hematological and biochemical blood indices in suckling crossbred (Polish Large White × Polish Landrace × Duroc × Pietrain) piglets (n = 473), considering their age (younger, 21 ± 3 days, n = 274; older, 35 ± 3 days, n = 199) and health status. The frequencies of the C5 genotypes deviated from the Hardy-Weinberg expectations. Younger piglets, healthy piglets, piglets that deviated from physiological norms and older piglets with the C1R TT genotype all had lower white and red blood cell indices. In piglets with the C5 CC genotype, younger piglets, piglets that deviated from physiological norms and older piglets, a greater number and/or percentage of monocytes were recorded in the blood. Older piglets also showed an increase in the number of leukocytes and granulocytes, along with a tendency for a decrease in the percentage of lymphocytes in their blood. We concluded that a polymorphism in the C1R gene may exhibit a functional association or genetic linkage with other genes involved in the process of erythropoiesis. Furthermore the relationship between the C5 gene polymorphism and the number and/or percentage of monocytes in the blood may modify the body's defense abilities. Piglets with the CC genotype, having an increased number/proportion of these cells in their blood, probably display a weakened immune response to pathogens or a chronic stimulation of the immune system.
Collapse
Affiliation(s)
- Hanna Szymańska
- Department of Medical Biology, School of Public Health, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Żołnierska 14C, 10-561 Olsztyn, Poland
| | - Ewa Dzika
- Department of Medical Biology, School of Public Health, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Żołnierska 14C, 10-561 Olsztyn, Poland
| | - Tadeusz Jarosław Zabolewicz
- Department of Animal Genetics, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Krystyna Życzko
- Department of Animal Genetics, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| |
Collapse
|
2
|
Zheng A, Zhang A, Chen Z, Pirzado SA, Chang W, Cai H, Bryden WL, Liu G. Molecular mechanisms of growth depression in broiler chickens (Gallus Gallus domesticus) mediated by immune stress: a hepatic proteome study. J Anim Sci Biotechnol 2021; 12:90. [PMID: 34253261 PMCID: PMC8276383 DOI: 10.1186/s40104-021-00591-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/06/2021] [Indexed: 01/02/2023] Open
Abstract
Background Immunological stress decreases feed intake, suppresses growth and induces economic losses. However, the underlying molecular mechanism remains unclear. Label-free liquid chromatography and mass spectrometry (LC-MS) proteomics techniques were employed to investigate effects of immune stress on the hepatic proteome changes of Arbor Acres broilers (Gallus Gallus domesticus) challenged with Escherichia coli lipopolysaccharide (LPS). Results Proteomic analysis indicated that 111 proteins were differentially expressed in the liver of broiler chickens from the immune stress group. Of these, 28 proteins were down-regulated, and 83 proteins were up-regulated in the immune stress group. Enrichment analysis showed that immune stress upregulated the expression of hepatic proteins involved in defense function, amino acid catabolism, ion transport, wound healing, and hormone secretion. Furthermore, immune stress increased valine, leucine and isoleucine degradation pathways. Conclusion The data suggests that growth depression of broiler chickens induced by immune stress is triggered by hepatic proteome alterations, and provides a new insight into the mechanism by which immune challenge impairs poultry production.
Collapse
Affiliation(s)
- Aijuan Zheng
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun south street, Haidian district, Beijing, 100081, China
| | - Anrong Zhang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun south street, Haidian district, Beijing, 100081, China
| | - Zhimin Chen
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun south street, Haidian district, Beijing, 100081, China
| | - Shoaib Ahmed Pirzado
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun south street, Haidian district, Beijing, 100081, China
| | - Wenhuan Chang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun south street, Haidian district, Beijing, 100081, China
| | - Huiyi Cai
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun south street, Haidian district, Beijing, 100081, China
| | - Wayne L Bryden
- School of Agriculture and Food Sciences, University of Queensland, Gatton, QLD, 4343, Australia
| | - Guohua Liu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun south street, Haidian district, Beijing, 100081, China.
| |
Collapse
|
3
|
Yang L, Wang C, Shu J, Feng H, He Y, Chen J, Shu J. Porcine Epidemic Diarrhea Virus Induces Vero Cell Apoptosis via the p53-PUMA Signaling Pathway. Viruses 2021; 13:v13071218. [PMID: 34202551 PMCID: PMC8310168 DOI: 10.3390/v13071218] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 11/25/2022] Open
Abstract
Porcine Epidemic Diarrhea Virus (PEDV) is the causative agent of swine epidemic diarrhea. In order to study the pathogenic mechanism of PEDV, PEDV was inoculated into Vero cells cultured in vitro, and the total RNA of Vero cells was extracted to construct a library for Illumina high-throughput sequencing and screening of differentially expressed genes (p < 0.05). Five differentially expressed genes for qRT-PCR verification analysis were randomly selected, and the verification results were consistent with the transcriptome sequencing results. The Kyoto Encyclopedia of Genes and Genomes (KEGG) signal pathway enrichment analysis was performed on the differentially expressed genes screened above. The results showed that the target gene annotations of differentially expressed genes in the African green monkey genome were mainly enriched in the TNF signaling pathway, the P53 signaling pathway, the Jak-STAT signaling pathway, the MAPK signaling pathway, and immune inflammation. In addition, it has been reported that Puma can promote apoptosis and is a key mediator of P53-dependent and non-dependent apoptosis pathways. However, there is no report that PEDV infection can activate Puma and induce apoptosis in a P53-dependent pathway. It was found by flow cytometry that PEDV infection induced apoptosis, and by Western Blotting detection, PEDV infection significantly increased the expression of p53, BAX, and Puma apoptosis-related proteins. Treatment Vero cells with the p53 inhibitor, PFT-α, could significantly inhibit PEDV-induced apoptosis. Studies have shown that PEDV infection can activate Puma and induce apoptosis in a P53-dependent pathway. These findings provide data support for further elucidating the pathogenic mechanism of PEDV and developing an effective vaccine against PEDV.
Collapse
Affiliation(s)
- Lin Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (C.W.); (J.S.); (H.F.); (Y.H.); (J.C.)
| | - Chenyu Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (C.W.); (J.S.); (H.F.); (Y.H.); (J.C.)
| | - Jinqi Shu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (C.W.); (J.S.); (H.F.); (Y.H.); (J.C.)
| | - Huapeng Feng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (C.W.); (J.S.); (H.F.); (Y.H.); (J.C.)
| | - Yulong He
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (C.W.); (J.S.); (H.F.); (Y.H.); (J.C.)
| | - Jian Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (C.W.); (J.S.); (H.F.); (Y.H.); (J.C.)
| | - Jianhong Shu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (C.W.); (J.S.); (H.F.); (Y.H.); (J.C.)
- Shaoxing Biomedical Research Institute, Zhejiang Sci-Tech University, Shaoxing 312000, China
- Correspondence:
| |
Collapse
|
4
|
Huang T, Huang X, Shi B, Wang F, Feng W, Yao M. Regulators of Salmonella-host interaction identified by peripheral blood transcriptome profiling: roles of TGFB1 and TRP53 in intracellular Salmonella replication in pigs. Vet Res 2018; 49:121. [PMID: 30541630 PMCID: PMC6292071 DOI: 10.1186/s13567-018-0616-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
Peripheral blood transcriptome is an important intermediate data source for investigating the mechanism of Salmonella invasion, proliferation, and transmission. We challenged 4-week old piglets with Salmonella enterica serovar Typhimurium LT2 and investigated the peripheral blood gene expression profile before treatment (d0) and at 2 and 7 days post-inoculation (dpi) using deep sequencing. Regulator pathways were first predicted in silico and validated by wet-lab experiments. In total, 1255, 765, and 853 genes were differentially expressed between 2 dpi/d0, 7 dpi/d0, and 7 dpi/2 dpi, respectively. Additionally, 1333 genes showed a time effect during the investigated Salmonella infection period. Clustering analysis showed that the differentially expressed genes fell into six distinct expression clusters. Pathway annotation of these gene clusters showed that the innate immune system was first significantly upregulated at 2 dpi and then attenuated at 7 dpi. Toll-like receptor cascades, MyD88 cascade, phagosome pathway, cytokine signaling pathway, and lysosome pathway showed a similar expression pattern. Interestingly, we found that the ribosome pathway was significantly inhibited at 2 and 7 dpi. Gene expression regulation network enrichment analysis identified several candidate factors controlling the expression clusters. Further in vitro study showed that TGFB1 can inhibit Salmonella replication whereas TRP53 can promote Salmonella replication in porcine peripheral blood mononuclear cells and murine macrophages. These results provide new insights into the molecular mechanism of Salmonella-host interactions and clues for the genetic improvement of Salmonella infection resistance in pigs.
Collapse
Affiliation(s)
- Tinghua Huang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xiali Huang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Bomei Shi
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Fangfang Wang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Wenzhao Feng
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Min Yao
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
5
|
Yao Y, Voillet V, Jegou M, SanCristobal M, Dou S, Romé V, Lippi Y, Billon Y, Père MC, Boudry G, Gress L, Iannucelli N, Mormède P, Quesnel H, Canario L, Liaubet L, Le Huërou-Luron I. Comparing the intestinal transcriptome of Meishan and Large White piglets during late fetal development reveals genes involved in glucose and lipid metabolism and immunity as valuable clues of intestinal maturity. BMC Genomics 2017; 18:647. [PMID: 28830381 PMCID: PMC5568345 DOI: 10.1186/s12864-017-4001-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 08/01/2017] [Indexed: 11/21/2022] Open
Abstract
Background Maturity of intestinal functions is critical for neonatal health and survival, but comprehensive description of mechanisms underlying intestinal maturation that occur during late gestation still remain poorly characterized. The aim of this study was to investigate biological processes specifically involved in intestinal maturation by comparing fetal jejunal transcriptomes of two representative porcine breeds (Large White, LW; Meishan, MS) with contrasting neonatal vitality and maturity, at two key time points during late gestation (gestational days 90 and 110). MS and LW sows inseminated with mixed semen (from breed LW and MS) gave birth to both purebred and crossbred fetuses. We hypothesized that part of the differences in neonatal maturity between the two breeds results from distinct developmental profiles of the fetal intestine during late gestation. Reciprocal crossed fetuses were used to analyze the effect of parental genome. Transcriptomic data and 23 phenotypic variables known to be associated with maturity trait were integrated using multivariate analysis with expectation of identifying relevant genes-phenotypic variable relationships involved in intestinal maturation. Results A moderate maternal genotype effect, but no paternal genotype effect, was observed on offspring intestinal maturation. Four hundred and four differentially expressed probes, corresponding to 274 differentially expressed genes (DEGs), more specifically involved in the maturation process were further studied. In day 110-MS fetuses, Ingenuity® functional enrichment analysis revealed that 46% of DEGs were involved in glucose and lipid metabolism, cell proliferation, vasculogenesis and hormone synthesis compared to day 90-MS fetuses. Expression of genes involved in immune pathways including phagocytosis, inflammation and defense processes was changed in day 110-LW compared to day 90-LW fetuses (corresponding to 13% of DEGs). The transcriptional regulator PPARGC1A was predicted to be an important regulator of differentially expressed genes in MS. Fetal blood fructose level, intestinal lactase activity and villous height were the best predicted phenotypic variables with probes mostly involved in lipid metabolism, carbohydrate metabolism and cellular movement biological pathways. Conclusions Collectively, our findings indicate that the neonatal maturity of pig intestine may rely on functional development of glucose and lipid metabolisms, immune phagocyte differentiation and inflammatory pathways. This process may partially be governed by PPARGC1A. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4001-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ying Yao
- Nutrition Metabolisms and Cancer (NuMeCan), INRA, INSERM, Université de Rennes 1, UBL, Rennes, Saint-Gilles, France.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Valentin Voillet
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Maeva Jegou
- Nutrition Metabolisms and Cancer (NuMeCan), INRA, INSERM, Université de Rennes 1, UBL, Rennes, Saint-Gilles, France
| | - Magali SanCristobal
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Samir Dou
- PEGASE, INRA, Agrocampus Ouest, Saint-Gilles, France
| | - Véronique Romé
- Nutrition Metabolisms and Cancer (NuMeCan), INRA, INSERM, Université de Rennes 1, UBL, Rennes, Saint-Gilles, France
| | - Yannick Lippi
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | | | | | - Gaëlle Boudry
- Nutrition Metabolisms and Cancer (NuMeCan), INRA, INSERM, Université de Rennes 1, UBL, Rennes, Saint-Gilles, France
| | - Laure Gress
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Nathalie Iannucelli
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Pierre Mormède
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | | | - Laurianne Canario
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Laurence Liaubet
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Isabelle Le Huërou-Luron
- Nutrition Metabolisms and Cancer (NuMeCan), INRA, INSERM, Université de Rennes 1, UBL, Rennes, Saint-Gilles, France.
| |
Collapse
|
6
|
CD14 in the TLRs signaling pathway is associated with the resistance to E. coli F18 in Chinese domestic weaned piglets. Sci Rep 2016; 6:24611. [PMID: 27098998 PMCID: PMC4838916 DOI: 10.1038/srep24611] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 02/03/2016] [Indexed: 11/09/2022] Open
Abstract
Escherichia coli F18 (E. coli F18) is mainly responsible for post-weaning diarrhea (PWD) in piglets. The genetic basis and regulatory mechanism of E. coli F18 resistance in Chinese domestic weaned piglets remain unclear. Meishan piglets were used as model animals to test their susceptibility to E. coli F18. By performing a comparative transcriptome study on duodenum tissues of sensitive and resistant pigs, we identified 198 differentially expressed genes (DEGs; 125 upregulated and 73 downregulated) in the resistant pigs. DEGs were predominately involved in immune system pathways, including the Toll-like receptor (TLR) signaling pathway. qPCR and western blot showed CD14, IFN-α, TLR4 and IL-1β, etc. in the TLR signaling pathway had significantly higher expression levels in lipopolysaccharide (LPS)-induced small intestinal epithelial cell lines (IPEC-J2) than those in normal IPEC-J2 cells. Immunohistochemical analysis showed the increased expression of CD14 gene in the E. coli F18-resistant individuals. After CD14 knockdown, the levels of cytokines IL-6 and IL-12 were significantly reduced in IPEC-J2 cell supernatants. The adhesion ability of F18ab strain with IPEC-J2 cells was significantly increased (p < 0.01). This study revealed the TLR signaling pathway, and especially CD14, probably plays an important role in resistance to E. coli F18 infection in Chinese domestic piglets.
Collapse
|
7
|
Rychlik I, Elsheimer-Matulova M, Kyrova K. Gene expression in the chicken caecum in response to infections with non-typhoid Salmonella. Vet Res 2014; 45:119. [PMID: 25475706 PMCID: PMC4256799 DOI: 10.1186/s13567-014-0119-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/04/2014] [Indexed: 11/26/2022] Open
Abstract
Chickens can be infected with Salmonella enterica at any time during their life. However, infections within the first hours and days of their life are epidemiologically the most important, as newly hatched chickens are highly sensitive to Salmonella infection. Salmonella is initially recognized in the chicken caecum by TLR receptors and this recognition is followed by induction of chemokines, cytokines and many effector genes. This results in infiltration of heterophils, macrophages, B- and T-lymphocytes and changes in total gene expression in the caecal lamina propria. The highest induction in expression is observed for matrix metalloproteinase 7 (MMP7). Expression of this gene is increased in the chicken caecum over 4000 fold during the first 10 days after the infection of newly hatched chickens. Additional highly inducible genes in the caecum following S. Enteritidis infection include immune responsive gene 1 (IRG1), serum amyloid A (SAA), extracellular fatty acid binding protein (ExFABP), serine protease inhibitor (SERPINB10), trappin 6-like (TRAP6), calprotectin (MRP126), mitochondrial ES1 protein homolog (ES1), interferon-induced protein with tetratricopeptide repeats 5 (IFIT5), avidin (AVD) and transglutaminase 4 (TGM4). The induction of expression of these proteins exceeds a factor of 50. Similar induction rates are also observed for chemokines and cytokines such as IL1β, IL6, IL8, IL17, IL18, IL22, IFNγ, AH221 or iNOS. Once the infection is under control, which happens approx. 2 weeks after infection, expression of IgY and IgA increases to facilitate Salmonella elimination from the gut lumen. This review outlines the function of individual proteins expressed in chickens after infection with non-typhoid Salmonella serovars.
Collapse
Affiliation(s)
- Ivan Rychlik
- Veterinary Research Institute, Hudcova 70, Brno, 621 00, Czech Republic.
| | | | | |
Collapse
|
8
|
Genetic variations of TAP1 gene exon 3 affects gene expression and Escherichia coli F18 resistance in piglets. Int J Mol Sci 2014; 15:11161-71. [PMID: 24955792 PMCID: PMC4100205 DOI: 10.3390/ijms150611161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 05/22/2014] [Accepted: 05/27/2014] [Indexed: 11/21/2022] Open
Abstract
Firstly, our research group identified Sutai pigs’ phenotypes that exhibited extreme resistance and susceptibility to the Escherichia coli F18 respectively, and then eight ETEC (Enterotoxigenic Escherichia coli) F18-resistant piglets and eight ETEC F18-sensitive piglets were selected. Then, the TAP1 (Transporter associated with antigen processing) mRNA relative expression levels were analyzed in 11 tissues of the resistant and susceptible phenotypes. Simultaneously, we detected the genetic variations in exon 3 of the TAP1 gene and evaluated the TAP1 mRNA expression levels among the different genotype pigs to study the effects of the genetic variation on gene expression, and the E. coli F18 resistance. The results revealed higher expression levels in the resistant genotypes than that in the susceptible genotypes in 11 tissues, with significant differences in the spleen, lymph node, lung, thymus, duodenum and jejunum. Furthermore, a G729A mutation was identified in the TAP1 gene exon 3, and this mutation deviates from Hardy-Weinberg equilibrium (p < 0.01). The TAP1 mRNA levels in GG genotype were significantly higher than that in the other two genotypes, with significant differences in the liver, lung, kidney, thymus, lymph node, duodenum and jejunum tissues. We speculated that high expression of the TAP1 gene might confer resistance against the E. coli F18, the G729A mutation had a significant effect on the mRNA expression, and individuals with the GG genotype possessed a stronger ability to resist the E. coli F18 infection.
Collapse
|
9
|
Xing J, Xing F, Zhang C, Zhang Y, Wang N, Li Y, Yang L, Jiang C, Zhang C, Wen C, Jiang Y. Genome-wide gene expression profiles in lung tissues of pig breeds differing in resistance to porcine reproductive and respiratory syndrome virus. PLoS One 2014; 9:e86101. [PMID: 24465897 PMCID: PMC3900479 DOI: 10.1371/journal.pone.0086101] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 12/05/2013] [Indexed: 11/18/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) caused by PRRS virus (PRRSV) is an infectious disease characterized by severe reproductive deficiency in pregnant sows, typical respiratory symptoms in piglets, and high mortality rate of piglets. In this study, we employed an Affymetrix microarray chip to compare the gene expression profiles of lung tissue samples from Dapulian (DPL) pigs (a Chinese indigenous pig breed) and Duroc×Landrace×Yorkshire (DLY) pigs after infection with PRRSV. During infection with PRRSV, the DLY pigs exhibited a range of clinical features that typify the disease, whereas the DPL pigs showed only mild signs of the disease. Overall, the DPL group had a lower percentage of CD4+ cells and lower CD4+/CD8+ratios than the DLY group (p<0.05). For both IL-10 and TNF-α, the DLY pigs had significantly higher levels than the DPL pigs (p<0.01). The DLY pigs have lower serum IFN-γ levels than the DPL pigs (p<0.01). The serum IgG levels increased slightly from 0 dpi to 7 dpi, and peaked at 14 dpi (p<0.0001). Microarray data analysis revealed 16 differentially expressed (DE) genes in the lung tissue samples from the DLY and DPL pigs (q≤5%), of which LOC100516029 and LOC100523005 were up-regulated in the PRRSV-infected DPL pigs, while the other 14 genes were down-regulated in the PRRSV-infected DPL pigs compared with the PRRSV-infected DLY pigs. The mRNA expression levels of 10 out of the 16 DE genes were validated by real-time quantitative RT-PCR and their fold change was consistent with the result of microarray data analysis. We further analyzed the mRNA expression level of 8 differentially expressed genes between the DPL and DLY pigs for both uninfected and infected groups, and found that TF and USP18 genes were important in underlying porcine resistance or susceptibility to PRRSV.
Collapse
Affiliation(s)
- Jinyi Xing
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, Shandong Province, The People’s Republic of China
- College of Life Science, Linyi University, Linyi, Shandong Province, The People’s Republic of China
| | - Feng Xing
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, Shandong Province, The People’s Republic of China
- College of Animal Science, Tarim University, Ala'er, Xinjiang Uygur Autonomous Region, The People’s Republic of China
| | - Chenhua Zhang
- Department of Mathematics, The University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Yujie Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, Shandong Province, The People’s Republic of China
- College of Life Science, Linyi University, Linyi, Shandong Province, The People’s Republic of China
| | - Nan Wang
- School of Computing, The University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Yanping Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, Shandong Province, The People’s Republic of China
| | - Lijuan Yang
- School of Computing, The University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Chenglan Jiang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, Shandong Province, The People’s Republic of China
| | - Chaoyang Zhang
- School of Computing, The University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Changhong Wen
- School of Computing, The University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Yunliang Jiang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, Shandong Province, The People’s Republic of China
- * E-mail:
| |
Collapse
|
10
|
Matulova M, Varmuzova K, Sisak F, Havlickova H, Babak V, Stejskal K, Zdrahal Z, Rychlik I. Chicken innate immune response to oral infection with Salmonella enterica serovar Enteritidis. Vet Res 2013; 44:37. [PMID: 23687968 PMCID: PMC3663788 DOI: 10.1186/1297-9716-44-37] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 04/23/2013] [Indexed: 02/02/2023] Open
Abstract
The characterization of the immune response of chickens to Salmonella infection is usually limited to the quantification of expression of genes coding for cytokines, chemokines or antimicrobial peptides. However, processes occurring in the cecum of infected chickens are likely to be much more diverse. In this study we have therefore characterized the transcriptome and proteome in the chicken cecum after infection with Salmonella Enteritidis. Using a combination of 454 pyrosequencing, protein mass spectrometry and quantitative real-time PCR, we identified 48 down- and 56 up-regulated chicken genes after Salmonella Enteritidis infection. The most inducible gene was that coding for MMP7, exhibiting a 5952 fold induction 9 days post-infection. An induction of greater than 100 fold was observed for IgG, IRG1, SAA, ExFABP, IL-22, TRAP6, MRP126, IFNγ, iNOS, ES1, IL-1β, LYG2, IFIT5, IL-17, AVD, AH221 and SERPIN B. Since prostaglandin D2 synthase was upregulated and degrading hydroxyprostaglandin dehydrogenase was downregulated after the infection, prostaglandin must accumulate in the cecum of chickens infected with Salmonella Enteritidis. Finally, above mentioned signaling was dependent on the presence of a SPI1-encoded type III secretion system in Salmonella Enteritidis. The inflammation lasted for 2 weeks after which time the expression of the “inflammatory” genes returned back to basal levels and, instead, the expression of IgA and IgG increased. This points to an important role for immunoglobulins in the restoration of homeostasis in the cecum after infection.
Collapse
Affiliation(s)
- Marta Matulova
- Veterinary Research Institute, Hudcova 70, Brno 621 00, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Jang GW, Lee KT, Park JE, Kim H, Kim TH, Choi BH, Kim MJ, Lim D. Gene Expression Profiling in Hepatic Tissue of two Pig Breeds. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2012. [DOI: 10.5187/jast.2012.54.6.383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
MicroRNAome and expression profile of developing tooth germ in miniature pigs. PLoS One 2012; 7:e52256. [PMID: 23272230 PMCID: PMC3525553 DOI: 10.1371/journal.pone.0052256] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 11/09/2012] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) play important roles in the regulation of rodent tooth development, but little is known about their role in tooth development in large mammals. We identified 637 unique miRNA sequences in a large-scale screen for miRNA expression profiles in the developing lower deciduous molars of miniature pigs (Sus scrofa) using Illumina Solexa deep sequencing. These candidate miRNAs and another 105 known Sus scrofa miRNAs were included in the custom-designed microarray and used to analyze the miRNA expression profile in the bud, cap, early bell, and late bell stages of tooth development. Microarray analysis revealed 166 transcripts that were differentially expressed in the four stages. Bioinformatic analysis identified 18 key miRNAs, including let-7f, miR-128, miR-200b, and miR-200c, that might play key roles in tooth development. Taken together, our results not only identified the specific microRNAome and expression profile in developing lower deciduous molars of the miniature pig, but they also provided useful information for investigating the molecular mechanism of tooth development in the miniature pig.
Collapse
|
13
|
Immunogenomics for identification of disease resistance genes in pigs: a review focusing on Gram-negative bacilli. J Anim Sci Biotechnol 2012; 3:34. [PMID: 23137309 PMCID: PMC3554502 DOI: 10.1186/2049-1891-3-34] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 10/10/2012] [Indexed: 01/11/2023] Open
Abstract
Over the past years, infectious disease has caused enormous economic loss in pig industry. Among the pathogens, gram negative bacteria not only cause inflammation, but also cause different diseases and make the pigs more susceptible to virus infection. Vaccination, medication and elimination of sick pigs are major strategies of controlling disease. Genetic methods, such as selection of disease resistance in the pig, have not been widely used. Recently, the completion of the porcine whole genome sequencing has provided powerful tools to identify the genome regions that harboring genes controlling disease or immunity. Immunogenomics, which combines DNA variations, transcriptome, immune response, and QTL mapping data to illustrate the interactions between pathogen and host immune system, will be an effective genomics tool for identification of disease resistance genes in pigs. These genes will be potential targets for disease resistance in breeding programs. This paper reviewed the progress of disease resistance study in the pig focusing on Gram-negative bacilli. Major porcine Gram-negative bacilli and diseases, suggested candidate genes/pathways against porcine Gram-negative bacilli, and distributions of QTLs for immune capacity on pig chromosomes were summarized. Some tools for immunogenomics research were described. We conclude that integration of sequencing, whole genome associations, functional genomics studies, and immune response information is necessary to illustrate molecular mechanisms and key genes in disease resistance.
Collapse
|
14
|
Huang TH, Uthe JJ, Bearson SMD, Demirkale CY, Nettleton D, Knetter S, Christian C, Ramer-Tait AE, Wannemuehler MJ, Tuggle CK. Distinct peripheral blood RNA responses to Salmonella in pigs differing in Salmonella shedding levels: intersection of IFNG, TLR and miRNA pathways. PLoS One 2011; 6:e28768. [PMID: 22174891 PMCID: PMC3236216 DOI: 10.1371/journal.pone.0028768] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 11/15/2011] [Indexed: 12/22/2022] Open
Abstract
Transcriptomic analysis of the response to bacterial pathogens has been reported for several species, yet few studies have investigated the transcriptional differences in whole blood in subjects that differ in their disease response phenotypes. Salmonella species infect many vertebrate species, and pigs colonized with Salmonella enterica serovar Typhimurium (ST) are usually asymptomatic, making detection of these Salmonella-carrier pigs difficult. The variable fecal shedding of Salmonella is an important cause of foodborne illness and zoonotic disease. To investigate gene pathways and biomarkers associated with the variance in Salmonella shedding following experimental inoculation, we initiated the first analysis of the whole blood transcriptional response induced by Salmonella. A population of pigs (n = 40) was inoculated with ST and peripheral blood and fecal Salmonella counts were collected between 2 and 20 days post-inoculation (dpi). Two groups of pigs with either low shedding (LS) or persistent shedding (PS) phenotypes were identified. Global transcriptional changes in response to ST inoculation were identified by Affymetrix Genechip® analysis of peripheral blood RNA at day 0 and 2 dpi. ST inoculation triggered substantial gene expression changes in the pigs and there was differential expression of many genes between LS and PS pigs. Analysis of the differential profiles of gene expression within and between PS and LS phenotypic classes identified distinct regulatory pathways mediated by IFN-γ, TNF, NF-κB, or one of several miRNAs. We confirmed the activation of two regulatory factors, SPI1 and CEBPB, and demonstrated that expression of miR-155 was decreased specifically in the PS animals. These data provide insight into specific pathways associated with extremes in Salmonella fecal shedding that can be targeted for further exploration on why some animals develop a carrier state. This knowledge can also be used to develop rational manipulations of genetics, pharmaceuticals, nutrition or husbandry methods to decrease Salmonella colonization, shedding and spread.
Collapse
Affiliation(s)
- Ting-Hua Huang
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Jolita J. Uthe
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Shawn M. D. Bearson
- National Animal Disease Center, United States Department of Agriculture- Agricultural Research Service, Ames, Iowa, United States of America
| | | | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, Iowa, United States of America
| | - Susan Knetter
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Curtis Christian
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Amanda E. Ramer-Tait
- College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | | | - Christopher K. Tuggle
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
15
|
Lim D, Lee KT, Park JE, Kim H, Kim TH, Choi BH, Kim MJ, Park HS, Jang GW. Analysis of gene expression profiles from subcutaneous adipose tissue of two pig breeds. Genes Genomics 2011. [DOI: 10.1007/s13258-011-0083-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Sun N, Liu D, Chen H, Liu X, Meng F, Zhang X, Chen H, Xie S, Li X, Wu Z. Localization, expression change in PRRSV infection and association analysis of the porcine TAP1 gene. Int J Biol Sci 2011; 8:49-58. [PMID: 22211104 PMCID: PMC3226032 DOI: 10.7150/ijbs.8.49] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 11/01/2011] [Indexed: 12/22/2022] Open
Abstract
The transporter associated with antigen processing (TAP) translocates antigenic peptides from the cytosol into the lumen of the endoplasmic reticular and plays a critical role in the major histocompatibility complex (MHC) class I molecule-mediated antigenic presentation pathway. In this study, the porcine TAP1 gene was mapped to the pig chromosome 7 (SSC7) and was closely linked to the marker SSC2B02 (retention fraction=43%, LOD=15.18). Subcellular localization of TAP1 by transient transfection of PK15 cells indicated that the TAP1 protein might be located in the endoplasmic reticulum (ER) in pig kidney epithelial cells (PK-15). Gene expression analysis by semi-quantitative RT-PCR revealed that TAP1 was selectively expressed in some immune and immune-related tissues. Quantitative real-time PCR (qRT-PCR) analysis revealed that this gene was up-regulated after treatments that mimic viral and bacterial infection (polyriboinosinic-polyribocytidylic acid (poly(I:C)) and lipopolysaccharide (LPS), respectively). In addition, elevated TAP1 expression was detected after porcine reproductive and respiratory syndrome virus (PRRSV) infection in porcine white blood cells (WBCs). One single nucleotide polymorphism (SNP) in exon 3 of TAP1 was detected in a Landrace pig population by Bsp143I restriction enzyme digestion. Different genotypes of this SNP had significant associations (P<0.05) with the red blood cell distribution width (RDW) of 1-day-old (1 d) pigs (P=0.0168), the PRRSV antibody level (PRRSV Ab) (P=0.0445) and the absolute lymphocyte count (LYM#) (P=0.024) of 17 d pigs. Our results showed that the TAP1 gene might have important roles in swine immune responses, and these results provide useful information for further functional studies.
Collapse
Affiliation(s)
- Nunu Sun
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Shinkai H, Suzuki R, Akiba M, Okumura N, Uenishi H. Porcine Toll-like receptors: recognition of Salmonella enterica serovar Choleraesuis and influence of polymorphisms. Mol Immunol 2011; 48:1114-20. [PMID: 21388684 DOI: 10.1016/j.molimm.2011.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 02/10/2011] [Accepted: 02/12/2011] [Indexed: 12/19/2022]
Abstract
Salmonella enterica serovar Choleraesuis (SC) is a highly invasive pathogen that causes enteric and septicemic diseases in pigs. Although there have been some reports on gene expression profiles in the course of infection with SC in pigs, little is known about the genes involved in the infection. By measuring activation, as represented by nuclear factor-κB activity, after stimulation by the pathogen, we showed the involvement of Toll-like receptor (TLR) 5 and the TLR2-TLR1 heterodimer in the recognition of SC. We previously found single nucleotide polymorphisms (SNPs) in the TLRs of various pig populations. Here we demonstrated that the polymorphisms resulting in amino acid changes TLR5(R148L), TLR5(P402L), and TLR2(V703M) attenuated the responses to SC by the cells transfected with the TLR genes. Each of these three SNPs was differently restricted in distribution among breeds. These results suggest that there are differences in resistance to salmonellosis among breeds; these differences may be of great importance for the pig industry in terms of breeding and vaccine development.
Collapse
Affiliation(s)
- Hiroki Shinkai
- Division of Animal Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | |
Collapse
|
18
|
Tuggle CK, Bearson SMD, Uthe JJ, Huang TH, Couture OP, Wang YF, Kuhar D, Lunney JK, Honavar V. Methods for transcriptomic analyses of the porcine host immune response: application to Salmonella infection using microarrays. Vet Immunol Immunopathol 2010; 138:280-91. [PMID: 21036404 DOI: 10.1016/j.vetimm.2010.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Technological developments in both the collection and analysis of molecular genetic data over the past few years have provided new opportunities for an improved understanding of the global response to pathogen exposure. Such developments are particularly dramatic for scientists studying the pig, where tools to measure the expression of tens of thousands of transcripts, as well as unprecedented data on the porcine genome sequence, have combined to expand our abilities to elucidate the porcine immune system. In this review, we describe these recent developments in the context of our work using primarily microarrays to explore gene expression changes during infection of pigs by Salmonella. Thus while the focus is not a comprehensive review of all possible approaches, we provide links and information on both the tools we use as well as alternatives commonly available for transcriptomic data collection and analysis of porcine immune responses. Through this review, we expect readers will gain an appreciation for the necessary steps to plan, conduct, analyze and interpret the data from transcriptomic analyses directly applicable to their research interests.
Collapse
Affiliation(s)
- C K Tuggle
- Department of Animal Science, and Center for Integrated Animal Genomics, 2255 Kildee Hall, Iowa State University, Ames, IA 50010, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Li R, Zhang A, Chen B, Teng L, Wang Y, Chen H, Jin M. Response of swine spleen to Streptococcus suis infection revealed by transcription analysis. BMC Genomics 2010; 11:556. [PMID: 20937098 PMCID: PMC3091705 DOI: 10.1186/1471-2164-11-556] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 10/11/2010] [Indexed: 11/20/2022] Open
Abstract
Astract
Collapse
Affiliation(s)
- Ran Li
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Lunney JK, Chen H. Genetic control of host resistance to porcine reproductive and respiratory syndrome virus (PRRSV) infection. Virus Res 2010; 154:161-9. [PMID: 20709118 DOI: 10.1016/j.virusres.2010.08.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/05/2010] [Indexed: 12/30/2022]
Abstract
This manuscript focuses on the advances made using genomic approaches to identify biomarkers that define genes and pathways that are correlated with swine resistance to infection with porcine reproductive and respiratory syndrome virus (PRRSV), the most economically important swine viral pathogen worldwide. International efforts are underway to assess resistance and susceptibility to infectious pathogens using tools such as gene arrays, single nucleotide polymorphisms (SNPs) chips, genome-wide association studies (GWAS), proteomics, and advanced bioinformatics. These studies should identify new candidate genes and biological pathways associated with host PRRS resistance and alternate viral disease processes and mechanisms; they may unveil biomarkers that account for genetic control of PRRS or, alternately, that reveal new targets for therapeutics or vaccines. Previous genomic approaches have expanded our understanding of quantitative trait loci (QTL) controlling traits of economic importance in pig production, e.g., feed efficiency, meat production, leanness; only recently have these included health traits and disease resistance. Genomic studies should have substantial impact for the pig industry since it is now possible to include the use of biomarkers for basic health traits alongside broader set of markers utilized for selection of pigs for improved performance and reproductive traits, as well as pork quality. Additionally these studies may reveal alternate PRRS control mechanisms that can be exploited for novel drugs, biotherapeutics and vaccine designs.
Collapse
Affiliation(s)
- Joan K Lunney
- Animal Parasitic Diseases Laboratory, ANRI, ARS, USDA, BARC-East, Beltsville, MD 20705, USA.
| | | |
Collapse
|
21
|
A time-course study of gene responses of chicken granulosa cells to Salmonella Enteritidis infection. Vet Microbiol 2010; 144:325-33. [PMID: 20138717 DOI: 10.1016/j.vetmic.2010.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 01/05/2010] [Accepted: 01/06/2010] [Indexed: 11/21/2022]
Abstract
Consumption of eggs contaminated with Salmonella Enteritidis (SE) has been recognized as one of the important causes of human foodborne salmonellosis. Chicken granulosa cells (cGCs) comprise the last tissue layer surrounding the yolk in preovulatory follicles and are a preferred site for SE invasion. To understand the cGC response to SE infection, we conducted an in vitro time-course study to identify cGC transcriptional changes using chicken whole genome microarrays. The expression of 135 (4h postinfection) and 120 cGC genes (48 h postinfection) were altered (P<.01) compared to uninfected cells. Many of the altered genes were related to immune response, physiological processes, signal transduction, and transcription. Furthermore, we also found that the Jak-STAT pathway, which is essential in the regulation of cellular cytokines and growth factors, was highly active in this study. Among the genes identified by microarray, the mRNA levels of TLR15, IL-6, CXCLi1, CXCLi2, and K203 were shown to be upregulated by real-time RT-PCR (qRT-PCR). In contrast, the mRNA levels of RASD1 and HB-EGF decreased according to both microarray and qRT-PCR analyses. These results suggest that during the SE infection, cGCs recruit cells of the innate immune responses; the infection may also induce suppression of cGC cell proliferation, which alters follicular development and ovulation.
Collapse
|
22
|
Tomás A, Fernandes LT, Sánchez A, Segalés J. Time course differential gene expression in response to porcine circovirus type 2 subclinical infection. Vet Res 2009; 41:12. [PMID: 19825344 PMCID: PMC2781716 DOI: 10.1051/vetres/2009060] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 10/12/2009] [Indexed: 12/29/2022] Open
Abstract
This study was aimed at characterizing the potential differences in gene expression in piglets inoculated with Porcine circovirus type 2 (PCV2), the essential causative agent of postweaning multisystemic wasting syndrome. Seven-day-old caesarean-derived, colostrum-deprived piglets were distributed into two groups: control (n = 8) and pigs inoculated with 105.2 TCID50 of the Burgos PCV2 isolate (n = 16). One control and three inoculated pigs were necropsied on days 1, 2, 5, and 8 post-infection (p.i.). The remaining pigs (four of each group) were sequentially bled on days 0, 7, 14, 21, and 29 p.i. (necropsy). Total RNA from the mediastinal lymph node (MLN) and lysed whole blood (LWB) samples were hybridized to Affymetrix Porcine GeneChip®. Forty-three probes were differentially expressed (DE) in MLN samples (FDR < 0.1, fold change > 2) and were distributed into three clusters: globally down-regulated genes, and up-regulated genes at early (first week p.i.) and late (day 29 p.i.) stages of infection. In LWB samples, maximal differences were observed at day 7 p.i., with 54 probes DE between control and inoculated pigs. Main Gene Ontology biological processes assigned to up-regulated genes were related to the immune response. Six common genes were found in both types of samples, all of which belonged to the interferon signaling antiviral effector pathway. Down-regulated genes were mainly related to cell adhesion and migration in MLN, and cellular organization and biogenesis in LWB. Microarray results were validated by quantitative real-time PCR. This study provides, for the first time, the characterization of the early and late molecular events taking place in response to a subclinical PCV2 infection.
Collapse
Affiliation(s)
- Anna Tomás
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| | | | | | | |
Collapse
|
23
|
Galina-Pantoja L, Siggens K, van Schriek MGM, Heuven HCM. Mapping markers linked to porcine salmonellosis susceptibility. Anim Genet 2009; 40:795-803. [PMID: 19496771 DOI: 10.1111/j.1365-2052.2009.01916.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The goal of this study was to identify pig chromosomal regions associated with susceptibility to salmonellosis. Genomic DNA from pig reference populations with differences in susceptibility to Salmonella enterica serovar Choleraesuis as quantified by spleen and liver bacterial colonization at day 7 post-infection (dpi; Van Diemen et al. 2002) was used. These samples belonged to the offspring of a sire thought to be heterozygous for genes involved in susceptibility to salmonellosis. Amplified fragment length polymorphism (AFLP) markers were created and used to determine associations with spleen or bacterial counts at 7 dpi. To position linked markers, two mapping populations, the Roslin and Uppsala PiGMaP pedigrees were used to create an integrated map which included the AFLP markers associated with salmonellosis. Twenty-six AFLP markers located in 14 different chromosomal regions in the porcine genome were found to be significantly associated with susceptibility (Chi-square P < 0.05). More than one linked marker was found on chromosomes 1, 7, 13, 14 and 18. It is likely that these regions contain genes involved in Salmonella susceptibility. Regions on chromosomes 1, 7 and 14 were significantly associated with Salmonella counts in the liver and regions on chromosomes 11, 13 and 18 with counts in spleen. The identification of these chromosomal regions highlights specific areas to search for candidate genes that may be involved in innate or adaptive immunity. Further investigation into these chromosomal regions would be useful to improve our understanding of host responses to infection with this widespread pathogen.
Collapse
Affiliation(s)
- L Galina-Pantoja
- PIC/Genus, 100 Bluegrass Commons Blvd, Hendersonville, TN 37075, USA.
| | | | | | | |
Collapse
|
24
|
Lkhagvadorj S, Qu L, Cai W, Couture OP, Barb CR, Hausman GJ, Nettleton D, Anderson LL, Dekkers JCM, Tuggle CK. Microarray gene expression profiles of fasting induced changes in liver and adipose tissues of pigs expressing the melanocortin-4 receptor D298N variant. Physiol Genomics 2009; 38:98-111. [PMID: 19366786 DOI: 10.1152/physiolgenomics.90372.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Transcriptional profiling coupled with blood metabolite analyses were used to identify porcine genes and pathways that respond to a fasting treatment or to a D298N missense mutation in the melanocortin-4 receptor (MC4R) gene. Gilts (12 homozygous for D298 and 12 homozygous for N298) were either fed ad libitum or fasted for 3 days. Fasting decreased body weight, backfat, and serum urea concentration and increased serum nonesterified fatty acid. In response to fasting, 7,029 genes in fat and 1,831 genes in liver were differentially expressed (DE). MC4R genotype did not significantly affect gene expression, body weight, backfat depth, or any measured serum metabolite concentration. Pathway analyses of fasting-induced DE genes indicated that lipid and steroid synthesis was downregulated in both liver and fat. Fasting increased expression of genes involved in glucose sparing pathways, such as oxidation of amino acids and fatty acids in liver, and in extracellular matrix pathways, such as cell adhesion and adherens junction in fat. Additionally, we identified DE transcription factors (TF) that regulate many DE genes. This confirms the involvement of TF, such as PPARG, SREBF1, and CEBPA, which are known to regulate the fasting response, and implicates additional TF, such as ESR1. Interestingly, ESR1 controls several fasting induced genes in fat that are involved in cell matrix morphogenesis. Our findings indicate a transcriptional response to fasting in two key metabolic tissues of pigs, which was corroborated by changes in blood metabolites, and the involvement of novel putative transcriptional regulators in the immediate adaptive response to fasting.
Collapse
Affiliation(s)
- Sender Lkhagvadorj
- Department of Animal Science, Iowa State University, Ames, Iowa 50011-3150, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lunney JK, Ho CS, Wysocki M, Smith DM. Molecular genetics of the swine major histocompatibility complex, the SLA complex. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:362-374. [PMID: 18760302 DOI: 10.1016/j.dci.2008.07.002] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 07/10/2008] [Accepted: 07/13/2008] [Indexed: 05/26/2023]
Abstract
The swine major histocompatibility complex (MHC) or swine leukocyte antigen (SLA) complex is one of the most gene-dense regions in the swine genome. It consists of three major gene clusters, the SLA class I, class III and class II regions, that span approximately 1.1, 0.7 and 0.5Mb, respectively, making the swine MHC the smallest among mammalian MHC so far examined and the only one known to span the centromere. This review summarizes recent updates to the Immuno Polymorphism Database-MHC (IPD-MHC) website (http://www.ebi.ac.uk/ipd/mhc/sla/) which serves as the repository for maintaining a list of all SLA recognized genes and their allelic sequences. It reviews the expression of SLA proteins on cell subsets and their role in antigen presentation and regulating immune responses. It concludes by discussing the role of SLA genes in swine models of transplantation, xenotransplantation, cancer and allergy and in swine production traits and responses to infectious disease and vaccines.
Collapse
|
26
|
Chen H, Li C, Fang M, Zhu M, Li X, Zhou R, Li K, Zhao S. Understanding Haemophilus parasuis infection in porcine spleen through a transcriptomics approach. BMC Genomics 2009; 10:64. [PMID: 19196461 PMCID: PMC2660370 DOI: 10.1186/1471-2164-10-64] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 02/05/2009] [Indexed: 02/08/2023] Open
Abstract
Background Haemophilus parasuis (HPS) is an important swine pathogen that causes Glässer's disease, which is characterized by fibrinous polyserositis, meningitis and arthritis. The molecular mechanisms that underlie the pathogenesis of the disease remain poorly understood, particularly the resistance of porcine immune system to HPS invasion. In this study, we investigated the global changes in gene expression in the spleen following HPS infection using the Affymetrix Porcine Genechip™. Results A total of 931 differentially expressed (DE) transcripts were identified in the porcine spleen 7 days after HPS infection; of these, 92 unique genes showed differential expression patterns based on analysis using BLASTX and Gene Ontology. The DE genes involved in the immune response included genes for inflammasomes (RETN, S100A8, S100A9, S100A12), adhesion molecules (CLDN3, CSPG2, CD44, LGALS8), transcription factors (ZBTB16, SLC39A14, CEBPD, CEBPB), acute-phase proteins and complement (SAA1, LTF, HP, C3), differentiation genes for epithelial cells and keratinocytes (TGM1, MS4A8B, CSTA), and genes related to antigen processing and presentation (HLA-B, HLA-DRB1). Further immunostimulation analyses indicated that mRNA levels of S100A8, S100A9, and S100A12 in porcine PK-15 cells increased within 48 h and were sustained after administration of lipopolysaccharide (LPS) and Poly(I:C) respectively. In addition, mapping of DE genes to porcine health traits QTL regions showed that 70 genes were distributed in 7 different known porcine QTL regions. Finally, 10 DE genes were validated by quantitative PCR. Conclusion Our findings demonstrate previously unrecognized changes in gene transcription that are associated with HPS infection in vivo, and many potential cascades identified in the study clearly merit further investigation. Our data provide new clues to the nature of the immune response in mammals, and we have identified candidate genes that are related to resistance to HPS.
Collapse
Affiliation(s)
- Hongbo Chen
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Chiang HI, Swaggerty CL, Kogut MH, Dowd SE, Li X, Pevzner IY, Zhou H. Gene expression profiling in chicken heterophils with Salmonella enteritidis stimulation using a chicken 44 K Agilent microarray. BMC Genomics 2008; 9:526. [PMID: 18990222 PMCID: PMC2588606 DOI: 10.1186/1471-2164-9-526] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 11/06/2008] [Indexed: 08/30/2023] Open
Abstract
Background Salmonella enterica serovar Enteritidis (SE) is one of the most common food-borne pathogens that cause human salmonellosis and usually results from the consumption of contaminated poultry products. The mechanism of SE resistance in chickens remains largely unknown. Previously, heterophils isolated from broilers with different genetic backgrounds (SE-resistant [line A] and -susceptible [line B]) have been shown to be important in defending against SE infections. To dissect the interplay between heterophils and SE infection, we utilized large-scale gene expression profiling. Results The results showed more differentially expressed genes were found between different lines than between infection (SE-treated) and non-infection (control) samples within line. However, the numbers of expressed immune-related genes between these two comparisons were dramatically different. More genes related to immune function were down-regulated in line B than line A. The analysis of the immune-related genes indicated that SE infection induced a stronger, up-regulated gene expression of line heterophils A than line B, and these genes include several components in the Toll-like receptor (TLR) signaling pathway, and genes involved in T-helper cell activation. Conclusion We found: (1) A divergent expression pattern of immune-related genes between lines of different genetic backgrounds. The higher expression of immune-related genes might be more beneficial to enhance host immunity in the resistant line; (2) a similar TLR regulatory network might exist in both lines, where a possible MyD88-independent pathway may participate in the regulation of host innate immunity; (3) the genes exclusively differentially expressed in line A or line B with SE infection provided strong candidates for further investigating SE resistance and susceptibility. These findings have laid the foundation for future studies of TLR pathway regulation and cellular modulation of SE infection in chickens.
Collapse
Affiliation(s)
- Hsin-I Chiang
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Correlating blood immune parameters and a CCT7 genetic variant with the shedding of Salmonella enterica serovar Typhimurium in swine. Vet Microbiol 2008; 135:384-8. [PMID: 18996651 DOI: 10.1016/j.vetmic.2008.09.074] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 08/22/2008] [Accepted: 09/15/2008] [Indexed: 11/23/2022]
Abstract
The porcine response to Salmonella infection is critical for control of Salmonella fecal shedding and the establishment of Salmonella carrier status. In this study, 40 crossbred pigs were intranasally inoculated with Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) and monitored for Salmonella fecal shedding and blood immune parameters at 2, 7, 14 and 20 days post-inoculation (dpi). Using a multivariate permutation test, a positive correlation was observed between Salmonella Typhimurium shedding levels at 2 and 7dpi and serum interferon-gamma (IFNgamma) levels at 2dpi (p<0.05), with Salmonella being shed in greater numbers from animals with higher IFNgamma levels. A positive correlation was also observed between IFNgamma levels and the number of banded neutrophils (2dpi), circulating neutrophils (7 and 14dpi), monocytes (7dpi), and white blood cells (WBCs) (7, 14 and 20dpi). We have further performed association studies on these immune response parameters as well as shedding status of the Salmonella-infected pigs with a single nucleotide polymorphism (SNP) in the porcine gene CCT7, previously shown by our group to be transcriptionally up-regulated in swine experimentally inoculated with Salmonella Typhimurium. Our analyses with the 40 pigs suggest a positive association (p=0.0012) of SNP genotype A/G at position AK240296.c1153G>A of the CCT7 gene with Salmonella shedding at 7dpi compared to the G/G homozygote genotype. Linking specific genes and genetic polymorphisms with the porcine immune response to Salmonella infection and shedding may identify potential markers for carrier pigs as well as targets for disease diagnosis, intervention and prevention.
Collapse
|
29
|
Wang Y, Couture OP, Qu L, Uthe JJ, Bearson SMD, Kuhar D, Lunney JK, Nettleton D, Dekkers JCM, Tuggle CK. Analysis of porcine transcriptional response to Salmonella enterica serovar Choleraesuis suggests novel targets of NFkappaB are activated in the mesenteric lymph node. BMC Genomics 2008; 9:437. [PMID: 18811943 PMCID: PMC2570369 DOI: 10.1186/1471-2164-9-437] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 09/23/2008] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Specific knowledge of the molecular pathways controlling host-pathogen interactions can increase our understanding of immune response biology as well as provide targets for drug development and genetic improvement of disease resistance. Toward this end, we have characterized the porcine transcriptional response to Salmonella enterica serovar Choleraesuis (S. Choleraesuis), a Salmonella serovar that predominately colonizes swine, yet can cause serious infections in human patients. Affymetrix technology was used to screen for differentially expressed genes in pig mesenteric lymph nodes (MLN) responding to infection with S. Choleraesuis at acute (8 hours (h), 24 h and 48 h post-inoculation (pi)) and chronic stages (21 days (d) pi). RESULTS Analysis of variance with false discovery rate control identified 1,853 genes with significant changes in expression level (p-value < 0.01, q-value < 0.26, and fold change (FC) > 2) during infection as compared to un-inoculated control pigs. Down-regulation of translation-related genes at 8 hpi and 24 hpi implied that S. Choleraesuis repressed host protein translation. Genes involved in the Th1, innate immune/inflammation response and apoptosis pathways were induced significantly. However, antigen presentation/dendritic cell (DC) function pathways were not affected significantly during infection. A strong NFkappaB-dependent response was observed, as 58 known NFkappaB target genes were induced at 8, 24 and/or 48 hpi. Quantitative-PCR analyses confirmed the microarray data for 21 of 22 genes tested. Based on expression patterns, these target genes can be classified as an "Early" group (induced at either 8 or 24 hpi) and a "Late" group (induced only at 48 hpi). Cytokine activity or chemokine activity were enriched within the Early group genes GO annotations, while the Late group was predominantly composed of signal transduction and cell metabolism annotated genes. Regulatory motif analysis of the human orthologous promoters for both Early and Late genes revealed that 241 gene promoters were predicted to contain NFkappaB binding sites, and that of these, 51 Early and 145 Late genes were previously not known to be NFkappaB targets. CONCLUSION Our study provides novel genome-wide transcriptional profiling data on the porcine response to S. Choleraesuis and expands the understanding of NFkappaB signaling in response to Salmonella infection. Comparison of the magnitude and timing of porcine MLN transcriptional response to different Salmonella serovars, S. Choleraesuis and S. Typhimurium, clearly showed a larger but later transcriptional response to S. Choleraesuis. Both microarray and QPCR data provided evidence of a strong NFkappaB-dependent host transcriptional response during S. Choleraesuis infection. Our data indicate that a lack of strong DC-mediated antigen presentation in the MLN may cause S. Choleraesuis infected pigs to develop a systemic infection, and our analysis predicts nearly 200 novel NFkappaB target genes which may be applicable across mammalian species.
Collapse
Affiliation(s)
- Yanfang Wang
- Department of Animal Science, and Center for Integrated Animal Genomics, Iowa State University, 2255 Kildee Hall, Ames, IA 50010, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Huang TH, Zhu MJ, Li XY, Zhao SH. Discovery of porcine microRNAs and profiling from skeletal muscle tissues during development. PLoS One 2008; 3:e3225. [PMID: 18795099 PMCID: PMC2528944 DOI: 10.1371/journal.pone.0003225] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 08/15/2008] [Indexed: 12/21/2022] Open
Abstract
MiRNAs (microRNAs) play critical roles in many important biological processes such as growth and development in mammals. In this study, we identified hundreds of porcine miRNA candidates through in silico prediction and analyzed their expression in developing skeletal muscle using microarray. Microarray screening using RNA samples prepared from a 33-day whole embryo and an extra embryo membrane validated 296 of the predicted candidates. Comparative expression profiling across samples of longissimus muscle collected from 33-day and 65-day post-gestation fetuses, as well as adult pigs, identified 140 differentially expressed miRNAs amongst the age groups investigated. The differentially expressed miRNAs showed seven distinctive types of expression patterns, suggesting possible involvement in certain biological processes. Five of the differentially expressed miRNAs were validated using real-time PCR. In silico analysis of the miRNA-mRNA interaction sites suggested that the potential mRNA targets of the differentially expressed miRNAs may play important roles in muscle growth and development.
Collapse
Affiliation(s)
- Ting-Hua Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics, Huazhong Agricultural University, Wuhan, People's Republic of China
| | | | | | | |
Collapse
|
31
|
Rogers CS, Abraham WM, Brogden KA, Engelhardt JF, Fisher JT, McCray PB, McLennan G, Meyerholz DK, Namati E, Ostedgaard LS, Prather RS, Sabater JR, Stoltz DA, Zabner J, Welsh MJ. The porcine lung as a potential model for cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 2008; 295:L240-63. [PMID: 18487356 DOI: 10.1152/ajplung.90203.2008] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Airway disease currently causes most of the morbidity and mortality in patients with cystic fibrosis (CF). However, understanding the pathogenesis of CF lung disease and developing novel therapeutic strategies have been hampered by the limitations of current models. Although the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) has been targeted in mice, CF mice fail to develop lung or pancreatic disease like that in humans. In many respects, the anatomy, biochemistry, physiology, size, and genetics of pigs resemble those of humans. Thus pigs with a targeted CFTR gene might provide a good model for CF. Here, we review aspects of porcine airways and lung that are relevant to CF.
Collapse
Affiliation(s)
- Christopher S Rogers
- Department of Internal Medicine, Roy J. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Boyen F, Haesebrouck F, Maes D, Van Immerseel F, Ducatelle R, Pasmans F. Non-typhoidal Salmonella infections in pigs: a closer look at epidemiology, pathogenesis and control. Vet Microbiol 2008; 130:1-19. [PMID: 18243591 DOI: 10.1016/j.vetmic.2007.12.017] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 12/21/2007] [Accepted: 12/28/2007] [Indexed: 10/22/2022]
Abstract
Contaminated pork is an important source of Salmonella infections in humans. The increasing multiple antimicrobial resistance associated with pork-related serotypes such as Salmonella Typhimurium and Salmonella Derby may become a serious human health hazard in the near future. Governments try to anticipate the issue of non-typhoidal Salmonella infections in pork by starting monitoring programmes and coordinating control measures worldwide. A thorough knowledge of how these serotypes interact with the porcine host should form the basis for the development and optimisation of these monitoring and control programmes. During recent years, many researchers have focussed on different aspects of the pathogenesis of non-typhoidal Salmonella infections in pigs. The present manuscript reviews the importance of pigs and pork as a source for salmonellosis in humans and discusses commonly accepted and recent insights in the pathogenesis of non-typhoidal Salmonella infections in pigs, with emphasis on Salmonella Typhimurium, and to relate this knowledge to possible control measures.
Collapse
Affiliation(s)
- F Boyen
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | | | | | |
Collapse
|
33
|
Moser RJ, Reverter A, Lehnert SA. Gene expression profiling of porcine peripheral blood leukocytes after infection with Actinobacillus pleuropneumoniae. Vet Immunol Immunopathol 2007; 121:260-74. [PMID: 18054086 DOI: 10.1016/j.vetimm.2007.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 08/02/2007] [Accepted: 10/11/2007] [Indexed: 01/15/2023]
Abstract
The gene expression profile of peripheral blood leukocytes (PBL) from extreme performing pigs after infection with Actinobacillus pleuropneumoniae was analysed using a custom complementary DNA (cDNA) microarray and quantitative reverse transcription-PCR (qRT-PCR). Four high performing animals with low disease-score (HP), three low performing animals with high disease-score (LP) and one medium performing animal with medium disease-score (MP) were selected for microarray profiling. PBL RNA from these eight pigs collected before and at 24h after APP infection, was examined. The study identified 92 genes that were up-regulated and four genes that were down-regulated in PBL RNA from HP pigs compared to LP pigs. The majority of differentially expressed (DE) genes were identified by virtue of their elevated expression in the HP animals at 24h post-infection. A large number of annotated DE genes are involved in innate immune response pathways. The gene expression profile of 10 DE candidate genes was further explored across the entire pig population in the same infection trial using qRT-PCR. Considerable animal-to-animal variation in PBL gene expression was observed, especially in the LP group. The qRT-PCR analysis suggested that only one true LP pig might be present in this study, which contributes significantly to the differential expression profile of the selected genes in HP animals following APP infection. This study has therefore identified a set of genes which could serve as molecular indicators for an effective immune response to APP in pigs and which could also serve as source for gene marker development in molecular genetics studies of heritable immune traits.
Collapse
Affiliation(s)
- Ralf J Moser
- CSIRO Livestock Industries, St Lucia 4067, Australia.
| | | | | |
Collapse
|
34
|
Wang Y, Qu L, Uthe JJ, Bearson SMD, Kuhar D, Lunney JK, Couture OP, Nettleton D, Dekkers JCM, Tuggle CK. Global transcriptional response of porcine mesenteric lymph nodes to Salmonella enterica serovar Typhimurium. Genomics 2007; 90:72-84. [PMID: 17499962 DOI: 10.1016/j.ygeno.2007.03.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 03/20/2007] [Accepted: 03/23/2007] [Indexed: 10/23/2022]
Abstract
To elucidate the host transcriptional response to Salmonella enterica serovar Typhimurium, Affymetrix porcine GeneChip analysis of pig mesenteric lymph nodes was used to identify 848 genes showing differential expression across different times after inoculation or when compared to non-inoculated controls. Annotation analyses showed that a high proportion of these differentially expressed (DE) genes are involved in immune and inflammatory responses. T helper 1, innate/inflammatory, and antigen-processing pathways were induced at 24 h post-inoculation (hpi) and/or 48 hpi, while apoptosis and antigen presentation/dendritic cell function pathways were downregulated at 8 hpi. Cluster analyses revealed that most DE genes annotated as NFkappaB targets were grouped into a specific induced subcluster, while many translation-related DE genes were found in a repressed subcluster. Quantitative polymerase chain reaction analyses confirmed the Affymetrix results, revealing transcriptional induction of NFkappaB target genes at 24 hpi and suppression of the NFkappaB pathway from 24 to 48 hpi. We propose that such NFkappaB suppression in antigen-presenting cells may be the mechanism by which S. Typhimurium eludes a strong inflammatory response to establish a carrier status in pigs.
Collapse
Affiliation(s)
- Yanfang Wang
- Department of Animal Science and Center for Integrated Animal Genomics Iowa State University, Ames, IA 50010, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lunney JK. Advances in swine biomedical model genomics. Int J Biol Sci 2007; 3:179-84. [PMID: 17384736 PMCID: PMC1802015 DOI: 10.7150/ijbs.3.179] [Citation(s) in RCA: 383] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Accepted: 02/10/2007] [Indexed: 12/18/2022] Open
Abstract
This review is a short update on the diversity of swine biomedical models and the importance of genomics in their continued development. The swine has been used as a major mammalian model for human studies because of the similarity in size and physiology, and in organ development and disease progression. The pig model allows for deliberately timed studies, imaging of internal vessels and organs using standard human technologies, and collection of repeated peripheral samples and, at kill, detailed mucosal tissues. The ability to use pigs from the same litter, or cloned or transgenic pigs, facilitates comparative analyses and genetic mapping. The availability of numerous well defined cell lines, representing a broad range of tissues, further facilitates testing of gene expression, drug susceptibility, etc. Thus the pig is an excellent biomedical model for humans. For genomic applications it is an asset that the pig genome has high sequence and chromosome structure homology with humans. With the swine genome sequence now well advanced there are improving genetic and proteomic tools for these comparative analyses. The review will discuss some of the genomic approaches used to probe these models. The review will highlight genomic studies of melanoma and of infectious disease resistance, discussing issues to consider in designing such studies. It will end with a short discussion of the potential for genomic approaches to develop new alternatives for control of the most economically important disease of pigs, porcine reproductive and respiratory syndrome (PRRS), and the potential for applying knowledge gained with this virus for human viral infectious disease studies.
Collapse
Affiliation(s)
- Joan K Lunney
- APDL, BARC, ARS, United States Department of Agriculture, Beltsville, MD 20705, USA.
| |
Collapse
|
36
|
Tuggle CK, Wang Y, Couture O. Advances in swine transcriptomics. Int J Biol Sci 2007; 3:132-52. [PMID: 17384733 PMCID: PMC1802012 DOI: 10.7150/ijbs.3.132] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 01/02/2007] [Indexed: 01/23/2023] Open
Abstract
The past five years have seen a tremendous rise in porcine transcriptomic data. Available porcine Expressed Sequence Tags (ESTs) have expanded greatly, with over 623,000 ESTs deposited in Genbank. ESTs have been used to expand the pig-human comparative maps, but such data has also been used in many ways to understand pig gene expression. Several methods have been used to identify genes differentially expressed (DE) in specific tissues or cell types under different treatments. These include open screening methods such as suppression subtractive hybridization, differential display, serial analysis of gene expression, and EST sequence frequency, as well as closed methods that measure expression of a defined set of sequences such as hybridization to membrane arrays and microarrays. The use of microarrays to begin large-scale transcriptome analysis has been recently reported, using either specialized or broad-coverage arrays. This review covers published results using the above techniques in the pig, as well as unpublished data provided by the research community, and reports on unpublished Affymetrix data from our group. Published and unpublished bioinformatics efforts are discussed, including recent work by our group to integrate two broad-coverage microarray platforms. We conclude by predicting experiments that will become possible with new anticipated tools and data, including the porcine genome sequence. We emphasize that the need for bioinformatics infrastructure to efficiently store and analyze the expanding amounts of gene expression data is critical, and that this deficit has emerged as a limiting factor for acceleration of genomic understanding in the pig.
Collapse
Affiliation(s)
- Christopher K Tuggle
- Center for Integrated Animal Genomics, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|