1
|
Chong Y, Zhang K, Zeng Y, Chen Q, Feng Q, Cui N, Zheng P, Ruan L, Hua W. ZNF281 Facilitates the Invasion of Cervical Cancer Cell Both In Vivo and In Vitro †. Cancers (Basel) 2024; 16:3717. [PMID: 39518154 PMCID: PMC11545007 DOI: 10.3390/cancers16213717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Cervical cancer is the fourth most common cancer among women worldwide. The zinc finger transcription factor 281 (ZNF281)/ZBP-99 protein specifically binds to GC-rich DNA sequences and regulates gene expression, and it has been shown to promote tumor progression. In this study, we aim to investigate the function and molecular mechanism of ZNF281 in uterine cervical carcinoma. Methods: We conducted immunohistochemistry and Western blot assays to determine the expression of ZNF281 in eight human cervical cancer tissues. And, xenograft experiments involving the injection of HeLa cells into nude mice was used to determine the function of ZNF281 on proliferation. Transwell assays were used to detect the migration and invasion of HeLa cells after indicated that ZNF281 overexpression. Results: Our results indicated that ZNF281 protein levels were higher in cervical cancer tissues compared to normal cervical tissues. Additionally, ZNF281 was expressed in human cervical carcinoma cell lines, including HeLa, SiHa, C-33 A, CaSki, and HT-3, and is localized in both the cell nucleus and cytoplasm. ZNF281 overexpression did not influence HeLa cell proliferation or tumor size in situ. Moreover, nude mice injected with ZNF281-overexpressing cell lines developed more tumor lesions in the lungs compared to those injected with control cell lines. Conclusions: These findings suggest that ZNF281 is associated with tumor metastasis without affecting cell proliferation, both in vivo and in vitro.
Collapse
Affiliation(s)
- Ye Chong
- Department of Ultrasound, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an 710032, China;
| | - Yuting Zeng
- Department of Reproductive Medicine, The First Affiliated Hospital of the Medical College, Xi’an Jiaotong University, Xi’an 710061, China; (Y.Z.); (Q.C.); (Q.F.); (N.C.); (P.Z.)
| | - Qian Chen
- Department of Reproductive Medicine, The First Affiliated Hospital of the Medical College, Xi’an Jiaotong University, Xi’an 710061, China; (Y.Z.); (Q.C.); (Q.F.); (N.C.); (P.Z.)
| | - Qian Feng
- Department of Reproductive Medicine, The First Affiliated Hospital of the Medical College, Xi’an Jiaotong University, Xi’an 710061, China; (Y.Z.); (Q.C.); (Q.F.); (N.C.); (P.Z.)
| | - Nan Cui
- Department of Reproductive Medicine, The First Affiliated Hospital of the Medical College, Xi’an Jiaotong University, Xi’an 710061, China; (Y.Z.); (Q.C.); (Q.F.); (N.C.); (P.Z.)
| | - Pengsheng Zheng
- Department of Reproductive Medicine, The First Affiliated Hospital of the Medical College, Xi’an Jiaotong University, Xi’an 710061, China; (Y.Z.); (Q.C.); (Q.F.); (N.C.); (P.Z.)
| | - Litao Ruan
- Department of Ultrasound, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
| | - Wei Hua
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
2
|
Emfinger CH, de Klerk E, Schueler KL, Rabaglia ME, Stapleton DS, Simonett SP, Mitok KA, Wang Z, Liu X, Paulo JA, Yu Q, Cardone RL, Foster HR, Lewandowski SL, Perales JC, Kendziorski CM, Gygi SP, Kibbey RG, Keller MP, Hebrok M, Merrins MJ, Attie AD. β Cell-specific deletion of Zfp148 improves nutrient-stimulated β cell Ca2+ responses. JCI Insight 2022; 7:e154198. [PMID: 35603790 PMCID: PMC9220824 DOI: 10.1172/jci.insight.154198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 04/20/2022] [Indexed: 12/05/2022] Open
Abstract
Insulin secretion from pancreatic β cells is essential for glucose homeostasis. An insufficient response to the demand for insulin results in diabetes. We previously showed that β cell-specific deletion of Zfp148 (β-Zfp148KO) improves glucose tolerance and insulin secretion in mice. Here, we performed Ca2+ imaging of islets from β‑Zfp148KO and control mice fed both a chow and a Western-style diet. β-Zfp148KO islets demonstrated improved sensitivity and sustained Ca2+ oscillations in response to elevated glucose levels. β-Zfp148KO islets also exhibited elevated sensitivity to amino acid-induced Ca2+ influx under low glucose conditions, suggesting enhanced mitochondrial phosphoenolpyruvate-dependent (PEP-dependent), ATP-sensitive K+ channel closure, independent of glycolysis. RNA-Seq and proteomics of β-Zfp148KO islets revealed altered levels of enzymes involved in amino acid metabolism (specifically, SLC3A2, SLC7A8, GLS, GLS2, PSPH, PHGDH, and PSAT1) and intermediary metabolism (namely, GOT1 and PCK2), consistent with altered PEP cycling. In agreement with this, β-Zfp148KO islets displayed enhanced insulin secretion in response to l-glutamine and activation of glutamate dehydrogenase. Understanding pathways controlled by ZFP148 may provide promising strategies for improving β cell function that are robust to the metabolic challenge imposed by a Western diet.
Collapse
Affiliation(s)
| | | | - Kathryn L. Schueler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mary E. Rabaglia
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Donnie S. Stapleton
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Shane P. Simonett
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kelly A. Mitok
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ziyue Wang
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Xinyue Liu
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Qing Yu
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Rebecca L. Cardone
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, Connecticut, USA
| | - Hannah R. Foster
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sophie L. Lewandowski
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - José C. Perales
- Department of Physiological Sciences, School of Medicine, University of Barcelona, L’Hospitalet del Llobregat, Barcelona, Spain
| | - Christina M. Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard G. Kibbey
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, Connecticut, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, USA
| | - Mark P. Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Matthew J. Merrins
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
MRTFB suppresses colorectal cancer development through regulating SPDL1 and MCAM. Proc Natl Acad Sci U S A 2019; 116:23625-23635. [PMID: 31690663 DOI: 10.1073/pnas.1910413116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Myocardin-related transcription factor B (MRTFB) is a candidate tumor-suppressor gene identified in transposon mutagenesis screens of the intestine, liver, and pancreas. Using a combination of cell-based assays, in vivo tumor xenograft assays, and Mrtfb knockout mice, we demonstrate here that MRTFB is a human and mouse colorectal cancer (CRC) tumor suppressor that functions in part by inhibiting cell invasion and migration. To identify possible MRTFB transcriptional targets, we performed whole transcriptome RNA sequencing in MRTFB siRNA knockdown primary human colon cells and identified 15 differentially expressed genes. Among the top candidate tumor-suppressor targets were melanoma cell adhesion molecule (MCAM), a known tumor suppressor, and spindle apparatus coiled-coil protein 1 (SPDL1), which has no confirmed role in cancer. To determine whether these genes play a role in CRC, we knocked down the expression of MCAM and SPDL1 in human CRC cells and showed significantly increased invasion and migration of tumor cells. We also showed that Spdl1 expression is significantly down-regulated in Mrtfb knockout mouse intestine, while lower SPDL1 expression levels are significantly associated with reduced survival in CRC patients. Finally, we show that depletion of MCAM and SPDL1 in human CRC cells significantly increases tumor development in xenograft assays, further confirming their tumor-suppressive roles in CRC. Collectively, our findings demonstrate the tumor-suppressive role of MRTFB in CRC and identify several genes, including 2 tumor suppressors, that act downstream of MRTFB to regulate tumor growth and survival in CRC patients.
Collapse
|
4
|
Liu Y, Huang W, Gao X, Kuang F. Regulation between two alternative splicing isoforms ZNF148 FL and ZNF148 ΔN, and their roles in the apoptosis and invasion of colorectal cancer. Pathol Res Pract 2018; 215:272-277. [PMID: 30463804 DOI: 10.1016/j.prp.2018.10.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/19/2018] [Accepted: 10/31/2018] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To investigate the effect of two alternative splicing isoforms of zinc finger protein (ZNF) 148 gene on the invasion and metastasis of human colorectal cancer (CRC) cells and their related mechanisms. METHODS Quantitative RT-PCR assays were used to detect the expression of twoZNF148 alternative splicing isoforms in SW480 cells. ZNF148FL-siRNA, ZNF148FL-over express vector, ZNF148ΔN-siRNA, and ZNF148ΔN-over express vector were introduced into SW480 cells. The transfection efficiency was confirmed by RT-PCR. The proliferation, invasion, and migration in vitro as well as the apoptosis of SW480 cells were detected by MTT, transwell, scratch assay and flow cytometry, respectively. RESULTS Both ZNF148FL and ZNF148ΔN were expressed in SW480 cells, and the level of ZNF148FL protein was higher than ZNF148ΔN. After ZNF148FL-siRNA and ZNF148ΔN-over express transfection, the expression level of ZNF148FL and ZNF148ΔN were significantly decreased and increased, respectively. In contrast, the expression of ZNF148FL and ZNF148ΔN were significantly increased and decreased, respectively, after ZNF148FL-over express and ZNF148ΔN-siRNA transfection (all P < 0.05). The proliferation of SW480 cells was increased in ZNF148FL-over express group and the ZNF148ΔN-siRNA group, while decreased in ZNF148FL-siRNA group and ZNF148ΔN-over express group. The invaded cell number and migrated distance in ZNF148FL-siRNA group and ZNF148ΔN-over express group were significantly decreased, but the apoptotic rate was significantly increased. In contrast, ZNF148FL-over express and ZNF148ΔN-siRNA group showed the significantly increased ability of invasion and migration but decreased apoptosis rate (all P < 0.05). CONCLUSION ZNF148FL could increase proliferation, invasion, and migration of CRC cells, while ZNF148ΔN showed opposite effect; the two splicing isoforms of ZNF148 may exert a mutual antagonistic effect to each other on the malignant biological activities.
Collapse
Affiliation(s)
- Yuee Liu
- Department of General Surgery, Changhai Hospital of Shanghai, Shanghai 200433, China
| | - Wei Huang
- Department of Clinical Laboratory, Jiangxi Province Children's hospital, Nanchang 330006, China
| | - Xianhua Gao
- Department of General Surgery, Changhai Hospital of Shanghai, Shanghai 200433, China; Department of Clinical Laboratory, Jiangxi Province Children's hospital, Nanchang 330006, China
| | - Fei Kuang
- Department of General Surgery, Changhai Hospital of Shanghai, Shanghai 200433, China.
| |
Collapse
|
5
|
ZBP-89 and Sp1 contribute to Bak expression in hepatocellular carcinoma cells. BMC Cancer 2018; 18:419. [PMID: 29653560 PMCID: PMC5899329 DOI: 10.1186/s12885-018-4349-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 04/08/2018] [Indexed: 02/05/2023] Open
Abstract
Background Kruppel family member zinc binding protein 89 (ZBP-89), also known as ZNF148, regulates Bak expression via binding to GC-rich promoter domain. It is not clear if other GC-rich binding factors, such as Sp family members, can interact with ZBPp-89 on Bak expression. This study aims to elucidate the mechanism of Bak expression regulation by ZBP-89 and Sp proteins, based on in vitro experiment and The Cancer Genome Atlas (TCGA) hepatocellular carcinoma (HCC) data cohort. Methods We downloaded TCGA hepatocellular carcinoma (HCC) cohort data to analysis the association of Bak transcription level with ZBP-89 and Sp proteins transcription level. HCC cell lines and liver immortal non-tumour cell lines were used for mechanism study, including western blotting analysis, expression vector mediated gene expression and siRNA interference. Results Results showed that cancer tissues have higher Bak transcription level compared with adjacent non-cancer tissues. Bak transcription level was correlated with Sp1 and Sp3 expression level, while no correlation was found in ZBP-89 and Bak, neither Sp2 nor Sp4. Mithramycin A (MMA) induced Bak expression in a dose-dependent manner. Western blotting results showed Sp1 overexpression increased Bak expression both in liver immortal non-tumour cells and HCC cells. Interference Sp1 expression could inhibit Bak expression alone. ZBP-89 siRNA suppressed Bak expression even in the presence of MMA treatment and S1 overexpression. Additionally, Bak and Sp1 level were associated with HCC patient survival. Conclusions Bak expression required ZBP-89 and Sp1 cooperative regulation simultaneously. Electronic supplementary material The online version of this article (10.1186/s12885-018-4349-y) contains supplementary material, which is available to authorized users.
Collapse
|
6
|
Nilton A, Sayin VI, Zou ZV, Sayin SI, Bondjers C, Gul N, Agren P, Fogelstrand P, Nilsson O, Bergo MO, Lindahl P. Targeting Zfp148 activates p53 and reduces tumor initiation in the gut. Oncotarget 2018; 7:56183-56192. [PMID: 27487143 PMCID: PMC5302905 DOI: 10.18632/oncotarget.10899] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/13/2016] [Indexed: 12/30/2022] Open
Abstract
The transcription factor Zinc finger protein 148 (Zfp148, ZBP-89, BFCOL, BERF1, htβ) interacts physically with the tumor suppressor p53, but the significance of this interaction is not known. We recently showed that knockout of Zfp148 in mice leads to ectopic activation of p53 in some tissues and cultured fibroblasts, suggesting that Zfp148 represses p53 activity. Here we hypothesize that targeting Zfp148 would unleash p53 activity and protect against cancer development, and test this idea in the APCMin/+ mouse model of intestinal adenomas. Loss of one copy of Zfp148 markedly reduced tumor numbers and tumor-associated intestinal bleedings, and improved survival. Furthermore, after activation of β-catenin-the initiating event in colorectal cancer-Zfp148 deficiency activated p53 and induced apoptosis in intestinal explants of APCMin/+ mice. The anti-tumor effect of targeting Zfp148 depended on p53, as Zfp148 deficiency did not affect tumor numbers in APCMin/+ mice lacking one or both copies of Trp53. The results suggest that Zfp148 controls the fate of newly transformed intestinal tumor cells by repressing p53 and that targeting Zfp148 might be useful in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Anna Nilton
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden
| | - Volkan I Sayin
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden.,Department of Biochemistry, Institute of Biomedicine, Gothenburg, Sweden
| | - Zhiyuan V Zou
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden
| | - Sama I Sayin
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden
| | - Cecilia Bondjers
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden
| | - Nadia Gul
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden
| | - Pia Agren
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden
| | - Per Fogelstrand
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden
| | - Ola Nilsson
- Sahlgrenska Cancer Center, Institute of Biomedicine, Department of Pathology and Genetics, Gothenburg, Sweden
| | - Martin O Bergo
- Sahlgrenska Cancer Center, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Per Lindahl
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden.,Department of Biochemistry, Institute of Biomedicine, Gothenburg, Sweden
| |
Collapse
|
7
|
Fang J, Jia J, Makowski M, Xu M, Wang Z, Zhang T, Hoskins JW, Choi J, Han Y, Zhang M, Thomas J, Kovacs M, Collins I, Dzyadyk M, Thompson A, O'Neill M, Das S, Lan Q, Koster R, Stolzenberg-Solomon RS, Kraft P, Wolpin BM, Jansen PWTC, Olson S, McGlynn KA, Kanetsky PA, Chatterjee N, Barrett JH, Dunning AM, Taylor JC, Newton-Bishop JA, Bishop DT, Andresson T, Petersen GM, Amos CI, Iles MM, Nathanson KL, Landi MT, Vermeulen M, Brown KM, Amundadottir LT. Functional characterization of a multi-cancer risk locus on chr5p15.33 reveals regulation of TERT by ZNF148. Nat Commun 2017; 8:15034. [PMID: 28447668 PMCID: PMC5414179 DOI: 10.1038/ncomms15034] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/23/2017] [Indexed: 12/13/2022] Open
Abstract
Genome wide association studies (GWAS) have mapped multiple independent cancer susceptibility loci to chr5p15.33. Here, we show that fine-mapping of pancreatic and testicular cancer GWAS within one of these loci (Region 2 in CLPTM1L) focuses the signal to nine highly correlated SNPs. Of these, rs36115365-C associated with increased pancreatic and testicular but decreased lung cancer and melanoma risk, and exhibited preferred protein-binding and enhanced regulatory activity. Transcriptional gene silencing of this regulatory element repressed TERT expression in an allele-specific manner. Proteomic analysis identifies allele-preferred binding of Zinc finger protein 148 (ZNF148) to rs36115365-C, further supported by binding of purified recombinant ZNF148. Knockdown of ZNF148 results in reduced TERT expression, telomerase activity and telomere length. Our results indicate that the association with chr5p15.33-Region 2 may be explained by rs36115365, a variant influencing TERT expression via ZNF148 in a manner consistent with elevated TERT in carriers of the C allele.
Collapse
Affiliation(s)
- Jun Fang
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jinping Jia
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Matthew Makowski
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen 6500 HB, The Netherlands
| | - Mai Xu
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Zhaoming Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Tongwu Zhang
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jason W. Hoskins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jiyeon Choi
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Younghun Han
- Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756, USA
| | - Mingfeng Zhang
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Janelle Thomas
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Michael Kovacs
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Irene Collins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Marta Dzyadyk
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Abbey Thompson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Maura O'Neill
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Sudipto Das
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Qi Lan
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Roelof Koster
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Rachael S. Stolzenberg-Solomon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Brian M. Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Pascal W. T. C. Jansen
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen 6500 HB, The Netherlands
| | - Sara Olson
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York City, New York 10065, USA
| | - Katherine A. McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Peter A. Kanetsky
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Nilanjan Chatterjee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jennifer H. Barrett
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| | - Alison M. Dunning
- Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - John C. Taylor
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| | - Julia A. Newton-Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| | - D. Timothy Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| | - Thorkell Andresson
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Gloria M. Petersen
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Christopher I. Amos
- Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756, USA
| | - Mark M. Iles
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| | - Katherine L. Nathanson
- Translational Medicine and Human Genetics, Department of Medicine and Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Michiel Vermeulen
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen 6500 HB, The Netherlands
| | - Kevin M. Brown
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Laufey T. Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
8
|
Xu HF, Gao XT, Lin JY, Xu XH, Hu J, Ding YJ, Zhu SH. MicroRNA-20b suppresses the expression of ZFP-148 in viral myocarditis. Mol Cell Biochem 2017; 429:199-210. [PMID: 28247213 DOI: 10.1007/s11010-017-2947-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/17/2017] [Indexed: 12/19/2022]
Abstract
Viral myocarditis is a common cardiovascular disease, which seriously endangers the health of people and even leads to sudden unexpected death. MicroRNAs play very important roles in various physical and pathological processes including cardiogenesis and heart diseases. In recent years, miR-20b has been implicated in various diseases such as breast cancer, gastric cancer, hepatocellular carcinoma, cardiovascular diseases. However, the function of miR-20b in the pathological progress of viral myocarditis has not been reported. In this study, we found that miR-20b was up-regulated in mouse heart tissues post Coxsackievirus B3 (CVB3) infection. Bioinformatics analysis identified ZFP-148, a transcription factor that plays essential roles in the regulation of virus replication, is one of the predicted targets of miR-20b. MiR-20b expression was found to be up-regulated and ZFP-148 protein level was markedly repressed during viral myocarditis. Further studies demonstrated that miR-20b directly binds to the 3'-UTR of ZFP-148 and suppresses its translation. Moreover, aberrant expression of miR-20b promoted the expression of anti-apoptosis proteins Bcl-2 and Bcl-xL, suggesting that altered gene expression might promote cardiomyocytes survival in viral myocarditis. Our findings indicated that miR-20b might be a potential therapeutic target for CVB3-induced viral myocarditis and a useful marker for the diagnosis of viral myocarditis.
Collapse
Affiliation(s)
- Hong-Fei Xu
- Department of Forensic Medicine, Soochow University, Suzhou Dushuhu High Educational Town, Suzhou, Jiangsu, 215123, People's Republic of China.
| | - Xiang-Ting Gao
- Department of Forensic Medicine, Soochow University, Suzhou Dushuhu High Educational Town, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Jun-Yi Lin
- Department of Forensic Medicine, Shanghai Medical College, Fudan University, Xuhui, Shanghai, 200032, People's Republic of China
| | - Xue-Hua Xu
- Department of Forensic Medicine, Soochow University, Suzhou Dushuhu High Educational Town, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Jun Hu
- Department of Forensic Medicine, Soochow University, Suzhou Dushuhu High Educational Town, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Yu-Jie Ding
- Department of dermatological, The second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China.
| | - Shao-Hua Zhu
- Department of Forensic Medicine, Soochow University, Suzhou Dushuhu High Educational Town, Suzhou, Jiangsu, 215123, People's Republic of China.
| |
Collapse
|
9
|
Gao XH, Li J, Liu Y, Liu QZ, Hao LQ, Liu LJ, Zhang W. ZNF148 modulates TOP2A expression and cell proliferation via ceRNA regulatory mechanism in colorectal cancer. Medicine (Baltimore) 2017; 96:e5845. [PMID: 28072746 PMCID: PMC5228706 DOI: 10.1097/md.0000000000005845] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Competing endogenous RNA (ceRNA) regulation is a novel hypothesized mechanism that states RNA molecules share common target microRNAs (miRNAs) and may competitively combine into the same miRNA pool. METHODS Zinc finger protein 148 (ZNF148) and TOP2A expression were analyzed in 742 colorectal cancer (CRC) tissues using immunohistochemistry (IHC). ZNF148 mRNA, TOP2A mRNA, miR101, miR144, miR335, and miR365 expression were estimated in 53 fresh frozen CRC tissues by reverse transcription polymerase chain reaction. Mechanisms underpinning ceRNA were examined using bioinformatics, correlation analysis, RNA interference, gene over-expression, and luciferase assays. RESULTS Protein levels of ZNF148 and TOP2A detected by IHC positively correlated (Spearman correlation coefficient [rs] = 0.431, P < 0.001); mRNA levels of ZNF148 and TOP2A also positively correlated (r = 0.591, P < 0.001). Bioinformatics analysis demonstrated that ZNF148 and TOP2A mRNA had 13 common target miRNAs, including miR101, miR144, miR335, and miR365. Correlation analysis demonstrated that levels of ZNF148 mRNA were negatively associated with levels of miR144, miR335, and miR365. Knockdown and overexpression tests showed that ZNF148 mRNA and TOP2A mRNA regulated each other in HCT116 cells, respectively, but not in Dicer-deficient HCT116 cells. Luciferase assays demonstrated that ZNF148 and TOP2A regulated each other through 3'UTR. Overexpression of ZNF148 mRNA and TOP2A mRNA caused significant downregulation of miR101, miR144, miR335, and miR365 in the HCT116 cells. We also found that knockdown of ZNF148 and TOP2A significantly promoted cell growth, and overexpression of ZNF148 and TOP2A inhibited cell proliferation, which was abrogated in Dicer-deficient HCT116 cells. CONCLUSION ZNF148 and TOP2A regulate each other through ceRNA regulatory mechanism in CRC, which has biological effects on cell proliferation.
Collapse
Affiliation(s)
- Xian Hua Gao
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University
| | - Juan Li
- Department of Nephrology, Changhai Hospital, Second Military Medical University
| | - Yan Liu
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Qi Zhi Liu
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University
| | - Li Qiang Hao
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University
| | - Lian Jie Liu
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University
| | - Wei Zhang
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University
| |
Collapse
|
10
|
Hahn S, Hermeking H. ZNF281/ZBP-99: a new player in epithelial-mesenchymal transition, stemness, and cancer. J Mol Med (Berl) 2014; 92:571-81. [PMID: 24838609 DOI: 10.1007/s00109-014-1160-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/04/2014] [Accepted: 04/25/2014] [Indexed: 12/16/2022]
Abstract
Epithelial-mesenchymal transition (EMT) represents an important mechanism during development and wound healing, and its deregulation has been implicated in metastasis. Recently, the Krüppel-type zinc-finger transcription factor ZNF281 has been characterized as an EMT-inducing transcription factor (EMT-TF). Expression of ZNF281 is induced by the EMT-TF SNAIL and inhibited by the tumor suppressive microRNA miR-34a, which mediates repression of ZNF281 by the p53 tumor suppressor. Therefore, SNAIL, miR-34a and ZNF281 form a feed-forward regulatory loop, which controls EMT. Deregulation of this circuitry by mutational and epigenetic alterations in the p53/miR-34a axis promotes colorectal cancer (CRC) progression and metastasis formation. As ZNF281 physically interacts with the transcription factors NANOG, OCT4, SOX2, and c-MYC, it has been implicated in the regulation of pluripotency, stemness, and cancer. Accordingly, ectopic ZNF281 expression in CRC lines induces the stemness markers LGR5 and CD133 and promotes sphere formation, suggesting that the elevated expression of ZNF281 detected in cancer may enhance tumor stem cell formation and/or function. Here, we review the functional and organismal studies of ZNF281/ZBP-99 and its close relative ZBP-89/ZFP148 reported so far. Taken together, ZNF281 related biology has the potential to be translated into cancer diagnostic, prognostic, and therapeutic approaches.
Collapse
Affiliation(s)
- Stefanie Hahn
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University Munich, Thalkirchner Strasse 36, 80337, Munich, Germany
| | | |
Collapse
|
11
|
SNAIL and miR-34a feed-forward regulation of ZNF281/ZBP99 promotes epithelial-mesenchymal transition. EMBO J 2013; 32:3079-95. [PMID: 24185900 DOI: 10.1038/emboj.2013.236] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 10/07/2013] [Indexed: 01/12/2023] Open
Abstract
Here, we show that expression of ZNF281/ZBP-99 is controlled by SNAIL and miR-34a/b/c in a coherent feed-forward loop: the epithelial-mesenchymal transition (EMT) inducing factor SNAIL directly induces ZNF281 transcription and represses miR-34a/b/c, thereby alleviating ZNF281 mRNA from direct down-regulation by miR-34. Furthermore, p53 activation resulted in a miR-34a-dependent repression of ZNF281. Ectopic ZNF281 expression in colorectal cancer (CRC) cells induced EMT by directly activating SNAIL, and was associated with increased migration/invasion and enhanced β-catenin activity. Furthermore, ZNF281 induced the stemness markers LGR5 and CD133, and increased sphere formation. Conversely, experimental down-regulation of ZNF281 resulted in mesenchymal-epithelial transition (MET) and inhibition of migration/invasion, sphere formation and lung metastases in mice. Ectopic c-MYC induced ZNF281 protein expression in a SNAIL-dependent manner. Experimental inactivation of ZNF281 prevented EMT induced by c-MYC or SNAIL. In primary CRC samples, expression of ZNF281 increased during tumour progression and correlated with recurrence. Taken together, these results identify ZNF281 as a component of EMT-regulating networks, which contribute to metastasis formation in CRC.
Collapse
|
12
|
Gao XH, Liu QZ, Chang W, Xu XD, Du Y, Han Y, Liu Y, Yu ZQ, Zuo ZG, Xing JJ, Cao G, Fu CG. Expression of ZNF148 in different developing stages of colorectal cancer and its prognostic value: a large Chinese study based on tissue microarray. Cancer 2013; 119:2212-22. [PMID: 23576061 DOI: 10.1002/cncr.28052] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/24/2012] [Accepted: 02/25/2013] [Indexed: 12/26/2022]
Abstract
BACKGROUND It has been speculated that zinc finger protein 148 (ZNF148) is a tumor suppressor. However, to the authors' knowledge, little is known about the clinical significance of ZNF148 expression in patients with colorectal cancer (CRC). The objective of the current study was to clarify the association between ZNF148 expression and the postoperative prognosis of patients with CRC. METHODS Tissue microarrays containing 56 normal mucosa, 51 adenoma, 742 CRC (TNM stage I-IV), 16 familial adenomatous polyposis, and 21 metastatic CRC specimens were examined immunohistochemically for ZNF148 expression. RESULTS Expression of ZNF148 was found to increase consecutively from normal mucosa to stage I CRC, and then decreased consecutively from stage I to stage IV CRC. Lower expression of ZNF148 in tumors was found to be significantly associated with lymph node metastases, advanced TNM disease stage, poor differentiation, higher rate of disease recurrence, worse overall survival (OS), and shorter disease-free survival. High expression of ZNF148 was also associated with improved OS (P = .025) and disease-free survival (P = .042) in patients with stages II to III CRC. On multivariate Cox analysis, lower ZNF148 expression in tumors, advanced TNM stage, colon cancer, and elevated serum carbohydrate antigen 19-9 (CA19-9) were found to be significant factors for a worse OS. In 16 patients with familial adenomatous polyposis, ZNF148 expression was upregulated at steps toward carcinogenesis. In 21 patients with metastatic CRC, although ZNF148 expression was higher in primary tumors compared with adjacent mucosa, its expression in metastatic tumors was significantly lower than that in primary tumors. CONCLUSIONS Although ZNF148 expression is related to colorectal carcinogenesis, high ZNF148 expression in patients with CRC appears to be inversely associated with malignant phenotypes and may serve as a significant prognostic factor after surgery for patients with CRC.
Collapse
Affiliation(s)
- Xian-Hua Gao
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sayin VI, Nilton A, Ibrahim MX, Ågren P, Larsson E, Petit MM, Hultén LM, Ståhlman M, Johansson BR, Bergo MO, Lindahl P. Zfp148 deficiency causes lung maturation defects and lethality in newborn mice that are rescued by deletion of p53 or antioxidant treatment. PLoS One 2013; 8:e55720. [PMID: 23405202 PMCID: PMC3566028 DOI: 10.1371/journal.pone.0055720] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/29/2012] [Indexed: 12/18/2022] Open
Abstract
The transcription factor Zfp148 (Zbp-89, BFCOL, BERF1, htβ) interacts physically with the tumor suppressor p53 and is implicated in cell cycle control, but the physiological role of Zfp148 remains unknown. Here we show that Zfp148 deficiency leads to respiratory distress and lethality in newborn mice. Zfp148 deficiency prevented structural maturation of the prenatal lung without affecting type II cell differentiation or surfactant production. BrdU analyses revealed that Zfp148 deficiency caused proliferation arrest of pulmonary cells at E18.5–19.5. Similarly, Zfp148-deficient fibroblasts exhibited proliferative arrest that was dependent on p53, raising the possibility that cell stress is part of the underlying mechanism. Indeed, Zfp148 deficiency lowered the threshold for activation of p53 under oxidative conditions. Moreover, both in vivo and cellular phenotypes were rescued on Trp53+/− or Trp53−/− backgrounds and by antioxidant treatment. Thus, Zfp148 prevents respiratory distress and lethality in newborn mice by attenuating oxidative stress–dependent p53-activity during the saccular stage of lung development. Our results establish Zfp148 as a novel player in mammalian lung maturation and demonstrate that Zfp148 is critical for cell cycle progression in vivo.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antioxidants/pharmacology
- Apoptosis
- Blotting, Southern
- Blotting, Western
- Cell Cycle
- Cell Proliferation
- Cells, Cultured
- DNA-Binding Proteins/physiology
- Embryo, Mammalian/cytology
- Embryo, Mammalian/drug effects
- Embryo, Mammalian/metabolism
- Female
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Gene Deletion
- Genes, Lethal
- Immunoenzyme Techniques
- Lung/drug effects
- Lung/embryology
- Lung/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Oxidative Stress/drug effects
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Respiratory Tract Diseases/genetics
- Respiratory Tract Diseases/pathology
- Respiratory Tract Diseases/prevention & control
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Factors/physiology
- Tumor Suppressor Protein p53/deficiency
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Volkan I. Sayin
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Biochemistry, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anna Nilton
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Mohamed X. Ibrahim
- Sahlgrenska Cancer Center, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Pia Ågren
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Erik Larsson
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Biochemistry, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Marleen M. Petit
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Lillemor Mattsson Hultén
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Marcus Ståhlman
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Bengt R. Johansson
- Department of Biochemistry, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Martin O. Bergo
- Sahlgrenska Cancer Center, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Per Lindahl
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Biochemistry, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
14
|
Hemida MG, Ye X, Zhang HM, Hanson PJ, Liu Z, McManus BM, Yang D. MicroRNA-203 enhances coxsackievirus B3 replication through targeting zinc finger protein-148. Cell Mol Life Sci 2013; 70:277-91. [PMID: 22842794 PMCID: PMC11113921 DOI: 10.1007/s00018-012-1104-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 07/17/2012] [Accepted: 07/19/2012] [Indexed: 10/28/2022]
Abstract
Coxsackievirus B3 (CVB3) is the primary causal agent of viral myocarditis. During infection, it hijacks host genes to favour its own replication. However, the underlying mechanism is still unclear. Although the viral receptor is an important factor for viral infectivity, other factors such as microRNAs (miRNA) may also play an essential role in its replication after host cell entry. miRNAs are post-transcriptional gene regulators involved in various fundamental biological processes as well as in diseases. To identify miRNAs involved in CVB3 pathogenesis, we performed microarray analysis of miRNAs using CVB3-infected murine hearts and identified miR-203 as one of the most upregulated candidates. We found that miR-203 upregulation is through the activation of protein kinase C/transcription factor AP-1 pathway. We further identified zinc finger protein-148 (ZFP-148), a transcription factor, as a novel target of miR-203. Ectopic expression of miR-203 downregulated ZFP-148 translation, increased cell viability and subsequently enhanced CVB3 replication. Silencing of ZFP-148 by siRNA showed similar effects on CVB3 replication. Finally, analyses of the signalling cascade downstream of ZFP-148 revealed that miR-203-induced suppression of ZFP-148 differentially regulated the expression of prosurvival and proapoptotic genes of the Bcl-2 family proteins as well as the cell cycle regulators. This altered gene expression promoted cell survival and growth, which provided a favourable environment for CVB3 replication, contributing to the further damage of the infected cells. Taken together, this study identified a novel target of miR-203 and revealed, for the first time, the molecular link between miR-203/ZFP-148 and the pathogenesis of CVB3.
Collapse
Affiliation(s)
- Maged Gomaa Hemida
- Department of Pathology and Laboratory Medicine, The James Hogg Research Center, The Institute for Heart and Lung Health, St. Paul’s Hospital, University of British Columbia, 1081 Burrard Street, Vancouver, BC V6Z 1Y6 Canada
| | - Xin Ye
- Department of Pathology and Laboratory Medicine, The James Hogg Research Center, The Institute for Heart and Lung Health, St. Paul’s Hospital, University of British Columbia, 1081 Burrard Street, Vancouver, BC V6Z 1Y6 Canada
| | - Huifang M. Zhang
- Department of Pathology and Laboratory Medicine, The James Hogg Research Center, The Institute for Heart and Lung Health, St. Paul’s Hospital, University of British Columbia, 1081 Burrard Street, Vancouver, BC V6Z 1Y6 Canada
| | - Paul J. Hanson
- Department of Pathology and Laboratory Medicine, The James Hogg Research Center, The Institute for Heart and Lung Health, St. Paul’s Hospital, University of British Columbia, 1081 Burrard Street, Vancouver, BC V6Z 1Y6 Canada
| | - Zhen Liu
- Department of Pathology and Laboratory Medicine, The James Hogg Research Center, The Institute for Heart and Lung Health, St. Paul’s Hospital, University of British Columbia, 1081 Burrard Street, Vancouver, BC V6Z 1Y6 Canada
| | - Bruce M. McManus
- Department of Pathology and Laboratory Medicine, The James Hogg Research Center, The Institute for Heart and Lung Health, St. Paul’s Hospital, University of British Columbia, 1081 Burrard Street, Vancouver, BC V6Z 1Y6 Canada
| | - Decheng Yang
- Department of Pathology and Laboratory Medicine, The James Hogg Research Center, The Institute for Heart and Lung Health, St. Paul’s Hospital, University of British Columbia, 1081 Burrard Street, Vancouver, BC V6Z 1Y6 Canada
| |
Collapse
|
15
|
Zhang CZY, Cao Y, Yun JP, Chen GG, Lai PBS. Increased expression of ZBP-89 and its prognostic significance in hepatocellular carcinoma. Histopathology 2012; 60:1114-24. [PMID: 22372401 DOI: 10.1111/j.1365-2559.2011.04136.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AIMS ZBP-89 plays a role in cell growth and death. Its expression in hepatocellular carcinoma (HCC) is not well documented. This study aimed to analyse ZBP-89 expression in HCC. METHODS AND RESULTS We examined ZBP-89 expression in five HCC cell lines and 182 HCC tissue samples by reverse transcription-polymerase chain reaction (RT-PCR), Western blot analysis and immunofluorescence staining. Our results showed that the expression of ZBP-89 was higher in HCC than adjacent non-tumour liver, at both mRNA and protein levels. ZBP-89 was localized in the nucleus in most HCC tissue samples, but was found in the cytoplasm in 11.5% of cases. Patient survival in those tumours showing high ZBP-89 expression was better than in those with low expression. High ZBP-89 expression tended to be more common in World Health Organization (WHO) grade I than grades II-IV HCC. There was a significant association between HBV positivity and high ZBP-89 expression. Colony formation was reduced dramatically in those HCC cell lines in which ZBP-89 overexpression was demonstrated; this appeared to correlate with increased apoptosis, inferred by finding elevated levels of cleaved poly(ADP-ribose)polymerases (PARP), the probable mechanisms for which may involve increased p53 or p21 expression. CONCLUSIONS ZBP-89 has anti-tumour properties and is a potential biomarker for prognosis of HCC.
Collapse
Affiliation(s)
- Chris Z Y Zhang
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong
| | | | | | | | | |
Collapse
|
16
|
To AKY, Chen GG, Chan UPF, Ye C, Yun JP, Ho RLK, Tessier A, Merchant JL, Lai PBS. ZBP-89 enhances Bak expression and causes apoptosis in hepatocellular carcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:222-30. [PMID: 20850481 DOI: 10.1016/j.bbamcr.2010.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 08/30/2010] [Accepted: 09/09/2010] [Indexed: 11/27/2022]
Abstract
ZBP-89 can enhance tumor cells to death stimuli. However, the molecular mechanism leading to the inhibitory effect of ZBP-89 is unknown. In this study, 4 liver cell lines were used to screen for the target of ZBP-89 on cell death pathway. The identified Bak was further analyzed for its role in ZBP-89-mediated apoptosis. The result showed that ZBP-89 significantly and time-dependently induced apoptosis. It significantly upregulated the level of pro-apoptotic Bak. ZBP-89 targeted a region between -457 and -407 of human Bak promoter to stimulate Bak expression based on the findings of Bak promoter luciferase report gene assay and electrophoretic mobility shift assay. ZBP-89-induced Bak increase and ZBP-89-mediated apoptosis were markedly suppressed by Bak siRNA, confirming that Bak was specifically targeted by ZBP-89 to facilitate apoptosis. In conclusion, this study demonstrated that ZBP-89 significantly induced apoptosis of HCC cells via promoting Bak level.
Collapse
Affiliation(s)
- Ann K Y To
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Buira SP, Dentesano G, Albasanz JL, Moreno J, Martín M, Ferrer I, Barrachina M. DNA methylation and Yin Yang-1 repress adenosine A2A receptor levels in human brain. J Neurochem 2010; 115:283-95. [DOI: 10.1111/j.1471-4159.2010.06928.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Zhang CZY, Chen GG, Lai PBS. Transcription factor ZBP-89 in cancer growth and apoptosis. Biochim Biophys Acta Rev Cancer 2010; 1806:36-41. [PMID: 20230874 DOI: 10.1016/j.bbcan.2010.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 02/25/2010] [Accepted: 03/08/2010] [Indexed: 11/30/2022]
Abstract
ZBP-89, a Krüppel-type zinc-finger transcription factor that binds to GC-rich sequences, is involved in the regulation of cell growth and cell death. It maps to chromosome 3q21 and is composed of 794 residues. Having bifunctional regulatory domains, ZBP-89 may function as a transcriptional activator or repressor of variety of genes such as p16 and vimentin. ZBP-89 arrests cell proliferation through its interactions with p53 and p21(waf1). It is able to stabilize p53 through directly binding and enhance p53 transcriptional activity by retaining it in the nucleus. In addition, ZBP-89 potentiates in butyrate-induced endogenous p21(waf1) up-regulation. ZBP-89 is usually over-expressed in human cancer cells, where it can efficiently induce apoptosis through p53-dependent and -independent mechanisms. Moreover, ZBP-89 is capable of enhancing killing effects of several anti-cancer drugs. Therefore, ZBP-89 may be served as a potential target in cancer therapy.
Collapse
Affiliation(s)
- Chris Z Y Zhang
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong
| | | | | |
Collapse
|
19
|
Chen GG, Chan UPF, Bai LC, Fung KY, Tessier A, To AKY, Merchant JL, Lai PBS. ZBP-89 reduces the cell death threshold in hepatocellular carcinoma cells by increasing caspase-6 and S phase cell cycle arrest. Cancer Lett 2009; 283:52-8. [PMID: 19362768 DOI: 10.1016/j.canlet.2009.03.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 03/15/2009] [Accepted: 03/16/2009] [Indexed: 12/01/2022]
Abstract
ZBP-89 inhibits the some tumor cells but its role in HCC is unknown. We investigated effect of ZBP-89 on cell death of 5 HCC cell lines with different status of p53. We found that ZBP-89 significantly induced cell death of all HCC cells particularly those with wild-type p53. The inhibition was well correlated with the induction of caspase-6 activity. The inhibition of caspase-6 abolished the effect of ZBP-89. ZBP-89 reduced the cells in G2-M but increased them in S phase. With the changes in caspase-6 and cell cycle, ZBP-89 greatly enhanced the killing effectiveness of 5-fluorouracil or staurosporine in HCC cells.
Collapse
Affiliation(s)
- George G Chen
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Jorissen RN, Lipton L, Gibbs P, Chapman M, Desai J, Jones IT, Yeatman TJ, East P, Tomlinson IPM, Verspaget HW, Aaltonen LA, Kruhøffer M, Orntoft TF, Andersen CL, Sieber OM. DNA copy-number alterations underlie gene expression differences between microsatellite stable and unstable colorectal cancers. Clin Cancer Res 2009; 14:8061-9. [PMID: 19088021 DOI: 10.1158/1078-0432.ccr-08-1431] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE About 15% of colorectal cancers harbor microsatellite instability (MSI). MSI-associated gene expression changes have been identified in colorectal cancers, but little overlap exists between signatures hindering an assessment of overall consistency. Little is known about the causes and downstream effects of differential gene expression. EXPERIMENTAL DESIGN DNA microarray data on 89 MSI and 140 microsatellite-stable (MSS) colorectal cancers from this study and 58 MSI and 77 MSS cases from three published reports were randomly divided into test and training sets. MSI-associated gene expression changes were assessed for cross-study consistency using training samples and validated as MSI classifier using test samples. Differences in biological pathways were identified by functional category analysis. Causation of differential gene expression was investigated by comparison to DNA copy-number data. RESULTS MSI-associated gene expression changes in colorectal cancers were found to be highly consistent across multiple studies of primary tumors and cancer cell lines from patients of different ethnicities (P < 0.001). Clustering based on consistent changes separated additional test cases by MSI status, and classification of individual samples predicted MSI status with a sensitivity of 96% and specificity of 85%. Genes associated with immune response were up-regulated in MSI cancers, whereas genes associated with cell-cell adhesion, ion binding, and regulation of metabolism were down-regulated. Differential gene expression was shown to reflect systematic differences in DNA copy-number aberrations between MSI and MSS tumors (P < 0.001). CONCLUSIONS Our results show cross-study consistency of MSI-associated gene expression changes in colorectal cancers. DNA copy-number alterations partly cause the differences in gene expression between MSI and MSS cancers.
Collapse
Affiliation(s)
- Robert N Jorissen
- Ludwig Colon Cancer Initiative Laboratory, Ludwig Institute for Cancer Research, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yang L, Hamilton SR, Sood A, Kuwai T, Ellis L, Sanguino A, Lopez-Berestein G, Boyd DD. The previously undescribed ZKSCAN3 (ZNF306) is a novel "driver" of colorectal cancer progression. Cancer Res 2008; 68:4321-30. [PMID: 18519692 DOI: 10.1158/0008-5472.can-08-0407] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A relatively new view of colorectal cancer is that its development/progression reflects the contribution of a large set of altered gene products in varying combinations, each providing a "fitness advantage." In searching for novel contributing gene products using Unigene cluster data mining, we found overrepresentation of expressed sequence tags corresponding to a previously uncharacterized gene (ZKSCAN3) in colorectal tumors. ZKSCAN3 was pursued for several reasons: (a) its sequence similarity with bowl required for Drosophila hindgut development; (b) it lies in a chromosomal region (6p22.1) amplified in colorectal cancer; and (c) its coding sequence predicts tandem C(2)H(2) zinc finger domains present in a class of proteins gaining attention for their role in oncogenesis/tumor progression. Reverse transcription-PCR confirmed overexpression in colorectal tumor tissue compared with adjacent nonmalignant mucosa due in part to gene amplification determined by Southern blotting. Further, immunohistochemistry with an antibody generated to the predicted protein sequence revealed higher ZKSCAN3 expression in invasive compared with noninvasive tumors. Intriguingly, the ZKSCAN3 protein was also expressed in tumors wild-type for genes (APC, p53, K-Ras) commonly targeted in colorectal cancer. ZKSCAN3 knockdown in two independent colon cancer cell lines impaired anchorage-independent growth and orthotopic tumor growth, whereas overexpression in a third cell line had the opposite effect and increased 5-fluorouracil resistance. Liposomal delivery of a ZKSCAN3-targeting small interfering RNA reduced tumorigenicity of orthotopic colon cancer. Thus, the hitherto uncharacterized ZKSCAN3 adds to an expanding set of encoded products contributing to the progression of colorectal cancer.
Collapse
Affiliation(s)
- Lin Yang
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Chupreta S, Brevig H, Bai L, Merchant JL, Iñiguez-Lluhí JA. Sumoylation-dependent control of homotypic and heterotypic synergy by the Kruppel-type zinc finger protein ZBP-89. J Biol Chem 2007; 282:36155-66. [PMID: 17940278 DOI: 10.1074/jbc.m708130200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Krüppel-like transcription factor ZBP-89 is a sequence-specific regulator that plays key roles in cellular growth and differentiation especially in endodermal and germ cell lineages. ZBP-89 shares with other members of the Sp-like family an overlapping sequence specificity for GC-rich sequences in the regulatory regions of multiple genes. Defining the mechanisms that govern the intrinsic function of ZBP-89 as well as its competitive and non-competitive functional interactions with other regulators is central to understand how ZBP-89 exerts its biological functions. We now describe that post-translational modification of ZBP-89 by multiple small ubiquitin-like modifier (SUMO) isoforms occurs at two conserved synergy control motifs flanking the DNA binding domain. Functionally sumoylation did not directly alter the ability of ZBP-89 to compete with other Sp-like factors from individual sites. At promoters bearing multiple response elements, however, this modification inhibited the functional cooperation between ZBP-89 and Sp1. Analysis of the properties of ZBP-89 in cellular contexts devoid of competing factors indicated that although on its own it behaves as a modest activator it potently synergizes with heterologous activators such as the glucocorticoid receptor. Notably we found that when conjugated to ZBP-89, SUMO exerts a strong inhibitory effect on such synergistic interactions through a critical conserved functional surface. By regulating higher order functional interactions, sumoylation provides a reversible post-translational mechanism to control the activity of ZBP-89.
Collapse
Affiliation(s)
- Sergey Chupreta
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0632, USA
| | | | | | | | | |
Collapse
|