1
|
Liu C, Yang D, Luo L, Ma X, Chen X, Liao Y, Ning G, Qu H. Low bone mineral density and its influencing factors in spinal muscular atrophy without disease-modifying treatment: a single-centre cross-sectional study. BMC Pediatr 2024; 24:651. [PMID: 39394064 PMCID: PMC11468260 DOI: 10.1186/s12887-024-05120-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/27/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Children with spinal muscular atrophy (SMA) are at risk of low bone mineral density (BMD) and bone fragility. This study aims to assess lumbar spine BMD measured by quantitative computed tomography (QCT) and investigate influencing factors of low BMD in children with SMA without disease-modifying treatment. METHODS Demographic data, laboratory parameters, QCT data, and data on spinal radiographs were collected. A linear regression model was carried out to explore the correlations between BMD and its related factors. RESULTS Sixty-six patients with SMA who had complete records between July 2017 and July 2023 were analyzed, with SMA with a mean age of 5.4 years (range, 2.4-9.7 years), including type 1 in 14, type 2 in 37, and type 3 in 15. 28.8% of patients (19/66) were diagnosed with low BMD (Z-scores ≤ - 2), and the mean BMD Z-scores on QCT was - 1.5 ± 1.0. In our model, BMD Z-scores was associated with age (β=-0.153, p = 0.001). SMA phenotype and serum bone metabolism markers, such as serum phosphorus (P), alkaline phosphatase (ALP) and 25-Hydroxyvitamin D (25-OH-D) levels did not independently predict low BMD. ROC analysis showed that the age ≥ 6.3 years predicts a Z-scores ≤ -2.0 with a sensitivity of 68.4% and a specificity of 68.1%. CONCLUSIONS Low BMD were highly prevalent in children with SMA without disease-modifying treatment in our centre. Regular monitoring of BMD is necessary for all types of SMA children, especially those aged ≥ 6.3 years.
Collapse
Affiliation(s)
- Chuan Liu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Dandan Yang
- Department of Radiology, the Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Lekai Luo
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Xinmao Ma
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Xijian Chen
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Yi Liao
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Gang Ning
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Haibo Qu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Hu B, Du G. OSTF1 knockdown mitigates IL-1β-induced chondrocyte injury via inhibiting the NF-κB signaling pathway. Heliyon 2024; 10:e30110. [PMID: 38699012 PMCID: PMC11064439 DOI: 10.1016/j.heliyon.2024.e30110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
Osteoarthritis (OA) is an age-related joint disease characterized by progressive heterogeneous changes in articular cartilage and subchondral bone. Osteoclast stimulating factor 1 (OSTF1) is a small intracellular protein involved in bone formation and bone resorption. However, to our best knowledge, its role in OA is still unclear. In this study, an OA rat model was established by anterior cruciate ligament transection (ALCT). OSTF1 was increased in the cartilage tissues of OA patients and OA rats. Next, the role of OSTF1 in interleukin-1β (IL-1β)-induced chondrocyte apoptosis, inflammation and extracellular matrix degradation was explored through loss of function assays. Strikingly, OSTF1 knockdown relieved IL-1β-induced chondrocyte apoptosis, with decreased cleaved caspase-3 and cleaved PARP levels. Besides, OSTF1 knockdown restrained IL-1β-induced inflammation and degradation of extracellular matrix of chondrocytes. Subsequently, the molecular mechanism of OSTF1 was explored. Transcriptomic analysis revealed the potential gene network map regulated by OSTF1 knockdown. Some differentially expressed genes (DEGs) were involved in regulating the NF-κB signaling pathway. Furthermore, our results demonstrated that OSTF1 knockdown inhibited IL-1β-activated the NF-κB signaling pathway. Ultimately, we analyzed the potential gene network map regulated by OSTF1 and its downstream NF-κB. Bioinformatics analysis showed that 18 DEGs in OSTF1-silenced chondrocytes overlapped with the NF-κB downstream targets. Collectively, our findings indicate that OSTF1 knockdown mitigates IL-1β-induced chondrocyte injury via inhibiting the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Bin Hu
- Department of Hand and Foot Surgery, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu, Anhui, China
| | - Gongwen Du
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China
| |
Collapse
|
3
|
Tung JYL, Chow TK, Wai M, Lo J, Chan SHS. Bone Health Status of Children with Spinal Muscular Atrophy. J Bone Metab 2023; 30:319-327. [PMID: 38073265 PMCID: PMC10721381 DOI: 10.11005/jbm.2023.30.4.319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a group of rare, inherited neuromuscular disorders. Bone health is often a neglected issue in children with SMA. This study aimed to evaluate the bone health status of children with SMA in Hong Kong. METHODS This retrospective study included children with SMA who were managed in the Neuromuscular Disorder Clinics of 2 quaternary centers in Hong Kong. Bone health status was assessed by fracture history, bone mineral density (BMD) measured by dual energy X-ray absorptiometry, and serum 25-hydroxy-vitamin D (25[OH]D) level. RESULTS Thirty-two children were included (males, 12). The median age was 10.8 years. BMD assessments were performed in 17 patients (SMA type 1=2, type 2=8, type 3=7). Low BMD was observed in 16 out of 17 patients. Four had a history of long bone fractures and were started on bisphosphonates. SMA types, age at last visit, sex, ambulation, and 25(OH)D level were not associated with fracture history or BMD Z-scores. Only one fulfilled the 2019 International Society for Clinical Densitometry (ISCD) pediatric definition of osteoporosis, with both low BMD and a history of clinically significant fracture. CONCLUSIONS Children with SMA on disease-modifying treatments commonly had Low BMD and a history of fractures, but osteoporosis was uncommon according to the 2019 ISCD pediatric definition. A special definition of osteoporosis may be needed for this high-risk group.
Collapse
Affiliation(s)
- Joanna Yuet-Ling Tung
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong SAR,
China
| | - Tsz-Kit Chow
- Nuclear Medicine Unit, Department of Radiology, Queen Mary Hospital, Hong Kong SAR,
China
| | - Monique Wai
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR,
China
| | - Jasmine Lo
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR,
China
| | - Sophelia Hoi Shan Chan
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong SAR,
China
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR,
China
| |
Collapse
|
4
|
Mehrabipour M, Jasemi NSK, Dvorsky R, Ahmadian MR. A Systematic Compilation of Human SH3 Domains: A Versatile Superfamily in Cellular Signaling. Cells 2023; 12:2054. [PMID: 37626864 PMCID: PMC10453029 DOI: 10.3390/cells12162054] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
SRC homology 3 (SH3) domains are fundamental modules that enable the assembly of protein complexes through physical interactions with a pool of proline-rich/noncanonical motifs from partner proteins. They are widely studied modular building blocks across all five kingdoms of life and viruses, mediating various biological processes. The SH3 domains are also implicated in the development of human diseases, such as cancer, leukemia, osteoporosis, Alzheimer's disease, and various infections. A database search of the human proteome reveals the existence of 298 SH3 domains in 221 SH3 domain-containing proteins (SH3DCPs), ranging from 13 to 720 kilodaltons. A phylogenetic analysis of human SH3DCPs based on their multi-domain architecture seems to be the most practical way to classify them functionally, with regard to various physiological pathways. This review further summarizes the achievements made in the classification of SH3 domain functions, their binding specificity, and their significance for various diseases when exploiting SH3 protein modular interactions as drug targets.
Collapse
Affiliation(s)
- Mehrnaz Mehrabipour
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Neda S. Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
- Center for Interdisciplinary Biosciences, P. J. Šafárik University, 040 01 Košice, Slovakia
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| |
Collapse
|
5
|
Soini V, Hell AK, Metzger L, Jäckle K, Braunschweig L, Lüders KA, Lorenz HM, Tsaknakis K. Scoliosis Treatment With Growth-Friendly Spinal Implants (GFSI) Relates to Low Bone Mineral Mass in Children With Spinal Muscular Atrophy. J Pediatr Orthop 2023:01241398-990000000-00271. [PMID: 37104756 DOI: 10.1097/bpo.0000000000002422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
BACKGROUND Children with spinal muscular atrophy (SMA) frequently develop neuromuscular scoliosis at an early age, requiring surgical treatment with growth-friendly spinal implants (GFSI), such as magnetically controlled growing rods. This study investigated the effect of GFSI on the volumetric bone mineral density (vBMD) of the spine in SMA children. METHODS Seventeen children (age 13.2±1.2 y) with SMA and GFSI-treated spinal deformity were compared with 25 scoliotic SMA children (age 12.9±1.7 y) without prior surgical treatment as well as age-matched healthy controls (n=29; age 13.3±2.0). Clinical, radiologic, and demographic data were analyzed. For the calculation of the vBMD Z-scores of the thoracic and lumbar vertebrae, phantom precalibrated spinal computed tomography scans were analyzed using quantitative computed tomography (QCT). RESULTS Average vBMD was lower in SMA patients with GFSI (82.1±8.4 mg/cm3) compared with those without prior treatment (108.0±6.8 mg/cm3). The difference was more prominent in and around the thoracolumbar region. The vBMD of all SMA patients was significantly lower in comparison with healthy controls, especially in SMA patients with previous fragility fractures. CONCLUSIONS The results of this study support the hypothesis of reduced vertebral bone mineral mass in SMA children with scoliosis at the end of GFSI treatment in comparison with SMA patients undergoing primary spinal fusion. Improving vBMD through pharmaceutical therapy in SMA patients could have a beneficial effect on the surgical outcome of scoliosis correction while reducing complications. LEVEL OF EVIDENCE Therapeutic Level III.
Collapse
Affiliation(s)
- Venla Soini
- Department of Trauma, Orthopaedic and Plastic Surgery, Paediatric Orthopaedics, University Medical Center Göttingen; Göttingen, Germany
- Department of Paediatric Surgery and Paediatric Orthopaedic Surgery, University of Turku and Turku University Hospital, Finland
| | - Anna K Hell
- Department of Trauma, Orthopaedic and Plastic Surgery, Paediatric Orthopaedics, University Medical Center Göttingen; Göttingen, Germany
| | - Luise Metzger
- Department of Trauma, Orthopaedic and Plastic Surgery, Paediatric Orthopaedics, University Medical Center Göttingen; Göttingen, Germany
| | - Katharina Jäckle
- Department of Trauma, Orthopaedic and Plastic Surgery, Paediatric Orthopaedics, University Medical Center Göttingen; Göttingen, Germany
| | - Lena Braunschweig
- Department of Trauma, Orthopaedic and Plastic Surgery, Paediatric Orthopaedics, University Medical Center Göttingen; Göttingen, Germany
| | - Katja A Lüders
- Department of Trauma, Orthopaedic and Plastic Surgery, Paediatric Orthopaedics, University Medical Center Göttingen; Göttingen, Germany
| | - Heiko M Lorenz
- Department of Trauma, Orthopaedic and Plastic Surgery, Paediatric Orthopaedics, University Medical Center Göttingen; Göttingen, Germany
| | - Konstantinos Tsaknakis
- Department of Trauma, Orthopaedic and Plastic Surgery, Paediatric Orthopaedics, University Medical Center Göttingen; Göttingen, Germany
| |
Collapse
|
6
|
Cook J, Greene ES, Ramser A, Mullenix G, Dridi JS, Liyanage R, Wideman R, Dridi S. Comparative- and network-based proteomic analysis of bacterial chondronecrosis with osteomyelitis lesions in broiler's proximal tibiae identifies new molecular signatures of lameness. Sci Rep 2023; 13:5947. [PMID: 37045932 PMCID: PMC10097873 DOI: 10.1038/s41598-023-33060-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/06/2023] [Indexed: 04/14/2023] Open
Abstract
Bacterial Chondronecrosis with Osteomyelitis (BCO) is a specific cause of lameness in commercial fast-growing broiler (meat-type) chickens and represents significant economic, health, and wellbeing burdens. However, the molecular mechanisms underlying the pathogenesis remain poorly understood. This study represents the first comprehensive characterization of the proximal tibia proteome from healthy and BCO chickens. Among a total of 547 proteins identified, 222 were differentially expressed (DE) with 158 up- and 64 down-regulated proteins in tibia of BCO vs. normal chickens. Biological function analysis using Ingenuity Pathways showed that the DE proteins were associated with a variety of diseases including cell death, organismal injury, skeletal and muscular disorder, immunological and inflammatory diseases. Canonical pathway and protein-protein interaction network analysis indicated that these DE proteins were involved in stress response, unfolded protein response, ribosomal protein dysfunction, and actin cytoskeleton signaling. Further, we identified proteins involved in bone resorption (osteoclast-stimulating factor 1, OSFT1) and bone structural integrity (collagen alpha-2 (I) chain, COL2A1), as potential key proteins involved in bone attrition. These results provide new insights by identifying key protein candidates involved in BCO and will have significant impact in understanding BCO pathogenesis.
Collapse
Affiliation(s)
- Jennifer Cook
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Elizabeth S Greene
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Alison Ramser
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Garrett Mullenix
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Jalila S Dridi
- École Universitaire de Kinésithérapie, Université d'Orléans, Rue de Chartres, 45100, Orléans, France
| | - Rohana Liyanage
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Robert Wideman
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Sami Dridi
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA.
| |
Collapse
|
7
|
Wu J, Zhang L, Shen C, Sin SYW, Lei C, Zhao H. Comparative transcriptome analysis reveals molecular adaptations underlying distinct immunity and inverted resting posture in bats. Integr Zool 2022; 18:493-505. [PMID: 36049759 DOI: 10.1111/1749-4877.12676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding how natural selection shapes unique traits in mammals is a central topic in evolutionary biology. The mammalian order Chiroptera (bats) is attractive for biologists as well as the general public due to their specific traits of extraordinary immunity and inverted resting posture. However, genomic resources for bats that occupy key phylogenetic positions are not sufficient, which hinders comprehensive investigation of the molecular mechanisms underpinning the origin of specific traits in bats. Here, we sequenced the transcriptomes of five bats that are phylogenetically divergent and occupy key positions in the phylogenetic tree of bats. In combination with the available genomes of 19 bats and 21 other mammals, we built a database consisting of 10,918 one-to-one ortholog genes and reconstructed phylogenetic relationships of these mammals. We found that genes related to immunity, bone remodeling and cardiovascular system are targets of natural selection along the ancestral branch of bats. Further analyses revealed that the T cell receptor signaling pathway involved in immune adaptation is specifically enriched in bats. Moreover, molecular adaptations of bone remodeling, cardiovascular system, and balance sensing may help to explain the reverted resting posture in bats. Our study provides valuable transcriptome resources, enabling us to tentatively identify genetic changes associated with bat-specific traits. This work is among the first to advance our understanding of molecular underpinnings of inverted resting posture in bats, which could provide insight into healthcare applications such as hypertension in humans. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jinwei Wu
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region of Ministry of Education, China Three Gorges University, Yichang, China
| | - Libiao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Chao Shen
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Simon Yung Wa Sin
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Caoqi Lei
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Huabin Zhao
- College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Konka J, Espanol M, Bosch BM, de Oliveira E, Ginebra MP. Maturation of biomimetic hydroxyapatite in physiological fluids: a physicochemical and proteomic study. Mater Today Bio 2021; 12:100137. [PMID: 34632362 PMCID: PMC8487082 DOI: 10.1016/j.mtbio.2021.100137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/20/2021] [Accepted: 09/04/2021] [Indexed: 11/26/2022] Open
Abstract
Biomimetic calcium-deficient hydroxyapatite (CDHA) as a bioactive material exhibits exceptional intrinsic osteoinductive and osteogenic properties because of its nanostructure and composition, which promote a favorable microenvironment. Its high reactivity has been hypothesized to play a relevant role in the in vivo performance, mediated by the interaction with the biological fluids, which is amplified by its high specific surface area. Paradoxically, this high reactivity is also behind the in vitro cytotoxicity of this material, especially pronounced in static conditions. The present work explores the structural and physicochemical changes that CDHA undergoes in contact with physiological fluids and to investigate its interaction with proteins. Calcium-deficient hydroxyapatite discs with different micro/nanostructures, coarse (C) and fine (F), were exposed to cell-free complete culture medium over extended periods of time: 1, 7, 14, 21, 28, and 50 days. Precipitate formation was not observed in any of the materials in contact with the physiological fluid, which would indicate that the ionic exchanges were linked to incorporation into the crystal structure of CDHA or in the hydrated layer. In fact, CDHA experienced a maturation process, with a progressive increase in crystallinity and the Ca/P ratio, accompanied by an uptake of Mg and a B-type carbonation process, with a gradual propagation into the core of the samples. However, the reactivity of biomimetic hydroxyapatite was highly dependent on the specific surface area and was amplified in nanosized needle-like crystal structures (F), whereas in coarse specimens the ionic exchanges were restricted to the surface, with low penetration in the material bulk. In addition to showing a higher protein adsorption on F substrates, the proteomics study revealed the existence of protein selectivity toward F or C microstructures, as well as the capability of CDHA, and more remarkably of F-CDHA, to concentrate specific proteins from the culture medium. Finally, a substantial improvement in the material's ability to support cell proliferation was observed after the CDHA maturation process.
Collapse
Affiliation(s)
- J Konka
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019, Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019, Barcelona, Spain
| | - M Espanol
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019, Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019, Barcelona, Spain
| | - B M Bosch
- Bioengineering Institute of Technology (BIT), Universitat Internacional de Catalunya (UIC), Josep Trueta s/n, 08195, Barcelona, Spain
| | - E de Oliveira
- Plataforma de Proteòmica, Parc Científic de Barcelona, PCB, Barcelona, Spain
| | - M-P Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019, Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019, Barcelona, Spain.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain
| |
Collapse
|
9
|
Bone mineral density and its influencing factors in Chinese children with spinal muscular atrophy types 2 and 3. BMC Musculoskelet Disord 2021; 22:729. [PMID: 34429096 PMCID: PMC8386040 DOI: 10.1186/s12891-021-04613-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 08/15/2021] [Indexed: 11/10/2022] Open
Abstract
Background Patients with spinal muscular atrophy (SMA) are at risk of decreased bone mineral density (BMD). The bone health status of Chinese patients with SMA has been poorly studied. We aimed to evaluate the BMD of children with SMA types 2 and 3 in mainland China and investigate its influencing factors. Methods Forty patients with a mean age of 5.5 years affected by SMA types 2 and 3 (n = 22 and n = 18, respectively) were enrolled between September 2017 and May 2019. Total body less head (TBLH) BMD, lumbar spine (LS) BMD, and body composition were measured using dual-energy X-ray absorptiometry (DXA). Serum bone metabolism markers and complete spinal radiographs were assessed. We utilized a linear regression model to explore the correlations between BMD and its related factors. Results A total of 67.5% (27/40) of patients were diagnosed with low BMD and 2.5% (1/40) were diagnosed with osteoporosis. The TBLH BMD and LS BMD Z-scores in children with SMA type 2 were significantly lower than those with SMA type 3. Both TBLH and LS BMD Z-scores tended to increase with the change of SMA subtypes from 2a-3b. Vitamin D insufficiency and deficiency were found in 37.5% (15/40) of the patients. Serum Ca, phosphorus (P), alkaline phosphatase (ALP) and parathormone (PTH) levels were normal. There were no significant differences among the four subtypes in terms of all the serum bone metabolism markers. Phenotype was significantly associated with TBLH BMD and LS BMD Z-scores, and serum PTH levels were significantly associated with TBLH BMD Z-scores. Conclusions Low BMD and osteoporosis were highly prevalent in mainland Chinese children with SMA types 2 and 3. Phenotype and serum PTH level might be the influencing factors of BMD. Regular monitoring of BMD by DXA scan and taking active interventions aim to SMA children with different types are important.
Collapse
|
10
|
Wong YH, Zhang Y, Lun JCY, Qiu JW. A proteomic analysis of skeletal tissue anomaly in the brain coral Platygyra carnosa. MARINE POLLUTION BULLETIN 2021; 164:111982. [PMID: 33517085 DOI: 10.1016/j.marpolbul.2021.111982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Coral skeletal growth anomaly (GA) is a common coral disease. It has been considered as a pathological condition comparable to abnormal tissue growth in mammals, but little is known about the molecular changes underlying coral GA. To investigate the molecular pathology of GA, we compared the proteome between normal and GA-affected tissues of the brain coral Platygyra carnosa using iTRAQ-labeling and LC-MS/MS, which quantified 818 proteins and identified 117 differentially expressed proteins (DEPs). GO analyses revealed DEPs that might be related to GA included "translational elongation", "proteasome core complex", "amine metabolic processes" and "lysosome". Several proteins implicated in calcification and fluorescence were differentially expressed at both protein and mRNA level. Protein-protein interaction network suggested possible involvement of TNF receptor signaling in GA. Overall, our results provided novel insights into the molecular pathology of coral GA, which will pave the way for determination of the causative agent(s) of this coral disease.
Collapse
Affiliation(s)
- Yue-Him Wong
- Institute for Advance Study, Shenzhen University, Shenzhen, China
| | - Yu Zhang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
| | - Janice C Y Lun
- Agriculture, Fishery and Conservation Department, The Government of the Hong Kong Special Administrative Region, China
| | - Jian-Wen Qiu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Department of Biology, Hong Kong Baptist University, Hong Kong, China; HKBU Institute of Research and Continuing Education, Shenzhen, China.
| |
Collapse
|
11
|
Nakamura S, Masuyama R, Sakai K, Fukuda K, Takeda K, Tanimura S. SH3P2 suppresses osteoclast differentiation through restricting membrane localization of myosin 1E. Genes Cells 2020; 25:707-717. [PMID: 32916757 DOI: 10.1111/gtc.12806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/23/2020] [Accepted: 09/02/2020] [Indexed: 01/21/2023]
Abstract
Osteoclasts are multinucleated cells responsible for bone resorption. Src homology 3 (SH3) domain-containing protein-2 (SH3P2)/osteoclast-stimulating factor-1 regulates osteoclast differentiation, but its exact role remains elusive. Here, we show that SH3P2 suppresses osteoclast differentiation. SH3P2 knockout (KO) mice displayed decreased femoral trabecular bone mass and enhanced localization of osteoclasts on the tibial trabecular bone surface, suggesting that SH3P2 suppresses bone resorption by osteoclasts. Osteoclast differentiation based on cellular multinuclearity induced by macrophage colony-stimulating factor and receptor activator of nuclear factor-κB ligand (RANKL) was enhanced in bone marrow-derived macrophages lacking SH3P2. RANKL induced SH3P2 dephosphorylation, which increased the association of actin-dependent motor protein myosin 1E (Myo1E) with SH3P2 and thereby prevented Myo1E localization to the plasma membrane. Consistent with this, Myo1E in the membrane fraction increased in SH3P2-KO cells. Together with the attenuated osteoclast differentiation in Myo1E knocked down cells, SH3P2 may suppress osteoclast differentiation by preventing their cell-to-cell fusion depending on Myo1E membrane localization.
Collapse
Affiliation(s)
- Shota Nakamura
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Ritsuko Masuyama
- Department of Gastronomy Management, College of Gastronomy Management, Ritsumeikan University, Kusatsu, Japan
| | - Kosuke Sakai
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Karin Fukuda
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kohsuke Takeda
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Susumu Tanimura
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
12
|
Zhang L, Peng TL, Wang L, Meng XH, Zhu W, Zeng Y, Zhu JQ, Zhou Y, Xiao HM, Deng HW. Network-based Transcriptome-wide Expression Study for Postmenopausal Osteoporosis. J Clin Endocrinol Metab 2020; 105:2678-2691. [PMID: 32483604 PMCID: PMC7320836 DOI: 10.1210/clinem/dgaa319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/27/2020] [Indexed: 01/08/2023]
Abstract
PURPOSE Menopause is a crucial physiological transition during a woman's life, and it occurs with growing risks of health issues like osteoporosis. To identify postmenopausal osteoporosis-related genes, we performed transcriptome-wide expression analyses for human peripheral blood monocytes (PBMs) using Affymetrix 1.0 ST arrays in 40 Caucasian postmenopausal women with discordant bone mineral density (BMD) levels. METHODS We performed multiscale embedded gene coexpression network analysis (MEGENA) to study functionally orchestrating clusters of differentially expressed genes in the form of functional networks. Gene sets net correlations analysis (GSNCA) was applied to assess how the coexpression structure of a predefined gene set differs in high and low BMD groups. Bayesian network (BN) analysis was used to identify important regulation patterns between potential risk genes for osteoporosis. A small interfering ribonucleic acid (siRNA)-based gene silencing in vitro experiment was performed to validate the findings from BN analysis. RESULT MEGENA showed that the "T cell receptor signaling pathway" and the "osteoclast differentiation pathway" were significantly enriched in the identified compact network, which is significantly correlated with BMD variation. GSNCA revealed that the coexpression structure of the "Signaling by TGF-beta receptor complex pathway" is significantly different between the 2 BMD discordant groups; the hub genes in the postmenopausal low and high BMD group are FURIN and SMAD3 respectively. With siRNA in vitro experiments, we confirmed the regulation relationship of TGFBR2-SMAD7 and TGFBR1-SMURF2. MAIN CONCLUSION The present study suggests that biological signals involved in monocyte recruitment, monocyte/macrophage lineage development, osteoclast formation, and osteoclast differentiation might function together in PBMs that contribute to the pathogenesis of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Lan Zhang
- Center for Biomedical informatics and Genomics, Department of Medicine, Tulane University, New Orleans, Louisiana
| | - Tian-Liu Peng
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Le Wang
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xiang-He Meng
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Wei Zhu
- Center for Biomedical informatics and Genomics, Department of Medicine, Tulane University, New Orleans, Louisiana
| | - Yong Zeng
- Center for Biomedical informatics and Genomics, Department of Medicine, Tulane University, New Orleans, Louisiana
| | - Jia-Qiang Zhu
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Yu Zhou
- Center for Biomedical informatics and Genomics, Department of Medicine, Tulane University, New Orleans, Louisiana
| | - Hong-Mei Xiao
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hong-Wen Deng
- Center for Biomedical informatics and Genomics, Department of Medicine, Tulane University, New Orleans, Louisiana
| |
Collapse
|
13
|
Ayaz-Guner S, Alessio N, Acar MB, Aprile D, Özcan S, Di Bernardo G, Peluso G, Galderisi U. A comparative study on normal and obese mice indicates that the secretome of mesenchymal stromal cells is influenced by tissue environment and physiopathological conditions. Cell Commun Signal 2020; 18:118. [PMID: 32727501 PMCID: PMC7388533 DOI: 10.1186/s12964-020-00614-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The term mesenchymal stromal cells (MSCs) designates an assorted cell population comprised of stem cells, progenitor cells, fibroblasts, and stromal cells. MSCs contribute to the homeostatic maintenance of many organs through paracrine and long-distance signaling. Tissue environment, in both physiological and pathological conditions, may affect the intercellular communication of MSCs. METHODS We performed a secretome analysis of MSCs isolated from subcutaneous adipose tissue (sWAT) and visceral adipose tissue (vWAT), and from bone marrow (BM), of normal and obese mice. RESULTS The MSCs isolated from tissues of healthy mice share a common core of released factors: components of cytoskeletal and extracellular structures; regulators of basic cellular functions, such as protein synthesis and degradation; modulators of endoplasmic reticulum stress; and counteracting oxidative stress. It can be hypothesized that MSC secretome beneficially affects target cells by the horizontal transfer of many released factors. Each type of MSC may exert specific signaling functions, which could be determined by looking at the many factors that are exclusively released from every MSC type. The vWAT-MSCs release factors that play a role in detoxification activity in response to toxic substances and drugs. The sWAT-MSC secretome contains proteins involved in in chondrogenesis, osteogenesis, and angiogenesis. Analysis of BM-MSC secretome revealed that these cells exert a signaling function by remodeling extracellular matrix structures, such as those containing glycosaminoglycans. Obesity status profoundly modified the secretome content of MSCs, impairing the above-described activity and promoting the release of inflammatory factors. CONCLUSION We demonstrated that the content of MSC secretomes depends on tissue microenvironment and that pathological condition may profoundly alter its composition. Video abstract.
Collapse
Affiliation(s)
- Serife Ayaz-Guner
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Science, Abdullah Gül University, Kayseri, Turkey
| | - Nicola Alessio
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, Naples, Italy
| | - Mustafa B. Acar
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Department of Biology, Faculty of Sciences; Erciyes University, Kayseri, Turkey
| | - Domenico Aprile
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, Naples, Italy
| | - Servet Özcan
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Department of Biology, Faculty of Sciences; Erciyes University, Kayseri, Turkey
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, Naples, Italy
| | | | - Umberto Galderisi
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, Naples, Italy
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, 1900 N. 12th St, Philadelphia, PA 19107-6799 USA
| |
Collapse
|
14
|
Al-Waeli H, Nicolau B, Stone L, Abu Nada L, Gao Q, Abdallah MN, Abdulkader E, Suzuki M, Mansour A, Al Subaie A, Tamimi F. Chronotherapy of Non-Steroidal Anti-Inflammatory Drugs May Enhance Postoperative Recovery. Sci Rep 2020; 10:468. [PMID: 31949183 PMCID: PMC6965200 DOI: 10.1038/s41598-019-57215-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Postoperative pain relief is crucial for full recovery. With the ongoing opioid epidemic and the insufficient effect of acetaminophen on severe pain; non-steroidal anti-inflammatory drugs (NSAIDs) are heavily used to alleviate this pain. However, NSAIDs are known to inhibit postoperative healing of connective tissues by inhibiting prostaglandin signaling. Pain intensity, inflammatory mediators associated with wound healing and the pharmacological action of NSAIDs vary throughout the day due to the circadian rhythm regulated by the clock genes. According to this rhythm, most of wound healing mediators and connective tissue formation occurs during the resting phase, while pain, inflammation and tissue resorption occur during the active period of the day. Here we show, in a murine tibia fracture surgical model, that NSAIDs are most effective in managing postoperative pain, healing and recovery when drug administration is limited to the active phase of the circadian rhythm. Limiting NSAID treatment to the active phase of the circadian rhythm resulted in overexpression of circadian clock genes, such as Period 2 (Per2) at the healing callus, and increased serum levels of anti-inflammatory cytokines interleukin-13 (IL-13), interleukin-4 (IL-4) and vascular endothelial growth factor. By contrast, NSAID administration during the resting phase resulted in severe bone healing impairment.
Collapse
Affiliation(s)
- H Al-Waeli
- Faculty of Dentistry, McGill University, 2001 Avenue McGill College Suite 500, Montréal, QC, H3A 1G1, Canada
| | - B Nicolau
- Faculty of Dentistry, McGill University, 2001 Avenue McGill College Suite 500, Montréal, QC, H3A 1G1, Canada
| | - L Stone
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - L Abu Nada
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - Q Gao
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - M N Abdallah
- Faculty of Dentistry, University of Toronto, 124 Edward St, Toronto, Ontario, M5G 1G, Canada
| | - E Abdulkader
- Faculty of Dentistry, McGill University, 2001 Avenue McGill College Suite 500, Montréal, QC, H3A 1G1, Canada
| | - M Suzuki
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - A Mansour
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - A Al Subaie
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - F Tamimi
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada.
| |
Collapse
|
15
|
Zhao H, Wang H, Liu T, Liu S, Jin L, Huang X, Dai W, Sun K, Feng J. Gene expression vs. sequence divergence: comparative transcriptome sequencing among natural Rhinolophus ferrumequinum populations with different acoustic phenotypes. Front Zool 2019; 16:37. [PMID: 31528181 PMCID: PMC6743130 DOI: 10.1186/s12983-019-0336-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/04/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Although the sensory drive hypothesis can explain the geographic variation in echolocation frequencies of some bat species, the molecular mechanisms underlying this phenomenon are still unclear. The three lineages of greater horseshoe bat (Rhinolophus ferrumequinum) in China (northeast, central-east, and southwest) have significant geographic variation in resting frequencies (RF) of echolocation calls. Because their cochleae have an acoustic fovea that is highly sensitive to a narrow range of frequencies, we reported the transcriptomes of cochleae collected from three genetic lineages of R. ferrumequinum, which is an ideal organism for studying geographic variation in echolocation signals, and tried to understand the mechanisms behind this bat phenomenon by analyzing gene expression and sequence variation. RESULTS A total of 8190 differentially expressed genes (DEGs) were identified. We identified five modules from all DEGs that were significantly related to RF or forearm length (FL). DEGs in the RF-related modules were significantly enriched in the gene categories involved in neural activity, learning, and response to sound. DEGs in the FL-related modules were significantly enriched in the pathways related to muscle and actin functions. Using 21,945 single nucleotide polymorphisms, we identified 18 candidate unigenes associated with hearing, five of which were differentially expressed among the three populations. Additionally, the gene ERBB4, which regulates diverse cellular processes in the inner ear such as cell proliferation and differentiation, was in the largest module. We also found 49 unigenes that were under positive selection from 4105 one-to-one orthologous gene pairs between the three R. ferrumequinum lineages and three other Chiroptera species. CONCLUSIONS The variability of gene expression and sequence divergence at the molecular level might provide evidence that can help elucidate the genetic basis of geographic variation in echolocation signals of greater horseshoe bats.
Collapse
Affiliation(s)
- Hanbo Zhao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117 China
| | - Hui Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117 China
| | - Tong Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117 China
| | - Sen Liu
- Institute of Resources & Environment, Henan Polytechnic University, Jiaozuo, 454000 China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117 China
| | - Xiaobin Huang
- Vector Laboratory, Institute of Pathogens and Vectors, Branch of Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, Dali, 671003 China
| | - Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117 China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117 China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117 China
- College of Life Science, Jilin Agricultural University, Changchun, 130118 China
| |
Collapse
|
16
|
Gerber KJ, Dammer EB, Duong DM, Deng Q, Dudek SM, Seyfried NT, Hepler JR. Specific Proteomes of Hippocampal Regions CA2 and CA1 Reveal Proteins Linked to the Unique Physiology of Area CA2. J Proteome Res 2019; 18:2571-2584. [PMID: 31059263 DOI: 10.1021/acs.jproteome.9b00103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The hippocampus is well established as an essential brain center for learning and memory. Within the hippocampus, recent studies show that area CA2 is important for social memory and is an anomaly compared to its better-understood neighboring region, CA1. Unlike CA1, CA2 displays a lack of typical synaptic plasticity, enhanced calcium buffering and extrusion, and resilience to cell death following injury. Although recent studies have identified multiple molecular markers of area CA2, the proteins that mediate the unique physiology, signaling, and resilience of this region are unknown. Using a transgenic GFP-reporter mouse line that expresses eGFP in CA2, we were able to perform targeted dissections of area CA2 and CA1 for proteomic analysis. We identified over 100 proteins with robustly enriched expression in area CA2 compared to CA1. Many of these proteins, including RGS14 and NECAB2, have already been shown to be enriched in CA2 and important for its function, while many more merit further study in the context of enhanced expression in this enigmatic brain region. Furthermore, we performed a comprehensive analysis of the entire data set (>2300 proteins) using a weighted protein co-expression network analysis. This identified eight distinct co-expressed patterns of protein co-enrichment associated with increased expression in area CA2 tissue (compared to CA1). The novel data set we present here reveals a specific CA2 hippocampal proteome, laying the groundwork for future studies and a deeper understanding of area CA2 and the proteins mediating its unique physiology and signaling.
Collapse
Affiliation(s)
- Kyle J Gerber
- Department of Pharmacology and Chemical Biology, Rollins Research Center , Emory University School of Medicine , Atlanta , Georgia 30322 , United States
| | - Eric B Dammer
- Department of Biochemistry , Emory University School of Medicine , Atlanta , Georgia 30322 , United States.,Center for Neurodegenerative Disease , Emory University , Atlanta , Georgia 30322 , United States
| | - Duc M Duong
- Department of Biochemistry , Emory University School of Medicine , Atlanta , Georgia 30322 , United States.,Center for Neurodegenerative Disease , Emory University , Atlanta , Georgia 30322 , United States
| | - Qiudong Deng
- Department of Biochemistry , Emory University School of Medicine , Atlanta , Georgia 30322 , United States.,Center for Neurodegenerative Disease , Emory University , Atlanta , Georgia 30322 , United States
| | - Serena M Dudek
- Neurobiology Laboratory, National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle Park , North Carolina 27709 , United States
| | - Nicholas T Seyfried
- Department of Biochemistry , Emory University School of Medicine , Atlanta , Georgia 30322 , United States.,Center for Neurodegenerative Disease , Emory University , Atlanta , Georgia 30322 , United States.,Department of Neurology , Emory University School of Medicine , Atlanta , Georgia 30322 , United States
| | - John R Hepler
- Department of Pharmacology and Chemical Biology, Rollins Research Center , Emory University School of Medicine , Atlanta , Georgia 30322 , United States
| |
Collapse
|
17
|
Cao XK, Cheng J, Huang YZ, Wang XG, Ma YL, Peng SJ, Chaogetu B, Zhuoma Z, Chen H. Growth Performance and Meat Quality Evaluations in Three-Way Cross Cattle Developed for the Tibetan Plateau and their Molecular Understanding by Integrative Omics Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:541-550. [PMID: 30596412 DOI: 10.1021/acs.jafc.8b05477] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Despite of favorable characteristics of high protein, low fat, and free-pollution, yak meat has intrinsically poor performance in tenderness and color, which is ever challenging yak sector. To this end, a three-way cross system was first developed for high quality beef of the Tibetan Plateau using Angus cattle ( Bos taurus) as terminal sire to mate with 1/2 yak (F1) generated from♂Qaidam cattle ( Bos taurus) × ♀yak ( Bos grunniens). The withers height, chest girth, and body weight of 1/4 yak (F2) were all great higher than that of yak and 1/2 yak ( P < 0.01), especially at later period, suggesting the faster growth rate of 1/4 yak. Also the dressing percentage was much better in 1/4 yak ( P < 0.01). Tenderness and meat color were both significantly improved in 1/4 yak with some unpleasant sacrifice of PUFAs, such as EPA and DHA, and meat protein, given the significantly lower shear force and higher L* ( P < 0.01). A total of 769 genes, including SREBF1, GHR, and FASN, the widely recognized causal genes of meat quality, were identified from 11947 differently expressed genes by the data integration of transcriptome, GWAS and QTL. These genes were significantly enriched for important pathway and GO terms, such as insulin signaling pathway, fatty acid biosynthesis, calcium signaling pathway, metabolic pathway, and cellular response to stress ( P < 0.01). And 12 promising candidates were exemplified with annotation of H3K4me3 data from divergent meat quality, such as OSTF1, NRAS1, and KCNJ11. Interestingly, 75 high-altitude adaptive candidate genes were also detected in the list. This study is a first step toward high quality beef of the Tibetan Plateau and provides useful information for their molecular understanding.
Collapse
Affiliation(s)
- Xiu-Kai Cao
- College of Animal Science and Technology , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Jie Cheng
- College of Animal Science and Technology , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Yong-Zhen Huang
- College of Animal Science and Technology , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Xiao-Gang Wang
- College of Animal Science and Technology , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Yu-Lin Ma
- Animal Disease Control Center of Haixi Mongolian and Tibetan Autonomous Prefecture , Delingha , Qinghai 817000 , China
| | - Shu-Jun Peng
- College of Animal Science and Technology , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Buren Chaogetu
- Animal Disease Control Center of Haixi Mongolian and Tibetan Autonomous Prefecture , Delingha , Qinghai 817000 , China
| | - Zhaxi Zhuoma
- Animal Disease Control Center of Haixi Mongolian and Tibetan Autonomous Prefecture , Delingha , Qinghai 817000 , China
| | - Hong Chen
- College of Animal Science and Technology , Northwest A&F University , Yangling , Shaanxi 712100 , China
| |
Collapse
|
18
|
Yang C, Ren J, Li B, Jin C, Ma C, Cheng C, Sun Y, Shi X. Identification of gene biomarkers in patients with postmenopausal osteoporosis. Mol Med Rep 2018; 19:1065-1073. [PMID: 30569177 PMCID: PMC6323213 DOI: 10.3892/mmr.2018.9752] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 09/18/2018] [Indexed: 12/17/2022] Open
Abstract
Postmenopausal osteoporosis (PMOP) is a major public health concern worldwide. The present study aimed to provide evidence to assist in the development of specific novel biomarkers for PMOP. Differentially expressed genes (DEGs) were identified between PMOP and normal controls by integrated microarray analyses of the Gene Expression Omnibus (GEO) database, and the optimal diagnostic gene biomarkers for PMOP were identified with LASSO and Boruta algorithms. Classification models, including support vector machine (SVM), decision tree and random forests models, were established to test the diagnostic value of identified gene biomarkers for PMOP. Functional annotations and protein‑protein interaction (PPI) network constructions were also conducted. Integrated microarray analyses (GSE56815, GSE13850 and GSE7429) of the GEO database were employed, and 1,320 DEGs were identified between PMOP and normal controls. An 11‑gene combination was also identified as an optimal biomarker for PMOP by feature selection and classification methods using SVM, decision tree and random forest models. This combination was comprised of the following genes: Dehydrogenase E1 and transketolase domain containing 1 (DHTKD1), osteoclast stimulating factor 1 (OSTF1), G protein‑coupled receptor 116 (GPR116), BCL2 interacting killer, adrenoceptor β1 (ADRB1), neogenin 1 (NEO1), RB binding protein 4 (RBBP4), GPR87, cylicin 2, EF‑hand calcium binding domain 1 and DEAH‑box helicase 35. RBBP4 (degree=12) was revealed to be the hub gene of this PMOP‑specific PPI network. Among these 11 genes, three genes (OSTF1, ADRB1 and NEO1) were speculated to serve roles in PMOP by regulating the balance between bone formation and bone resorption, while two genes (GPR87 and GPR116) may be involved in PMOP by regulating the nuclear factor‑κB signaling pathway. Furthermore, DHTKD1 and RBBP4 may be involved in PMOP by regulating mitochondrial dysfunction and interacting with ESR1, respectively. In conclusion, the findings of the current study provided an insight for exploring the mechanism and developing novel biomarkers for PMOP. Further studies are required to test the diagnostic value for PMOP prior to use in a clinical setting.
Collapse
Affiliation(s)
- Chenggang Yang
- Department of Research and Development, Gu'an Bojian Bio‑Technology Co., Ltd., Langfang, Hebei 065000, P.R. China
| | - Jing Ren
- Department of Big Data, Beijing Medintell Bioinformatic Technology Co., Ltd., Beijing 100081, P.R. China
| | - Bangling Li
- Department of Big Data, Beijing Medintell Bioinformatic Technology Co., Ltd., Beijing 100081, P.R. China
| | - Chuandi Jin
- Department of Big Data, Beijing Medintell Bioinformatic Technology Co., Ltd., Beijing 100081, P.R. China
| | - Cui Ma
- Department of Research and Development, Gu'an Bojian Bio‑Technology Co., Ltd., Langfang, Hebei 065000, P.R. China
| | - Cheng Cheng
- Department of Big Data, Beijing Medintell Bioinformatic Technology Co., Ltd., Beijing 100081, P.R. China
| | - Yaolan Sun
- Department of Big Data, Beijing Medintell Bioinformatic Technology Co., Ltd., Beijing 100081, P.R. China
| | - Xiaofeng Shi
- Department of Research and Development, Gu'an Bojian Bio‑Technology Co., Ltd., Langfang, Hebei 065000, P.R. China
| |
Collapse
|