1
|
Fanourgakis G, Gaspa-Toneu L, Komarov PA, Papasaikas P, Ozonov EA, Smallwood SA, Peters AHFM. DNA methylation modulates nucleosome retention in sperm and H3K4 methylation deposition in early mouse embryos. Nat Commun 2025; 16:465. [PMID: 39774947 PMCID: PMC11706963 DOI: 10.1038/s41467-024-55441-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
In the germ line and during early embryogenesis, DNA methylation (DNAme) undergoes global erasure and re-establishment to support germ cell and embryonic development. While DNAme acquisition during male germ cell development is essential for setting genomic DNA methylation imprints, other intergenerational roles for paternal DNAme in defining embryonic chromatin are unknown. Through conditional gene deletion of the de novo DNA methyltransferases Dnmt3a and/or Dnmt3b, we observe that DNMT3A primarily safeguards against DNA hypomethylation in undifferentiated spermatogonia, while DNMT3B catalyzes de novo DNAme during spermatogonial differentiation. Failing de novo DNAme in Dnmt3a/Dnmt3b double deficient spermatogonia is associated with increased nucleosome occupancy in mature sperm, preferentially at sites with higher CpG content, supporting the model that DNAme modulates nucleosome retention in sperm. To assess the impact of altered sperm chromatin in formatting embryonic chromatin, we measure H3K4me3 occupancy at paternal and maternal alleles in 2-cell embryos using a transposon-based tagging approach. Our data show that reduced DNAme in sperm renders paternal alleles permissive for H3K4me3 establishment in early embryos, independently of possible paternal inheritance of sperm born H3K4me3. Together, this study provides evidence that paternally inherited DNAme directs chromatin formation during early embryonic development.
Collapse
Affiliation(s)
- Grigorios Fanourgakis
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Laura Gaspa-Toneu
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
- Faculty of Sciences, University of Basel, 4056, Basel, Switzerland
| | - Pavel A Komarov
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
- Faculty of Sciences, University of Basel, 4056, Basel, Switzerland
| | - Panagiotis Papasaikas
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Evgeniy A Ozonov
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Sebastien A Smallwood
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland.
- Faculty of Sciences, University of Basel, 4056, Basel, Switzerland.
| |
Collapse
|
2
|
Yoshimaru K, Matsuura T, Uchida Y, Sonoda S, Maeda S, Kajihara K, Kawano Y, Shirai T, Toriigahara Y, Kalim AS, Zhang XY, Takahashi Y, Kawakubo N, Nagata K, Yamaza H, Yamaza T, Taguchi T, Tajiri T. Cutting-edge regenerative therapy for Hirschsprung disease and its allied disorders. Surg Today 2024; 54:977-994. [PMID: 37668735 DOI: 10.1007/s00595-023-02741-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/06/2023] [Indexed: 09/06/2023]
Abstract
Hirschsprung disease (HSCR) and its associated disorders (AD-HSCR) often result in severe hypoperistalsis caused by enteric neuropathy, mesenchymopathy, and myopathy. Notably, HSCR involving the small intestine, isolated hypoganglionosis, chronic idiopathic intestinal pseudo-obstruction, and megacystis-microcolon-intestinal hypoperistalsis syndrome carry a poor prognosis. Ultimately, small-bowel transplantation (SBTx) is necessary for refractory cases, but it is highly invasive and outcomes are less than optimal, despite advances in surgical techniques and management. Thus, regenerative therapy has come to light as a potential form of treatment involving regeneration of the enteric nervous system, mesenchyme, and smooth muscle in affected areas. We review the cutting-edge regenerative therapeutic approaches for managing HSCR and AD-HSCR, including the use of enteric nervous system progenitor cells, embryonic stem cells, induced pluripotent stem cells, and mesenchymal stem cells as cell sources, the recipient intestine's microenvironment, and transplantation methods. Perspectives on the future of these treatments are also discussed.
Collapse
Affiliation(s)
- Koichiro Yoshimaru
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Toshiharu Matsuura
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Yasuyuki Uchida
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Soichiro Sonoda
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shohei Maeda
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Keisuke Kajihara
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuki Kawano
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takeshi Shirai
- Department of Pediatric Surgery, Miyazaki Prefectural Miyazaki Hospital, 5-30 Kitatakamatsu-cho, Miyazaki, Miyazaki, 880-8510, Japan
| | - Yukihiro Toriigahara
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Alvin Santoso Kalim
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Xiu-Ying Zhang
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshiaki Takahashi
- Department of Pediatric Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757, Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Naonori Kawakubo
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kouji Nagata
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Haruyoshi Yamaza
- Department of Pediatric Dentistry, Kyushu University Graduate School of Dental Science, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takayoshi Yamaza
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomoaki Taguchi
- Fukuoka College of Health Sciences, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Tatsuro Tajiri
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
3
|
Farhadova S, Ghousein A, Charon F, Surcis C, Gomez-Velazques M, Roidor C, Di Michele F, Borensztein M, De Sario A, Esnault C, Noordermeer D, Moindrot B, Feil R. The long non-coding RNA Meg3 mediates imprinted gene expression during stem cell differentiation. Nucleic Acids Res 2024; 52:6183-6200. [PMID: 38613389 PMCID: PMC11194098 DOI: 10.1093/nar/gkae247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
The imprinted Dlk1-Dio3 domain comprises the developmental genes Dlk1 and Rtl1, which are silenced on the maternal chromosome in different cell types. On this parental chromosome, the domain's imprinting control region activates a polycistron that produces the lncRNA Meg3 and many miRNAs (Mirg) and C/D-box snoRNAs (Rian). Although Meg3 lncRNA is nuclear and associates with the maternal chromosome, it is unknown whether it controls gene repression in cis. We created mouse embryonic stem cells (mESCs) that carry an ectopic poly(A) signal, reducing RNA levels along the polycistron, and generated Rian-/- mESCs as well. Upon ESC differentiation, we found that Meg3 lncRNA (but not Rian) is required for Dlk1 repression on the maternal chromosome. Biallelic Meg3 expression acquired through CRISPR-mediated demethylation of the paternal Meg3 promoter led to biallelic Dlk1 repression, and to loss of Rtl1 expression. lncRNA expression also correlated with DNA hypomethylation and CTCF binding at the 5'-side of Meg3. Using Capture Hi-C, we found that this creates a Topologically Associating Domain (TAD) organization that brings Meg3 close to Dlk1 on the maternal chromosome. The requirement of Meg3 for gene repression and TAD structure may explain how aberrant MEG3 expression at the human DLK1-DIO3 locus associates with imprinting disorders.
Collapse
Affiliation(s)
- Sabina Farhadova
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
- Genetic Resources Research Institute, Azerbaijan National Academy of Sciences (ANAS), AZ1106 Baku, Azerbaijan
| | - Amani Ghousein
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - François Charon
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| | - Caroline Surcis
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
| | - Melisa Gomez-Velazques
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - Clara Roidor
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - Flavio Di Michele
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - Maud Borensztein
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - Albertina De Sario
- University of Montpellier, 34090 Montpellier, France
- PhyMedExp, Institut National de la Santé et de la Recherche Médicale (INSERM), CNRS, 34295 Montpellier, France
| | - Cyril Esnault
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - Daan Noordermeer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| | - Benoit Moindrot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| |
Collapse
|
4
|
Cruz M, Bergmans W, Takada T, Shiroishi T, Yoshiki A. Type specimens, taxonomic history, and genetic analysis of the Japanese dancing mouse or waltzer, Muswagneri variety rotans Droogleever Fortuyn, 1912 (Mammalia, Muridae). Zookeys 2024; 1200:27-39. [PMID: 38736700 PMCID: PMC11082488 DOI: 10.3897/zookeys.1200.118823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/21/2024] [Indexed: 05/14/2024] Open
Abstract
In the present paper, the existence and location of the type series of the Japanese dancing mouse or waltzer, Muswagneri variety rotans Droogleever Fortuyn, 1912, are established, and a lectotype is designated. Available type specimens are measured, and some morphological parameters, sex, and general condition of the specimens are recorded. A literature survey was conducted, and an attempt is made to clarify the position of M.wagneri variety rotans in the taxonomy of Mus. A genetic analysis suggests that the type series of the Japanese dancing mouse represent a crossbred, or derivation of a crossbred, between the original Japanese dancing mouse of Musmusculusmolossinus Temminck 1844 origin and European fancy or laboratory mice of Musmusculusdomesticus Schwarz & Schwarz, 1943 origin. Much of their genome was replaced and occupied by Musmusculusdomesticus type genome, probably through extensive breeding with European mice.
Collapse
Affiliation(s)
- Mónica Cruz
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, Netherlands
| | - Wim Bergmans
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, Netherlands
| | - Toyoyuki Takada
- RIKEN BioResourse Research Center, Tsukuba Ibaraki 305-0074, Japan
| | | | - Atsushi Yoshiki
- RIKEN BioResourse Research Center, Tsukuba Ibaraki 305-0074, Japan
| |
Collapse
|
5
|
Bárdos B, Török HK, Nagy I. Comparison of the exploratory behaviour of wild and laboratory mouse species. Behav Processes 2024; 217:105031. [PMID: 38642718 DOI: 10.1016/j.beproc.2024.105031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
In this study, we compared the exploratory behaviour of mound-building mice (Mus spicilegus) and house mice (Mus musculus) with domesticated laboratory mouse strains (BALB/c and C57BL/6). The animals spent 15 minutes in the furnished test box before the exit to the outside world became free. During the 5-minute test, it was noted whether the animal left the familiar environment; if it did, it was recorded in how many seconds. Based on our results, the wild mouse species were more likely to leave the familiar mouse box and explore the outside environment earlier than the laboratory mice. We also found a difference within the wild mouse species, the mound-building mouse being the one that explored the external environment to a greater extent and faster. The effect of domestication manifests in the fact that laboratory mouse strains are less likely to leave their familiar environment and are significantly less active than their wild ancestors.
Collapse
Affiliation(s)
- Boróka Bárdos
- Hungarian University of Agriculture and Life Sciences, Department of Animal Science, 40 Guba S., Kaposvar 7400, Hungary.
| | - Henrietta Kinga Török
- Hungarian University of Agriculture and Life Sciences, Department of Physiology and Animal Health, Hungary 40 Guba S., Kaposvar 7400, Hungary.
| | - István Nagy
- Hungarian University of Agriculture and Life Sciences, Department of Animal Science, 40 Guba S., Kaposvar 7400, Hungary.
| |
Collapse
|
6
|
Nannan M, Wenjun W, Ran Z, Yongsheng S, Rongyan Z, Hui C, Sumin Z, Hui X. Population genomics reveals that a missense mutation in EDNRB2 contributes to white plumage color in pigeons. Poult Sci 2024; 103:103225. [PMID: 38035860 PMCID: PMC10698677 DOI: 10.1016/j.psj.2023.103225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023] Open
Abstract
Plumage color is an important economic trait for breed feature identification and consumer's requirements in pigeons. The domestic pigeon has multiple types of plumage color, thereby providing a unique opportunity to identify the genetic basis of plumage coloration. White feather color is common for meat and medicinal use. To investigate the genetic variation associated with white plumage color in pigeons, we use genome resequencing and population genomics to identify the genomic regions with strong selective signature between pigeons with brown and white plumage color. Meanwhile, we obtained some candidate genes with melanin or melanosome biosynthesis in selected regions. Finally, we identified a missense mutation p.E256K in the EDNRB2 completely associated with white plumage color. These findings provide a basis for genetic variation in pigeons with plumage color phenotype.
Collapse
Affiliation(s)
- Mao Nannan
- Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Wang Wenjun
- Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Zhang Ran
- Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Sun Yongsheng
- Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Zhou Rongyan
- Hebei Agricultural University, Baoding, Hebei 071001, China; Research Institute of Meat Pigeon Industry Technology, Fuping, Hebei 073200, China.
| | - Chen Hui
- Hebei Agricultural University, Baoding, Hebei 071001, China; Research Institute of Meat Pigeon Industry Technology, Fuping, Hebei 073200, China
| | - Zang Sumin
- Hebei Agricultural University, Baoding, Hebei 071001, China; Research Institute of Meat Pigeon Industry Technology, Fuping, Hebei 073200, China
| | - Xie Hui
- Fuping Xige Industrial Co., Ltd., Fuping, Hebei 073200, China; Research Institute of Meat Pigeon Industry Technology, Fuping, Hebei 073200, China
| |
Collapse
|
7
|
Maclary ET, Wauer R, Phillips B, Brown A, Boer EF, Samani AM, Shapiro MD. An allelic series at the EDNRB2 locus controls diverse piebalding patterns in the domestic pigeon. PLoS Genet 2023; 19:e1010880. [PMID: 37862332 PMCID: PMC10588866 DOI: 10.1371/journal.pgen.1010880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/25/2023] [Indexed: 10/22/2023] Open
Abstract
Variation in pigment patterns within and among vertebrate species reflects underlying changes in cell migration and function that can impact health, reproductive success, and survival. The domestic pigeon (Columba livia) is an exceptional model for understanding the genetic changes that give rise to diverse pigment patterns, as selective breeding has given rise to hundreds of breeds with extensive variation in plumage color and pattern. Here, we map the genetic architecture of a suite of pigmentation phenotypes known as piebalding. Piebalding is characterized by patches of pigmented and non-pigmented feathers, and these plumage patterns are often breed-specific and stable across generations. Using a combination of quantitative trait locus mapping in F2 laboratory crosses and genome-wide association analysis, we identify a locus associated with piebalding across many pigeon breeds. This shared locus harbors a candidate gene, EDNRB2, that is a known regulator of pigment cell migration, proliferation, and survival. We discover multiple distinct haplotypes at the EDNRB2 locus in piebald pigeons, which include a mix of protein-coding, noncoding, and structural variants that are associated with depigmentation in specific plumage regions. These results identify a role for EDNRB2 in pigment patterning in the domestic pigeon, and highlight how repeated selection at a single locus can generate a diverse array of stable and heritable pigment patterns.
Collapse
Affiliation(s)
- Emily T. Maclary
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Ryan Wauer
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Bridget Phillips
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Audrey Brown
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Elena F. Boer
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Atoosa M. Samani
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Michael D. Shapiro
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
8
|
Maclary ET, Wauer R, Phillips B, Brown A, Boer EF, Samani AM, Shapiro MD. An allelic series at the EDNRB2 locus controls diverse piebalding patterns in the domestic pigeon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550625. [PMID: 37546953 PMCID: PMC10402103 DOI: 10.1101/2023.07.26.550625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Variation in pigment patterns within and among vertebrate species reflects underlying changes in cell migration and function that can impact health, reproductive success, and survival. The domestic pigeon (Columba livia) is an exceptional model for understanding the genetic changes that give rise to diverse pigment patterns, as selective breeding has given rise to hundreds of breeds with extensive variation in plumage color and pattern. Here, we map the genetic architecture of a suite of pigmentation phenotypes known as piebalding. Piebalding is characterized by patches of pigmented and non-pigmented feathers, and these plumage patterns are often breed-specific and stable across generations. Using a combination of quantitative trait locus mapping in F2 laboratory crosses and genome-wide association analysis, we identify a locus associated with piebalding across many pigeon breeds. This shared locus harbors a candidate gene, EDNRB2, that is a known regulator of pigment cell migration, proliferation, and survival. We discover multiple distinct haplotypes at the EDNRB2 locus in piebald pigeons, which include a mix of protein-coding, noncoding, and structural variants that are associated with depigmentation in specific plumage regions. These results identify a role for EDNRB2 in pigment patterning in the domestic pigeon, and highlight how repeated selection at a single locus can generate a diverse array of stable and heritable pigment patterns.
Collapse
Affiliation(s)
- Emily T. Maclary
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Ryan Wauer
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Bridget Phillips
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Audrey Brown
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Elena F. Boer
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Atoosa M. Samani
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Michael D. Shapiro
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
9
|
Imai Y, Tanave A, Matsuyama M, Koide T. Efficient genome editing in wild strains of mice using the i-GONAD method. Sci Rep 2022; 12:13821. [PMID: 35970947 PMCID: PMC9378668 DOI: 10.1038/s41598-022-17776-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/30/2022] [Indexed: 11/23/2022] Open
Abstract
Wild mouse strains have been used for many research studies, because of the high level of inter-strain genetic and phenotypic variations in them, in addition to the characteristic phenotype maintained from wild mice. However, since application of the current genetic engineering method on wild strains is not easy, there are limited studies that have attempted to apply gene modification techniques in wild strains. Recently, i-GONAD, a new method for genome editing that does not involve any ex vivo manipulation of unfertilized or fertilized eggs has been reported. We applied i-GONAD method for genome editing on a series of wild strains and showed that genome editing is efficiently possible using this method. We successfully made genetically engineered mice in seven out of the nine wild strains. Moreover, we believe that it is still possible to apply milder conditions and improve the efficiencies for the remaining two strains. These results will open avenues for studying the genetic basis of various phenotypes that are characteristic to wild strains. Furthermore, applying i-GONAD will be also useful for other mouse resources in which genetic manipulation is difficult using the method of microinjection into fertilized eggs.
Collapse
Affiliation(s)
- Yuji Imai
- grid.288127.60000 0004 0466 9350Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, 411-8540 Japan
| | - Akira Tanave
- grid.508743.dLaboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Osaka, 565-0871 Japan
| | - Makoto Matsuyama
- grid.415729.c0000 0004 0377 284XDivision of Molecular Genetics, Shigei Medical Research Institute, Okayama, 701-0202 Japan
| | - Tsuyoshi Koide
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan. .,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, 411-8540, Japan.
| |
Collapse
|
10
|
Meng Y, Wang G, He H, Lau KH, Hurt A, Bixler BJ, Parham A, Jin SG, Xu X, Vasquez KM, Pfeifer GP, Szabó PE. Z-DNA is remodelled by ZBTB43 in prospermatogonia to safeguard the germline genome and epigenome. Nat Cell Biol 2022; 24:1141-1153. [PMID: 35787683 PMCID: PMC9276527 DOI: 10.1038/s41556-022-00941-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/17/2022] [Indexed: 12/12/2022]
Abstract
Mutagenic purine–pyrimidine repeats can adopt the left-handed Z-DNA conformation. DNA breaks at potential Z-DNA sites can lead to somatic mutations in cancer or to germline mutations that are transmitted to the next generation. It is not known whether any mechanism exists in the germ line to control Z-DNA structure and DNA breaks at purine–pyrimidine repeats. Here we provide genetic, epigenomic and biochemical evidence for the existence of a biological process that erases Z-DNA specifically in germ cells of the mouse male foetus. We show that a previously uncharacterized zinc finger protein, ZBTB43, binds to and removes Z-DNA, preventing the formation of DNA double-strand breaks. By removing Z-DNA, ZBTB43 also promotes de novo DNA methylation at CG-containing purine–pyrimidine repeats in prospermatogonia. Therefore, the genomic and epigenomic integrity of the species is safeguarded by remodelling DNA structure in the mammalian germ line during a critical window of germline epigenome reprogramming. Meng et al. show that ZBTB43 alters Z-DNA structures to prevent deleterious double-strand breaks and promote DNA methylation at purine–pyrimidine repeats in the mouse germ line.
Collapse
Affiliation(s)
- Yingying Meng
- Capital Normal University College of Life Science, Beijing, China.,Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Hongjuan He
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.,School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Kin H Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Allison Hurt
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Brianna J Bixler
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Andrea Parham
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.,Van Andel Institute Graduate School, Grand Rapids, MI, USA
| | - Seung-Gi Jin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Xingzhi Xu
- Capital Normal University College of Life Science, Beijing, China.,Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, China
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Gerd P Pfeifer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Piroska E Szabó
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
11
|
Dental pulp stem cells as a therapy for congenital entero-neuropathy. Sci Rep 2022; 12:6990. [PMID: 35484137 PMCID: PMC9051124 DOI: 10.1038/s41598-022-10077-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/22/2022] [Indexed: 11/09/2022] Open
Abstract
Hirschsprung's disease is a congenital entero-neuropathy that causes chronic constipation and intestinal obstruction. New treatments for entero-neuropathy are needed because current surgical strategies have limitations5. Entero-neuropathy results from enteric nervous system dysfunction due to incomplete colonization of the distal intestine by neural crest-derived cells. Impaired cooperation between the enteric nervous system and intestinal pacemaker cells may also contribute to entero-neuropathy. Stem cell therapy to repair these multiple defects represents a novel treatment approach. Dental pulp stem cells derived from deciduous teeth (dDPSCs) are multipotent cranial neural crest-derived cells, but it remains unknown whether dDPSCs have potential as a new therapy for entero-neuropathy. Here we show that intravenous transplantation of dDPSCs into the Japanese Fancy-1 mouse, an established model of hypoganglionosis and entero-neuropathy, improves large intestinal structure and function and prolongs survival. Intravenously injected dDPSCs migrate to affected regions of the intestine through interactions between stromal cell-derived factor-1α and C-X-C chemokine receptor type-4. Transplanted dDPSCs differentiate into both pacemaker cells and enteric neurons in the proximal colon to improve electrical and peristaltic activity, in addition to their paracrine effects. Our findings indicate that transplanted dDPSCs can differentiate into different cell types to correct entero-neuropathy-associated defects.
Collapse
|
12
|
Matsuzaki H, Miyajima Y, Fukamizu A, Tanimoto K. Orientation of mouse H19 ICR affects imprinted H19 gene expression through promoter methylation-dependent and -independent mechanisms. Commun Biol 2021; 4:1410. [PMID: 34921234 PMCID: PMC8683476 DOI: 10.1038/s42003-021-02939-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/30/2021] [Indexed: 11/19/2022] Open
Abstract
The mouse Igf2/H19 locus is regulated by genomic imprinting, in which the paternally methylated H19 imprinting control region (ICR) plays a critical role in mono-allelic expression of the genes in the locus. Although the maternal allele-specific insulator activity of the H19 ICR in regulating imprinted Igf2 expression has been well established, the detailed mechanism by which the H19 ICR controls mono-allelic H19 gene expression has not been fully elucidated. In this study, we evaluated the effect of H19 ICR orientation on imprinting regulation in mutant mice in which the H19 ICR sequence was inverted at the endogenous locus. When the inverted-ICR allele was paternally inherited, the methylation level of the H19 promoter was decreased and the H19 gene was derepressed, suggesting that methylation of the H19 promoter is essential for complete repression of H19 gene expression. Unexpectedly, when the inverted allele was maternally inherited, the expression level of the H19 gene was lower than that of the WT allele, even though the H19 promoter remained fully hypomethylated. These observations suggested that the polarity of the H19 ICR is involved in controlling imprinted H19 gene expression on each parental allele, dependent or independent on DNA methylation of the H19 promoter.
Collapse
Affiliation(s)
- Hitomi Matsuzaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Yu Miyajima
- Graduate school of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keiji Tanimoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
13
|
Maclary ET, Phillips B, Wauer R, Boer EF, Bruders R, Gilvarry T, Holt C, Yandell M, Shapiro MD. Two Genomic Loci Control Three Eye Colors in the Domestic Pigeon (Columba livia). Mol Biol Evol 2021; 38:5376-5390. [PMID: 34459920 PMCID: PMC8662629 DOI: 10.1093/molbev/msab260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The iris of the eye shows striking color variation across vertebrate species, and may play important roles in crypsis and communication. The domestic pigeon (Columba livia) has three common iris colors, orange, pearl (white), and bull (dark brown), segregating in a single species, thereby providing a unique opportunity to identify the genetic basis of iris coloration. We used comparative genomics and genetic mapping in laboratory crosses to identify two candidate genes that control variation in iris color in domestic pigeons. We identified a nonsense mutation in the solute carrier SLC2A11B that is shared among all pigeons with pearl eye color, and a locus associated with bull eye color that includes EDNRB2, a gene involved in neural crest migration and pigment development. However, bull eye is likely controlled by a heterogeneous collection of alleles across pigeon breeds. We also found that the EDNRB2 region is associated with regionalized plumage depigmentation (piebalding). Our study identifies two candidate genes for eye colors variation, and establishes a genetic link between iris and plumage color, two traits that vary widely in the evolution of birds and other vertebrates.
Collapse
Affiliation(s)
- Emily T Maclary
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Bridget Phillips
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Ryan Wauer
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Elena F Boer
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Rebecca Bruders
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Tyler Gilvarry
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Carson Holt
- Department of Human Genetics and Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA
| | - Mark Yandell
- Department of Human Genetics and Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA
| | - Michael D Shapiro
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
14
|
Aronson BE, Scourzic L, Shah V, Swanzey E, Kloetgen A, Polyzos A, Sinha A, Azziz A, Caspi I, Li J, Pelham-Webb B, Glenn RA, Vierbuchen T, Wichterle H, Tsirigos A, Dawlaty MM, Stadtfeld M, Apostolou E. A bipartite element with allele-specific functions safeguards DNA methylation imprints at the Dlk1-Dio3 locus. Dev Cell 2021; 56:3052-3065.e5. [PMID: 34710357 PMCID: PMC8628258 DOI: 10.1016/j.devcel.2021.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/06/2021] [Accepted: 10/04/2021] [Indexed: 11/23/2022]
Abstract
Loss of imprinting (LOI) results in severe developmental defects, but the mechanisms preventing LOI remain incompletely understood. Here, we dissect the functional components of the imprinting control region of the essential Dlk1-Dio3 locus (called IG-DMR) in pluripotent stem cells. We demonstrate that the IG-DMR consists of two antagonistic elements: a paternally methylated CpG island that prevents recruitment of TET dioxygenases and a maternally unmethylated non-canonical enhancer that ensures expression of the Gtl2 lncRNA by counteracting de novo DNA methyltransferases. Genetic or epigenetic editing of these elements leads to distinct LOI phenotypes with characteristic alternations of allele-specific gene expression, DNA methylation, and 3D chromatin topology. Although repression of the Gtl2 promoter results in dysregulated imprinting, the stability of LOI phenotypes depends on the IG-DMR, suggesting a functional hierarchy. These findings establish the IG-DMR as a bipartite control element that maintains imprinting by allele-specific restriction of the DNA (de)methylation machinery.
Collapse
Affiliation(s)
- Boaz E Aronson
- Sanford I Weill Department of Medicine, Division of Hematology/Oncology, Sandra and Edward Meyer Cancer Center, New York, NY 10021, USA
| | - Laurianne Scourzic
- Sanford I Weill Department of Medicine, Division of Hematology/Oncology, Sandra and Edward Meyer Cancer Center, New York, NY 10021, USA
| | - Veevek Shah
- Sanford I Weill Department of Medicine, Division of Hematology/Oncology, Sandra and Edward Meyer Cancer Center, New York, NY 10021, USA
| | - Emily Swanzey
- Sanford I Weill Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medicine, New York, NY 10021, USA; The Jackson Laboratory, Bar Harbor, ME, USA
| | - Andreas Kloetgen
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Alexander Polyzos
- Sanford I Weill Department of Medicine, Division of Hematology/Oncology, Sandra and Edward Meyer Cancer Center, New York, NY 10021, USA
| | - Abhishek Sinha
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Annabel Azziz
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Inbal Caspi
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jiexi Li
- Sanford I Weill Department of Medicine, Division of Hematology/Oncology, Sandra and Edward Meyer Cancer Center, New York, NY 10021, USA
| | - Bobbie Pelham-Webb
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD program, New York, NY, USA
| | - Rachel A Glenn
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Thomas Vierbuchen
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hynek Wichterle
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Neurology, Neuroscience and Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, Center for Motor Neuron Biology and Disease and Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aristotelis Tsirigos
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Institute for Computational Medicine and Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY 10016, USA
| | - Meelad M Dawlaty
- Ruth L and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, NY 10461, USA; Department of Genetics, Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Matthias Stadtfeld
- Sanford I Weill Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Effie Apostolou
- Sanford I Weill Department of Medicine, Division of Hematology/Oncology, Sandra and Edward Meyer Cancer Center, New York, NY 10021, USA.
| |
Collapse
|
15
|
Zeng TB, Pierce N, Liao J, Singh P, Lau K, Zhou W, Szabó PE. EHMT2 suppresses the variation of transcriptional switches in the mouse embryo. PLoS Genet 2021; 17:e1009908. [PMID: 34793451 PMCID: PMC8601470 DOI: 10.1371/journal.pgen.1009908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/23/2021] [Indexed: 12/13/2022] Open
Abstract
EHMT2 is the main euchromatic H3K9 methyltransferase. Embryos with zygotic, or maternal mutation in the Ehmt2 gene exhibit variable developmental delay. To understand how EHMT2 prevents variable developmental delay we performed RNA sequencing of mutant and somite stage-matched normal embryos at 8.5–9.5 days of gestation. Using four-way comparisons between delayed and normal embryos we clarified what it takes to be normal and what it takes to develop. We identified differentially expressed genes, for example Hox genes that simply reflected the difference in developmental progression of wild type and the delayed mutant uterus-mate embryos. By comparing wild type and zygotic mutant embryos along the same developmental window we detected a role of EHMT2 in suppressing variation in the transcriptional switches. We identified transcription changes where precise switching during development occurred only in the normal but not in the mutant embryo. At the 6-somite stage, gastrulation-specific genes were not precisely switched off in the Ehmt2−/− zygotic mutant embryos, while genes involved in organ growth, connective tissue development, striated muscle development, muscle differentiation, and cartilage development were not precisely switched on. The Ehmt2mat−/+ maternal mutant embryos displayed high transcriptional variation consistent with their variable survival. Variable derepression of transcripts occurred dominantly in the maternally inherited allele. Transcription was normal in the parental haploinsufficient wild type embryos despite their delay, consistent with their good prospects. Global profiling of transposable elements revealed EHMT2 targeted DNA methylation and suppression at LTR repeats, mostly ERVKs. In Ehmt2−/− embryos, transcription over very long distances initiated from such misregulated ‘driver’ ERVK repeats, encompassing a multitude of misexpressed ‘passenger’ repeats. In summary, EHMT2 reduced transcriptional variation of developmental switch genes and developmentally switching repeat elements at the six-somite stage embryos. These findings establish EHMT2 as a suppressor of transcriptional and developmental variation at the transition between gastrulation and organ specification. Developmental variation is the property of normal development, and its regulation is poorly understood. Variable developmental delay is found in embryos that carry mutations of epigenetic modifiers, suggesting a role of chromatin in controlling developmental delay and its variable nature. We analyzed a genetic series of mutations and found that EHMT2 suppresses variation of developmental delay and also suppresses the variation of transcriptional switches at the transition between gastrulation and organ specification.
Collapse
Affiliation(s)
- Tie-Bo Zeng
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan, United States of America
| | - Nicholas Pierce
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan, United States of America
| | - Ji Liao
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan, United States of America
| | - Purnima Singh
- Division of Molecular and Cellular Biology, City of Hope Cancer Center, Duarte, California, United States of America
| | - Kin Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, Michigan, United States of America
| | - Wanding Zhou
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan, United States of America
| | - Piroska E. Szabó
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan, United States of America
- * E-mail:
| |
Collapse
|
16
|
Zeng TB, Pierce N, Liao J, Szabó PE. H3K9 methyltransferase EHMT2/G9a controls ERVK-driven noncanonical imprinted genes. Epigenomics 2021; 13:1299-1314. [PMID: 34519223 DOI: 10.2217/epi-2021-0168] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: Paternal allele-specific expression of noncanonical imprinted genes in the extraembryonic lineages depends on an H3K27me3-based imprint in the oocyte, which is not a lasting mark. We hypothesized that EHMT2, the main euchromatic H3K9 dimethyltransferase, also has a role in controlling noncanonical imprinting. Methods: We carried out allele-specific total RNA-seq analysis in the ectoplacental cone of somite-matched 8.5 days post coitum embryos using reciprocal mouse crosses. Results: We found that the maternal allele of noncanonical imprinted genes was derepressed from its ERVK promoter in the Ehmt2-/- ectoplacental cone. In Ehmt2-/- embryos, loss of DNA methylation accompanied biallelic derepression of the ERVK promoters. Canonical imprinting and imprinted X chromosome inactivation were generally undisturbed. Conclusion: EHMT2 is essential for repressing the maternal allele in noncanonical imprinting.
Collapse
Affiliation(s)
- Tie-Bo Zeng
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Nicholas Pierce
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ji Liao
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Piroska E Szabó
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
17
|
Takeda I, Araki M, Ishiguro KI, Ohga T, Takada K, Yamaguchi Y, Hashimoto K, Kai T, Nakagata N, Imasaka M, Yoshinobu K, Araki K. Gene trapping reveals a new transcriptionally active genome element: The chromosome-specific clustered trap region. Genes Cells 2021; 26:874-890. [PMID: 34418226 DOI: 10.1111/gtc.12890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/01/2022]
Abstract
Nearly half of the human genome consists of repetitive sequences such as long interspersed nuclear elements. The relationship between these repeating sequences and diseases has remained unclear. Gene trapping is a useful technique for disrupting a gene and expressing a reporter gene by using the promoter activity of the gene. The analysis of trapped genes revealed a new genome element-the chromosome-specific clustered trap (CSCT) region. For any examined sequence within this region, an equivalent was found using the BLAT of the University of California, Santa Cruz (UCSC) Genome Browser. CSCT13 mapped to chromosome 13 and contained only three genes. To elucidate its in vivo function, the whole CSCT13 region (1.6 Mbp) was deleted using the CRISPR/Cas9 system in mouse embryonic stem cells, and subsequently, a CSCT13 knockout mouse line was established. The rate of homozygotes was significantly lower than expected according to Mendel's laws. In addition, the number of offspring obtained by mating homozygotes was significantly smaller than that obtained by crossing controls. Furthermore, CSCT13 might have an effect on meiotic homologous recombination. This study identifies a transcriptionally active CSCT with an important role in mouse development.
Collapse
Affiliation(s)
- Iyo Takeda
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Masatake Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Kei-Ichiro Ishiguro
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Toshinori Ohga
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Kouki Takada
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Yusuke Yamaguchi
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Koichi Hashimoto
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Takuma Kai
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Naomi Nakagata
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Mai Imasaka
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Kumiko Yoshinobu
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
18
|
Akbor MM, Kurosawa N, Nakayama H, Nakatani A, Tomobe K, Chiba Y, Ueno M, Tanaka M, Nomura Y, Isobe M. Polymorphic SERPINA3 prolongs oligomeric state of amyloid beta. PLoS One 2021; 16:e0248027. [PMID: 33662018 PMCID: PMC7932536 DOI: 10.1371/journal.pone.0248027] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Molecular chaperon SERPINA3 colocalizes with accumulated amyloid peptide in Alzheimer’s disease (AD) patient’s brain. From the QTL analysis, we narrowed down Serpina3 with two SNPs in senescence-accelerated mouse prone (SAMP) 8 strain. Our study showed SAMP8 type Serpina3 prolonged retention of oligomeric Aβ 42 for longer duration (72 hr) while observing under transmission electron microscope (TEM). From Western blot results, we confirmed presence of Aβ 42 oligomeric forms (trimers, tetramers) were maintained for longer duration only in the presences of SAMP8 type Serpina3. Using SH-SY5Y neuroblastoma cell line, we observed until 36 hr preincubated Aβ 42 with SAMP8 type Serpina3 caused neuronal cell death compared to 12 hr preincubated Aβ 42 with SAMR1 or JF1 type Serpina3 proteins. Similar results were found by extending this study to analyze the effect of polymorphism of SERPINA3 gene of the Japanese SNP database for geriatric research (JG-SNP). We observed that polymorphic SERPINA3 I308T (rs142398813) prolonged toxic oligomeric Aβ 42 forms till 48 hr in comparison to the presence wild type SERPINA3 protein, resulting neuronal cell death. From this study, we first clarified pathogenic regulatory role of polymorphic SERPINA3 in neurodegeneration.
Collapse
Affiliation(s)
- Maruf Mohammad Akbor
- Department of Life Sciences and Bioengineering, Laboratory of Molecular and Cellular Biology, Faculty of Engineering, University of Toyama, Toyama, Japan
| | - Nobuyuki Kurosawa
- Department of Life Sciences and Bioengineering, Laboratory of Molecular and Cellular Biology, Faculty of Engineering, University of Toyama, Toyama, Japan
| | - Hiroki Nakayama
- Department of Life Sciences and Bioengineering, Laboratory of Molecular and Cellular Biology, Faculty of Engineering, University of Toyama, Toyama, Japan
| | - Ayumi Nakatani
- Department of Life Sciences and Bioengineering, Laboratory of Molecular and Cellular Biology, Faculty of Engineering, University of Toyama, Toyama, Japan
| | - Koji Tomobe
- Department of Pathophysiology, Yokohama University of Pharmacy, Yokohama, Japan
| | - Yoichi Chiba
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Kagawa, Japan
| | - Masaki Ueno
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Kagawa, Japan
| | - Masashi Tanaka
- Department for Health and Longevity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Shinjuku, Tokyo, Japan
| | - Yasuyuki Nomura
- Department of Pharmacology, School of Medicine, Kurume University, Kurume, Fukuoka, Japan
| | - Masaharu Isobe
- Department of Life Sciences and Bioengineering, Laboratory of Molecular and Cellular Biology, Faculty of Engineering, University of Toyama, Toyama, Japan
- * E-mail:
| |
Collapse
|
19
|
A role for the rare endogenous retrovirus β4 in development of Japanese fancy mice. Commun Biol 2020; 3:53. [PMID: 32020010 PMCID: PMC7000388 DOI: 10.1038/s42003-020-0781-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 11/18/2022] Open
Abstract
Two coat-color mutations, nonagouti, which changes coat color from wild-type agouti to black, and piebald, which induces irregular white spotting, are the characteristics of Japanese fancy mouse strain JF1/Ms. In our Communications Biology article, we reported that insertion of a rare type of endogenous retrovirus β4 has caused both coat color mutations. Although there are some reports on the roles of β4 in the mouse genome, further studies on β4 will uncover new features of endogenous retrovirus sequences. In light of their recent finding that insertion of a rare endogenous retrovirus, β4, is the cause of the characteristic coat coloring in agouti and piebald mice, Akira Tanave and Tsuyoshi Koide now discuss the origin and expansion of this element as well as potential roles of β4 in the mouse genome.
Collapse
|
20
|
Tanave A, Imai Y, Koide T. Nested retrotransposition in the East Asian mouse genome causes the classical nonagouti mutation. Commun Biol 2019; 2:283. [PMID: 31396563 PMCID: PMC6677723 DOI: 10.1038/s42003-019-0539-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 07/10/2019] [Indexed: 01/31/2023] Open
Abstract
Black coat color (nonagouti) is a widespread classical mutation in laboratory mouse strains. The intronic insertion of endogenous retrovirus VL30 in the nonagouti (a) allele of agouti gene was previously reported as the cause of the nonagouti phenotype. Here, we report agouti mouse strains from East Asia that carry the VL30 insertion, indicating that VL30 alone does not cause the nonagouti phenotype. We find that a rare type of endogenous retrovirus, β4, was integrated into the VL30 region at the a allele through nested retrotransposition, causing abnormal splicing. Targeted complete deletion of the β4 element restores agouti gene expression and agouti coat color, whereas deletion of β4 except for a single long terminal repeat results in black-and-tan coat color. Phylogenetic analyses show that the a allele and the β4 retrovirus originated from an East Asian mouse lineage most likely related to Japanese fancy mice. These findings reveal the causal mechanism and historic origin of the classical nonagouti mutation.
Collapse
Affiliation(s)
- Akira Tanave
- Mouse Genomics Resource Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540 Japan
- Present Address: Laboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 1–3 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Yuji Imai
- Mouse Genomics Resource Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540 Japan
| | - Tsuyoshi Koide
- Mouse Genomics Resource Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540 Japan
- Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), 1111 Yata, Mishima, Shizuoka 411-8540 Japan
| |
Collapse
|
21
|
Sasaki K, Hara S, Yamakami R, Sato Y, Hasegawa S, Kono T, Morohaku K, Obata Y. Ectopic expression of DNA methyltransferases DNMT3A2 and DNMT3L leads to aberrant hypermethylation and postnatal lethality in mice. Mol Reprod Dev 2019; 86:614-623. [PMID: 30834655 PMCID: PMC6718006 DOI: 10.1002/mrd.23137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/30/2019] [Accepted: 02/11/2019] [Indexed: 11/11/2022]
Abstract
DNA methylation is generally known to inactivate gene expression. The DNA methyltransferases (DNMTs), DNMT3A and DNMT3B, catalyze somatic cell lineage-specific DNA methylation, while DNMT3A and DNMT3L catalyze germ cell lineage-specific DNA methylation. How such lineage- and gene-specific DNA methylation patterns are created remains to be elucidated. To better understand the regulatory mechanisms underlying DNA methylation, we generated transgenic mice that constitutively expressed DNMT3A and DNMT3L, and analyzed DNA methylation, gene expression, and their subsequent impact on ontogeny. All transgenic mice were born normally but died within 20 weeks accompanied with cardiac hypertrophy. Several genes were repressed in the hearts of transgenic mice compared with those in wild-type mice. CpG islands of these downregulated genes were highly methylated in the transgenic mice. This abnormal methylation occurred in the perinatal stage. Conversely, monoallelic DNA methylation at imprinted loci was faithfully maintained in all transgenic mice, except H19. Thus, the loci preferred by DNMT3A and DNMT3L differ between somatic and germ cell lineages.
Collapse
Affiliation(s)
- Keisuke Sasaki
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Satoshi Hara
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Reina Yamakami
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yusuke Sato
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Saki Hasegawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Tomohiro Kono
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Kanako Morohaku
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yayoi Obata
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
22
|
Allele-specific RNA imaging shows that allelic imbalances can arise in tissues through transcriptional bursting. PLoS Genet 2019; 15:e1007874. [PMID: 30625149 PMCID: PMC6342324 DOI: 10.1371/journal.pgen.1007874] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/22/2019] [Accepted: 12/04/2018] [Indexed: 12/03/2022] Open
Abstract
Extensive cell-to-cell variation exists even among putatively identical cells, and there is great interest in understanding how the properties of transcription relate to this heterogeneity. Differential expression from the two gene copies in diploid cells could potentially contribute, yet our ability to measure from which gene copy individual RNAs originated remains limited, particularly in the context of tissues. Here, we demonstrate quantitative, single molecule allele-specific RNA FISH adapted for use on tissue sections, allowing us to determine the chromosome of origin of individual RNA molecules in formaldehyde-fixed tissues. We used this method to visualize the allele-specific expression of Xist and multiple autosomal genes in mouse kidney. By combining these data with mathematical modeling, we evaluated models for allele-specific heterogeneity, in particular demonstrating that apparent expression from only one of the alleles in single cells can arise as a consequence of low-level mRNA abundance and transcriptional bursting. In mammals, most cells of the body contain two genetic datasets: one from the mother and one from the father, and—in theory—these two sets of information could contribute equally to produce the molecules in a given cell. In practice, however, this is not always the case, which can have dramatic implications for many traits, including visible features (such as fur color) and even disease outcomes. However, it remains difficult to measure the parental origin of individual molecules in a given cell and thus to assess what processes lead to an imbalance of the maternal and paternal contribution. We adapted a microscopy technique—called allele-specific single molecule RNA FISH—that uses a combination of fluorescent tags to specifically label one type of molecule, RNA, depending on its origin, for use in mouse kidney sections. Focusing on RNAs that were previously reported to show imbalance, we performed measurements and combined these with mathematical modeling to quantify imbalance in tissues and explain how these can arise. We found that we could recapitulate the observed imbalances using models that only take into account the random processes that produce RNA, without the need to invoke special regulatory mechanisms to create unequal contributions.
Collapse
|
23
|
Poltorak A, Apalko S, Sherbak S. Wild-derived mice: from genetic diversity to variation in immune responses. Mamm Genome 2018; 29:577-584. [PMID: 30056578 PMCID: PMC12022659 DOI: 10.1007/s00335-018-9766-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
Abstract
Classical inbred mouse strains have historically been instrumental in mapping immunological traits. However, most of the classical strains originate from a relatively limited number of founder animals, largely within the Mus musculus domesticus subspecies. Therefore, their genetic diversity is ultimately limited. For this reason, it is not feasible to use these mice for exhaustive interrogation of immune signaling pathways. In order to investigate networks through forward genetic analysis, larger genetic diversity is required than is introduced under laboratory conditions. Recently, inbred strains from other mouse subspecies were established such as Mus musculus castaneus and Mus musculus musculus, which diverged from a shared common ancestor with Mus musculus domesticus more than one million years ago. A direct genomic comparison clearly demonstrates the evolutionary divergence that has occurred between wild-derived mice and the classical inbred strains. When compared to classical inbred strains, wild-derived mice exhibit polymorphisms every 100-200 base pairs. Studying the molecular basis of these traits provides us with insight into how the immune system can evolve regulatory features to accommodate environment-specific constraints. Because most wild-derived strains are able to breed with classical inbred mice, they represent a rich source of evolutionarily significant diversity for forward genetic studies. These organisms are an emerging, though still largely unexplored, model for the identification and study of novel immunological genes.
Collapse
Affiliation(s)
- Alexander Poltorak
- Department of Immunology, Tufts University, Boston, MA, 02111, USA.
- Petrozavodsk State University, Karelia, Russian Federation.
| | | | - Sergei Sherbak
- City Hospital, 40, St. Petersburg, Russian Federation
- St. Petersburg State University, St. Petersburg, Russian Federation
| |
Collapse
|
24
|
Iwasa MA, Kawamura S, Myoshu H, Suzuki TA. Molecular analyses of the agouti allele in the Japanese house mouse identify a novel variant of the agouti gene. Genome 2018; 61:195-200. [PMID: 29401405 DOI: 10.1139/gen-2017-0139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been thought that the Japanese house mouse carries the Aw allele at the agouti locus causing light-colored bellies, but they do not always show this coloration. Thus, the presence of the Aw allele seems to be doubtful in them. To ascertain whether the Aw allele is present, a two-pronged approach was used. First, we compared lengths of DNA fragments obtained from three PCRs conducted on them to the known fragment sizes generated from mouse strains exhibiting homozygosities of either a/a, A/A, or Aw/Aw. PCR I, PCR II, and PCR III amplify only in the A and Aw alleles, the a and Aw alleles, and the a allele, respectively, and we detected amplifications in strains with A/A and Aw/Aw by PCR I, in those with a/a and the Japanese house mouse by PCR II, and in those with a/a by PCR III. Second, we sequenced the exon 1A region of the agouti gene and obtained sequences corresponding to the above strains and the Japanese house mouse, but their sequences were similar to those of the a allele. We concluded that their agouti allele is not identical to the Aw allele and seems to be a novel type similar to the a allele.
Collapse
Affiliation(s)
- Masahiro A Iwasa
- a Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Sayaka Kawamura
- a Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Hikari Myoshu
- a Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Taichi A Suzuki
- b Museum of Vertebrate Zoology, University of California, 3101 Valley Life Sciences Building, Berkeley, CA 94720-3160, USA
| |
Collapse
|
25
|
Morphofunctional evaluation of the testis, duration of spermatogenesis and spermatogenic efficiency in the Japanese fancy mouse (Mus musculus molossinus). ZYGOTE 2017; 25:498-506. [DOI: 10.1017/s0967199417000326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SummaryJapanese fancy mouse, mini mouse or pet mouse are common names used to refer to strains of mice that present with different colour varieties and coat types. Although many genetic studies that involve spotting phenotype based on the coat have been performed in these mice, there are no reports of quantitative data in the literature regarding testis structure and spermatogenic efficiency. Hence, in this study we researched testis function and spermatogenesis in the adult Japanese fancy mouse. The following values of 68 ± 6 mg and 0.94 ± 0.1% were obtained as mean testis weight and gonadosomatic index, respectively. In comparison with other investigated mice strains, the fancy mouse Leydig cell individual size was much smaller, resulting in higher numbers of these cells per gram of testis. As found for laboratory mice strains, as a result of the development of the acrosomic system, 12 stages of the seminiferous epithelium cycle have been described in this study. The combined frequencies of pre-meiotic and post-meiotic stages were respectively 24% and 64% and very similar to the laboratory mice. The more differentiated germ cell types marked at 1 h or 9 days after tritiated thymidine administration were preleptotene/leptotene and pachytene spermatocytes at the same stage (VIII). The mean duration of one spermatogenic cycle was 8.8 ± 0.01 days and the total length of spermatogenesis lasted 37.8 ± 0.01 days (4.5 cycles). A high number of germ cell apoptosis was evident during meiosis, resulting in lower Sertoli cell and spermatogenic efficiencies, when compared with laboratory mice strains.
Collapse
|
26
|
Bergeron KF, Nguyen CMA, Cardinal T, Charrier B, Silversides DW, Pilon N. Upregulation of the Nr2f1-A830082K12Rik gene pair in murine neural crest cells results in a complex phenotype reminiscent of Waardenburg syndrome type 4. Dis Model Mech 2016; 9:1283-1293. [PMID: 27585883 PMCID: PMC5117235 DOI: 10.1242/dmm.026773] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/16/2016] [Indexed: 01/01/2023] Open
Abstract
Waardenburg syndrome is a neurocristopathy characterized by a combination of skin and hair depigmentation, and inner ear defects. In the type 4 form, these defects show comorbidity with Hirschsprung disease, a disorder marked by an absence of neural ganglia in the distal colon, triggering functional intestinal obstruction. Here, we report that the Spot mouse line - obtained through an insertional mutagenesis screen for genes involved in neural crest cell (NCC) development - is a model for Waardenburg syndrome type 4. We found that the Spot insertional mutation causes overexpression of an overlapping gene pair composed of the transcription-factor-encoding Nr2f1 and the antisense long non-coding RNA A830082K12Rik in NCCs through a mechanism involving relief of repression of these genes. Consistent with the previously described role of Nr2f1 in promoting gliogenesis in the central nervous system, we further found that NCC-derived progenitors of the enteric nervous system fail to fully colonize Spot embryonic guts owing to their premature differentiation in glial cells. Taken together, our data thus identify silencer elements of the Nr2f1-A830082K12Rik gene pair as new candidate loci for Waardenburg syndrome type 4.
Collapse
Affiliation(s)
- Karl-F Bergeron
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal, H2X 3Y7, Canada
| | - Chloé M A Nguyen
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal, H2X 3Y7, Canada
| | - Tatiana Cardinal
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal, H2X 3Y7, Canada
| | - Baptiste Charrier
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal, H2X 3Y7, Canada
| | - David W Silversides
- Veterinary Genetics Laboratory, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, J2S 7C6, Canada
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal, H2X 3Y7, Canada
| |
Collapse
|
27
|
Okayama T, Goto T, Toyoda A. Assessing nest-building behavior of mice using a 3D depth camera. J Neurosci Methods 2015; 251:151-7. [PMID: 26051553 DOI: 10.1016/j.jneumeth.2015.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 04/27/2015] [Accepted: 05/28/2015] [Indexed: 01/18/2023]
Abstract
We developed a novel method to evaluate the nest-building behavior of mice using an inexpensive depth camera. The depth camera clearly captured nest-building behavior. Using three-dimensional information from the depth camera, we obtained objective features for assessing nest-building behavior, including "volume," "radius," and "mean height". The "volume" represents the change in volume of the nesting material, a pressed cotton square that a mouse shreds and untangles in order to build its nest. During the nest-building process, the total volume of cotton fragments is increased. The "radius" refers to the radius of the circle enclosing the fragments of cotton. It describes the extent of nesting material dispersion. The "radius" averaged approximately 60mm when a nest was built. The "mean height" represents the change in the mean height of objects. If the nest walls were high, the "mean height" was also high. These features provided us with useful information for assessment of nest-building behavior, similar to conventional methods for the assessment of nest building. However, using the novel method, we found that JF1 mice built nests with higher walls than B6 mice, and B6 mice built nests faster than JF1 mice. Thus, our novel method can evaluate the differences in nest-building behavior that cannot be detected or quantified by conventional methods. In future studies, we will evaluate nest-building behaviors of genetically modified, as well as several inbred, strains of mice, with several nesting materials.
Collapse
Affiliation(s)
- Tsuyoshi Okayama
- College of Agriculture, Ibaraki University, Ami 300-0393, Ibaraki, Japan; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu-city 183-8509, Tokyo, Japan; Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM), Ami 300-0393, Ibaraki, Japan.
| | - Tatsuhiko Goto
- College of Agriculture, Ibaraki University, Ami 300-0393, Ibaraki, Japan; Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM), Ami 300-0393, Ibaraki, Japan.
| | - Atsushi Toyoda
- College of Agriculture, Ibaraki University, Ami 300-0393, Ibaraki, Japan; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu-city 183-8509, Tokyo, Japan; Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM), Ami 300-0393, Ibaraki, Japan.
| |
Collapse
|
28
|
Abstract
The classic piebald mutation in the endothelin receptor type B (Ednrb) gene was found on rolling Nagoya genetic background (PROD-s/s) mice with white coat spotting. To examine whether genetic background influenced the phenotype in the piebald mutant mice, we generated a congenic strain (B6.PROD-s/s), produced by repeated backcrosses to the C57BL/6J (B6) strain. Although B6.PROD-s/s mice showed white coat spotting, 7% of B6.PROD-s/s mice died between 2 and 5 weeks after birth due to megacolon. The PROD-s/s, s/s and Japanese fancy mouse 1 (JF1) strains, which also have piebald mutations on different genetic backgrounds with B6, showed only pigmentation defects without megacolon. In expression analyses, rectums of B6.PROD-s/s
with megacolon mice showed ~5% of the level of Ednrb gene expression versus B6 mice. In histological analyses, aganglionosis was detected in the rectum of megacolon animals. The aganglionic rectum was thought to lead to severe constipation and intestinal blockage, resulting in megacolon. We also observed an abnormal intestinal flora, including a marked increase in Bacteroidaceae and Erysipelotrichaceae and a marked decrease in Lactobacillus and Clostridiales, likely inducing endotoxin production and a failure of the mucosal barrier system, leading ultimately to death. These results indicate that the genetic background plays a key role in the development of enteric ganglion neurons, controlled by the Ednrb gene, and that B6 has modifier gene (s) regarding aganglionosis.
Collapse
Affiliation(s)
- Sanae Fukushima
- Research Resources Center, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | | | | |
Collapse
|
29
|
Kota SK, Llères D, Bouschet T, Hirasawa R, Marchand A, Begon-Pescia C, Sanli I, Arnaud P, Journot L, Girardot M, Feil R. ICR noncoding RNA expression controls imprinting and DNA replication at the Dlk1-Dio3 domain. Dev Cell 2014; 31:19-33. [PMID: 25263792 DOI: 10.1016/j.devcel.2014.08.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 07/04/2014] [Accepted: 08/07/2014] [Indexed: 10/24/2022]
Abstract
Imprinted genes play essential roles in development, and their allelic expression is mediated by imprinting control regions (ICRs). The Dlk1-Dio3 locus is among the few imprinted domains controlled by a paternally methylated ICR. The unmethylated maternal copy activates imprinted expression early in development through an unknown mechanism. We find that in mouse embryonic stem cells (ESCs) and in blastocysts, this function is linked to maternal, bidirectional expression of noncoding RNAs (ncRNAs) from the ICR. Disruption of ICR ncRNA expression in ESCs affected gene expression in cis, led to acquisition of aberrant histone and DNA methylation, delayed replication timing along the domain on the maternal chromosome, and changed its subnuclear localization. The epigenetic alterations persisted during differentiation and affected the neurogenic potential of the stem cells. Our data indicate that monoallelic expression at an ICR of enhancer RNA-like ncRNAs controls imprinted gene expression, epigenetic maintenance processes, and DNA replication in embryonic cells.
Collapse
Affiliation(s)
- Satya K Kota
- Institute of Molecular Genetics (IGMM), CNRS UMR5535 and University of Montpellier, 1919 Route de Mende, Montpellier 34293, France
| | - David Llères
- Institute of Molecular Genetics (IGMM), CNRS UMR5535 and University of Montpellier, 1919 Route de Mende, Montpellier 34293, France
| | - Tristan Bouschet
- Institute of Functional Genomics (IGF), CNRS and University of Montpellier, 141 rue de la Cardonille, Montpellier 34090, France
| | - Ryutaro Hirasawa
- Institute of Molecular Genetics (IGMM), CNRS UMR5535 and University of Montpellier, 1919 Route de Mende, Montpellier 34293, France
| | - Alice Marchand
- Institute of Molecular Genetics (IGMM), CNRS UMR5535 and University of Montpellier, 1919 Route de Mende, Montpellier 34293, France
| | - Christina Begon-Pescia
- Institute of Molecular Genetics (IGMM), CNRS UMR5535 and University of Montpellier, 1919 Route de Mende, Montpellier 34293, France
| | - Ildem Sanli
- Institute of Molecular Genetics (IGMM), CNRS UMR5535 and University of Montpellier, 1919 Route de Mende, Montpellier 34293, France
| | - Philippe Arnaud
- Institute of Molecular Genetics (IGMM), CNRS UMR5535 and University of Montpellier, 1919 Route de Mende, Montpellier 34293, France
| | - Laurent Journot
- Institute of Functional Genomics (IGF), CNRS and University of Montpellier, 141 rue de la Cardonille, Montpellier 34090, France
| | - Michael Girardot
- Institute of Molecular Genetics (IGMM), CNRS UMR5535 and University of Montpellier, 1919 Route de Mende, Montpellier 34293, France
| | - Robert Feil
- Institute of Molecular Genetics (IGMM), CNRS UMR5535 and University of Montpellier, 1919 Route de Mende, Montpellier 34293, France.
| |
Collapse
|
30
|
Yoshimoto T, Aoyama Y, Kim TY, Niimi K, Takahashi E, Itakura C. Rolling Nagoya mouse strain (PROD-rol/rol) with classic piebald mutation. J Vet Med Sci 2014; 76:1093-8. [PMID: 24758835 PMCID: PMC4155188 DOI: 10.1292/jvms.14-0096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Ataxic
rolling Nagoya (PROD-rol/rol) mice,
which carry a mutation in the α1 subunit of the Cav2.1 channel
(Cacna1a) gene, were discovered in 1969. They show white spots on
agouti coat and have a mutation in the piebald spotting (s) locus.
However, mutation analysis of the s locus encoding the endothelin
receptor type B (Ednrb) gene in
PROD-rol/rol mice had not been performed. Here, we
examined the genomic and mRNA sequences of the Ednrb gene in
PROD-rol/rol and wild-type rolling
Nagoya (PROD-s/s) and studied the expression patterns of
Ednrb and Cacna1a genes in these mice in comparison
with C57BL/6J mice. Polymerase chain reaction analyses revealed two silent nucleotide
substitutions in the coding region and insertion of a retroposon-like element in intron 1
of the Ednrb gene. Expression analyses demonstrated similar localizations
and levels of Ednrb and Cacna1a expression in the colon
between PROD-rol/rol and
PROD-s/s mice, but the expression levels of both genes
were diminished compared with C57BL/6J mice. Microsatellite genotyping showed that at
least particular regions of chromosome 14 proximal to the Ednrb locus of
the PROD strain were derived from Japanese fancy piebald mice. These results indicated
that PROD-rol/rol mice have two mutant genes,
Ednrb and Cacna1a. As no PROD strain had an intact
Ednrb gene, using congenic rolling mice would better serve to examine
rolling Nagoya-type Cav2.1 channel dysfunctions.
Collapse
Affiliation(s)
- Takuro Yoshimoto
- Research Resources Center, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Hara S, Takano T, Fujikawa T, Yamada M, Wakai T, Kono T, Obata Y. Forced expression of DNA methyltransferases during oocyte growth accelerates the establishment of methylation imprints but not functional genomic imprinting. Hum Mol Genet 2014; 23:3853-64. [PMID: 24599402 PMCID: PMC4065157 DOI: 10.1093/hmg/ddu100] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In mammals, genomic imprinting governed by DNA methyltransferase DNMT3A and its cofactor DNMT3L is essential for functional gametes. Oocyte-specific methylation imprints are established during oocyte growth concomitant with DNMT3A/DNMT3L expression, although the mechanisms of oocyte-specific imprinting are not fully understood. To determine whether the presence of DNMT3A/DNMT3L in oocytes is sufficient for acquisition of methylation imprints, we produced transgenic mice to induce DNMT3A/DNMT3L expression prematurely in oogenesis and analyzed DNA methylation imprints. The results showed that 2- to 4-fold greater expression of DNMT3A/DNMT3L was achieved in non-growing (ng) oocytes versus fully grown oocytes derived from wild-type mice, but the analyzed imprint domains were not methylated. Thus, the presence of DNMT3A/DNMT3L in ng oocytes is insufficient for methylation imprints, and imprinted regions are resistant to DNMT3A/DNMT3L in ng oocytes. In contrast, excess DNMT3A/DNMT3L accelerated imprint acquisition at Igf2r, Lit1, Zac1 and Impact but not Snrpn and Mest in growing oocytes. Therefore, DNMT3A/DNMT3L quantity is an important factor for imprint acquisition. Transcription at imprinted domains is proposed to be involved in de novo methylation; however, transcription at Lit1, Snrpn and Impact was observed in ng oocytes. Thus, transcription cannot induce DNMT3A catalysis at imprinted regions even if DNMT3A/DNMT3L is present. However, the accelerated methylation imprints in oocytes, with the exception of Igf2r, were erased during embryogenesis. In conclusion, a sufficient amount of DNMT3A/DNMT3L and a shift from the resistant to permissive state are essential to establish oocyte-specific methylation imprints and that maintenance of the acquired DNA methylation imprints is essential for functional imprinting.
Collapse
Affiliation(s)
- Satoshi Hara
- Department of BioScience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Takashi Takano
- Department of BioScience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Tsugunari Fujikawa
- Department of BioScience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Munehiro Yamada
- Department of BioScience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Takuya Wakai
- Department of BioScience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Tomohiro Kono
- Department of BioScience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Yayoi Obata
- Department of BioScience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| |
Collapse
|
32
|
Watanabe J, Kaneko Y, Kurosumi M, Kobayashi Y, Sakamoto M, Yoshida MA, Akiyama M, Matsushima Y. High-incidence spontaneous tumors in JF1/Ms mice: relevance of hypomorphic germline mutation and subsequent promoter methylation of Ednrb. J Cancer Res Clin Oncol 2014; 140:99-107. [PMID: 24194353 DOI: 10.1007/s00432-013-1546-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/24/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE JF1/Ms mice, an inbred strain derived from Japanese wild mice, carry a germline hypomorphic mutation in the endothelin receptor type B gene (Ednrb). We observed that the JF1/Ms mice develop various spontaneous tumors at a high incidence late in life. The aim of this study was to elucidate the mechanism responsible for spontaneous tumors in these mice. Possible relevance of milk-borne mammary tumor virus and gene alterations in Ednrb to tumorigenesis was explored. METHODS Expression and methylation status of Ednrb were quantitatively analyzed in normal and cancer tissues of mammary gland, liver, submandibular gland as well as in a cultured cell line, MW1, established from a submandibular gland adenocarcinoma. The biological effects of EDNRB were examined in the MW1 cells transfected with wild-type Ednrb. RESULTS Transcripts of Ednrb were barely detectable, and the promoter region of Ednrb was hypermethylated in tumor tissues and the MW1 cells. In contrast, normal counterpart tissues showed positive expression of Ednrb transcripts and had unmethylated promoter regions. Treatment of the MW1 cells with 5-Aza-dC restored transcription of Ednrb to normal levels. Transfection of the MW1 cells with Ednrb1 (MW1-Ednrb1) resulted in lower growth rates and morphological changes compared with the mock-transfected MW1 cells (MW1-mock1). Furthermore, the MW1-Ednrb1 cells transplanted in syngeneic mice showed a lower proliferation rate than the MW1-mock1 cells. CONCLUSIONS Germline mutation and subsequent promoter methylation of Ednrb may be relevant to cancer susceptibility in the JF1/Ms mice. These data indicate that Ednrb acts as a tumor suppressor, as reported in human prostate, bladder, and clear cell renal carcinomas.
Collapse
MESH Headings
- Animals
- Carcinogenesis/genetics
- Cell Line, Tumor
- DNA Methylation
- Female
- Genes, Tumor Suppressor
- Germ-Line Mutation
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/virology
- Mammary Tumor Virus, Mouse/isolation & purification
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains/genetics
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/virology
- Promoter Regions, Genetic
- Receptor, Endothelin B/genetics
Collapse
Affiliation(s)
- Junko Watanabe
- Department of Cancer Diagnosis, Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina-machi, Saitama, 362-0806, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Obata Y, Wakai T, Hara S, Kono T. Long exposure to mature ooplasm can alter DNA methylation at imprinted loci in non-growing oocytes but not in prospermatogonia. Reproduction 2013; 147:H1-6. [PMID: 24123131 PMCID: PMC3842912 DOI: 10.1530/rep-13-0359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
DNA methylation imprints that are established in spermatogenesis and oogenesis are essential for functional gametes. However, the mechanisms underlying gamete-specific imprinting remain unclear. In this study, we investigated whether male and female gametes derived from newborn mice are epigenetically plastic and whether DNA methylation imprints are influenced by the niche surrounding the nuclei of the gametes. When prospermatogonia possessing sperm-specific DNA methylation imprints were fused with enucleated fully grown oocytes and exposed to the ooplasm for 5–6 days, the DNA methylation status of the reconstituted oocytes remained identical to that of prospermatogonia for all the imprinted regions analysed. These results suggest that the imprinting status of prospermatogonia is stable and that the epigenome of prospermatogonia loses sexual plasticity. By contrast, when non-growing oocytes lacking oocyte-specific DNA methylation imprints were fused with enucleated fully grown oocytes and the reconstituted oocytes were then cultured for 5–6 days, the Igf2r, Kcnq1ot1 and, unexpectedly, H19/Igf2 differentially methylated regions (DMRs) were methylated. Methylation imprints were entirely absent in oocytes derived from 5-day-old mice, and H19/Igf2 DMR is usually methylated only in spermatogenesis. These findings indicate that in the nuclei of non-growing oocytes the chromatin conformation changes and becomes permissive to DNA methyltransferases in some DMRs and that mechanisms for maintaining non-methylated status at the H19/Igf2 DMR are lost upon long exposure to mature ooplasm.
Collapse
Affiliation(s)
- Yayoi Obata
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | | | | | | |
Collapse
|
34
|
Akbor MM, Tomobe K, Yamada T, Kim J, Mano H, Kurosawa N, Sasaki K, Nomura Y, Isobe M. Possible involvement of Hcn1 ion channel in learning and memory dysfunction in SAMP8 mice. Biochem Biophys Res Commun 2013; 441:25-30. [DOI: 10.1016/j.bbrc.2013.09.145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 09/27/2013] [Indexed: 10/26/2022]
|
35
|
Goto T, Tanave A, Moriwaki K, Shiroishi T, Koide T. Selection for reluctance to avoid humans during the domestication of mice. GENES BRAIN AND BEHAVIOR 2013; 12:760-70. [PMID: 24034605 PMCID: PMC4282115 DOI: 10.1111/gbb.12088] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/29/2013] [Accepted: 09/10/2013] [Indexed: 12/16/2022]
Abstract
Many animal species have been domesticated over the course of human history and became tame as a result of domestication. Tameness is a behavioral characteristic with 2 potential components: (1) reluctance to avoid humans and (2) motivation to approach humans. However, the specific behavioral characteristics selected during domestication processes remain to be clarified for many species. To quantify these 2 different components of tameness separately, we established 3 behavioral tests: the ‘active tame’, ‘passive tame’ and ‘stay-on-hand’ tests. We subjected genetically diverse mouse strains to these tests, including 10 wild strains (BFM/2Ms, PGN2/Ms, HMI/Ms, BLG2/Ms, NJL/Ms, KJR/Ms, SWN/Ms, CHD/Ms, MSM/Ms and CAST/Ei), a fancy strain (JF1/Ms) and 6 standard laboratory strains (C3H/HeNJcl, CBA/J, BALB/cAnNCrlCrlj, DBA/2JJcl, 129+Ter/SvJcl and C57BL/6JJcl). To analyze the effects of domestication, these 17 strains were divided into 2 groups: domesticated strains (fancy and laboratory strains) and wild strains. Significant differences between strains were observed in all traits, and the calculated estimates of broad-sense heritability were 0.15–0.72. These results illustrate that tameness in mice is significantly influenced by genetic background. In addition, they clearly show the differences in the features of tameness in domesticated and wild strains. Most of the domesticated strains showed significantly greater reluctance to avoid humans than wild strains, whereas there was no significant difference in the level of motivation to approach humans between these 2 groups. These results might help to clarify the genetic basis of tameness in mice.
Collapse
Affiliation(s)
- T Goto
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Shizuoka; Transdisciplinary Research Integration Center, Research Organization of Information and Systems, Tokyo
| | | | | | | | | |
Collapse
|
36
|
Girardot M, Hirasawa R, Kacem S, Fritsch L, Pontis J, Kota SK, Filipponi D, Fabbrizio E, Sardet C, Lohmann F, Kadam S, Ait-Si-Ali S, Feil R. PRMT5-mediated histone H4 arginine-3 symmetrical dimethylation marks chromatin at G + C-rich regions of the mouse genome. Nucleic Acids Res 2013; 42:235-48. [PMID: 24097435 PMCID: PMC3874197 DOI: 10.1093/nar/gkt884] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Symmetrical dimethylation on arginine-3 of histone H4 (H4R3me2s) has been reported to occur at several repressed genes, but its specific regulation and genomic distribution remained unclear. Here, we show that the type-II protein arginine methyltransferase PRMT5 controls H4R3me2s in mouse embryonic fibroblasts (MEFs). In these differentiated cells, we find that the genome-wide pattern of H4R3me2s is highly similar to that in embryonic stem cells. In both the cell types, H4R3me2s peaks are detected predominantly at G + C-rich regions. Promoters are consistently marked by H4R3me2s, independently of transcriptional activity. Remarkably, H4R3me2s is mono-allelic at imprinting control regions (ICRs), at which it marks the same parental allele as H3K9me3, H4K20me3 and DNA methylation. These repressive chromatin modifications are regulated independently, however, since PRMT5-depletion in MEFs resulted in loss of H4R3me2s, without affecting H3K9me3, H4K20me3 or DNA methylation. Conversely, depletion of ESET (KMT1E) or SUV420H1/H2 (KMT5B/C) affected H3K9me3 and H4K20me3, respectively, without altering H4R3me2s at ICRs. Combined, our data indicate that PRMT5-mediated H4R3me2s uniquely marks the mammalian genome, mostly at G + C-rich regions, and independently from transcriptional activity or chromatin repression. Furthermore, comparative bioinformatics analyses suggest a putative role of PRMT5-mediated H4R3me2s in chromatin configuration in the nucleus.
Collapse
Affiliation(s)
- Michael Girardot
- Institute of Molecular Genetics (IGMM), CNRS UMR 5535, University of Montpellier, 1919 route de Mende, 34293 Montpellier, Laboratoire Epigénétique et Destin Cellulaire, UMR7216, CNRS, Université Paris Diderot, 35 rue Hélène Brion, 75013 Paris, France and Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Takada T, Ebata T, Noguchi H, Keane TM, Adams DJ, Narita T, Shin-I T, Fujisawa H, Toyoda A, Abe K, Obata Y, Sakaki Y, Moriwaki K, Fujiyama A, Kohara Y, Shiroishi T. The ancestor of extant Japanese fancy mice contributed to the mosaic genomes of classical inbred strains. Genome Res 2013; 23:1329-38. [PMID: 23604024 PMCID: PMC3730106 DOI: 10.1101/gr.156497.113] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/10/2013] [Indexed: 01/07/2023]
Abstract
Commonly used classical inbred mouse strains have mosaic genomes with sequences from different subspecific origins. Their genomes are derived predominantly from the Western European subspecies Mus musculus domesticus, with the remaining sequences derived mostly from the Japanese subspecies Mus musculus molossinus. However, it remains unknown how this intersubspecific genome introgression occurred during the establishment of classical inbred strains. In this study, we resequenced the genomes of two M. m. molossinus-derived inbred strains, MSM/Ms and JF1/Ms. MSM/Ms originated from Japanese wild mice, and the ancestry of JF1/Ms was originally found in Europe and then transferred to Japan. We compared the characteristics of these sequences to those of the C57BL/6J reference sequence and the recent data sets from the resequencing of 17 inbred strains in the Mouse Genome Project (MGP), and the results unequivocally show that genome introgression from M. m. molossinus into M. m. domesticus provided the primary framework for the mosaic genomes of classical inbred strains. Furthermore, the genomes of C57BL/6J and other classical inbred strains have long consecutive segments with extremely high similarity (>99.998%) to the JF1/Ms strain. In the early 20th century, Japanese waltzing mice with a morphological phenotype resembling that of JF1/Ms mice were often crossed with European fancy mice for early studies of "Mendelism," which suggests that the ancestor of the extant JF1/Ms strain provided the origin of the M. m. molossinus genome in classical inbred strains and largely contributed to its intersubspecific genome diversity.
Collapse
Affiliation(s)
- Toyoyuki Takada
- Mammalian Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Transdisciplinary Research Integration Center, Research Organization of Information and Systems, Minato-ku, Tokyo 105-0001, Japan
| | - Toshinobu Ebata
- Genome Biology Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Hideki Noguchi
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Thomas M. Keane
- The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, United Kingdom
| | - David J. Adams
- The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, United Kingdom
| | - Takanori Narita
- Genome Biology Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Tadasu Shin-I
- Genome Biology Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Hironori Fujisawa
- Transdisciplinary Research Integration Center, Research Organization of Information and Systems, Minato-ku, Tokyo 105-0001, Japan
- The Institute of Statistical Mathematics, 10-3 Midori-cho, Tachikawa, Tokyo 190-8562, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Kuniya Abe
- RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Yuichi Obata
- RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Yoshiyuki Sakaki
- Genome Science Center, RIKEN Yokohama Institute, Yokohama, Kanagawa 230-0045, Japan
| | - Kazuo Moriwaki
- RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Asao Fujiyama
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Yuji Kohara
- Genome Biology Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Toshihiko Shiroishi
- Mammalian Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Transdisciplinary Research Integration Center, Research Organization of Information and Systems, Minato-ku, Tokyo 105-0001, Japan
| |
Collapse
|
38
|
Asakawa JI, Kodaira M, Cullings HM, Katayama H, Nakamura N. The genetic risk in mice from radiation: an estimate of the mutation induction rate per genome. Radiat Res 2013; 179:293-303. [PMID: 23368417 DOI: 10.1667/rr3095.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Restriction Landmark Genome Scanning (RLGS) is a method that uses end-labeled (32)P NotI sites that are mostly associated with coding genes to visualizes thousands of DNA fragments as spots in two-dimensional autoradiograms. This approach allows direct detection of autosomal deletions as spots with half normal intensity. The method was applied to mouse offspring derived from spermatogonia exposed to 4 Gy of X rays. A genome-wide assessment of the mutation induction rate was estimated from the detected deletions. Examinations were made of 1,007 progeny (502 derived from control males and 505 from irradiated males) and 1,190 paternal and 1,240 maternal spots for each mouse. The results showed one deletion mutation in the unirradiated paternal genomes of 502 offspring (0.2%) and 5 deletions in the irradiated paternal genomes of 505 offspring (1%). The difference was marginally significant, with the deletion sizes ranged from 2-13 Mb. If the frequencies are taken at face value, the net increase was 0.8% after an exposure of 4 Gy, or 0.2% per Gy per individual if a linear dose response is assumed. Since the present RLGS analysis examined 1,190 NotI sites, while the mouse genome contains ∼25,000 genes, the genomic probability of any gene undergoing a deletion mutation would be 25× 0.2%, or 5% per Gy. Furthermore, since the present RLGS screened about 0.2% of the total genome, the probability of detecting a deletion anywhere in the total genome would be estimated to be 500 times 0.2% or 100% (i.e., 1 deletion per Gy). These results are discussed with reference to copy number variation in the human genome.
Collapse
Affiliation(s)
- Jun-ichi Asakawa
- Departments of Genetics, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan.
| | | | | | | | | |
Collapse
|
39
|
Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice. EMBO J 2012; 32:340-53. [PMID: 23241950 DOI: 10.1038/emboj.2012.331] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 11/22/2012] [Indexed: 11/08/2022] Open
Abstract
Genome-wide DNA demethylation, including the erasure of genome imprints, in primordial germ cells (PGCs) is a critical first step to creating a totipotent epigenome in the germ line. We show here that, contrary to the prevailing model emphasizing active DNA demethylation, imprint erasure in mouse PGCs occurs in a manner largely consistent with replication-coupled passive DNA demethylation: PGCs erase imprints during their rapid cycling with little de novo or maintenance DNA methylation potential and no apparent major chromatin alterations. Our findings necessitate the re-evaluation of and provide novel insights into the mechanism of genome-wide DNA demethylation in PGCs.
Collapse
|
40
|
Hasegawa A, Mochida K, Matoba S, Yonezawa K, Ohta A, Watanabe G, Taya K, Ogura A. Efficient production of offspring from Japanese wild-derived strains of mice (Mus musculus molossinus) by improved assisted reproductive technologies. Biol Reprod 2012; 86:167, 1-7. [PMID: 22337332 DOI: 10.1095/biolreprod.111.098491] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Because the genetic diversity of the laboratory mouse (Mus musculus) is very limited, wild-derived strains from this genus could provide invaluable experimental models for studies of mouse genetics and epigenetics such as quantitative trait locus analysis. However, such strains generally show poor reproductive performance under conventional husbandry conditions, so their use for large-scale analyses has been limited. This study was undertaken to devise assisted reproductive technologies (ARTs) for the efficient production of offspring in two wild-derived strains, MSM/Ms and JF1/Ms (Mus musculus molossinus). First, as females of these strains are poor responders to equine chorionic gonadotropin (eCG) stimulation, we examined the efficiency of superovulation by injecting anti-inhibin serum followed by human chorionic gonadotropin (hCG). Approximately four to six times more oocytes were ovulated than with eCG-hCG treatment in both strains, reaching ∼25-30 oocytes per female. Consequently, the procedures for in vitro fertilization using these superovulated oocytes and cryopreservation of embryos and spermatozoa could be optimized for both of the wild-derived strains. However, MSM/Ms embryos but not JF1/Ms embryos failed to develop to term after embryo transfer because of intrauterine death at mid to late gestation. We were able to overcome this obstacle by cotransfer of these embryos with those from laboratory strains combined with treatment of recipient females with an immunosuppressant (cyclosporin A). Thus, a series of ARTs essential for efficient production and preservation of the wild-derived strains were successfully devised. These technologies will facilitate systematic studies of mouse genetics and epigenetics using a wider range of genetic diversity than currently available in the genus Mus.
Collapse
|
41
|
Abstract
Breeding of fancy mice has been a tradition in Japan. Recent progress in animal science has shed a new light on Japanese wild-derived mice as tools for discovery of new disease models because these mice, Mus musculus molossinus, are genetically far remote from the majority of available laboratory mice. After decades of effort, five inbred strains of mice have been established from pairs of wild mice trapped in Tohoku, northeastern Japan, namely KOR1/Stm, KOR5/Stm, KOR7/Stm, AIZ/Stm, and MAE/Stm. They carried numerous mutations, leading to a variety of diseases. During the inbreeding of KOR1, the first spontaneous mutation was found in the Apoe (apolipoprotein E) gene, and the mutant was later designated as spontaneous hyperlipidemic (SHL). Thereafter, a number of other mutations were discovered among wild-derived inbred strains, including atopic dermatitis, microphthalmia, dominant white spots, sebaceous gland abnormalities, and audible song-like vocalization. Furthermore, to examine the possible effects of the genetic background for these mutant genes, sets of congenic strains were generated, in which the mutant gene was introduced into at least 3 different strains of laboratory mice, including BALB/c and C57BL/6. These congenic strains have now been established as novel disease models. These wild-derived inbred strains serve as a treasure trove for novel disease models. Most of them have been deposited in the Riken BioResource Center (BRC), and some are also available from commercial breeders.
Collapse
Affiliation(s)
- Yoshibumi Matsushima
- Saitama Cancer Center, Research Institute for Clinical Oncology, Kitaadachi, Saitama, Japan
| |
Collapse
|
42
|
Kobayashi H, Sakurai T, Imai M, Takahashi N, Fukuda A, Yayoi O, Sato S, Nakabayashi K, Hata K, Sotomaru Y, Suzuki Y, Kono T. Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks. PLoS Genet 2012; 8:e1002440. [PMID: 22242016 PMCID: PMC3252278 DOI: 10.1371/journal.pgen.1002440] [Citation(s) in RCA: 387] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 11/14/2011] [Indexed: 12/14/2022] Open
Abstract
Genome-wide dynamic changes in DNA methylation are indispensable for germline development and genomic imprinting in mammals. Here, we report single-base resolution DNA methylome and transcriptome maps of mouse germ cells, generated using whole-genome shotgun bisulfite sequencing and cDNA sequencing (mRNA-seq). Oocyte genomes showed a significant positive correlation between mRNA transcript levels and methylation of the transcribed region. Sperm genomes had nearly complete coverage of methylation, except in the CpG-rich regions, and showed a significant negative correlation between gene expression and promoter methylation. Thus, these methylome maps revealed that oocytes and sperms are widely different in the extent and distribution of DNA methylation. Furthermore, a comparison of oocyte and sperm methylomes identified more than 1,600 CpG islands differentially methylated in oocytes and sperm (germline differentially methylated regions, gDMRs), in addition to the known imprinting control regions (ICRs). About half of these differentially methylated DNA sequences appear to be at least partially resistant to the global DNA demethylation that occurs during preimplantation development. In the absence of Dnmt3L, neither methylation of most oocyte-methylated gDMRs nor intragenic methylation was observed. There was also genome-wide hypomethylation, and partial methylation at particular retrotransposons, while maintaining global gene expression, in oocytes. Along with the identification of the many Dnmt3L-dependent gDMRs at intragenic regions, the present results suggest that oocyte methylation can be divided into 2 types: Dnmt3L-dependent methylation, which is required for maternal methylation imprinting, and Dnmt3L-independent methylation, which might be essential for endogenous retroviral DNA silencing. The present data provide entirely new perspectives on the evaluation of epigenetic markers in germline cells. In mammals, germ-cell–specific methylation patterns and genomic imprints are established throughout large-scale de novo DNA methylation in oogenesis and spermatogenesis. These steps are required for normal germline differentiation and embryonic development; however, current DNA methylation analyses only provide us a partial picture of germ cell methylome. To the best of our knowledge, this is the first study to generate comprehensive maps of DNA methylomes and transcriptomes at single base resolution for mouse germ cells. These methylome maps revealed genome-wide opposing DNA methylation patterns and differential correlation between methylation and gene expression levels in oocyte and sperm genomes. In addition, our results indicate the presence of 2 types of methylation patterns in the oocytes: (i) methylation across the transcribed regions, which might be required for the establishment of maternal methylation imprints and normal embryogenesis, and (ii) retroviral methylation, which might be essential for silencing of retrotransposons and normal oogenesis. We believe that an extension of this work would lead to a better understanding of the epigenetic reprogramming in germline cells and of the role for gene regulations.
Collapse
Affiliation(s)
- Hisato Kobayashi
- Department of BioScience, Tokyo University of Agriculture, Tokyo, Japan
| | - Takayuki Sakurai
- Department of BioScience, Tokyo University of Agriculture, Tokyo, Japan
| | - Misaki Imai
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Tokyo, Japan
| | - Nozomi Takahashi
- Department of BioScience, Tokyo University of Agriculture, Tokyo, Japan
| | - Atsushi Fukuda
- Department of BioScience, Tokyo University of Agriculture, Tokyo, Japan
| | - Obata Yayoi
- Department of BioScience, Tokyo University of Agriculture, Tokyo, Japan
| | - Shun Sato
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yusuke Sotomaru
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier, The University of Tokyo, Kashiwa, Japan
| | - Tomohiro Kono
- Department of BioScience, Tokyo University of Agriculture, Tokyo, Japan
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Tokyo, Japan
- * E-mail:
| |
Collapse
|
43
|
SAKUMA S, FUJISAWA J, SUMIDA M, TANIGAWA M, INODA R, SUJIHERA T, KOHDA T, FUJIMOTO Y. The Involvement of Mitogen-Activated Protein Kinases in the 1^|^alpha;,25-Dihydroxy-Cholecalciferol-Induced Inhibition of Adipocyte Differentiation In Vitro. J Nutr Sci Vitaminol (Tokyo) 2012. [DOI: 10.3177/jnsv.58.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Henckel A, Chebli K, Kota SK, Arnaud P, Feil R. Transcription and histone methylation changes correlate with imprint acquisition in male germ cells. EMBO J 2011; 31:606-15. [PMID: 22117218 DOI: 10.1038/emboj.2011.425] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 10/24/2011] [Indexed: 11/10/2022] Open
Abstract
Genomic imprinting in mammals is controlled by DNA methylation imprints that are acquired in the gametes, at essential sequence elements called 'imprinting control regions' (ICRs). What signals paternal imprint acquisition in male germ cells remains unknown. To address this question, we explored histone methylation at ICRs in mouse primordial germ cells (PGCs). By 13.5 days post coitum (d.p.c.), H3 lysine-9 and H4 lysine-20 trimethylation are depleted from ICRs in male (and female) PGCs, indicating that these modifications do not signal subsequent imprint acquisition, which initiates at ∼15.5 d.p.c. Furthermore, during male PGC development, H3 lysine-4 trimethylation becomes biallelically enriched at 'maternal' ICRs, which are protected against DNA methylation, and whose promoters are active in the male germ cells. Remarkably, high transcriptional read-through is detected at the paternal ICRs H19-DMR and Ig-DMR at the time of imprint establishment, from one of the strands predominantly. Combined, our data evoke a model in which differential histone modification states linked to transcriptional events may signal the specificity of imprint acquisition during spermatogenesis.
Collapse
Affiliation(s)
- Amandine Henckel
- Institute of Molecular Genetics (IGMM), CNRS, Universities of Montpellier I and II, Montpellier, France
| | | | | | | | | |
Collapse
|
45
|
Koide T, Ikeda K, Ogasawara M, Shiroishi T, Moriwaki K, Takahashi A. A new twist on behavioral genetics by incorporating wild-derived mouse strains. Exp Anim 2011; 60:347-54. [PMID: 21791874 DOI: 10.1538/expanim.60.347] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Behavior has been proven to be extremely variable among human individuals. One of the most important factors for such variations of behavior is genetic diversity. A variety of mouse strains are reportedly suitable animal models for investigating the genetic basis of large individual differences in behavior. Laboratory strains have been shown to exhibit different behavioral traits due to variations in their genetic background. However, they show low-level genetic polymorphism because the original colony used for establishing the strains comprises a relatively small number of mice. Furthermore, because the laboratory strains were derived from fancy mice, they have lost the original behavioral phenotype of wild mice. Therefore, incorporation of inbred strains derived from wild mice of different mouse subspecies for behavioral studies is a marked advantage. In the long-term process of establishing a variety of wild-derived inbred strains from wild mice captured all over the world, a number of strains have been established. We previously identified a marked variety in behavioral traits using a Mishima battery. This review reports on the usefulness of wild-derived strains for genetic analyses of behavioral phenotypes in mice.
Collapse
Affiliation(s)
- Tsuyoshi Koide
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Dang R, Sasaki N, Torigoe D, Agui T. Anatomic modifications in the enteric nervous system of JF1 mice with the classic piebald mutation. J Vet Med Sci 2011; 74:391-4. [PMID: 22067082 DOI: 10.1292/jvms.11-0447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Japanese Fancy Mouse 1 (JF1) has a characteristic coat color similar to a very old mutant, piebald. The mutation in JF1 and the classic piebald was previously thought to be the same recessive allele in the endothelin B receptor gene (Ednrb) according to the haplotype pattern, which is insufficient for this conclusion. In this study, we identified the same insertion of a retroposon-like element in intron 1 of the Ednrb gene in JF1 as in the classic piebald mutation by PCR. Further, we investigated whether the intestine shows neuronal intestinal malformations such as hypoganglionosis and immaturity of ganglion cells by histochemical staining. Though it has been assumed that the defect of neural crest-derived lineages is restricted to melanocytes in JF1, we found that the enteric innervation and neuronal density were impaired throughout the whole colon in JF1 mice.
Collapse
Affiliation(s)
- Ruihua Dang
- Laboratory of Laboratory Animal Science and Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060–0818, Japan
| | | | | | | |
Collapse
|
47
|
Okae H, Hiura H, Nishida Y, Funayama R, Tanaka S, Chiba H, Yaegashi N, Nakayama K, Sasaki H, Arima T. Re-investigation and RNA sequencing-based identification of genes with placenta-specific imprinted expression. Hum Mol Genet 2011; 21:548-58. [PMID: 22025075 DOI: 10.1093/hmg/ddr488] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Within the vertebrate groups, only mammals are subject to a specialized epigenetic process termed genomic imprinting in which genes are preferentially expressed from one parental allele. Imprinted expression has been reported for >100 mouse genes and, for approximately one-quarter of these genes, the imprinted expression is specific to the placenta (or extraembryonic tissues). This seemingly placenta-specific imprinted expression has garnered much attention, as has the apparent lack of conserved imprinting between the human and mouse placenta. In this study, we used a novel approach to re-investigate the placenta-specific expression using embryo transfer and trophoblast stem cells. We analyzed 20 genes previously reported to show maternal allele-specific expression in the placenta, and only 8 genes were confirmed to be imprinted. Other genes were likely to be falsely identified as imprinted due to their relatively high expression in contaminating maternal cells. Next, we performed a genome-wide transcriptome assay and identified 133 and 955 candidate imprinted genes with paternal allele- and maternal allele-specific expression. Of those we analyzed in detail, 1/6 (Gab1) of the candidates for paternal allele-specific expression and only 1/269 (Ano1) candidates for maternal allele-specific expression were authentically imprinted genes. Imprinting of Ano1 and Gab1 was specific to the placenta and neither gene displayed allele-specific promoter DNA methylation. Imprinting of ANO1, but not GAB1, was conserved in the human placenta. Our findings impose a considerable revision of the current views of placental imprinting.
Collapse
Affiliation(s)
- Hiroaki Okae
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tomizawa SI, Kobayashi H, Watanabe T, Andrews S, Hata K, Kelsey G, Sasaki H. Dynamic stage-specific changes in imprinted differentially methylated regions during early mammalian development and prevalence of non-CpG methylation in oocytes. Development 2011; 138:811-20. [PMID: 21247965 PMCID: PMC3035086 DOI: 10.1242/dev.061416] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2010] [Indexed: 12/13/2022]
Abstract
Mammalian imprinted genes are associated with differentially methylated regions (DMRs) that are CpG methylated on one of the two parental chromosomes. In mice, at least 21 DMRs acquire differential methylation in the germline and many of them act as imprint centres. We previously reported the physical extents of differential methylation at 15 DMRs in mouse embryos at 12.5 days postcoitum. To reveal the ontogeny of differential methylation, we determined and compared methylation patterns of the corresponding regions in sperm and oocytes. We found that the extent of the gametic DMRs differs significantly from that of the embryonic DMRs, especially in the case of paternal gametic DMRs. These results suggest that the gametic DMR sequences should be used to extract the features specifying methylation imprint establishment in the germline: from this analysis, we noted that the maternal gametic DMRs appear as unmethylated islands in male germ cells, which suggests a novel component in the mechanism of gamete-specific marking. Analysis of selected DMRs in blastocysts revealed dynamic changes in allelic methylation in early development, indicating that DMRs are not fully protected from the major epigenetic reprogramming events occurring during preimplantation development. Furthermore, we observed non-CpG methylation in oocytes, but not in sperm, which disappeared by the blastocyst stage. Non-CpG methylation was frequently found at maternally methylated DMRs as well as non-DMR regions, suggesting its prevalence in the oocyte genome. These results provide evidence for a unique methylation profile in oocytes and reveal the surprisingly dynamic nature of DMRs in the early embryo.
Collapse
Affiliation(s)
- Shin-ichi Tomizawa
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Research Organization of Information and Systems, Mishima, 411-8540, Japan
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima, 411-8540, Japan
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Hisato Kobayashi
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Research Organization of Information and Systems, Mishima, 411-8540, Japan
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima, 411-8540, Japan
| | - Toshiaki Watanabe
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Research Organization of Information and Systems, Mishima, 411-8540, Japan
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima, 411-8540, Japan
| | - Simon Andrews
- Bioinformatics Group, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Gavin Kelsey
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge, CB22 3AT, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Hiroyuki Sasaki
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Research Organization of Information and Systems, Mishima, 411-8540, Japan
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima, 411-8540, Japan
- Division of Epigenomics, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
49
|
Dowse H, Umemori J, Koide T. Ultradian components in the locomotor activity rhythms of the genetically normal mouse, Mus musculus. J Exp Biol 2010; 213:1788-95. [DOI: 10.1242/jeb.038877] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Ultradian periodicities in physiological processes have been reported for a wide variety of organisms and may appear as bouts in locomotor activity. In some instances, this temporal organization can be related to some ethological strategy. In mice, however, ultradian rhythms have been reported largely in animals with circadian pacemakers disrupted either by genetic or surgical manipulation. Using analysis techniques capable of resolving periodicities in the ultradian range in the presence of strong diel periodicity, we found unequivocal evidence of ultradian rhythms in mice entrained to an light:dark cycle. We collected locomotor activity data of individuals from 11 genetically disparate strains of mice whose activity was recorded in 12 h:12 h L:D photoperiods for 3 days. Data were subjected to maximum entropy spectral analysis and autocorrelation, both before and after filtering to remove the 24-h periodicity. We found that every strain had a majority of individuals with strong ultradian rhythms ranging from ~3 to ~5 h. These periodicities were commonly visible in individual animals both in high-pass-filtered and in unfiltered data. Furthermore, when all raw data from a given strain were pooled to get a 24-h ensemble average across all animals and days, the rhythms continued to be discernable. We fitted Fourier series to these form estimates to model the frequency structure of each strain and found significant effects of strain and an interaction between period and strain indicating significant genetic variation for rhythmicity in the ultradian range. The techniques employed in this study should have wider use in a range of organisms and fields.
Collapse
Affiliation(s)
- Harold Dowse
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
- Department of Mathematics and Statistics, University of Maine, Orono, ME 04469, USA
| | - Juzoh Umemori
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Tsuyoshi Koide
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
50
|
Relationship of strain-dependent susceptibility to experimentally induced acute pancreatitis with regulation of Prss1 and Spink3 expression. J Transl Med 2010; 90:654-64. [PMID: 20157294 DOI: 10.1038/labinvest.2010.44] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
To analyze susceptibility to acute pancreatitis, five mouse strains including Japanese Fancy Mouse 1 (JF1), C57BL/6J, BALB/c, CBA/J, and C3H/HeJ were treated with either a cholecystokinin analog, cerulein, or a choline-deficient, ethionine-supplemented (CDE) diet. The severity of acute pancreatitis induced by cerulein was highest in C3H/HeJ and CBA/J, moderate in BALB/c, and mildest in C57BL/6J and JF1. Basal protein expression levels of the serine protease inhibitor, Kazal type 3 (Spink3) were higher in JF1 and C57BL/6J mice than those of the other three strains under normal feeding conditions. After treatment with cerulein, expression level of Spink3 increased remarkably in JF1 and mildly in C57BL/6J, BALB/c, CBA/J, and C3H/HeJ strains. Increased proteinase, serine, 1 (Prss1) protein expression accompanied by increased trypsin activity with cerulein treatment was observed in susceptible strains such as CBA/J and C3H/HeJ. Similar results were obtained with a CDE diet. In the 3 kb Spink3 promoter region, 92 or 8 nucleotide changes were found in JF1 or C3H vs C57BL/6J, respectively, whereas in the Prss1 promoter region 39 or 46 nucleotide changes were found in JF1 or C3H vs C57BL/6J, respectively. These results suggest that regulation of Prss1 and Spink3 expression is involved in the susceptibility to experimentally induced pancreatitis. The JF1 strain, which is derived from the Japanese wild mouse, will be useful to examine new mechanisms that may not be found in other laboratory mouse strains.
Collapse
|