1
|
Lin C, Fesi BD, Marquis M, Bosak NP, Lysenko A, Koshnevisan MA, Duke FF, Theodorides ML, Nelson TM, McDaniel AH, Avigdor M, Arayata CJ, Shaw L, Bachmanov AA, Reed DR. Burly1 is a mouse QTL for lean body mass that maps to a 0.8-Mb region of chromosome 2. Mamm Genome 2018; 29:325-343. [PMID: 29737391 DOI: 10.1007/s00335-018-9746-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/26/2018] [Indexed: 11/25/2022]
Abstract
To fine map a mouse QTL for lean body mass (Burly1), we used information from intercross, backcross, consomic, and congenic mice derived from the C57BL/6ByJ (host) and 129P3/J (donor) strains. The results from these mapping populations were concordant and showed that Burly1 is located between 151.9 and 152.7 Mb (rs33197365 to rs3700604) on mouse chromosome 2. The congenic region harboring Burly1 contains 26 protein-coding genes, 11 noncoding RNA elements (e.g., lncRNA), and 4 pseudogenes, with 1949 predicted functional variants. Of the protein-coding genes, 7 have missense variants, including genes that may contribute to lean body weight, such as Angpt41, Slc52c3, and Rem1. Lean body mass was increased by the B6-derived variant relative to the 129-derived allele. Burly1 influenced lean body weight at all ages but not food intake or locomotor activity. However, congenic mice with the B6 allele produced more heat per kilogram of lean body weight than did controls, pointing to a genotype effect on lean mass metabolism. These results show the value of integrating information from several mapping populations to refine the map location of body composition QTLs and to identify a short list of candidate genes.
Collapse
Affiliation(s)
- Cailu Lin
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA
| | - Brad D Fesi
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA
| | - Michael Marquis
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA
| | - Natalia P Bosak
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA
| | - Anna Lysenko
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA
| | | | - Fujiko F Duke
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA
| | | | - Theodore M Nelson
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA
| | - Amanda H McDaniel
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA
| | - Mauricio Avigdor
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA
| | - Charles J Arayata
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA
| | - Lauren Shaw
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA
| | | | - Danielle R Reed
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
Karunakaran S, Clee SM. Genetics of metabolic syndrome: potential clues from wild-derived inbred mouse strains. Physiol Genomics 2018; 50:35-51. [DOI: 10.1152/physiolgenomics.00059.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The metabolic syndrome (MetS) is a complex constellation of metabolic abnormalities including obesity, abnormal glucose metabolism, dyslipidemia, and elevated blood pressure that together substantially increase risk for cardiovascular disease and Type 2 diabetes. Both genetic and environmental factors contribute to the development of MetS, but this process is still far from understood. Human studies have revealed only part of the underlying basis. Studies in mice offer many strengths that can complement human studies to help elucidate the etiology and pathophysiology of MetS. Here we review the ways mice can contribute to MetS research. In particular, we focus on the information that can be obtained from studies of the inbred strains, with specific focus on the phenotypes of the wild-derived inbred strains. These are newly derived inbred strains that were created from wild-caught mice. They contain substantial genetic variation that is not present in the classical inbred strains, have phenotypes of relevance for MetS, and various mouse strain resources have been created to facilitate the mining of this new genetic variation. Thus studies using wild-derived inbred strains hold great promise for increasing our understanding of MetS.
Collapse
Affiliation(s)
- Subashini Karunakaran
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Susanne M. Clee
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Lin C, Fesi BD, Marquis M, Bosak NP, Lysenko A, Koshnevisan MA, Duke FF, Theodorides ML, Nelson TM, McDaniel AH, Avigdor M, Arayata CJ, Shaw L, Bachmanov AA, Reed DR. Adiposity QTL Adip20 decomposes into at least four loci when dissected using congenic strains. PLoS One 2017; 12:e0188972. [PMID: 29194435 PMCID: PMC5711020 DOI: 10.1371/journal.pone.0188972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 11/16/2017] [Indexed: 01/03/2023] Open
Abstract
An average mouse in midlife weighs between 25 and 30 g, with about a gram of tissue in the largest adipose depot (gonadal), and the weight of this depot differs between inbred strains. Specifically, C57BL/6ByJ mice have heavier gonadal depots on average than do 129P3/J mice. To understand the genetic contributions to this trait, we mapped several quantitative trait loci (QTLs) for gonadal depot weight in an F2 intercross population. Our goal here was to fine-map one of these QTLs, Adip20 (formerly Adip5), on mouse chromosome 9. To that end, we analyzed the weight of the gonadal adipose depot from newly created congenic strains. Results from the sequential comparison method indicated at least four rather than one QTL; two of the QTLs were less than 0.5 Mb apart, with opposing directions of allelic effect. Different types of evidence (missense and regulatory genetic variation, human adiposity/body mass index orthologues, and differential gene expression) implicated numerous candidate genes from the four QTL regions. These results highlight the value of mouse congenic strains and the value of this sequential method to dissect challenging genetic architecture.
Collapse
Affiliation(s)
- Cailu Lin
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Brad D. Fesi
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Michael Marquis
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Natalia P. Bosak
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Anna Lysenko
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | | | - Fujiko F. Duke
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Maria L. Theodorides
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Theodore M. Nelson
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Amanda H. McDaniel
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Mauricio Avigdor
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Charles J. Arayata
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Lauren Shaw
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | | | - Danielle R. Reed
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
4
|
Gularte-Mérida R, Farber CR, Verdugo RA, Islas-Trejo A, Famula TR, Warden CH, Medrano JF. Overlapping mouse subcongenic strains successfully separate two linked body fat QTL on distal MMU 2. BMC Genomics 2015; 16:16. [PMID: 25613955 PMCID: PMC4308015 DOI: 10.1186/s12864-014-1191-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 12/22/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Mouse chromosome 2 is linked to growth and body fat phenotypes in many mouse crosses. With the goal to identify the underlying genes regulating growth and body fat on mouse chromosome 2, we developed five overlapping subcongenic strains that contained CAST/EiJ donor regions in a C57BL/6J (hg/hg) background (hg is a spontaneous deletion of 500 Kb on mouse chromosome 10). To fine map QTL on distal mouse chromosome 2 a total of 1,712 F2 mice from the five subcongenic strains, plus 278 F2 mice from the HG2D founder congenic strain were phenotyped and analyzed. Interval mapping (IM) and composite IM (CIM) were performed on body weight and body fat traits on a combination of SNP and microsatellite markers, which generated a high-density genotyping panel. RESULTS Phenotypic analysis and interval mapping of total fat mass identified two QTL on distal mouse chromosome 2. One QTL between 150 and 161 Mb, Fatq2a, and the second between 173.3 and 175.6 Mb, Fatq2b. The two QTL reside in different congenic strains with significant total fat differences between homozygous cast/cast and b6/b6 littermates. Both of these QTL were previously identified only as a single QTL affecting body fat, Fatq2. Furthermore, through a novel approach referred here as replicated CIM, Fatq2b was mapped to the Gnas imprinted locus. CONCLUSIONS The integration of subcongenic strains, high-density genotyping, and CIM succesfully partitioned two previously linked QTL 20 Mb apart, and the strongest QTL, Fatq2b, was fine mapped to a ~2.3 Mb region interval encompassing the Gnas imprinted locus.
Collapse
Affiliation(s)
- Rodrigo Gularte-Mérida
- Department of Animal Science, University of California, Davis, CA, 95616-8521, USA. .,Current Address: Unit of Animal Genomics, GIGA - Research, Avenue de l'Hôpital 1, 4031, Sart-Tilman, Belgique.
| | - Charles R Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA.
| | - Ricardo A Verdugo
- Department of Animal Science, University of California, Davis, CA, 95616-8521, USA. .,Current Address: Programa de Genética Humana ICBM, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile.
| | - Alma Islas-Trejo
- Department of Animal Science, University of California, Davis, CA, 95616-8521, USA.
| | - Thomas R Famula
- Department of Animal Science, University of California, Davis, CA, 95616-8521, USA.
| | - Craig H Warden
- Rowe Genetics Program and Department of Pediatrics, University of California, Davis, CA, 95616-8521, USA.
| | - Juan F Medrano
- Department of Animal Science, University of California, Davis, CA, 95616-8521, USA.
| |
Collapse
|
5
|
Ishikawa A, Okuno SI. Fine mapping and candidate gene search of quantitative trait loci for growth and obesity using mouse intersubspecific subcongenic intercrosses and exome sequencing. PLoS One 2014; 9:e113233. [PMID: 25398139 PMCID: PMC4232600 DOI: 10.1371/journal.pone.0113233] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/26/2014] [Indexed: 12/20/2022] Open
Abstract
Although growth and body composition traits are quantitative traits of medical and agricultural importance, the genetic and molecular basis of those traits remains elusive. Our previous genome-wide quantitative trait locus (QTL) analyses in an intersubspecific backcross population between C57BL/6JJcl (B6) and wild Mus musculus castaneus mice revealed a major growth QTL (named Pbwg1) on a proximal region of mouse chromosome 2. Using the B6.Cg-Pbwg1 intersubspecific congenic strain created, we revealed 12 closely linked QTLs for body weight and body composition traits on an approximately 44.1-Mb wild-derived congenic region. In this study, we narrowed down genomic regions harboring three (Pbwg1.12, Pbwg1.3 and Pbwg1.5) of the 12 linked QTLs and searched for possible candidate genes for the QTLs. By phenotypic analyses of F2 intercross populations between B6 and each of four B6.Cg-Pbwg1 subcongenic strains with overlapping and non-overlapping introgressed regions, we physically defined Pbwg1.12 affecting body weight to a 3.8-Mb interval (61.5-65.3 Mb) on chromosome 2. We fine-mapped Pbwg1.3 for body length to an 8.0-Mb interval (57.3-65.3) and Pbwg1.5 for abdominal white fat weight to a 2.1-Mb interval (59.4-61.5). The wild-derived allele at Pbwg1.12 and Pbwg1.3 uniquely increased body weight and length despite the fact that the wild mouse has a smaller body size than that of B6, whereas it decreased fat weight at Pbwg1.5. Exome sequencing and candidate gene prioritization suggested that Gcg and Grb14 are putative candidate genes for Pbwg1.12 and that Ly75 and Itgb6 are putative candidate genes for Pbwg1.5. These genes had nonsynonymous SNPs, but the SNPs were predicted to be not harmful to protein functions. These results provide information helpful to identify wild-derived quantitative trait genes causing enhanced growth and resistance to obesity.
Collapse
Affiliation(s)
- Akira Ishikawa
- Laboratory of Animal Genetics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
- * E-mail:
| | - Sin-ichiro Okuno
- Laboratory of Animal Genetics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
6
|
Fine mapping reveals that promotion susceptibility locus 1 (Psl1) is a compound locus with multiple genes that modify susceptibility to skin tumor development. G3-GENES GENOMES GENETICS 2014; 4:1071-9. [PMID: 24700353 PMCID: PMC4065250 DOI: 10.1534/g3.113.009688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although it is well known that the majority of human cancers occur as the result of exposure to environmental carcinogens, it is clear that not all individuals exposed to a specific environmental carcinogen have the same risk of developing cancer. Considerable evidence indicates that common allelic variants of low-penetrance, tumor susceptibility genes are responsible for this interindividual variation in risk. We previously reported a skin tumor promotion susceptibility locus, Psl1, which maps to the distal portion of chromosome 9, that modified skin tumor promotion susceptibility in the mouse. Furthermore, Psl1 was shown to consist of at least two subloci (i.e., Psl1.1 and Psl1.2) and that glutathione S-transferase alpha 4 (Gsta4), which maps to Psl1.2, is a skin tumor promotion susceptibility gene. Finally, variants of human GSTA4 were found to be associated with risk of nonmelanoma skin cancer. In the current study, a combination of nested and contiguous C57BL/6 congenic mouse strains, each inheriting a different portion of the Psl1 locus from DBA/2, were tested for susceptibility to skin tumor promotion with 12-O-tetradecanoylphorbol-13-acetate. These analyses indicate that Psl1 is a compound locus with at least six genes, including Gsta4, that modify skin tumor promotion susceptibility. More than 550 protein-coding genes map within the Psl1 locus. Fine mapping of the Psl1 locus, along with two-strain haplotype analysis, gene expression analysis, and the identification of genes with amino acid variants, has produced a list of fewer than 25 candidate skin tumor promotion susceptibility genes.
Collapse
|
7
|
Huang Y, Wang L, Bennett B, Williams RW, Wang YJ, Gu WK, Jiao Y. Potential role of Atp5g3 in epigenetic regulation of alcohol preference or obesity from a mouse genomic perspective. GENETICS AND MOLECULAR RESEARCH 2013; 12:3662-74. [PMID: 24085430 DOI: 10.4238/2013.september.18.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The mitochondrial ATP synthase, subunit c, isoform 3 gene (Atp5g3) encodes subunit 9, the subunit of the multisubunit enzyme that catalyzes ATP synthesis during oxidative phosphorylation in mitochondria. According to the Ensembl database, Atp5g3 in mice is located on chromosome 2 between 73746504 and 73749383 bp, within the genomic regions of two sets of quantitative trait loci - alcohol preference and body weight. Both of those traits are more influenced by epigenetic factors than many other traits are. Using currently available phenotype and gene expression profiles from the GeneNetwork database, we obtained correlations between Atp5g3 and alcoholism- and obesity-relevant phenotypes. The correlation in expression levels between Atp5g3 and each of its 12 partner genes in the molecular interaction are different in various tissues and genes. Transcriptome mapping indicated that Atp5g3 is differentially regulated in the hippocampus, cerebellum, and liver. Owing to a lack of known polymorphisms of Atp5g3 among three relevant mouse strains, C57BL/6J (B6), DBA/2J (D2), and BALB/ cJ, the molecular mechanism for the connection between Atp5g3 and alcoholism and body weight requires further investigation.
Collapse
Affiliation(s)
- Y Huang
- Department of Orthopaedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Warden CH, Gularte-Mérida R, Fisler JS, Hansen S, Shibata N, Le A, Medrano JF, Stern JS. Leptin receptor interacts with rat chromosome 1 to regulate renal disease traits. Physiol Genomics 2012; 44:1052-62. [PMID: 22968639 DOI: 10.1152/physiolgenomics.00134.2011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Linkage mapping in a backcross of {Brown Norway [BN/Crl (BN)] × ZUC-Lepr (faSte) (ZUC)} × ZUC identified a male-specific quantitative trait locus (QTL) for urinary albumin excretion (UAE) on rat chromosome 1. A homozygous ZUC.BN-(D1Rat42-D1Rat90)/Ste congenic was produced containing BN donor alleles from 135 to 276 Mb from chromosome 1 on the ZUC background. We observed threefold higher urinary albumin-to-creatinine ratios (ACR) in 15-wk-old Zucker background strain males than in same sex and age congenic animals when both strains are also homozygous for the ZUC leptin receptor fatty mutation (Lepr (faSte)) (P < 0.0001). We then linkage mapped within the donor region without confounded effects from other chromosomes. Phenotypes were collected in 248 F2 male rats in a population made by crossing parents heterozygous for both the BN donor region and ZUC Lepr (faSte). Significant interactions were observed between the Lepr genotype and chromosome 1 QTL for six renal traits: urine volume, UAE at 10 and 15 wk, ACR, right kidney weight, and plasma urea nitrogen. A few traits, such as UAE and ACR, exhibit a second peak at the distal end of the chromosome. Hydronephrosis exhibited one or two QTLs contingent on adjustment for body weight. The results now demonstrate at least two sets of coincident traits with different correlations to kidney function.
Collapse
Affiliation(s)
- Craig H Warden
- Department of Pediatrics, University of California, Davis, California 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Stewart TP, Mao X, Aqqad MN, Uffort D, Dillon KD, Saxton AM, Kim JH. Subcongenic analysis of tabw2 obesity QTL on mouse chromosome 6. BMC Genet 2012; 13:81. [PMID: 23025571 PMCID: PMC3519667 DOI: 10.1186/1471-2156-13-81] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 09/25/2012] [Indexed: 12/02/2022] Open
Abstract
Background We previously established a congenic mouse strain with TALLYHO/Jng (TH) donor segment on chromosome 6 in a C57BL/6 (B6) background that harbors an obesity quantitative trait locus, tabw2. The B6.TH-tabw2 congenic mice developed increased adiposity that became exacerbated upon feeding a high fat-high sucrose (HFS) diet. To fine map the tabw2, in this study we generated and characterized subcongenic lines with smaller TH donor segments. Results We fixed four subcongenic lines, with maximum size of donor segment retained in the lines ranging from 10.8 – 92.5 Mb. For mapping, all the subcongenic mice, along with B6.TH-tabw2 congenic and B6-homozygous control mice were fed either chow or HFS diets, and their post-mortem fat pads were weighed. Mice were also characterized for energy expenditure, respiratory exchange ratio, locomotor activity, and food intake. As previously reported, B6.TH-tabw2 congenic mice showed a significantly larger fat mass than controls on both diets. On chow, a subcongenic line retaining the distal region of the TH donor congenic interval exhibited significantly larger fat mass than B6-homozygous controls, and comparable that to B6.TH-tabw2 congenic mice. Two nested subcongenic lines within that region suggested that the effect of tabw2 on obesity could be attributed to at least two subloci. On HFS diets, on the other hand, all the subcongenic mice had significantly larger fat mass than controls without genotype differences, but none of them had fat mass as large as the original congenic mice. This possibly implicates that further genetic complexity involves in the effect of tabw2 on diet-induced obesity. Significantly reduced locomotor activity was exhibited in B6.TH-tabw2 congenic and subcongenic mice compared to controls when animals were fed HFS diets. B6.TH-tabw2 congenic mice, but not subcongenic mice, also had significantly increased food intake on HFS diets. Conclusions It appears that at least two subloci explaining the tabw2 effect under chow feeding map to the distal region of the congenic interval, whereas the diet-induced obesity mediated by tabw2 is attributed to more complex genetic mechanism.
Collapse
Affiliation(s)
- Taryn P Stewart
- Department of Pharmacology, Physiology and Toxicology, Joan C, Edwards School of Medicine, Marshall University, 1700 3rd Ave, BBSC #435K, Huntington, WV 25755, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Prows DR, Gibbons WJ, Burzynski BB. Synchronizing allelic effects of opposing quantitative trait loci confirmed a major epistatic interaction affecting acute lung injury survival in mice. PLoS One 2012; 7:e38177. [PMID: 22666475 PMCID: PMC3362546 DOI: 10.1371/journal.pone.0038177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/04/2012] [Indexed: 01/11/2023] Open
Abstract
Increased oxygen (O2) levels help manage severely injured patients, but too much for too long can cause acute lung injury (ALI), acute respiratory distress syndrome (ARDS) and even death. In fact, continuous hyperoxia has become a prototype in rodents to mimic salient clinical and pathological characteristics of ALI/ARDS. To identify genes affecting hyperoxia-induced ALI (HALI), we previously established a mouse model of differential susceptibility. Genetic analysis of backcross and F2 populations derived from sensitive (C57BL/6J; B) and resistant (129X1/SvJ; X1) inbred strains identified five quantitative trait loci (QTLs; Shali1-5) linked to HALI survival time. Interestingly, analysis of these recombinant populations supported opposite within-strain effects on survival for the two major-effect QTLs. Whereas Shali1 alleles imparted the expected survival time effects (i.e., X1 alleles increased HALI resistance and B alleles increased sensitivity), the allelic effects of Shali2 were reversed (i.e., X1 alleles increased HALI sensitivity and B alleles increased resistance). For in vivo validation of these inverse allelic effects, we constructed reciprocal congenic lines to synchronize the sensitivity or resistance alleles of Shali1 and Shali2 within the same strain. Specifically, B-derived Shali1 or Shali2 QTL regions were transferred to X1 mice and X1-derived QTL segments were transferred to B mice. Our previous QTL results predicted that substituting Shali1 B alleles onto the resistant X1 background would add sensitivity. Surprisingly, not only were these mice more sensitive than the resistant X1 strain, they were more sensitive than the sensitive B strain. In stark contrast, substituting the Shali2 interval from the sensitive B strain onto the X1 background markedly increased the survival time. Reciprocal congenic lines confirmed the opposing allelic effects of Shali1 and Shali2 on HALI survival time and provide unique models to identify their respective quantitative trait genes and to critically assess the apparent bidirectional epistatic interactions between these major-effect loci.
Collapse
Affiliation(s)
- Daniel R Prows
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America.
| | | | | |
Collapse
|
11
|
Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci U S A 2010; 107:18933-8. [PMID: 20937875 DOI: 10.1073/pnas.1007028107] [Citation(s) in RCA: 914] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In vertebrates, including humans, individuals harbor gut microbial communities whose species composition and relative proportions of dominant microbial groups are tremendously varied. Although external and stochastic factors clearly contribute to the individuality of the microbiota, the fundamental principles dictating how environmental factors and host genetic factors combine to shape this complex ecosystem are largely unknown and require systematic study. Here we examined factors that affect microbiota composition in a large (n = 645) mouse advanced intercross line originating from a cross between C57BL/6J and an ICR-derived outbred line (HR). Quantitative pyrosequencing of the microbiota defined a core measurable microbiota (CMM) of 64 conserved taxonomic groups that varied quantitatively across most animals in the population. Although some of this variation can be explained by litter and cohort effects, individual host genotype had a measurable contribution. Testing of the CMM abundances for cosegregation with 530 fully informative SNP markers identified 18 host quantitative trait loci (QTL) that show significant or suggestive genome-wide linkage with relative abundances of specific microbial taxa. These QTL affect microbiota composition in three ways; some loci control individual microbial species, some control groups of related taxa, and some have putative pleiotropic effects on groups of distantly related organisms. These data provide clear evidence for the importance of host genetic control in shaping individual microbiome diversity in mammals, a key step toward understanding the factors that govern the assemblages of gut microbiota associated with complex diseases.
Collapse
|
12
|
Verdugo RA, Farber CR, Warden CH, Medrano JF. Serious limitations of the QTL/microarray approach for QTL gene discovery. BMC Biol 2010; 8:96. [PMID: 20624276 PMCID: PMC2919467 DOI: 10.1186/1741-7007-8-96] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 07/12/2010] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND It has been proposed that the use of gene expression microarrays in nonrecombinant parental or congenic strains can accelerate the process of isolating individual genes underlying quantitative trait loci (QTL). However, the effectiveness of this approach has not been assessed. RESULTS Thirty-seven studies that have implemented the QTL/microarray approach in rodents were reviewed. About 30% of studies showed enrichment for QTL candidates, mostly in comparisons between congenic and background strains. Three studies led to the identification of an underlying QTL gene. To complement the literature results, a microarray experiment was performed using three mouse congenic strains isolating the effects of at least 25 biometric QTL. Results show that genes in the congenic donor regions were preferentially selected. However, within donor regions, the distribution of differentially expressed genes was homogeneous once gene density was accounted for. Genes within identical-by-descent (IBD) regions were less likely to be differentially expressed in chromosome 2, but not in chromosomes 11 and 17. Furthermore, expression of QTL regulated in cis (cis eQTL) showed higher expression in the background genotype, which was partially explained by the presence of single nucleotide polymorphisms (SNP). CONCLUSIONS The literature shows limited successes from the QTL/microarray approach to identify QTL genes. Our own results from microarray profiling of three congenic strains revealed a strong tendency to select cis-eQTL over trans-eQTL. IBD regions had little effect on rate of differential expression, and we provide several reasons why IBD should not be used to discard eQTL candidates. In addition, mismatch probes produced false cis-eQTL that could not be completely removed with the current strains genotypes and low probe density microarrays. The reviewed studies did not account for lack of coverage from the platforms used and therefore removed genes that were not tested. Together, our results explain the tendency to report QTL candidates as differentially expressed and indicate that the utility of the QTL/microarray as currently implemented is limited. Alternatives are proposed that make use of microarray data from multiple experiments to overcome the outlined limitations.
Collapse
Affiliation(s)
- Ricardo A Verdugo
- Department of Animal Science, University of California Davis. Davis, CA 95616, USA
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Charles R Farber
- Departments of Medicine, Biochemistry and Molecular Genetics, and Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Craig H Warden
- Departments of Pediatrics and Neurobiology, Physiology and Behavior, University of California Davis. Davis, CA 95616, USA
| | - Juan F Medrano
- Department of Animal Science, University of California Davis. Davis, CA 95616, USA
| |
Collapse
|
13
|
Powerful bivariate genome-wide association analyses suggest the SOX6 gene influencing both obesity and osteoporosis phenotypes in males. PLoS One 2009; 4:e6827. [PMID: 19714249 PMCID: PMC2730014 DOI: 10.1371/journal.pone.0006827] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 08/04/2009] [Indexed: 01/21/2023] Open
Abstract
Background Current genome-wide association studies (GWAS) are normally implemented in a univariate framework and analyze different phenotypes in isolation. This univariate approach ignores the potential genetic correlation between important disease traits. Hence this approach is difficult to detect pleiotropic genes, which may exist for obesity and osteoporosis, two common diseases of major public health importance that are closely correlated genetically. Principal Findings To identify such pleiotropic genes and the key mechanistic links between the two diseases, we here performed the first bivariate GWAS of obesity and osteoporosis. We searched for genes underlying co-variation of the obesity phenotype, body mass index (BMI), with the osteoporosis risk phenotype, hip bone mineral density (BMD), scanning ∼380,000 SNPs in 1,000 unrelated homogeneous Caucasians, including 499 males and 501 females. We identified in the male subjects two SNPs in intron 1 of the SOX6 (SRY-box 6) gene, rs297325 and rs4756846, which were bivariately associated with both BMI and hip BMD, achieving p values of 6.82×10−7 and 1.47×10−6, respectively. The two SNPs ranked at the top in significance for bivariate association with BMI and hip BMD in the male subjects among all the ∼380,000 SNPs examined genome-wide. The two SNPs were replicated in a Framingham Heart Study (FHS) cohort containing 3,355 Caucasians (1,370 males and 1,985 females) from 975 families. In the FHS male subjects, the two SNPs achieved p values of 0.03 and 0.02, respectively, for bivariate association with BMI and femoral neck BMD. Interestingly, SOX6 was previously found to be essential to both cartilage formation/chondrogenesis and obesity-related insulin resistance, suggesting the gene's dual role in both bone and fat. Conclusions Our findings, together with the prior biological evidence, suggest the SOX6 gene's importance in co-regulation of obesity and osteoporosis.
Collapse
|
14
|
Fuller JM, Bogdani M, Tupling TD, Jensen RA, Pefley R, Manavi S, Cort L, Blankenhorn EP, Mordes JP, Lernmark A, Kwitek AE. Genetic dissection reveals diabetes loci proximal to the gimap5 lymphopenia gene. Physiol Genomics 2009; 38:89-97. [PMID: 19351909 PMCID: PMC2696149 DOI: 10.1152/physiolgenomics.00015.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 04/06/2009] [Indexed: 12/30/2022] Open
Abstract
Congenic DRF.(f/f) rats are protected from type 1 diabetes (T1D) by 34 Mb of F344 DNA introgressed proximal to the gimap5 lymphopenia gene. To dissect the genetic factor(s) that confer protection from T1D in the DRF.(f/f) rat line, DRF.(f/f) rats were crossed to inbred BBDR or DR.(lyp/lyp) rats to generate congenic sublines that were genotyped and monitored for T1D, and positional candidate genes were sequenced. All (100%) DR.(lyp/lyp) rats developed T1D by 83 days of age. Reduction of the DRF.(f/f) F344 DNA fragment by 26 Mb (42.52-68.51 Mb) retained complete T1D protection. Further dissection revealed that a 2 Mb interval of F344 DNA (67.41-70.17 Mb) (region 1) resulted in 47% protection and significantly delayed onset (P < 0.001 compared with DR.(lyp/lyp)). Retaining <1 Mb of F344 DNA at the distal end (76.49-76.83 Mb) (region 2) resulted in 28% protection and also delayed onset (P < 0.001 compared with DR.(lyp/lyp)). Comparative analysis of diabetes frequency in the DRF.(f/f) congenic sublines further refined the RNO4 region 1 interval to approximately 670 kb and region 2 to the 340 kb proximal to gimap5. All congenic DRF.(f/f) sublines were prone to low-grade pancreatic mononuclear cell infiltration around ducts and vessels, but <20% of islets in nondiabetic rats showed islet infiltration. Coding sequence analysis revealed TCR Vbeta 8E, 12, and 13 as candidate genes in region 1 and znf467 and atp6v0e2 as candidate genes in region 2. Our results show that spontaneous T1D is controlled by at least two genetic loci 7 Mb apart on rat chromosome 4.
Collapse
Affiliation(s)
- J M Fuller
- Department of Clinical Sciences, Lund University, Clinical Research Center, Malmö, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Vogel H, Nestler M, Rüschendorf F, Block MD, Tischer S, Kluge R, Schürmann A, Joost HG, Scherneck S. Characterization of Nob3, a major quantitative trait locus for obesity and hyperglycemia on mouse chromosome 1. Physiol Genomics 2009; 38:226-32. [PMID: 19470805 DOI: 10.1152/physiolgenomics.00011.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
New Zealand obese (NZO) mice present a metabolic syndrome of obesity, insulin resistance, and diabetes. To identify chromosomal segments associated with these traits, we intercrossed NZO mice with the lean and diabetes-resistant C57BL/6J (B6) strain. Obesity and hyperglycemia in the (NZO x B6)F2 intercross population were predominantly due to a broad quantitative trait locus (QTL) on chromosome 1 (Nob3; logarithm of the odds score 16.1, 16.0, 4.0 for body weight, body fat, and blood glucose, respectively), producing a difference between genotypes of 12.7 or 5.2 g of body weight and 12.0 or 4.0 g of body fat in females or males, respectively. In addition, significant QTL on chromosomes 3 and 13 and suggestive QTL on chromosomes 4, 6, 9, 12, 14, and 19 contributed to the obese phenotype. Distal chromosome 5 was significantly linked with plasma cholesterol (LOD score 10.7). Introgression of two segments of Nob3 into B6 confirmed the adipogenic effect of the QTL and suggested the presence of at least one causal gene. Haplotype mapping reduced the critical region of the distal part of the QTL to 31 Mbp containing the potential candidates Nr1i3, Apoa2, Atp1a2, Prox1, and Hsd11b1. We conclude that obesity and hyperglycemia of NZO is to a large part caused by variant genes located in Nob3 on chromosome 1. Since these exert robust effects on a B6 background, the QTL Nob3 is a prime target for identification of a novel diabesity gene.
Collapse
Affiliation(s)
- Heike Vogel
- Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Casellas J, Farber CR, Gularte RJ, Haus KA, Warden CH, Medrano JF. Evidence of maternal QTL affecting growth and obesity in adult mice. Mamm Genome 2009; 20:269-80. [PMID: 19399551 PMCID: PMC2690847 DOI: 10.1007/s00335-009-9182-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 03/13/2009] [Indexed: 01/12/2023]
Abstract
Most quantitative trait loci (QTL) studies fail to account for the effect that the maternal genotype may have on an individual's phenotypes, even though maternal effect QTL have been shown to account for considerable variation in growth and obesity traits in mouse models. Moreover, the fetal programming theory suggests that maternal effects influence an offspring's adult fitness, although the genetic nature of fetal programming remains unclear. Within this context, our study focused on mapping genomic regions associated with maternal effect QTL by analyzing the phenotypes of chromosomes 2 and 7 subcongenic mice from genetically distinct dams. We analyzed 12 chromosome 2 subcongenic strains that spanned from 70 to 180 Mb with CAST/EiJ donor regions on the background of C57BL/6 J, and 14 chromosome 7 subcongenic strains that spanned from 81 to 111 Mb with BALB/cByJ donor regions on C57BL/6ByJ background. Maternal QTL analyses were performed on the basis of overlapping donor regions between subcongenic strains. We identified several highly significant (P < 5 x 10(-4)) maternal QTL influencing total body weight, organ weight, and fat pad weights in both sets of subcongenics. These QTL accounted for 1.9-11.7% of the phenotypic variance for growth and obesity and greatly narrowed the genomic regions associated with the maternal genetic effects. These maternal effect QTL controlled phenotypic traits in adult mice, suggesting that maternal influences at early stages of development may permanently affect offspring performance. Identification of maternal effects in our survey of two sets of subcongenic strains, representing approximately 5% of the mouse genome, supports the hypothesis that maternal effects represent significant sources of genetic variation that are largely ignored in genetic studies.
Collapse
Affiliation(s)
| | - Charles R. Farber
- Department of Animal Science, University of California-Davis, Davis, CA 95616-8521 USA
- Department of Medicine, Division of Cardiovascular Medicine and Center for Public Health Genomics, University of Virginia, P.O. Box 800717, Charlottesville, VA 22908 USA
| | - Rodrigo J. Gularte
- Department of Animal Science, University of California-Davis, Davis, CA 95616-8521 USA
| | - Kari A. Haus
- Department of Pediatrics and Section of Neurobiology, Physiology and Behavior, University of California-Davis, Davis, CA 95616-8521 USA
| | - Craig H. Warden
- Department of Pediatrics and Section of Neurobiology, Physiology and Behavior, University of California-Davis, Davis, CA 95616-8521 USA
| | - Juan F. Medrano
- Department of Animal Science, University of California-Davis, Davis, CA 95616-8521 USA
| |
Collapse
|
17
|
Farber CR, Chitwood J, Lee SN, Verdugo RA, Islas-Trejo A, Rincon G, Lindberg I, Medrano JF. Overexpression of Scg5 increases enzymatic activity of PCSK2 and is inversely correlated with body weight in congenic mice. BMC Genet 2008; 9:34. [PMID: 18439298 PMCID: PMC2386500 DOI: 10.1186/1471-2156-9-34] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 04/25/2008] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The identification of novel genes is critical to understanding the molecular basis of body weight. Towards this goal, we have identified secretogranin V (Scg5; also referred to as Sgne1), as a candidate gene for growth traits. RESULTS Through a combination of DNA microarray analysis and quantitative PCR we identified a strong expression quantitative trait locus (eQTL) regulating Scg5 expression in two mouse chromosome 2 congenic strains and three additional F2 intercrosses. More importantly, the eQTL was coincident with a body weight QTL in congenic mice and Scg5 expression was negatively correlated with body weight in two of the F2 intercrosses. Analysis of haplotype blocks and genomic sequencing of Scg5 in high (C3H/HeJ, DBA/2J, BALB/cByJ, CAST/EiJ) and low (C57BL/6J) expressing strains revealed mutations unique to C57BL/6J and possibly responsible for the difference in mRNA abundance. To evaluate the functional consequence of Scg5 overexpression we measured the pituitary levels of 7B2 protein and PCSK2 activity and found both to be increased. In spite of this increase, the level of pituitary alpha-MSH, a PCSK2 processing product, was unaltered. CONCLUSION Together, these data support a role for Scg5 in the modulation of body weight.
Collapse
Affiliation(s)
- Charles R Farber
- Department of Animal Science, University of California, Davis, One Shields Ave., Davis, CA 95616-8521, USA
- Department of Medicine, Division of Cardiology, University of, California, Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095-1679, USA
| | - James Chitwood
- Department of Animal Science, University of California, Davis, One Shields Ave., Davis, CA 95616-8521, USA
| | - Sang-Nam Lee
- Department of Biochemistry and Molecular Biology, Louisiana State University Health, Sciences Center, and Children's Hospital Research Institute, New Orleans, LA 70112-2223, USA
- Research Center for Human Natural Defense System, Yonsei, University College of Medicine, Seoul, 120-752, Korea
| | - Ricardo A Verdugo
- Department of Animal Science, University of California, Davis, One Shields Ave., Davis, CA 95616-8521, USA
| | - Alma Islas-Trejo
- Department of Animal Science, University of California, Davis, One Shields Ave., Davis, CA 95616-8521, USA
| | - Gonzalo Rincon
- Department of Animal Science, University of California, Davis, One Shields Ave., Davis, CA 95616-8521, USA
| | - Iris Lindberg
- Department of Biochemistry and Molecular Biology, Louisiana State University Health, Sciences Center, and Children's Hospital Research Institute, New Orleans, LA 70112-2223, USA
- Department of Anatomy and Neurobiology, University of, Maryland Medical School, 20 Penn St, Baltimore, MS 21201, USA
| | - Juan F Medrano
- Department of Animal Science, University of California, Davis, One Shields Ave., Davis, CA 95616-8521, USA
| |
Collapse
|