1
|
Liu Y, Wang H, Li J, Li P, Li S. Gecko-Inspired Controllable Adhesive: Structure, Fabrication, and Application. Biomimetics (Basel) 2024; 9:149. [PMID: 38534834 DOI: 10.3390/biomimetics9030149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/18/2024] [Accepted: 02/24/2024] [Indexed: 03/28/2024] Open
Abstract
The gecko can achieve flexible climbing on various vertical walls and even ceilings, which is closely related to its unique foot adhesion system. In the past two decades, the mechanism of the gecko adhesion system has been studied in-depth, and a verity of gecko-inspired adhesives have been proposed. In addition to its strong adhesion, its easy detachment is also the key to achieving efficient climbing locomotion for geckos. A similar controllable adhesion characteristic is also key to the research into artificial gecko-inspired adhesives. In this paper, the structures, fabrication methods, and applications of gecko-inspired controllable adhesives are summarized for future reference in adhesive development. Firstly, the controllable adhesion mechanism of geckos is introduced. Then, the control mechanism, adhesion performance, and preparation methods of gecko-inspired controllable adhesives are described. Subsequently, various successful applications of gecko-inspired controllable adhesives are presented. Finally, future challenges and opportunities to develop gecko-inspired controllable adhesive are presented.
Collapse
Affiliation(s)
- Yanwei Liu
- Key Laboratory of NC Machine Tools and Integrated Manufacturing Equipment of the Ministry of Education, Xi'an University of Technology, Xi'an 710048, China
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Hao Wang
- Key Laboratory of NC Machine Tools and Integrated Manufacturing Equipment of the Ministry of Education, Xi'an University of Technology, Xi'an 710048, China
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Jiangchao Li
- Key Laboratory of NC Machine Tools and Integrated Manufacturing Equipment of the Ministry of Education, Xi'an University of Technology, Xi'an 710048, China
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Pengyang Li
- Key Laboratory of NC Machine Tools and Integrated Manufacturing Equipment of the Ministry of Education, Xi'an University of Technology, Xi'an 710048, China
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Shujuan Li
- Key Laboratory of NC Machine Tools and Integrated Manufacturing Equipment of the Ministry of Education, Xi'an University of Technology, Xi'an 710048, China
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China
| |
Collapse
|
2
|
Duan W, Yu Z, Cui W, Zhang Z, Zhang W, Tian Y. Bio-inspired switchable soft adhesion for the boost of adhesive surfaces and robotics applications: A brief review. Adv Colloid Interface Sci 2023; 313:102862. [PMID: 36848868 DOI: 10.1016/j.cis.2023.102862] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
In nature, millions of creatures, such as geckos, tree frogs, octopuses, etc., have evolved fantastic switchable adhesion capabilities to climb swiftly on vertical even inverted surfaces or hunt for prey easily, adapting to harsh and unpredictable environments. Notably, these fascinating adhesive behaviors depend on interfacial forces (friction, van der Waals force, capillary force, vacuum suction, etc.), which primarily originate from the interactions between the soft micro/nanostructures evolved in the natural creatures and objects. Over the past few decades, these biological switchable adhesives have inspired scientists to explore and engineer desirable artificial adhesives. In this review, we summarized the state-of-the-art research on the ultra-fast adhesive motion of three types of biological organisms (gecko, tree frog, and octopus). Firstly, the basic adhesion principles in the three representative organisms, including micro/nanostructures, interfacial forces, and fundamental adhesion models, are reviewed. Then, we discussed the adhesion mechanisms of the prominent organisms from the perspective of soft contacts between micro/nanostructures and the substrates. Later, the mechanics-guided design principles of artificial adhesive surfaces, as well as the smart adhesion strategies, are summarized. The applications of these bio-inspired switchable adhesives are demonstrated, including wearable electronic devices, soft grippers, and climbing robots. The challenges and opportunities in this fast-growing field are also discussed.
Collapse
Affiliation(s)
- Weiwang Duan
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhilin Yu
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wenhui Cui
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zengxin Zhang
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wenling Zhang
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yu Tian
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Tao J, Wang L, Kong K, Hu M, Dai Z. Contact Electrification of Biological and Bio-Inspired Adhesive Materials on SiO 2 Surfaces: Perspectives from DFT Calculations. Biomimetics (Basel) 2022; 7:216. [PMID: 36546916 PMCID: PMC9775756 DOI: 10.3390/biomimetics7040216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
In this study, we investigate the contact electrification properties of glycine, cysteine, and dimethyl siloxane on silicon dioxide (SiO2) surfaces using density functional theory calculations. Molecule contacting through the sulfhydryl group has stronger adhesion to the SiO2-O and SiO2-OH surfaces. The SiOH/SiO2-Si system has the largest adhesion energy in all molecule/SiO2-Si contact systems and charge transfers from the molecule to the SiO2-O and SiO2-Si surfaces. The molecule/SiO2-OH systems have a reverse charge transfer direction. Molecules with their sulfhydryl and hydroxyl groups facing the SiO2-O and SiO2-OH surfaces have more transferred charges. The NH2/SiO2-Si system has a larger transferred charge than other molecule/SiO2-Si systems. The direction of charge transfer is determined by the Bader charge of the isolated surface atoms. The respective energy difference in the lowest unoccupied occupied molecular orbitals between contacting atoms influences the charge transfer. The respective energy difference in the highest occupied molecular orbitals reflects the electron attraction and affects charge transfer. Finally, the quantitative relationship between the transferred charge and energy gaps is established to evaluate the charge transfer. The findings propose a new perspective and in-depth understanding of contact electrification and shed light on the bio-inspired adhesive materials design and fabrication for engineering applications.
Collapse
Affiliation(s)
- Jing Tao
- Jiangsu Provincial Key Laboratory of Bionic Functional Materials, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Linfeng Wang
- Jiangsu Provincial Key Laboratory of Bionic Functional Materials, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Kaixuan Kong
- Jiangsu Provincial Key Laboratory of Bionic Functional Materials, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Minhao Hu
- Jiangsu Provincial Key Laboratory of Bionic Functional Materials, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zhendong Dai
- Jiangsu Provincial Key Laboratory of Bionic Functional Materials, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
4
|
Baeckens S, Temmerman M, Gorb SN, Neto C, Whiting MJ, Van Damme R. Convergent evolution of skin surface microarchitecture and increased skin hydrophobicity in semi-aquatic anole lizards. J Exp Biol 2021; 224:272432. [PMID: 34642763 PMCID: PMC8541734 DOI: 10.1242/jeb.242939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/10/2021] [Indexed: 11/23/2022]
Abstract
Animals that habitually cross the boundary between water and land face specific challenges with respect to locomotion, respiration, insulation, fouling and waterproofing. Many semi-aquatic invertebrates and plants have developed complex surface microstructures with water-repellent properties to overcome these problems, but equivalent adaptations of the skin have not been reported for vertebrates that encounter similar environmental challenges. Here, we document the first evidence of evolutionary convergence of hydrophobic structured skin in a group of semi-aquatic tetrapods. We show that the skin surface of semi-aquatic species of Anolis lizards is characterized by a more elaborate microstructural architecture (i.e. longer spines and spinules) and a lower wettability relative to closely related terrestrial species. In addition, phylogenetic comparative models reveal repeated independent evolution of enhanced skin hydrophobicity associated with the transition to a semi-aquatic lifestyle, providing evidence of adaptation. Our findings invite a new and exciting line of inquiry into the ecological significance, evolutionary origin and developmental basis of hydrophobic skin surfaces in semi-aquatic lizards, which is essential for understanding why and how the observed skin adaptations evolved in some and not other semi-aquatic tetrapod lineages. Summary: Multiple Anolis lineages independently evolved a similar skin surface microarchitecture with water-repellent properties as an adaptation to a semi-aquatic lifestyle.
Collapse
Affiliation(s)
- Simon Baeckens
- Laboratory for Functional Morphology, Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium.,Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.,Laboratory for the Evolution and Optics of Nanostructures, Department of Biology, Ghent University, 9000 Gent,Belgium
| | - Marie Temmerman
- Laboratory for Functional Morphology, Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium
| | - Stanislav N Gorb
- Functional Morphology and Biomechanics, Zoological Institute of the Christian Albrecht Universität zu Kiel, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Chiara Neto
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Martin J Whiting
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Raoul Van Damme
- Laboratory for Functional Morphology, Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
5
|
Wang J, Wan Y, Wang X, Xia Z. Bioinspired Smart Materials With Externally-Stimulated Switchable Adhesion. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.667287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Living organisms have evolved, over billions of years, to develop specialized biostructures with switchable adhesion for various purposes including climbing, perching, preying, sensing, and protecting. According to adhesion mechanisms, switchable adhesives can be divided into four categories: mechanically-based adhesion, liquid-mediated adhesion, physically-actuated adhesion and chemically-enhanced adhesion. Mimicking these biostructures could create smart materials with switchable adhesion, appealing for many engineering applications in robotics, sensors, advanced drug-delivery, protein separation, etc. Progress has been made in developing bioinspired materials with switchable adhesion modulated by external stimuli such as electrical signal, magnetic field, light, temperature, pH value, etc. This review will be focused on new advance in biomimetic design and synthesis of the materials and devices with switchable adhesion. The underlying mechanisms, design principles, and future directions are discussed for the development of high-performance smart surfaces with switchable adhesion.
Collapse
|
6
|
Garner AM, Russell AP. Revisiting the classification of squamate adhesive setae: historical, morphological and functional perspectives. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202039. [PMID: 33972877 PMCID: PMC8074656 DOI: 10.1098/rsos.202039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Research on gecko-based adhesion has become a truly interdisciplinary endeavour, encompassing many disciplines within the natural and physical sciences. Gecko adhesion occurs by the induction of van der Waals intermolecular (and possibly other) forces between substrata and integumentary filaments (setae) terminating in at least one spatulate tip. Gecko setae have increasingly been idealized as structures with uniform dimensions and a particular branching pattern. Approaches to developing synthetic simulacra have largely adopted such an idealized form as a foundational template. Observations of entire setal fields of geckos and anoles have, however, revealed extensive, predictable variation in setal form. Some filaments of these fields do not fulfil the morphological criteria that characterize setae and, problematically, recent authors have applied the term 'seta' to structurally simpler and likely non-adhesively competent fibrils. Herein we briefly review the history of the definition of squamate setae and propose a standardized classificatory scheme for epidermal outgrowths based on a combination of whole animal performance and morphology. Our review is by no means comprehensive of the literature regarding the form, function, and development of the adhesive setae of squamates and we do not address significant advances that have been made in many areas (e.g. cell biology of setae) that are largely tangential to their classification and identification. We contend that those who aspire to simulate the form and function of squamate setae will benefit from a fuller appreciation of the diversity of these structures, thereby assisting in the identification of features most relevant to their objectives.
Collapse
Affiliation(s)
- Austin M. Garner
- Integrated Bioscience Program, Department of Biology, The University of Akron, Akron, OH 44325-3908, USA
| | - Anthony P. Russell
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
7
|
Mitchell CT, Dayan CB, Drotlef DM, Sitti M, Stark AY. The effect of substrate wettability and modulus on gecko and gecko-inspired synthetic adhesion in variable temperature and humidity. Sci Rep 2020; 10:19748. [PMID: 33184356 PMCID: PMC7665207 DOI: 10.1038/s41598-020-76484-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/28/2020] [Indexed: 01/23/2023] Open
Abstract
Gecko adhesive performance increases as relative humidity increases. Two primary mechanisms can explain this result: capillary adhesion and increased contact area via material softening. Both hypotheses consider variable relative humidity, but neither fully explains the interactive effects of temperature and relative humidity on live gecko adhesion. In this study, we used live tokay geckos (Gekko gecko) and a gecko-inspired synthetic adhesive to investigate the roles of capillary adhesion and material softening on gecko adhesive performance. The results of our study suggest that both capillary adhesion and material softening contribute to overall gecko adhesion, but the relative contribution of each depends on the environmental context. Specifically, capillary adhesion dominates on hydrophilic substrates, and material softening dominates on hydrophobic substrates. At low temperature (12 °C), both capillary adhesion and material softening likely produce high adhesion across a range of relative humidity values. At high temperature (32 °C), material softening plays a dominant role in adhesive performance at an intermediate relative humidity (i.e., 70% RH).
Collapse
Affiliation(s)
- Christopher T Mitchell
- Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, PA, 19085, USA
| | - Cem Balda Dayan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Dirk-M Drotlef
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Alyssa Y Stark
- Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, PA, 19085, USA.
| |
Collapse
|
8
|
Riedel J, Vucko MJ, Blomberg SP, Schwarzkopf L. Skin hydrophobicity as an adaptation for self-cleaning in geckos. Ecol Evol 2020; 10:4640-4651. [PMID: 32551049 PMCID: PMC7297746 DOI: 10.1002/ece3.6218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022] Open
Abstract
Hydrophobicity is common in plants and animals, typically caused by high relief microtexture functioning to keep the surface clean. Although the occurrence and physical causes of hydrophobicity are well understood, ecological factors promoting its evolution are unclear. Geckos have highly hydrophobic integuments. We predicted that, because the ground is dirty and filled with pathogens, high hydrophobicity should coevolve with terrestrial microhabitat use. Advancing contact-angle (ACA) measurements of water droplets were used to quantify hydrophobicity in 24 species of Australian gecko. We reconstructed the evolution of ACA values, in relation to microhabitat use of geckos. To determine the best set of structural characteristics associated with the evolution of hydrophobicity, we used linear models fitted using phylogenetic generalized least squares (PGLS), and then model averaging based on AICc values. All species were highly hydrophobic (ACA > 132.72°), but terrestrial species had significantly higher ACA values than arboreal ones. The evolution of longer spinules and smaller scales was correlated with high hydrophobicity. These results suggest that hydrophobicity has coevolved with terrestrial microhabitat use in Australian geckos via selection for long spinules and small scales, likely to keep their skin clean and prevent fouling and disease.
Collapse
Affiliation(s)
- Jendrian Riedel
- College of Science and EngineeringJames Cook UniversityTownsvilleQld.Australia
| | - Matthew John Vucko
- College of Science and EngineeringJames Cook UniversityTownsvilleQld.Australia
| | - Simone P. Blomberg
- School of Biological SciencesUniversity of QueenslandSt. LuciaQld.Australia
| | - Lin Schwarzkopf
- College of Science and EngineeringJames Cook UniversityTownsvilleQld.Australia
| |
Collapse
|
9
|
Song Y, Dai Z, Wang Z, Full RJ. Role of multiple, adjustable toes in distributed control shown by sideways wall-running in geckos. Proc Biol Sci 2020; 287:20200123. [PMID: 32370666 PMCID: PMC7282914 DOI: 10.1098/rspb.2020.0123] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Remarkable progress has been made characterizing one of nature's most integrated, hierarchical structures--the fibrillar adhesive system of geckos. Nonetheless, we lack an understanding of how multiple toes coordinate to facilitate geckos' acrobatic locomotion. Here, we tested the control function of gecko toes by running them on vertical substrates varying in orientation, friction and roughness. Sideways wall-running geckos realigned the toes of their top feet upward to resist gravity. Toe contact area was not compromised, but redistributed. Geckos aligned all toes upward to resist slipping when encountering low-friction patches during sideways wall-running. Negotiation of intermittent slippery strips showed an increased contribution of particular toes to compensate for toes that lost adhesion. Increasing substrate roughness using discrete rods perpendicular to sideways locomotion resulted in geckos bending and/or rotating toes to conform to and even grasp the rods, with potential forces more than five times body weight. Geckos increase their effectiveness of manoeuvrability in demanding environments by taking advantage of the distributed control afforded by multiple toes. Our findings provide insight on biological attachment and offer inspiration to advance gecko-inspired robotics and other biomimetic applications.
Collapse
Affiliation(s)
- Yi Song
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, People's Republic of China.,Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Zhendong Dai
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, People's Republic of China
| | - Zhouyi Wang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, People's Republic of China
| | - Robert J Full
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Liimatainen V, Drotlef DM, Son D, Sitti M. Liquid-Superrepellent Bioinspired Fibrillar Adhesives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000497. [PMID: 32239584 DOI: 10.1002/adma.202000497] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/20/2020] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
Bioinspired elastomeric fibrillar surfaces have significant potential as reversible dry adhesives, but their adhesion performance is sensitive to the presence of liquids at the contact interface. Like their models in nature, many artificial mimics can effectively repel water, but fail when low-surface-tension liquids are introduced at the contact interface. A bioinspired fibrillar adhesive surface that is liquid-superrepellent even toward ultralow-surface-tension liquids while retaining its adhesive properties is proposed herein. This surface combines the effective adhesion principle of mushroom-shaped fibrillar arrays with liquid repellency based on double re-entrant fibril tip geometry. The adhesion performance of the proposed microfibril structures is retained even when low-surface-tension liquids are added to the contact interface. The extreme liquid repellency enables real-world applications of fibrillar adhesives for surfaces covered with water, oil, and other liquids. Moreover, fully elastomeric liquid-superrepellent surfaces are mechanically not brittle, highly robust against physical contact, and highly deformable and stretchable, which can increase the real-world uses of such antiwetting surfaces.
Collapse
Affiliation(s)
- Ville Liimatainen
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Germany
| | - Dirk-Michael Drotlef
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Germany
| | - Donghoon Son
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Germany
| |
Collapse
|
11
|
Garner AM, Buo C, Piechowski JM, Pamfilie AM, Stefanovic SR, Dhinojwala A, Niewiarowski PH. Digital hyperextension has no influence on the active self-drying of gecko adhesive subdigital pads. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 333:118-125. [PMID: 31742935 DOI: 10.1002/jez.2332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 11/09/2022]
Abstract
The remarkable properties of the gecko adhesive system have been intensively studied. Although many gecko-inspired synthetic adhesives have been designed and fabricated, few manage to capture the multifunctionality of the natural system. Analogous to previously documented self-cleaning, recent work demonstrated that gecko toe pads dry when geckos take steps on dry substrates (i.e., self-drying). Whether digital hyperextension (DH), the distal to proximal peeling of gecko toe pads, is involved in the self-drying process, had not been determined. Here, the effect of DH on self-drying was isolated by preventing DH from occurring during normal walking locomotion of Gekko gecko after toe pads were wetted. Our initial analysis revealed low statistical power, so we increased our sample size to determine the robustness of our result. We found that neither DH nor the DH-substrate interaction had a significant effect on the maximum shear adhesive force after self-drying. These results suggest that DH is not necessary for self-drying to occur. Interestingly, however, we discovered that shear adhesion is higher on a surface tending hydrophobic compared to a hydrophilic surface, demonstrating that gecko adhesion is sensitive to substrate wettability during the subdigital pad drying process. Furthermore, we also observed frequent damage to the adhesive system during shear adhesion testing post-drying, indicating that water may compromise the structural integrity of the adhesive structures. Our results not only have behavioral and ecological implications for free-ranging geckos but also have the potential to influence the design and fabrication of gecko-inspired synthetic adhesives that can regain adhesion after fouling with water.
Collapse
Affiliation(s)
- Austin M Garner
- Gecko Adhesion Research Group, The University of Akron, Akron, Ohio.,Department of Biology, The University of Akron, Akron, Ohio.,Integrated Bioscience Program, The University of Akron, Akron, Ohio
| | - Carrie Buo
- Department of Biology, The University of Akron, Akron, Ohio.,Integrated Bioscience Program, The University of Akron, Akron, Ohio
| | - Jennifer M Piechowski
- Department of Biology, The University of Akron, Akron, Ohio.,Integrated Bioscience Program, The University of Akron, Akron, Ohio
| | - Alexandra M Pamfilie
- Gecko Adhesion Research Group, The University of Akron, Akron, Ohio.,Department of Biology, The University of Akron, Akron, Ohio
| | - Sharon R Stefanovic
- Department of Biology, The University of Akron, Akron, Ohio.,Integrated Bioscience Program, The University of Akron, Akron, Ohio
| | - Ali Dhinojwala
- Gecko Adhesion Research Group, The University of Akron, Akron, Ohio.,Integrated Bioscience Program, The University of Akron, Akron, Ohio.,Department of Polymer Science, The University of Akron, Akron, Ohio
| | - Peter H Niewiarowski
- Gecko Adhesion Research Group, The University of Akron, Akron, Ohio.,Department of Biology, The University of Akron, Akron, Ohio.,Integrated Bioscience Program, The University of Akron, Akron, Ohio
| |
Collapse
|
12
|
Stark AY, Mitchell CT. Stick or Slip: Adhesive Performance of Geckos and Gecko-Inspired Synthetics in Wet Environments. Integr Comp Biol 2019; 59:214-226. [PMID: 30873552 DOI: 10.1093/icb/icz008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The gecko adhesive system has inspired hundreds of synthetic mimics principally focused on replicating the strong, reversible, and versatile properties of the natural system. For geckos native to the tropics, versatility includes the need to remain attached to substrates that become wet from high humidity and frequent rain. Paradoxically, van der Waals forces, the principal mechanism responsible for gecko adhesion, reduce to zero when two contacting surfaces separate even slightly by entrapped water layers. A series of laboratory studies show that instead of slipping, geckos maintain and even improve their adhesive performance in many wet conditions (i.e., on wet hydrophobic substrates, on humid substrates held at low temperatures). The mechanism for this is not fully clarified, and likely ranges in scale from the chemical and material properties of the gecko's contact structures called setae (e.g., setae soften and change surface confirmation when exposed to water), to their locomotor biomechanics and decision-making behavior when encountering water on a substrate in their natural environment (e.g., some geckos tend to run faster and stop more frequently on misted substrates than dry). Current work has also focused on applying results from the natural system to gecko-inspired synthetic adhesives, improving their performance in wet conditions. Gecko-inspired synthetic adhesives have also provided a unique opportunity to test hypotheses about the natural system in semi-natural conditions replicated in the laboratory. Despite many detailed studies focused on the role of water and humidity on gecko and gecko-inspired synthetic adhesion, there remains several outstanding questions: (1) what, if any, role does capillary or capillary-like adhesion play on overall adhesive performance of geckos and gecko-inspired synthetics, (2) how do chemical and material changes at the surface and in the bulk of gecko setae and synthetic fibrils change when exposed to water, and what does this mean for adhesive performance, and (3) how much water do geckos encounter in their native environment, and what is their corresponding behavioral response? This review will detail what we know about gecko adhesion in wet environments, and outline the necessary next steps in biological and synthetic system investigations.
Collapse
Affiliation(s)
- Alyssa Y Stark
- Department of Biology, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085, USA
| | - Christopher T Mitchell
- Department of Biology, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085, USA
| |
Collapse
|
13
|
Federle W, Labonte D. Dynamic biological adhesion: mechanisms for controlling attachment during locomotion. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190199. [PMID: 31495309 PMCID: PMC6745483 DOI: 10.1098/rstb.2019.0199] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2019] [Indexed: 01/12/2023] Open
Abstract
The rapid control of surface attachment is a key feature of natural adhesive systems used for locomotion, and a property highly desirable for man-made adhesives. Here, we describe the challenges of adhesion control and the timescales involved across diverse biological attachment systems and different adhesive mechanisms. The most widespread control principle for dynamic surface attachment in climbing animals is that adhesion is 'shear-sensitive' (directional): pulling adhesive pads towards the body results in strong attachment, whereas pushing them away from it leads to easy detachment, providing a rapid mechanical 'switch'. Shear-sensitivity is based on changes of contact area and adhesive strength, which in turn arise from non-adhesive default positions, the mechanics of peeling, pad sliding, and the targeted storage and controlled release of elastic strain energy. The control of adhesion via shear forces is deeply integrated with the climbing animals' anatomy and locomotion, and involves both active neuromuscular control, and rapid passive responses of sophisticated mechanical systems. The resulting dynamic adhesive systems are robust, reliable, versatile and nevertheless remarkably simple. This article is part of the theme issue 'Transdisciplinary approaches to the study of adhesion and adhesives in biological systems'.
Collapse
Affiliation(s)
- Walter Federle
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - David Labonte
- Department of Bioengineering, Imperial College, London, UK
| |
Collapse
|
14
|
Labonte D, Struecker MY, Birn-Jeffery AV, Federle W. Shear-sensitive adhesion enables size-independent adhesive performance in stick insects. Proc Biol Sci 2019; 286:20191327. [PMID: 31640508 DOI: 10.1098/rspb.2019.1327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ability to climb with adhesive pads conveys significant advantages and is widespread in the animal kingdom. The physics of adhesion predict that attachment is more challenging for large animals, whereas detachment is harder for small animals, due to the difference in surface-to-volume ratios. Here, we use stick insects to show that this problem is solved at both ends of the scale by linking adhesion to the applied shear force. Adhesive forces of individual insect pads, measured with perpendicular pull-offs, increased approximately in proportion to a linear pad dimension across instars. In sharp contrast, whole-body force measurements suggested area scaling of adhesion. This discrepancy is explained by the presence of shear forces during whole-body measurements, as confirmed in experiments with pads sheared prior to detachment. When we applied shear forces proportional to either pad area or body weight, pad adhesion also scaled approximately with area or mass, respectively, providing a mechanism that can compensate for the size-related loss of adhesive performance predicted by isometry. We demonstrate that the adhesion-enhancing effect of shear forces is linked to pad sliding, which increased the maximum adhesive force per area sustainable by the pads. As shear forces in natural conditions are expected to scale with mass, sliding is more frequent and extensive in large animals, thus ensuring that large animals can attach safely, while small animals can still detach their pads effortlessly. Our results therefore help to explain how nature's climbers maintain a dynamic attachment performance across seven orders of magnitude in body weight.
Collapse
Affiliation(s)
- David Labonte
- Department of Bioengineering, Imperial College, London, UK
| | | | | | - Walter Federle
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
15
|
Gartrell BD, Ahn JY, Khude R, Dougherty N, Johnson K, McCutchan J, Clarke A, Hunter S. Thermal burns of the spectacle associated with supplementary heating in native New Zealand geckos. N Z Vet J 2019; 68:126-133. [PMID: 31608795 DOI: 10.1080/00480169.2019.1674747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Case history: Gradual onset of ocular opacity was observed in three gold-striped geckos (Woodworthia chrysosiretica), and five Pacific geckos (Dactylocnemis pacificus) held in two adjacent terrariums in a zoological institution located in the North Island of New Zealand. Ultraviolet light and heat had been provided for the previous 3-4 years by a fluorescent bulb, but in the last 4 weeks of winter a ceramic heat bulb had been added, situated 10 cm above the upper mesh of the cageClinical findings: All eight geckos presented with mostly bilateral lesions of varying severity confined to the central or upper quadrant of the spectacles. These lesions ranged from variable areas of opacity within the stroma of the spectacle to similarly distributed ulcers of the surface epithelium of both spectacles. The spectacle lesions in the Pacific geckos responded well to treatment with topical combined antimicrobial therapy, within 18-29 days. The gold-striped geckos suffered complications including dysecdysis, severe spectacle ulceration and perforation, mycotic spectaculitis, and widespread mycotic dermatitis resulting in death or leading to euthanasia.Pathological findings: In the three gold-striped geckos, there were extensive areas of deep ulceration and replacement of the spectacle with a thick serocellular crust containing large numbers of fungal elements. The affected areas of the stroma were expanded by large deposits of proteinaceous and mucinous material, pyknotic cellular debris and moderate numbers of heterophils and macrophages as well as infiltrating fungal hyphae.Diagnosis: Mycotic spectaculitis with ulceration and perforation, and disseminated mycotic dermatitis likely secondary to thermal burns.Clinical relevance: This is the first report of thermal burns of the spectacle in any reptile. There was species variation in the burn severity with gold-striped geckos showing more severe lesions, possibly due to a mix of behavioural and anatomical factors. The thermal burns to the spectacles in three cases were complicated by delayed healing, perforation, dysecdysis and severe mycotic infection.
Collapse
Affiliation(s)
- B D Gartrell
- Wildbase, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - J Y Ahn
- Wildbase, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - R Khude
- Wildbase, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - N Dougherty
- Wildbase, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - K Johnson
- Wildbase, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - J McCutchan
- Wildbase, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - A Clarke
- Wildbase, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - S Hunter
- Wildbase, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
16
|
Russell AP, Stark AY, Higham TE. The Integrative Biology of Gecko Adhesion: Historical Review, Current Understanding, and Grand Challenges. Integr Comp Biol 2019; 59:101-116. [DOI: 10.1093/icb/icz032] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Abstract
Geckos are remarkable in their ability to reversibly adhere to smooth vertical, and even inverted surfaces. However, unraveling the precise mechanisms by which geckos do this has been a long process, involving various approaches over the last two centuries. Our understanding of the principles by which gecko adhesion operates has advanced rapidly over the past 20 years and, with this knowledge, material scientists have attempted to mimic the system to create artificial adhesives. From a biological perspective, recent studies have examined the diversity in morphology, performance, and real-world use of the adhesive apparatus. However, the lack of multidisciplinarity is likely a key roadblock to gaining new insights. Our goals in this paper are to 1) present a historical review of gecko adhesion research, 2) discuss the mechanisms and morphology of the adhesive apparatus, 3) discuss the origin and performance of the system in real-world contexts, 4) discuss advancement in bio-inspired design, and 5) present grand challenges in gecko adhesion research. To continue to improve our understanding, and to more effectively employ the principles of gecko adhesion for human applications, greater intensity and scope of interdisciplinary research are necessary.
Collapse
Affiliation(s)
- Anthony P Russell
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Alyssa Y Stark
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| | - Timothy E Higham
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
17
|
Hill IDC, Dong B, Barnes WJP, Ji A, Endlein T. The biomechanics of tree frogs climbing curved surfaces: a gripping problem. ACTA ACUST UNITED AC 2018; 221:jeb.168179. [PMID: 29361584 DOI: 10.1242/jeb.168179] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/12/2018] [Indexed: 11/20/2022]
Abstract
The adhesive mechanisms of climbing animals have become an important research topic because of their biomimetic implications. We examined the climbing abilities of hylid tree frogs on vertical cylinders of differing diameter and surface roughness to investigate the relative roles of adduction forces (gripping) and adhesion. Tree frogs adhere using their toe pads and subarticular tubercles, the adhesive joint being fluid-filled. Our hypothesis was that on an effectively flat surface (adduction forces on the largest 120 mm diameter cylinder were insufficient to allow climbing), adhesion would effectively be the only means by which tree frogs could climb, but on the 44 and 13 mm diameter cylinders, frogs could additionally utilise adduction forces by gripping the cylinder either with their limbs outstretched or by grasping around the cylinder with their digits, respectively. The frogs' performance would also depend on whether the surfaces were smooth (easy to adhere to) or rough (relatively non-adhesive). Our findings showed that climbing performance was highest on the narrowest smooth cylinder. Frogs climbed faster, frequently using a 'walking trot' gait rather than the 'lateral sequence walk' used on other cylinders. Using an optical technique to visualise substrate contact during climbing on smooth surfaces, we also observed an increasing engagement of the subarticular tubercles on the narrower cylinders. Finally, on the rough substrate, frogs were unable to climb the largest diameter cylinder, but were able to climb the narrowest one slowly. These results support our hypotheses and have relevance for the design of climbing robots.
Collapse
Affiliation(s)
- Iain D C Hill
- Centre for Cell Engineering, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, UK
| | - Benzheng Dong
- Institute of Bioinspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, China
| | - W Jon P Barnes
- Centre for Cell Engineering, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, UK
| | - Aihong Ji
- Institute of Bioinspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, China
| | - Thomas Endlein
- Max Planck Institute for Intelligent Systems, Heisenbergstraβe 3, 70569 Stuttgart, Germany
| |
Collapse
|
18
|
Syafiq A, Pandey A, Adzman N, Rahim NA. Advances in approaches and methods for self-cleaning of solar photovoltaic panels. SOLAR ENERGY 2018; 162:597-619. [DOI: 10.1016/j.solener.2017.12.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
19
|
Geckos go the Distance: Water's Effect on the Speed of Adhesive Locomotion in Geckos. J HERPETOL 2017. [DOI: 10.1670/16-010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Influence of Nanotechnology and the Role of Nanostructures in Biomimetic Studies and Their Potential Applications. Biomimetics (Basel) 2017; 2:biomimetics2020007. [PMID: 31105170 PMCID: PMC6477628 DOI: 10.3390/biomimetics2020007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/11/2017] [Accepted: 05/16/2017] [Indexed: 12/18/2022] Open
Abstract
With the advent of nanotechnology, by looking further deep down into the molecular level, today, we are able to understand basic and applied sciences even better than ever before. Not only has nanoscience and nanotechnology allowed us to study the composing structures of materials in detail, it has also allowed us to fabricate and synthesize such nanostructures using top-down and bottom-up approaches. One such field, which has been significantly influenced by the dawn of nanotechnology is biomimetics. With powerful spectroscopic and microscopic tools presenting us with images like double nanostructured pillars on the lotus surface for superhydrophobicity, the conical protuberances of moth eye demonstrating anti-reflection properties and nanostructured spatulae of gecko feet for high adhesivity, we are now able to fabricate these structures in the lab with properties showing close resemblance to their natural counterparts. Here, we present a review of various nanostructures that exist in nature, their fabrication techniques and some of their promising future applications. We hope this review will provide the reader with a basic understanding of what biomimetics is and how nanotechnology has significantly influenced this field.
Collapse
|
21
|
Cadirov N, Booth JA, Turner KL, Israelachvili JN. Influence of Humidity on Grip and Release Adhesion Mechanisms for Gecko-Inspired Microfibrillar Surfaces. ACS APPLIED MATERIALS & INTERFACES 2017; 9:14497-14505. [PMID: 28398039 DOI: 10.1021/acsami.7b01624] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Geckos have developed foot pads that allow them to maintain their unique climbing ability despite vast differences of surfaces and environments, from dry desert to humid rainforest. Likewise, successful gecko-inspired mimics should exhibit adhesive and frictional performance across a similarly diverse range of climates. In this work, we focus on the effect of relative humidity (RH) on the "frictional-adhesion" behavior of gecko-inspired adhesive pads. A surface forces apparatus was used to quantitatively measure adhesion and friction forces of a microfibrillar cross-linked polydimethylsiloxane surface against a smooth hemispherical glass disk at varying relative humidity, from 0 to 100% (including fully submerged under water). Geometrically anisotropic tilted half-cylinder microfibers yield a "grip state" (high adhesion and friction forces after shearing along the tilt of the fibers, Fad+ and F∥+) and a "release state" (low adhesion and friction after shearing against the tilt of the fibers, Fad- and F∥-). By appropriate control of the loading path, this allows for transition between strong attachment and easy detachment. Changing the preload and shear direction gives rise to differences in the effective contact area at each fiber and the microscale and nanoscale structure of the contact while changing the relative humidity results in differences in the relative contributions of van der Waals and capillary forces. In combination, both effects lead to interesting trends in the adhesion and friction forces. At up to 75% RH, the grip state adhesion force remains constant and the ratio of grip to release adhesion force does not drop below 4.0. In addition, the friction forces F∥+ and F∥- and the release state adhesion force Fad- exhibit a maximum at intermediate relative humidity between 40% and 75%.
Collapse
Affiliation(s)
- Nicholas Cadirov
- Department of Chemical Engineering, and ‡Department of Mechanical Engineering, University of California , Santa Barbara, California 93106, United States
| | - Jamie A Booth
- Department of Chemical Engineering, and ‡Department of Mechanical Engineering, University of California , Santa Barbara, California 93106, United States
| | - Kimberly L Turner
- Department of Chemical Engineering, and ‡Department of Mechanical Engineering, University of California , Santa Barbara, California 93106, United States
| | - Jacob N Israelachvili
- Department of Chemical Engineering, and ‡Department of Mechanical Engineering, University of California , Santa Barbara, California 93106, United States
| |
Collapse
|
22
|
Abstract
The gecko adhesion system fascinates biologists and materials scientists alike for its strong, reversible, glue-free, dry adhesion. Understanding the adhesion system’s performance on various surfaces can give clues as to gecko behaviour, as well as towards designing synthetic adhesive mimics. Geckos encounter a variety of surfaces in their natural habitats; tropical geckos, such as Gekko gecko, encounter hard, rough tree trunks as well as soft, flexible leaves. While gecko adhesion on hard surfaces has been extensively studied, little work has been done on soft surfaces. Here, we investigate for the first time the influence of macroscale and nanoscale substrate modulus on whole animal adhesion on two different substrates (cellulose acetate and polydimethylsiloxane) in air and find that across 5 orders of magnitude in macroscale modulus, there is no change in adhesion. On the nanoscale, however, gecko adhesion is shown to depend on substrate modulus. This suggests that low surface-layer modulus may inhibit the gecko adhesion system, independent of other influencing factors such as macroscale composite modulus and surface energy. Understanding the limits of gecko adhesion is vital for clarifying adhesive mechanisms and in the design of synthetic adhesives for soft substrates (including for biomedical applications and wearable electronics).
Collapse
|
23
|
Niewiarowski PH, Stark AY, Dhinojwala A. Sticking to the story: outstanding challenges in gecko-inspired adhesives. ACTA ACUST UNITED AC 2016; 219:912-9. [PMID: 27030772 DOI: 10.1242/jeb.080085] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The natural clinging ability of geckos has inspired hundreds of studies seeking design principles that could be applied to creating synthetic adhesives with the same performance capabilities as the gecko: adhesives that use no glue, are self-cleaning and reusable, and are insensitive to a wide range of surface chemistries and roughness. Important progress has been made, and the basic mechanics of how 'hairy' adhesives work have been faithfully reproduced, advancing theory in surface science and portending diverse practical applications. However, after 15 years, no synthetic mimic can yet perform as well as a gecko and simultaneously meet of all the criteria listed above. Moreover, processes for the production of inexpensive and scalable products are still not clearly in view. Here, we discuss our perspective on some of the gaps in understanding that still remain; these gaps in our knowledge should stimulate us to turn to deeper study of the way in which free-ranging geckos stick to the variety of surfaces found in their natural environments and to a more complete analysis of the materials composing the gecko toe pads.
Collapse
Affiliation(s)
- Peter H Niewiarowski
- Department of Biology and Integrated Bioscience Program, University of Akron, Akron, OH 44325, USA
| | - Alyssa Y Stark
- Department of Biology, University of Louisville, 139 Life Science Building, Louisville, KY 40292, USA
| | - Ali Dhinojwala
- Department of Polymer Science, University of Akron, Akron, OH 44325, USA
| |
Collapse
|
24
|
Stark AY, Subarajan S, Jain D, Niewiarowski PH, Dhinojwala A. Superhydrophobicity of the gecko toe pad: biological optimization versus laboratory maximization. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2016.0184. [PMID: 27354726 DOI: 10.1098/rsta.2016.0184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/03/2016] [Indexed: 06/06/2023]
Abstract
While many gecko-inspired hierarchically structured surfaces perform as well as or better than the natural adhesive system, these designs often fail to function across a variety of contexts. For example, the gecko can adhere to rough, wet and dirty surfaces; however, most synthetic mimics cannot maintain function when faced with a similar situation. The solution to this problem lies in a more thorough investigation of the natural system. Here, we review the adhesive system of the gecko toe pad, as well as the far less-well-studied anti-adhesive system that results from the chemistry and structure of the toe pad (superhydrophobicity). This paradoxical relationship serves as motivation to study functional optimization at the system level. As an example, we experimentally investigate the role of surface lipids in adhesion and anti-adhesion, and find a clear performance trade-off related to shear adhesion in air on a hydrophilic surface. This represents the first direct investigation of the role of surface lipids in gecko adhesion and anti-adhesion, and supports the argument that a system-level approach is necessary to elucidate optimization in biological systems. Without such an approach, bioinspired designs will be limited in functionality and context, especially compared to the natural systems they mimic.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'.
Collapse
Affiliation(s)
- Alyssa Y Stark
- Integrated Bioscience Program, , University of Akron, Akron, OH 44325, USA Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Shairani Subarajan
- Integrated Bioscience Program, , University of Akron, Akron, OH 44325, USA
| | - Dharamdeep Jain
- Department of Polymer Science, University of Akron, Akron, OH 44325, USA
| | | | - Ali Dhinojwala
- Department of Polymer Science, University of Akron, Akron, OH 44325, USA
| |
Collapse
|
25
|
The effect of temperature and humidity on adhesion of a gecko-inspired adhesive: implications for the natural system. Sci Rep 2016; 6:30936. [PMID: 27480603 PMCID: PMC4969590 DOI: 10.1038/srep30936] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/11/2016] [Indexed: 12/22/2022] Open
Abstract
The adhesive system of geckos has inspired hundreds of synthetic adhesives. While this system has been used relentlessly as a source of inspiration, less work has been done in reverse, where synthetics are used to test questions and hypotheses about the natural system. Here we take such an approach. We tested shear adhesion of a mushroom-tipped synthetic gecko adhesive under conditions that produced perplexing results in the natural adhesive system. Synthetic samples were tested at two temperatures (12 °C and 32 °C) and four different humidity levels (30%, 55%, 70%, and 80% RH). Surprisingly, adhesive performance of the synthetic samples matched that of living geckos, suggesting that uncontrolled parameters in the natural system, such as surface chemistry and material changes, may not be as influential in whole-animal performance as previously thought. There was one difference, however, when comparing natural and synthetic adhesive performance. At 12 °C and 80% RH, adhesion of the synthetic structures was lower than expected based on the natural system's performance. Our approach highlights a unique opportunity for both biologists and material scientists, where new questions and hypotheses can be fueled by joint comparisons of the natural and synthetic systems, ultimately improving knowledge of both.
Collapse
|
26
|
Biomimetic multifunctional surfaces inspired from animals. Adv Colloid Interface Sci 2016; 234:27-50. [PMID: 27085632 DOI: 10.1016/j.cis.2016.03.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 03/06/2016] [Accepted: 03/21/2016] [Indexed: 11/20/2022]
Abstract
Over millions of years, animals have evolved to a higher intelligent level for their environment. A large number of diverse surface structures on their bodies have been formed to adapt to the extremely harsh environment. Just like the structural diversity existed in plants, the same also applies true in animals. Firstly, this article provides an overview and discussion of the most common functional surface structures inspired from animals, such as drag reduction, noise reduction, anti-adhesion, anti-wear, anti-erosion, anti-fog, water capture, and optical surfaces. Then, some typical characteristics of morphologies, structures, and materials of the animal multifunctional surfaces were discussed. The adaptation of these surfaces to environmental conditions was also analyzed. It mainly focuses on the relationship between their surface functions and their surface structural characteristics. Afterwards, the multifunctional mechanisms or principles of these surfaces were discussed. Models of these structures were provided for the development of structure materials and machinery surfaces. At last, fabrication techniques and existing or potential technical applications inspired from biomimetic multifunctional surfaces in animals were also discussed. The application prospects of the biomimetic functional surfaces are very broad, such as civil field of self-cleaning textile fabrics and non-stick pots, ocean field of oil-water separation, sports field of swimming suits, space development field of lens arrays.
Collapse
|
27
|
Stark AY, Dryden DM, Olderman J, Peterson KA, Niewiarowski PH, French RH, Dhinojwala A. Adhesive interactions of geckos with wet and dry fluoropolymer substrates. J R Soc Interface 2016; 12:20150464. [PMID: 26109635 DOI: 10.1098/rsif.2015.0464] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fluorinated substrates like Teflon® (poly(tetrafluoroethylene); PTFE) are well known for their role in creating non-stick surfaces. We showed previously that even geckos, which can stick to most surfaces under a wide variety of conditions, slip on PTFE. Surprisingly, however, geckos can stick reasonably well to PTFE if it is wet. In an effort to explain this effect, we have turned our attention to the role of substrate surface energy and roughness when shear adhesion occurs in media other than air. In this study, we removed the roughness component inherent to commercially available PTFE and tested geckos on relatively smooth wet and dry fluoropolymer substrates. We found that roughness had very little effect on shear adhesion in air or in water and that the level of fluorination was most important for shear adhesion, particularly in air. Surface energy calculations of the two fluorinated substrates and one control substrate using the Tabor-Winterton approximation and the Young-Dupré equation were used to determine the interfacial energy of the substrates. Using these interfacial energies we estimated the ratio of wet and dry normal adhesion for geckos clinging to the three substrates. Consistent with the results for rough PTFE, our predictions show a qualitative trend in shear adhesion based on fluorination, and the quantitative experimental differences highlight the unusually low shear adhesion of geckos on dry smooth fluorinated substrates, which is not captured by surface energy calculations. Our work has implications for bioinspired design of synthetics that can preferentially stick in water but not in air.
Collapse
|
28
|
Shahsavan H, Salili SM, Jákli A, Zhao B. Smart Muscle-Driven Self-Cleaning of Biomimetic Microstructures from Liquid Crystal Elastomers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:6828-33. [PMID: 26418411 DOI: 10.1002/adma.201503203] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/31/2015] [Indexed: 05/22/2023]
Abstract
Muscle-driven actuation of biomimetic microfibrillar structures is achieved using integrative soft-lithography on a backing splayed liquid-crystal elastomer (LCE). Variation in the backing LCE layer thickness yields different modes of thermal deformation from a pure bend to a twist-bend. Muscular motion and dynamic self-cleaning of gecko toe pads are mimicked via this mechanism.
Collapse
Affiliation(s)
- Hamed Shahsavan
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Institute for Polymer Research, and Centre for Bioengineering and Biotechnology, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Chemical Physics Interdisciplinary Program and Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA
| | - Seyyed Muhammad Salili
- Chemical Physics Interdisciplinary Program and Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA
| | - Antal Jákli
- Chemical Physics Interdisciplinary Program and Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA
| | - Boxin Zhao
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Institute for Polymer Research, and Centre for Bioengineering and Biotechnology, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
29
|
Amador GJ, Hu DL. Cleanliness is next to godliness: mechanisms for staying clean. J Exp Biol 2015; 218:3164-74. [DOI: 10.1242/jeb.103937] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Getting dirty is a fundamental problem, and one for which there are few solutions, especially across the enormous range of animal size. How do both a honeybee and a squirrel get clean? In this Review, we discuss two broad types of cleaning, considered from the viewpoint of energetics. Non-renewable cleaning strategies rely upon the organism as an energy source. Examples include grooming motions, wet-dog shaking or the secretion of chemicals. Renewable cleaning strategies depend on environmental sources of energy, such as the use of eyelashes to redirect incoming wind and so reduce deposition onto the eye. Both strategies take advantage of body hair to facilitate cleaning, and honeybees and squirrels, for example, each have around 3 million hairs. This hair mat increases the area on which particles can land by a factor of 100, but also suspends particles above the body, reducing their adhesion and facilitating removal. We hope that the strategies outlined here will inspire energy-efficient cleaning strategies in synthetic systems.
Collapse
Affiliation(s)
- Guillermo J. Amador
- School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, MRDC 2211, Atlanta, GA 30332, USA
| | - David L. Hu
- School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, MRDC 2211, Atlanta, GA 30332, USA
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30322, USA
| |
Collapse
|
30
|
Paluch EK, Nelson CM, Biais N, Fabry B, Moeller J, Pruitt BL, Wollnik C, Kudryasheva G, Rehfeldt F, Federle W. Mechanotransduction: use the force(s). BMC Biol 2015; 13:47. [PMID: 26141078 PMCID: PMC4491211 DOI: 10.1186/s12915-015-0150-4] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mechanotransduction - how cells sense physical forces and translate them into biochemical and biological responses - is a vibrant and rapidly-progressing field, and is important for a broad range of biological phenomena. This forum explores the role of mechanotransduction in a variety of cellular activities and highlights intriguing questions that deserve further attention.
Collapse
Affiliation(s)
- Ewa K Paluch
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Celeste M Nelson
- Chemical & Biological Engineering, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ, 08544, USA
| | - Nicolas Biais
- Biology Department, Brooklyn College and the Graduate Center of the City University of New York, 2900 Bedford avenue, Brooklyn, NY, 11210, USA
| | - Ben Fabry
- Department of Physics, University of Erlangen-Nuremberg, Henkestrasse 91, 91052, Erlangen, Germany
| | - Jens Moeller
- Department of Mechanical Engineering, Microsystems Laboratory, Stanford University, 496 Lomita Mall, Durand Building Rm 102, Stanford, CA, 94305, USA
| | - Beth L Pruitt
- Department of Mechanical Engineering and Molecular and Cellular Physiology, Microsystems Laboratory, Stanford University, by courtesy, 496 Lomita Mall, Durand Building Rm 213, Stanford, CA, 94305, USA
| | - Carina Wollnik
- Georg-August-University, 3rd Institute of Physics - Biophysics, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Galina Kudryasheva
- Georg-August-University, 3rd Institute of Physics - Biophysics, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Florian Rehfeldt
- Georg-August-University, 3rd Institute of Physics - Biophysics, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Walter Federle
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
31
|
Stark AY, Ohlemacher J, Knight A, Niewiarowski PH. Run don't walk: locomotor performance of geckos on wet substrates. ACTA ACUST UNITED AC 2015; 218:2435-41. [PMID: 26034124 DOI: 10.1242/jeb.120683] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/20/2015] [Indexed: 11/20/2022]
Abstract
The gecko adhesive system has been under particular scrutiny for over a decade, as the field has recently attracted attention for its application to bio-inspired design. However, little is known about how the adhesive system behaves in ecologically relevant conditions. Geckos inhabit a variety of environments, many of which are characterized by high temperature, humidity and rain. The van der Waals-based gecko adhesive system should be particularly challenged by wet substrates because water can disrupt the intimate contact necessary for adhesion. While a few previous studies have focused on the clinging ability of geckos on wet substrates, we tested a dynamic performance characteristic, sprint velocity. To better understand how substrate wettability and running orientation affect locomotor performance of multiple species on wet substrates, we measured average sprint velocity of five species of gecko on substrates that were either hydrophilic or intermediately wetting and oriented either vertically or horizontally. Surprisingly, we found no indication that wet substrates impact average sprint velocity over 1 m, and rather, in some species, sprint velocity was increased on wet substrates rather than reduced. When investigating physical characteristics and behavior that may be associated with running on wet substrates, such as total number of stops, slips and wet toes at the completion of a race, we found that there may be habitat-related differences between some species. Our results show that in general, unlike clinging and walking, geckos running along wet substrates suffer no significant loss in locomotor performance over short distances.
Collapse
Affiliation(s)
- Alyssa Y Stark
- Integrated Bioscience Program, The University of Akron, Akron, OH 44325-3908, USA
| | - Jocelyn Ohlemacher
- Integrated Bioscience Program, The University of Akron, Akron, OH 44325-3908, USA
| | - Ashley Knight
- Integrated Bioscience Program, The University of Akron, Akron, OH 44325-3908, USA
| | - Peter H Niewiarowski
- Integrated Bioscience Program, The University of Akron, Akron, OH 44325-3908, USA
| |
Collapse
|
32
|
Autumn K, Niewiarowski PH, Puthoff JB. Gecko Adhesion as a Model System for Integrative Biology, Interdisciplinary Science, and Bioinspired Engineering. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2014. [DOI: 10.1146/annurev-ecolsys-120213-091839] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kellar Autumn
- Department of Biology, Lewis & Clark College, Portland, Oregon 97219; ,
| | | | | |
Collapse
|
33
|
The role of surface chemistry in adhesion and wetting of gecko toe pads. Sci Rep 2014; 4:6643. [PMID: 25323067 PMCID: PMC4200409 DOI: 10.1038/srep06643] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/29/2014] [Indexed: 11/08/2022] Open
Abstract
An array of micron-sized setal hairs offers geckos a unique ability to walk on vertical surfaces using van der Waals interactions. Although many studies have focused on the role of surface morphology of the hairs, very little is known about the role of surface chemistry on wetting and adhesion. We expect that both surface chemistry and morphology are important, not only to achieve optimum dry adhesion but also for increased efficiency in self-cleaning of water and adhesion under wet conditions. Here, we used a plasma-based vapor deposition process to coat the hairy patterns on gecko toe pad sheds with polar and non-polar coatings without significantly perturbing the setal morphology. By a comparison of wetting across treatments, we show that the intrinsic surface of gecko setae has a water contact angle between 70-90°. As expected, under wet conditions, adhesion on a hydrophilic surface (glass) was lower than that on a hydrophobic surface (alkyl-silane monolayer on glass). Surprisingly under wet and dry conditions the adhesion was comparable on the hydrophobic surface, independent of the surface chemistry of the setal hairs. This work highlights the need to utilize morphology and surface chemistry in developing successful synthetic adhesives with desirable adhesion and self-cleaning properties.
Collapse
|
34
|
Effects of surface wettability on gecko adhesion underwater. Colloids Surf B Biointerfaces 2014; 122:662-668. [DOI: 10.1016/j.colsurfb.2014.07.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/20/2014] [Accepted: 07/27/2014] [Indexed: 11/15/2022]
|
35
|
Stark AY, Wucinich NA, Paoloni EL, Niewiarowski PH, Dhinojwala A. Self-drying: a gecko's innate ability to remove water from wet toe pads. PLoS One 2014; 9:e101885. [PMID: 25054217 PMCID: PMC4108337 DOI: 10.1371/journal.pone.0101885] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/12/2014] [Indexed: 11/18/2022] Open
Abstract
When the adhesive toe pads of geckos become wet, they become ineffective in enabling geckos to stick to substrates. This result is puzzling given that many species of gecko are endemic to tropical environments where water covered surfaces are ubiquitous. We hypothesized that geckos can recover adhesive capabilities following exposure of their toe pads to water by walking on a dry surface, similar to the active self-cleaning of dirt particles. We measured the time it took to recover maximum shear adhesion after toe pads had become wet in two groups, those that were allowed to actively walk and those that were not. Keeping in mind the importance of substrate wettability to adhesion on wet surfaces, we also tested geckos on hydrophilic glass and an intermediately wetting substrate (polymethylmethacrylate; PMMA). We found that time to maximum shear adhesion recovery did not differ in the walking groups based on substrate wettability (22.7±5.1 min on glass and 15.4±0.3 min on PMMA) but did have a significant effect in the non-walking groups (54.3±3.9 min on glass and 27.8±2.5 min on PMMA). Overall, we found that by actively walking, geckos were able to self-dry their wet toe pads and regain maximum shear adhesion significantly faster than those that did not walk. Our results highlight a unexpected property of the gecko adhesive system, the ability to actively self-dry and recover adhesive performance after being rendered dysfunctional by water.
Collapse
Affiliation(s)
- Alyssa Y. Stark
- Integrated Bioscience Program, University of Akron, Akron, Ohio, United States of America
- * E-mail:
| | - Nicholas A. Wucinich
- Integrated Bioscience Program, University of Akron, Akron, Ohio, United States of America
| | - Eva L. Paoloni
- Integrated Bioscience Program, University of Akron, Akron, Ohio, United States of America
| | - Peter H. Niewiarowski
- Integrated Bioscience Program, University of Akron, Akron, Ohio, United States of America
| | - Ali Dhinojwala
- Department of Polymer Science, University of Akron, Akron, Ohio, United States of America
| |
Collapse
|
36
|
Stark AY, McClung B, Niewiarowski PH, Dhinojwala A. Reduction of Water Surface Tension Significantly Impacts Gecko Adhesion Underwater. Integr Comp Biol 2014; 54:1026-33. [DOI: 10.1093/icb/icu066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
37
|
Spinner M, Gorb SN, Balmert A, Bleckmann H, Westhoff G. Non-contaminating camouflage: multifunctional skin microornamentation in the West African Gaboon viper (Bitis rhinoceros). PLoS One 2014; 9:e91087. [PMID: 24599379 PMCID: PMC3944882 DOI: 10.1371/journal.pone.0091087] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 02/08/2014] [Indexed: 11/19/2022] Open
Abstract
The West African Gaboon viper (Bitis rhinoceros) has an extraordinary coloration of pale brown and velvety black markings. The velvety black appearance is caused by a unique hierarchical surface structures which was not found on the pale brown scales. In the present study we examined the wettability of the vipeŕs scales by measuring contact angles of water droplets. Velvet black scale surfaces had high static contact angles beyond 160° and low roll-off angles below 20° indicating an outstanding superhydrophobicity. Our calculations showed that the Cassie-Baxter model describes well wettability effects for these surfaces. Self-cleaning capabilities were determined by contaminating the scales with particles and fogging them until droplets formed. Black scales were clean after fogging, while pale scales stayed contaminated. Black scales feature multifunctional structures providing not only water-repellent but also self-cleaning properties. The pattern of nanoridges can be used as a model for surface-active technical surfaces.
Collapse
Affiliation(s)
- Marlene Spinner
- Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| | - Stanislav N. Gorb
- Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| | | | | | | |
Collapse
|
38
|
|
39
|
Spinner M, Gorb SN, Westhoff G. Diversity of functional microornamentation in slithering geckos Lialis (Pygopodidae). Proc Biol Sci 2013; 280:20132160. [PMID: 24107533 PMCID: PMC3813336 DOI: 10.1098/rspb.2013.2160] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 09/16/2013] [Indexed: 11/12/2022] Open
Abstract
The skin of geckos is covered with countless microscopic protuberances (spines). This surface structure causes low wettability to water. During evolution, representatives of the recent gekkotan clade Pygopodidae started slithering on the ground. This manner of locomotion affected limb reduction resulting in a snake-like body. Regarding abrasion and frictional properties, a surface covered with gekkotan spines is a topography that hampers the snake-like locomotion mode. Using scanning electron microscopy, we investigated the shed skins of two pygopodid lizards, Lialis jicari (Papua snake lizard) and Lialis burtonis (Burton's legless lizard), in order to show epidermal adaptations to limbless locomotion. Our data showed that Pygopodidae differ from their relatives not only anatomically, but also in their epidermal microstructure. Scales of L. jicari have five different structural patterns on various body regions. Ventral scales have nanoridges, similar to those found on the ventralia of snakes. Surfaces of scales covering the jaw bones, have flattened spine-like microstructures that might be an adaptation to reduce abrasion. Dorsal scales have oblong microscopic bulges covered with nanoridges. Spines cover the undersides and the interstices of scales over the entire body of both species and in L. jicari also the top of dorsal head scales. Our measurements of surface wettability (surface free energy) show superhydrophobic properties of the spiny surfaces in comparison with the other microstructural patterns of other body parts.
Collapse
Affiliation(s)
- M. Spinner
- Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
- Institute of Zoology, University of Bonn, Poppelsdorfer Schloss, 53115 Bonn, Germany
| | - S. N. Gorb
- Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - G. Westhoff
- Institute of Zoology, University of Bonn, Poppelsdorfer Schloss, 53115 Bonn, Germany
- Tierpark Hagenbeck gGmbH, Lokstedter Grenzstrasse 2, 22527 Hamburg, Germany
| |
Collapse
|
40
|
Surface wettability plays a significant role in gecko adhesion underwater. Proc Natl Acad Sci U S A 2013; 110:6340-5. [PMID: 23576727 DOI: 10.1073/pnas.1219317110] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although we now have thousands of studies focused on the nano-, micro-, and whole-animal mechanics of gecko adhesion on clean, dry substrates, we know relatively little about the effects of water on gecko adhesion. For many gecko species, however, rainfall frequently wets the natural surfaces they navigate. In an effort to begin closing this gap, we tested the adhesion of geckos on submerged substrates that vary in their wettability. When tested on a wet hydrophilic surface, geckos produced a significantly lower shear adhesive force (5.4 ± 1.33 N) compared with a dry hydrophilic surface (17.1 ± 3.93 N). In tests on an intermediate wetting surface and a hydrophobic surface, we found no difference in shear adhesion between dry and wet contact. Finally, in tests on polytetrafluoroethylene (PTFE), we found that geckos clung significantly better to wet PTFE (8.0 ± 1.09 N) than dry PTFE (1.6 ± 0.66 N). To help explain our results, we developed models based on thermodynamic theory of adhesion for contacting surfaces in different media and found that we can predict the ratio of shear adhesion in water to that in air. Our findings provide insight into how geckos may function in wet environments and also have significant implications for the development of a synthetic gecko mimic that retains adhesion in water.
Collapse
|
41
|
Stark AY, Sullivan TW, Niewiarowski PH. The effect of surface water and wetting on gecko adhesion. J Exp Biol 2012; 215:3080-6. [DOI: 10.1242/jeb.070912] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Despite profound interest in the mechanics and performance of the gecko adhesive system, relatively few studies have focused on performance under conditions that are ecologically relevant to the natural habitats of geckos. Because geckos are likely to encounter surfaces that are wet, we used shear force adhesion measurements to examine the effect of surface water and toe pad wetting on the whole-animal performance of a tropical-dwelling gecko (Gekko gecko). To test the effect of surface wetting, we measured the shear adhesive force of geckos on three substrate conditions: dry glass, glass misted with water droplets and glass fully submerged in water. We also investigated the effect of wetting on the adhesive toe pad by soaking the toe pads prior to testing. Finally, we tested for repeatability of the adhesive system in each wetting condition by measuring shear adhesion after each step a gecko made under treatment conditions. Wetted toe pads had significantly lower shear adhesive force in all treatments (0.86±0.09 N) than the control (17.96±3.42 N), as did full immersion in water (0.44±0.03 N). Treatments with droplets of water distributed across the surface were more variable and did not differ from treatments where the surface was dry (4.72±1.59 N misted glass; 9.76±2.81 N dry glass), except after the gecko took multiple steps. These findings suggest that surface water and the wetting of a gecko's adhesive toe pads may have significant consequences for the ecology and behavior of geckos living in tropical environments.
Collapse
Affiliation(s)
- Alyssa Y. Stark
- The University of Akron, Integrated Bioscience Program, Akron, OH 44325-3908, USA
| | - Timothy W. Sullivan
- The University of Akron, Integrated Bioscience Program, Akron, OH 44325-3908, USA
| | | |
Collapse
|
42
|
Hu S, Lopez S, Niewiarowski PH, Xia Z. Dynamic self-cleaning in gecko setae via digital hyperextension. J R Soc Interface 2012; 9:2781-90. [PMID: 22696482 DOI: 10.1098/rsif.2012.0108] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gecko toe pads show strong adhesion on various surfaces yet remain remarkably clean around everyday contaminants. An understanding of how geckos clean their toe pads while being in motion is essential for the elucidation of animal behaviours as well as the design of biomimetic devices with optimal performance. Here, we test the self-cleaning of geckos during locomotion. We provide, to our knowledge, the first evidence that geckos clean their feet through a unique dynamic self-cleaning mechanism via digital hyperextension. When walking naturally with hyperextension, geckos shed dirt from their toes twice as fast as they would if walking without hyperextension, returning their feet to nearly 80 per cent of their original stickiness in only four steps. Our dynamic model predicts that when setae suddenly release from the attached substrate, they generate enough inertial force to dislodge dirt particles from the attached spatulae. The predicted cleaning force on dirt particles significantly increases when the dynamic effect is included. The extraordinary design of gecko toe pads perfectly combines dynamic self-cleaning with repeated attachment/detachment, making gecko feet sticky yet clean. This work thus provides a new mechanism to be considered for biomimetic design of highly reuseable and reliable dry adhesives and devices.
Collapse
Affiliation(s)
- Shihao Hu
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA
| | | | | | | |
Collapse
|
43
|
Liu K, Du J, Wu J, Jiang L. Superhydrophobic gecko feet with high adhesive forces towards water and their bio-inspired materials. NANOSCALE 2012; 4:768-72. [PMID: 22139414 DOI: 10.1039/c1nr11369k] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Functional integration is an inherent characteristic for multiscale structures of biological materials. In this contribution, we first investigate the liquid-solid adhesive forces between water droplets and superhydrophobic gecko feet using a high-sensitivity micro-electromechanical balance system. It was found, in addition to the well-known solid-solid adhesion, the gecko foot, with a multiscale structure, possesses both superhydrophobic functionality and a high adhesive force towards water. The origin of the high adhesive forces of gecko feet to water could be attributed to the high density nanopillars that contact the water. Inspired by this, polyimide films with gecko-like multiscale structures were constructed by using anodic aluminum oxide templates, exhibiting superhydrophobicity and a strong adhesive force towards water. The static water contact angle is larger than 150° and the adhesive force to water is about 66 μN. The resultant gecko-inspired polyimide film can be used as a "mechanical hand" to snatch micro-liter liquids. We expect this work will provide the inspiration to reveal the mechanism of the high-adhesive superhydrophobic of geckos and extend the practical applications of polyimide materials.
Collapse
Affiliation(s)
- Kesong Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing, 100191, PR China.
| | | | | | | |
Collapse
|
44
|
Hsu PY, Ge L, Li X, Stark AY, Wesdemiotis C, Niewiarowski PH, Dhinojwala A. Direct evidence of phospholipids in gecko footprints and spatula-substrate contact interface detected using surface-sensitive spectroscopy. J R Soc Interface 2011; 9:657-64. [PMID: 21865250 DOI: 10.1098/rsif.2011.0370] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Observers ranging from Aristotle to young children have long marvelled at the ability of geckos to cling to walls and ceilings. Detailed studies have revealed that geckos are 'sticky' without the use of glue or suction devices. Instead, a gecko's stickiness derives from van der Waals interactions between proteinaceous hairs called setae and substrate. Here, we present surprising evidence that although geckos do not use glue, a residue is transferred on surfaces as they walk-geckos leave footprints. Using matrix-free nano-assisted laser desorption-ionization mass spectrometry, we identified the residue as phospholipids with phosphocholine head groups. Moreover, interface-sensitive sum-frequency generation spectroscopy revealed predominantly hydrophobic methyl and methylene groups and the complete absence of water at the contact interface between a gecko toe pad and the substrate. The presence of lipids has never been considered in current models of gecko adhesion. Our analysis of gecko footprints and the toe pad-substrate interface has significant consequences for models of gecko adhesion and by extension, the design of synthetic mimics.
Collapse
Affiliation(s)
- Ping Yuan Hsu
- Department of Polymer Science, The University of Akron, Akron, OH 44325, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Bullock JMR, Federle W. Beetle adhesive hairs differ in stiffness and stickiness: in vivo adhesion measurements on individual setae. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2011; 98:381-7. [PMID: 21465175 DOI: 10.1007/s00114-011-0781-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 11/26/2022]
Abstract
Leaf beetles are able to climb on smooth and rough surfaces using arrays of micron-sized adhesive hairs (setae) of varying morphology. We report the first in vivo adhesive force measurements of individual setae in the beetle Gastrophysa viridula, using a smooth polystyrene substrate attached to a glass capillary micro-cantilever. The beetles possess three distinct adhesive pads on each leg which differ in function and setal morphology. Visualisation of pull-offs allowed forces to be measured for each tarsal hair type. Male discoidal hairs adhered with the highest forces (919 ± 104 nN, mean ± SE), followed by spatulate (582 ± 59 nN) and pointed (127 ± 19 nN) hairs. Discoidal hairs were stiffer in the normal direction (0.693 ± 0.111 N m(-1)) than spatulate (0.364 ± 0.039 N m(-1)) or pointed (0.192 ± 0.044 N m(-1)) hairs. The greater adhesion on smooth surfaces and the higher stability of discoidal hairs help male beetles to achieve strong adhesion on the elytra of females during copulation. A comparison of pull-off forces measured for single setae and whole pads (arrays) revealed comparable levels of adhesive stress. This suggests that beetles are able to achieve equal load sharing across their adhesive pads so that detachment through peeling is prevented.
Collapse
Affiliation(s)
- James M R Bullock
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | | |
Collapse
|
46
|
Hill GC, Soto DR, Peattie AM, Full RJ, Kenny TW. Orientation angle and the adhesion of single gecko setae. J R Soc Interface 2011; 8:926-33. [PMID: 21288955 DOI: 10.1098/rsif.2010.0720] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We investigated the effects of orientation angle on the adhesion of single gecko setae using dual-axis microelectromechanical systems force sensors to simultaneously detect normal and shear force components. Adhesion was highly sensitive to the pitch angle between the substrate and the seta's stalk. Maximum lateral adhesive force was observed with the stalk parallel to the substrate, and adhesion decreased smoothly with increasing pitch. The roll orientation angle only needed to be roughly correct with the spatular tuft of the seta oriented grossly towards the substrate for high adhesion. Also, detailed measurements were made to control for the effect of normal preload forces. Higher normal preload forces caused modest enhancement of the observed lateral adhesive force, provided that adequate contact was made between the seta and the substrate. These results should be useful in the design and manufacture of gecko-inspired synthetic adhesives with anisotropic properties, an area of substantial recent research efforts.
Collapse
Affiliation(s)
- Ginel C Hill
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.
| | | | | | | | | |
Collapse
|
47
|
Clemente CJ, Bullock JMR, Beale A, Federle W. Evidence for self-cleaning in fluid-based smooth and hairy adhesive systems of insects. J Exp Biol 2010; 213:635-42. [DOI: 10.1242/jeb.038232] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Insects possess adhesive organs that allow attachment to diverse surfaces. Efficient adhesion must be retained throughout their lifetime even when pads are exposed to contamination. Many insects groom their adhesive structures, but it is possible that self-cleaning properties also play an important role. We measured attachment forces of insect pads on glass after contamination with microspheres and found that both smooth pads (stick insects: Carausius morosus) and hairy pads (dock beetles: Gastrophysa viridula) exhibit self-cleaning. Contaminated pads recovered high levels of adhesion after only eight simulated steps; this was accompanied by the deposition of spheres. Self-cleaning was strongly enhanced by shear movements, and only beetle pads showed the ability to self-clean during purely perpendicular pull-offs. Hairy pads also self-cleaned more efficiently than smooth pads for both large (45 μm) and small (1 μm) particle sizes. However, the beetles' self-cleaning was not superior to smooth pads when contaminated with 10-μm beads. This limitation of self-cleaning is explained by the coincidence of bead diameter and inter-seta distance, which caused beads to remain trapped in between setae.
Collapse
Affiliation(s)
| | - James M. R. Bullock
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Andrew Beale
- University College London, Gower Street, London, WC1E 6BT, UK
| | - Walter Federle
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
48
|
Pesika NS, Zeng H, Kristiansen K, Zhao B, Tian Y, Autumn K, Israelachvili J. Gecko adhesion pad: a smart surface? JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2009; 21:464132. [PMID: 21715896 DOI: 10.1088/0953-8984/21/46/464132] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.
Collapse
Affiliation(s)
- Noshir S Pesika
- Chemical and Biomolecular Engineering Department, Tulane University, New Orleans, LA 70118, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Wong TS, Ho CM. Dependence of macroscopic wetting on nanoscopic surface textures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:12851-4. [PMID: 19842620 PMCID: PMC2783847 DOI: 10.1021/la902430w] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The hydrophobicity of a surface can be enhanced by physical textures. However, no existing theories of surface wetting can provide guidance to pinpoint the texture size requirement to achieve super/ultrahydrophobicity. Here, we show that the three-phase contact line tension, tau, is an important link to understand the dependence of macroscopic wetting on physical texture size in an ideal Cassie regime. Specifically, we show that texture size is the dominant parameter in determining surface hydrophobicity when the size approaches a limiting physical length scale, as defined by tau and the surface tension of the liquid.
Collapse
|
50
|
Gravish N, Wilkinson M, Sponberg S, Parness A, Esparza N, Soto D, Yamaguchi T, Broide M, Cutkosky M, Creton C, Autumn K. Rate-dependent frictional adhesion in natural and synthetic gecko setae. J R Soc Interface 2009; 7:259-69. [PMID: 19493896 DOI: 10.1098/rsif.2009.0133] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Geckos owe their remarkable stickiness to millions of dry, hard setae on their toes. In this study, we discovered that gecko setae stick more strongly the faster they slide, and do not wear out after 30,000 cycles. This is surprising because friction between dry, hard, macroscopic materials typically decreases at the onset of sliding, and as velocity increases, friction continues to decrease because of a reduction in the number of interfacial contacts, due in part to wear. Gecko setae did not exhibit the decrease in adhesion or friction characteristic of a transition from static to kinetic contact mechanics. Instead, friction and adhesion forces increased at the onset of sliding and continued to increase with shear speed from 500 nm s(-1) to 158 mm s(-1). To explain how apparently fluid-like, wear-free dynamic friction and adhesion occur macroscopically in a dry, hard solid, we proposed a model based on a population of nanoscopic stick-slip events. In the model, contact elements are either in static contact or in the process of slipping to a new static contact. If stick-slip events are uncorrelated, the model further predicted that contact forces should increase to a critical velocity (V*) and then decrease at velocities greater than V*. We hypothesized that, like natural gecko setae, but unlike any conventional adhesive, gecko-like synthetic adhesives (GSAs) could adhere while sliding. To test the generality of our results and the validity of our model, we fabricated a GSA using a hard silicone polymer. While sliding, the GSA exhibited steady-state adhesion and velocity dependence similar to that of gecko setae. Observations at the interface indicated that macroscopically smooth sliding of the GSA emerged from randomly occurring stick-slip events in the population of flexible fibrils, confirming our model predictions.
Collapse
Affiliation(s)
- Nick Gravish
- Department of Biology, Lewis & Clark College, Portland, OR, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|