1
|
Gui W, Wang WX. Copper redox state in cells and aquatic organisms: Implication for toxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135039. [PMID: 38941830 DOI: 10.1016/j.jhazmat.2024.135039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Copper (Cu) redox state has been an important issue in biology and toxicology research, but many research gaps remain to be explored due to the limitations in the detecting techniques. Herein, the regulation of Cu homeostasis, including absorption, translocation, utilization, storage, and elimination behavior is discussed. Cuproptosis, a newly identified type of cell death caused by excessive Cu accumulation, which results in the aggregation of DLAT protein or the loss of Fe-S cluster and finally proteotoxic stress, is reviewed. Several longstanding mysteries of diseases such as Wilson disease and toxic effects, may be attributed to cuproptosis. Furthermore, we review the advanced detection methods and application of Cu(I) and Cu(II), especially the in-situ imaging techniques such as XANES, and chemosensors. Most of the existing studies using these detection techniques focus on the bioaccumulation and toxicity of Cu(I) and Cu(II) in cells and aquatic organisms. Finally, it will be important to identify the roles of Cu(I) and Cu(II) in the growth, development, and diseases of organisms, as well as the relationship between bioaccumulation and toxicity of Cu(I) and Cu(II) in cellular and aquatic toxicology.
Collapse
Affiliation(s)
- Wanying Gui
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
2
|
Weinrauch AM, Hoogenboom JL, Anderson WG. A review of reductionist methods in fish gastrointestinal tract physiology. Comp Biochem Physiol B Biochem Mol Biol 2021; 254:110571. [PMID: 33556622 DOI: 10.1016/j.cbpb.2021.110571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 11/25/2022]
Abstract
A holistic understanding of a physiological system can be accomplished through the use of multiple methods. Our current understanding of the fish gastrointestinal tract (GIT) and its role in both nutrient handling and osmoregulation is the result of the examination of the GIT using multiple reductionist methods. This review summarizes the following methods: in vivo mass balance studies, and in vitro gut sac preparations, intestinal perfusions, and Ussing chambers. From Homer Smith's initial findings of marine fish intestinal osmoregulation in the 1930s through to today's research, we discuss the methods, their advantages and pitfalls, and ultimately how they have each contributed to our understanding of fish GIT physiology. Although in vivo studies provide substantial information on the intact animal, segment specific functions of the GIT cannot be easily elucidated. Instead, in vitro gut sac preparations, intestinal perfusions, or Ussing chamber experiments can provide considerable information on the function of a specific tissue and permit the delineation of specific transport pathways through the use of pharmacological agents; however, integrative inputs (e.g. hormonal and neuronal) are removed and only a fraction of the organ system can be studied. We conclude with two case studies, i) divalent cation transport in teleosts and ii) nitrogen handling in the elasmobranch GIT, to highlight how the use of multiple reductionist methods contributes to a greater understanding of the organ system as a whole.
Collapse
Affiliation(s)
- Alyssa M Weinrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - J Lisa Hoogenboom
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
3
|
Quantification of Mg2+, Ca2+ and H+ transport by the gastrointestinal tract of the goldfish, Carassius auratus, using the Scanning Ion-selective Electrode Technique (SIET). PLoS One 2018; 13:e0207782. [PMID: 30513099 PMCID: PMC6279021 DOI: 10.1371/journal.pone.0207782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/06/2018] [Indexed: 11/28/2022] Open
Abstract
An in vitro gut-sac technique and the scanning ion-selective electrode technique (SIET) were used to characterize Mg2+, Ca2+, and H+ transport at both the mucosal and serosal surfaces of non-everted and everted gastrointestinal tissues obtained from Carassius auratus. As part of the study, two magnesium ionophores were compared (II vs. VI). Unfed animals displayed uniform transport of all ions along the intestine. Feeding resulted in elevated Mg2+ and Ca2+ transport when the gut lumen contained chyme however, under symmetrical conditions this increased transport rate was absent. Furthermore, zonation of divalent cation transport was present for both Ca2+ and Mg2+ under non-symmetrical conditions while the zonation remained for Ca2+ alone under symmetrical conditions. High dietary Mg2+ decreased absorption and induced secretion of Mg2+ in the posterior intestine. Uptake kinetics in the esophagus suggest large diffusive and/or convective components based on a linear relationship between Mg2+ transport and concentration and lack of inhibition by ouabain, an inhibitor of Na+-K+-ATPase. In contrast, kinetics in the rectum were suggestive of a low affinity, saturable carrier-mediated pathway. A decrease in Mg2+ and Ca2+ transport was observed in the posterior intestine (both at the mucosal and serosal surfaces) in response to ouabain. This impact was greatest for Ca2+ transport and when applied to the mucosal fluid and measured in everted preparations. In contrast a putative Mg2+ transport inhibitor, cobalt(III)hexamine-chloride, did not affect Mg2+ transport. This is the first study to use SIET approaches to study ion transport in the gut of teleost fish. This is also the first study to provide characterization of Mg2+ transport in the gut of C. auratus. Due to the limited selectivity of Magnesium ionophore II, subsequent studies of tissues bathed in physiological saline should be made using Magnesium Ionophore VI.
Collapse
|
4
|
Melvin SD, Lanctôt CM, Doriean NJC, Carroll AR, Bennett WW. Untargeted NMR-based metabolomics for field-scale monitoring: Temporal reproducibility and biomarker discovery in mosquitofish (Gambusia holbrooki) from a metal(loid)-contaminated wetland. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1096-1105. [PMID: 30253300 DOI: 10.1016/j.envpol.2018.09.071] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/29/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
There is considerable interest in applying omics techniques, which have proven extremely valuable for laboratory-based toxicology studies, towards field-scale ecotoxicology and environmental monitoring. Concerns that confounding factors in natural ecosystems may exacerbate variability in omics datasets must be addressed to validate the transition from laboratory to field. This study explores how temporal variability related to seasonal and climatic trends influence qualitative and quantitative metabolomics outcomes, in fish from reference and metal(loid)-polluted wetlands in Australia. Female mosquitofish (Gambusia holbrooki) were sampled on two separate occasions, from a rehabilitated tailings wetland at the site of historic antimony (Sb) processing and a reference wetland with comparable water quality. The first sampling coincided with greater monthly rainfall and colder water temperature, whereas the second sampling was drier and water was warmer. Despite temporal changes and associated differences in metal(loid) concentrations, site differences in metabolite profiles were qualitatively very similar between sampling events. However, quantitative differences were observed, with a greater number of significantly altered metabolites identified during the second sampling event, which coincided with greater metal(loid) concentrations in both water and fish. The majority of identified metabolites were elevated in fish from the contaminated wetland, but with notable decreases in several metabolites that are known to play a role in various aspects of metal(loid) binding, detoxification and excretion. Specifically, decreased aspartate, histidine, myo-inositol, taurine and choline were observed in fish from the contaminated wetland, and may therefore represent a metabolite suite that is broadly indicative of metal toxicity. Quantitative differences between sampling events are suggestive of a dose-response relationship observable at the cellular level which, if harnessed, may be useful for assigning levels of concern based on the degree of change in a multi-parameter set of metabolite biomarkers.
Collapse
Affiliation(s)
- Steven D Melvin
- Australian Rivers Institute, Griffith University, Southport, QLD, 4215, Australia.
| | - Chantal M Lanctôt
- Australian Rivers Institute, Griffith University, Southport, QLD, 4215, Australia
| | - Nicholas J C Doriean
- Environmental Futures Research Institute, Griffith University, Southport, QLD, 4222, Australia
| | - Anthony R Carroll
- Environmental Futures Research Institute, Griffith University, Southport, QLD, 4222, Australia; Griffith Research Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia
| | - William W Bennett
- Environmental Futures Research Institute, Griffith University, Southport, QLD, 4222, Australia
| |
Collapse
|
5
|
Langan LM, Owen SF, Jha AN. Establishment and long-term maintenance of primary intestinal epithelial cells cultured from the rainbow trout, Oncorhynchus mykiss. Biol Open 2018. [PMID: 29514825 PMCID: PMC5898270 DOI: 10.1242/bio.032870] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A novel method for the establishment and long-term maintenance of ex vivo cultures from intestinal regions of the rainbow trout, Oncorhynchus mykiss (Walbaum), is reported. Adherence of cells was observed within hours, epithelial island formation recorded at 48 h and rapid proliferation with confluence achieved between 9-14 days. In addition to metabolic characterisation, basic morphology of growing cells was characterised using histology, immunofluorescence, transmission electron microscopy (TEM) and transepithelial electrical resistance (TEER). Regional differences in intestinal ethoxyresorufin-O-deethylase (EROD) and 7-ethoxycoumarin-O-deethylation (ECOD) activities in these primary grown enterocytes were compared following exposure to model inducers [i.e. α-NF, β-NF, B(a)P] which demonstrated significant differences. Regional differences in dietary uptake and metabolism of contaminants can therefore be studied in this in vitro system to increase our understanding of fundamental processes, while concurrently providing a means to reduce the number of fish required for biological studies in line with the principles of the 3Rs (Reduce, Refine and Replace). This article has an associated First Person interview with the first author of the paper. Summary: Understanding chemical uptake from the diet is difficult in live fish: we developed long-term intestinal cell cultures that enables the science and provides an alternative method.
Collapse
Affiliation(s)
- Laura M Langan
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Stewart F Owen
- Global Sustainability, AstraZeneca, Alderley Park, Macclesfield, Cheshire, SK10 4TF, UK
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| |
Collapse
|
6
|
Ling SC, Luo Z, Chen GH, Zhang DG, Liu X. Waterborne Zn influenced Zn uptake and lipid metabolism in two intestinal regions of juvenile goby Synechogobius hasta. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:578-584. [PMID: 29127820 DOI: 10.1016/j.ecoenv.2017.10.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
The present study explored the influence of Zn addition in the water on Zn transport and lipid metabolism of two intestinal regions in goby Synechogobius hasta. Zn contents in water were 0.004 (control), 0.181 and 0.361mg Zn L-1, respectively. The experiment lasted for 28 days. TG and Zn contents, mRNA contents of genes of Zn transport and lipid metabolism, and enzyme activity from anterior and mid-intestine tissues were analyzed. In anterior intestine, Zn addition in the water increased Zn contents, and mRNA concentrations of ZIP4, ZIP5, ATGL, PPARα, ZNF202 and KLF7, decreased TG contents, 6PGD and G6PD activities, and mRNA contents of 6PGD, G6PD, FAS, PPARγ, ICDH and KLF4. In mid-intestine tissue, the highest Zn and TG contents were observed for 0.18mg Zn/l group, in parallel with the highest expressions of ZnT1, ZIP4, ZIP5, 6PGD, FAS, ICDH, PPARγ, PPARα, ZNF202, KLF4 and KLF7, and with the highest FAS, 6PGD and G6PD activities. Thus, in the anterior intestine, Zn addition increased lipolysis and decreased lipogenesis, and accordingly reduced TG content. However, the highest mid-intestinal TG content in 0.18mg Zn/l group was due to the up-regulated lipogenesis. Although lipolysis was also increased, the incremental lipid synthesis was enough to compensate for lipid degradation, which led TG accumulation. Our results, for the first time, show an anterior/mid functional regionalization of the intestine in lipid metabolism and Zn transport of S. hasta following Zn exposure.
Collapse
Affiliation(s)
- Shi-Cheng Ling
- Laboratory of Nutrition Physiology and Feed Formulation, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Laboratory of Nutrition Physiology and Feed Formulation, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde 415000, China.
| | - Guang-Hui Chen
- Laboratory of Nutrition Physiology and Feed Formulation, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Dian-Guang Zhang
- Laboratory of Nutrition Physiology and Feed Formulation, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Liu
- Panjin Guanghe Crab Co. Ltd., Panjin 124200, China
| |
Collapse
|
7
|
Cheng J, Luo Z, Chen GH, Wei CC, Zhuo MQ. Identification of eight copper (Cu) uptake related genes from yellow catfish Pelteobagrus fulvidraco, and their tissue expression and transcriptional responses to dietborne Cu exposure. J Trace Elem Med Biol 2017; 44:256-265. [PMID: 28965584 DOI: 10.1016/j.jtemb.2017.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 09/01/2017] [Accepted: 09/01/2017] [Indexed: 12/18/2022]
Abstract
The present working hypothesis is that absorption of dietary Cu is related to mRNA expressions of genes involved in Cu uptake and transport of the intestine in fish. To this end, the full-length cDNA sequences of eight Cu uptake related genes, including two isoforms of copper transporter genes (ctr1 and ctr2), three copper chaperone genes (atox1, ccs and cox17), two Cu-ATPase genes (atp7a and atp7b) and divalent metal ion transporter 1 (dmt1), were cloned and characterized in yellow catfish P. fulvidraco, respectively. Their mRNA tissue expression and transcriptional responses to dietborne Cu exposure were investigated. Compared to the corresponding members of mammals, all of these members in P. fulvidraco shared the similar conserved domain structures. Their mRNAs were expressed in a wide range of tissues (including liver, muscle, spleen, brain, gill, intestine, heart and kidney), but at variable levels. In anterior intestine, mRNA levels of ctr1, cox17, dmt1 and atp7a declined with increasing dietary Cu levels. The mRNA levels of ctr2 and mt were the highest for excess dietary Cu group and showed no significant differences between other two treatments. Atox1 mRNA levels were the highest for Cu-deficient group and showed no significant differences between other two treatments. The mRNA levels of ccs were the highest for Cu-deficient group, followed by Cu-excess group and the lowest for adequate-Cu group. In contrast, atp7b mRNA levels were the highest for Cu-excess group and the lowest for adequate Cu group. In the mid-intestine, mRNA levels of ctr1, ctr2, atox1, ccs, cox17, dmt1 and atp7a declined with increasing dietary Cu levels. Atp7b mRNA levels were the lowest for adequate Cu group and showed no significant differences between other two treatments. Mt mRNA levels were the lowest for adequate Cu group and highest for Cu-excess group. For the first time, our study cloned and characterized ctr1, ctr2, atox1, ccs, cox17, atp7a, atp7b and dmt1 genes in P. fulvidraco and determined their tissue-specific expression, and transcriptional responses in the anterior and mid-intestine of yellow catfish under dietborne Cu exposure, which shed new light on the Cu uptake system and help to understand the molecular mechanisms of Cu homeostasis in fish.
Collapse
Affiliation(s)
- Jie Cheng
- Key Laboratory of Freshwater Animal Breeding Ministry of Agriculture of P.R.China, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding Ministry of Agriculture of P.R.China, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde 415000, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guang-Hui Chen
- Key Laboratory of Freshwater Animal Breeding Ministry of Agriculture of P.R.China, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuan-Chuan Wei
- Key Laboratory of Freshwater Animal Breeding Ministry of Agriculture of P.R.China, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Mei-Qin Zhuo
- Key Laboratory of Freshwater Animal Breeding Ministry of Agriculture of P.R.China, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
8
|
Langan LM, Harper GM, Owen SF, Purcell WM, Jackson SK, Jha AN. Application of the rainbow trout derived intestinal cell line (RTgutGC) for ecotoxicological studies: molecular and cellular responses following exposure to copper. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:1117-1133. [PMID: 28785844 PMCID: PMC5617881 DOI: 10.1007/s10646-017-1838-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
There is an acknowledged need for in vitro fish intestinal model to help understand dietary exposure to chemicals in the aquatic environment. The presence and use of such models is however largely restrictive due to technical difficulties in the culturing of enterocytes in general and the availability of appropriate established cell lines in particular. In this study, the rainbow trout (Oncorhynchus mykiss) intestinal derived cell line (RTgutGC) was used as a surrogate for the "gut sac" method. To facilitate comparison, RTgutGC cells were grown as monolayers (double-seeded) on permeable Transwell supports leading to a two-compartment intestinal model consisting of polarised epithelium. This two-compartment model divides the system into an upper apical (lumen) and a lower basolateral (portal blood) compartment. In our studies, these cells stained weakly for mucosubstances, expressed the tight junction protein ZO-1 in addition to E-cadherin and revealed the presence of polarised epithelium in addition to microvilli protrusions. The cells also revealed a comparable transepithelial electrical resistance (TEER) to the in vivo situation. Importantly, the cell line tolerated apical saline (1:1 ratio) thus mimicking the intact organ to allow assessment of uptake of compounds across the intestine. Following an exposure over 72 h, our study demonstrated that the RTgutGC cell line under sub-lethal concentrations of copper sulphate (Cu) and modified saline solutions demonstrated uptake of the metal with saturation levels comparable to short term ex situ gut sac preparations. Gene expression analysis revealed no significant influence of pH or time on mRNA expression levels of key stress related genes (i.e. CYP3A, GST, mtA, Pgp and SOD) in the Transwell model. However, significant positive correlations were found between all genes investigated suggesting a co-operative relationship amongst the genes studied. When the outlined characteristics of the cell line are combined with the division of compartments, the RTgutGC double seeded model represents a potential animal replacement model for ecotoxicological studies. Overall, this model could be used to study the effects and predict aquatic gastrointestinal permeability of metals and other environmentally relevant contaminants in a cost effective and high throughput manner.
Collapse
Affiliation(s)
- Laura M Langan
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Glenn M Harper
- Electron Microscopy Unit, Faculty of Science and Engineering, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Stewart F Owen
- AstraZeneca, Alderly Park, Macclesfield, Cheshire, SK10 4TF, UK
| | - Wendy M Purcell
- School of Biomedical and Health Care Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Simon K Jackson
- School of Biomedical and Health Care Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK.
| |
Collapse
|
9
|
Ognik K, Stępniowska A, Kozłowski K. The effect of administration of silver nanoparticles to broiler chickens on estimated intestinal absorption of iron, calcium, and potassium. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Chen F, Luo Z, Chen GH, Shi X, Liu X, Song YF, Pan YX. Effects of waterborne Cu exposure on intestinal copper transport and lipid metabolism of Synechogobius hasta. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 178:171-181. [PMID: 27509383 DOI: 10.1016/j.aquatox.2016.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/01/2016] [Accepted: 08/03/2016] [Indexed: 06/06/2023]
Abstract
The present study was conducted to explore the effects of waterborne Cu exposure on intestinal Cu transport and lipid metabolism of Synechogobius hasta. S. hasta were exposed to 0, 0.4721 and 0.9442μM Cu, respectively. Sampling occurred on days 0, 21 and 42, respectively. Growth performance, intestinal lipid deposition, Cu content, and activities and mRNA expression of enzymes and genes involved in Cu transport and lipid metabolism were analyzed. Cu exposure decreased WG and SGR on days 21 and 42. Cu exposure increased intestinal Cu and lipid contents. Increased Cu accumulation was attributable to increased enzymatic activities (Cu-ATPase and Cu, Zn-SOD) and genes' (CTR1, CTR2, DMT1, ATP7a, ATP7b, MT1 and MT2) expression involved in Cu transport. Waterborne Cu exposure also increased activities of lipogenic enzymes (6PGD and ICDH on both days 21 and 42, ME on day 42), up-regulated mRNA levels of lipogenic genes (G6PD, 6PGD, ME, ICDH, FAS and ACCa), lipolytic genes (ACCb, CPT I and HSLa) and genes involved in intestinal fatty acid uptake (IFABP and FATP4) on both days 21 and 42. The up-regulation of lipolysis may result from the increased metabolic expenditure for detoxification and maintenance of the normal body functions in a response to Cu exposure. Meantime, Cu exposure increased lipogenesis and fatty acid uptake, leading to net lipid accumulation in the intestine despite increased lipolysis. To our knowledge, this is the first report involved in intestinal lipid metabolism in combination with intestinal Cu absorption following waterborne Cu exposure, which provides new insights and evidence into Cu toxicity in fish.
Collapse
Affiliation(s)
- Feng Chen
- Laboratory of Nutrition and Feed Formulation for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Laboratory of Nutrition and Feed Formulation for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde 415000, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China.
| | - Guang-Hui Chen
- Laboratory of Nutrition and Feed Formulation for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Shi
- Laboratory of Nutrition and Feed Formulation for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Liu
- Postgraduate Research Base, Panjin Guanghe Fishery Co. Ltd., Panjin 124200, China
| | - Yu-Feng Song
- Laboratory of Nutrition and Feed Formulation for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Ya-Xiong Pan
- Laboratory of Nutrition and Feed Formulation for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
11
|
Jiang WD, Qu B, Feng L, Jiang J, Kuang SY, Wu P, Tang L, Tang WN, Zhang YA, Zhou XQ, Liu Y. Histidine Prevents Cu-Induced Oxidative Stress and the Associated Decreases in mRNA from Encoding Tight Junction Proteins in the Intestine of Grass Carp (Ctenopharyngodon idella). PLoS One 2016; 11:e0157001. [PMID: 27280406 PMCID: PMC4900568 DOI: 10.1371/journal.pone.0157001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 05/22/2016] [Indexed: 01/14/2023] Open
Abstract
Copper (Cu) is a common heavy metal pollutant in aquatic environments that originates from natural as well as anthropogenic sources. The present study investigated whether Cu causes oxidative damage and induces changes in the expression of genes that encode tight junction (TJ) proteins, cytokines and antioxidant-related genes in the intestine of the grass carp (Ctenopharyngodon idella). We demonstrated that Cu decreases the survival rate of fish and increases oxidative damage as measured by increases in malondialdehyde and protein carbonyl contents. Cu exposure significantly decreased the expression of genes that encode the tight junction proteins, namely, claudin (CLDN)-c, -3 and -15 as well as occludin and zonula occludens-1, in the intestine of fish. In addition, Cu exposure increases the mRNA levels of the pro-inflammatory cytokines, specifically, IL-8, TNF-α and its related signalling factor (nuclear factor kappa B, NF-κB), which was partly correlated to the decreased mRNA levels of NF-κB inhibitor protein (IκB). These changes were associated with Cu-induced oxidative stress detected by corresponding decreases in glutathione (GSH) content, as well as decreases in the copper, zinc-superoxide dismutase (SOD1) and glutathione peroxidase (GPx) activities and mRNA levels, which were associated with the down-regulated antioxidant signalling factor NF-E2-related factor-2 (Nrf2) mRNA levels, and the Kelch-like-ECH-associated protein1 (Keap1) mRNA levels in the intestine of fish. Histidine supplementation in diets (3.7 up to 12.2 g/kg) blocked Cu-induced changes. These results indicated that Cu-induced decreases in intestinal TJ proteins and cytokine mRNA levels might be partially mediated by oxidative stress and are prevented by histidine supplementation in fish diet.
Collapse
Affiliation(s)
- Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Biao Qu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, 610066, Chengdu, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, 610066, Chengdu, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, 610066, Chengdu, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| |
Collapse
|
12
|
Whittamore JM, Genz J, Grosell M, Wilson RW. Measuring intestinal fluid transport in vitro: Gravimetric method versus non-absorbable marker. Comp Biochem Physiol A Mol Integr Physiol 2016; 194:27-36. [DOI: 10.1016/j.cbpa.2016.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/04/2016] [Accepted: 01/07/2016] [Indexed: 10/22/2022]
|
13
|
Rubino JG, Zimmer AM, Wood CM. Intestinal ammonia transport in freshwater and seawater acclimated rainbow trout (Oncorhynchus mykiss): evidence for a Na+ coupled uptake mechanism. Comp Biochem Physiol A Mol Integr Physiol 2014; 183:45-56. [PMID: 25545914 DOI: 10.1016/j.cbpa.2014.12.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 12/23/2022]
Abstract
In vitro gut sac experiments were performed on freshwater and 60% seawater acclimated trout (Oncorhynchus mykiss) under treatments designed to discern possible mechanisms of intestinal ammonia transport. Seawater acclimation increased ammonia flux rate into the serosal saline (Jsamm) in the anterior intestine, however it did not alter Jsamm in the mid- or posterior intestine suggesting similar mechanisms of ammonia handling in freshwater and seawater fish. Both fluid transport rate (FTR) and Jsamm were inhibited in response to basolateral ouabain treatment, suggesting a linkage of ammonia uptake to active transport, possibly coupled to fluid transport processes via solvent drag. Furthermore, decreases in FTR and Jsamm caused by low Na(+) treatment indicated a Na(+) linked transport mechanism. Mucosal bumetanide (10(-4) M) had no impact on FTR, yet decreased Jsamm in the anterior and mid-intestine, suggesting NH4(+) substitution for K(+) on an apical NKCC, and at least a partial uncoupling of ammonia transport from fluid transport. Additional treatments (amiloride, 5-(N-ethyl-N-isopropyl)amiloride (EIPA), phenamil, bafilomycin, 4',6-diamidino-2-phenylindole (DAPI), high sodium) intended to disrupt alternative routes of Na(+) uptake yielded no change in FTR or Jsamm, suggesting the absence of direct competition between Na(+) and ammonia for transport. Finally, [(14)C]methylamine permeability (PMA) measurements indicated the likely presence of an intestinal Rh-mediated ammonia transport system, as increasing NH4Cl (0, 1, 5 mmol l(-1)) concentrations reduced PMA, suggesting competition for transport through Rh proteins. Overall, the data presented in this paper provide some of the first insights into mechanisms of teleost intestinal ammonia transport.
Collapse
Affiliation(s)
- Julian G Rubino
- McMaster University, Life Sciences Building, Department of Biology, Hamilton, Ontario L8S 4K1, Canada; Bamfield Marine Sciences Centre, Bamfield, British Columbia V0R 1B0, Canada.
| | - Alex M Zimmer
- McMaster University, Life Sciences Building, Department of Biology, Hamilton, Ontario L8S 4K1, Canada; Bamfield Marine Sciences Centre, Bamfield, British Columbia V0R 1B0, Canada
| | - Chris M Wood
- McMaster University, Life Sciences Building, Department of Biology, Hamilton, Ontario L8S 4K1, Canada; Bamfield Marine Sciences Centre, Bamfield, British Columbia V0R 1B0, Canada; Dept. of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
14
|
Pelster B, Wood CM, Speers-Roesch B, Driedzic WR, Almeida-Val V, Val A. Gut transport characteristics in herbivorous and carnivorous serrasalmid fish from ion-poor Rio Negro water. J Comp Physiol B 2014; 185:225-41. [DOI: 10.1007/s00360-014-0879-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/11/2014] [Accepted: 11/22/2014] [Indexed: 10/24/2022]
|
15
|
Nadella SR, Patel D, Ng A, Wood CM. An in vitro investigation of gastrointestinal Na(+) uptake mechanisms in freshwater rainbow trout. J Comp Physiol B 2014; 184:1003-19. [PMID: 25183198 DOI: 10.1007/s00360-014-0855-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 07/30/2014] [Accepted: 08/05/2014] [Indexed: 11/28/2022]
Abstract
In vitro gut-sac preparations of all four sections (stomach, anterior, mid, and posterior intestine) of the gastrointestinal tract (GIT) of freshwater rainbow trout, together with radiotracer ((22)Na) techniques, were used to study unidirectional Na(+) uptake rates (UR, mucosal → blood space) and net absorptive fluid transport rates (FTR) under isosmotic conditions (mucosal = serosal osmolality). On an area-specific basis, unidirectional Na(+) UR was highest in the mid-intestine, but when total gut area was taken into account, the three intestinal sections contributed equally, with very low rates in the stomach. The theoretical capacity for Na(+) uptake across the whole GIT is sufficient to supply all of the animal's nutritive requirements for Na(+). Transport occurs by low affinity systems with apparent K m values 2-3 orders of magnitude higher than those in the gills, in accord with comparably higher Na(+) concentrations in chyme versus fresh water. Fluid transport appeared to be Na(+)-dependent, such that treatments which altered unidirectional Na(+) UR generally altered FTR in a comparable fashion. Pharmacological trials (amiloride, EIPA, phenamil, bafilomycin, furosemide, hydrochlorothiazide) conducted at a mucosal Na(+) concentration of 50 mmol L(-1) indicated that GIT Na(+) uptake occurs by a variety of apical mechanisms (NHE, Na(+) channel/H(+) ATPase, NCC, NKCC) with relative contributions varying among sections. However, at a mucosal Na(+) concentration of 10 mmol L(-1), EIPA, phenamil, bafilomycin, and hydrochlorothiazide were no longer effective in inhibiting unidirectional Na(+) UR or FTR, suggesting the contribution of unidentified mechanisms under low Na(+) conditions. A preliminary model is presented.
Collapse
Affiliation(s)
- Sunita R Nadella
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S4K1, Canada,
| | | | | | | |
Collapse
|
16
|
Rubino JG, Zimmer AM, Wood CM. An in vitro analysis of intestinal ammonia handling in fasted and fed freshwater rainbow trout (Oncorhynchus mykiss). J Comp Physiol B 2013; 184:91-105. [PMID: 24043214 DOI: 10.1007/s00360-013-0781-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/23/2013] [Accepted: 08/27/2013] [Indexed: 11/30/2022]
Abstract
Ammonia transport and metabolism were investigated in the intestinal tract of freshwater rainbow trout which had been either fasted for 7 days, or fasted then fed a satiating meal of commercial trout pellets. In vivo, total ammonia concentrations (T amm) in the chyme were approximately 1 mmol L(-1) across the entire intestine at 24 h after the meal. Highest chyme pH and P NH3 values occurred in the posterior intestine. In vitro gut sac experiments examined ammonia handling with mucosal (Jmamm) and serosal (Js amm) fluxes under conditions of fasting and feeding, with either background (control ≤ 0.013 mmol L(-1)) or high luminal ammonia concentrations (HLA = 1 mmol L(-1)), the latter mimicking those seen in chyme in vivo. Feeding status (fasted or fed) appeared to influence ammonia handling by each individual section. The anterior intestine exhibited the greatest Jm amm and Js amm values under fasted control conditions, but these differences tended to disappear under typical post-feeding conditions when total endogenous ammonia production (Jt amm = Js amm - Jm amm, signs considered) was greatly elevated in all intestinal sections. Under fasted conditions, glutamate dehydrogenase (GDH) and glutaminase (GLN) activities were equal across all sections, but the ammonia-trapping enzyme glutamine synthetase (GS) exhibited highest activity in the posterior intestine, in contradiction to previous literature. Feeding clearly stimulated the total rate of endogenous ammonia production (Jt amm), even in the absence of a high luminal ammonia load. This was accompanied by an increase in GDH activity of the anterior intestine, which was also the site of the largest Jt amm. In all sections, during HLA exposure, either alone or in combination with feeding, there were much larger increases in endogenous Jt amm, most of which was effluxed to the serosal solution. This is interpreted as a response to avoid potential cytotoxicity due to overburdened detoxification mechanisms in the face of elevated mucosal ammonia. Thus T amm of the intestinal tissue remained relatively constant regardless of feeding status and exposure to HLA. Ammonia production by the gut may explain up to 18 % of whole-body ammonia excretion in vivo under fasting conditions, and 47 % after feeding, of which more than half originates from endogenous production rather than from absorption from the lumen.
Collapse
Affiliation(s)
- Julian G Rubino
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada,
| | | | | |
Collapse
|
17
|
Bucking C, LeMoine CMR, Craig PM, Walsh PJ. Nitrogen metabolism of the intestine during digestion in a teleost fish, the plainfin midshipman (Porichthys notatus). ACTA ACUST UNITED AC 2013; 216:2821-32. [PMID: 23619402 DOI: 10.1242/jeb.081562] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Digestion affects nitrogen metabolism in fish, as both exogenous and endogenous proteins and amino acids are catabolized, liberating ammonia in the process. Here we present a model of local detoxification of ammonia by the intestinal tissue of the plainfin midshipman (Porichthys notatus) during digestion, resulting in an increase in urea excretion of gastrointestinal origin. Corroborating evidence indicated whole-animal ammonia and urea excretion increased following feeding, and ammonia levels within the lumen of the midshipman intestine increased to high levels (1.8±0.4 μmol N g(-1)). We propose that this ammonia entered the enterocytes and was detoxified to urea via the ornithine-urea cycle (O-UC) enzymes, as evidenced by a 1.5- to 2.9-fold post-prandial increase in glutamine synthetase activity (0.14±0.05 and 0.28±0.02 μmol min(-1) g(-1) versus 0.41±0.03 μmol min(-1) g(-1)) and an 8.7-fold increase in carbamoyl phosphate synthetase III activity (0.3±1.2 versus 2.6±0.4 nmol min(-1) g(-1)). Furthermore, digestion increased urea production by isolated gastrointestinal tissue 1.7-fold, supporting our hypothesis that intestinal tissue synthesizes urea in response to feeding. We further propose that the intestinal urea may have been excreted into the intestinal lumen via an apical urea transporter as visualized using immunohistochemistry. A portion of the urea was then excreted to the environment along with the feces, resulting in the observed increase in urea excretion, while another portion may have been used by intestinal ureolytic bacteria. Overall, we propose that P. notatus produces urea within the enterocytes via a functional O-UC, which is then excreted into the intestinal lumen. Our model of intestinal nitrogen metabolism does not appear to be universal as we were unab le to activate the O-UC in the intestine of fed rainbow trout. However, literature values suggest that multiple fish species could follow this model.
Collapse
Affiliation(s)
- Carol Bucking
- Department of Biology, University of Ottawa, ON, Canada and Bamfield Marine Science Center, Bamfield, BC, Canada.
| | | | | | | |
Collapse
|
18
|
Klinck JS, Wood CM. In situ analysis of cadmium uptake in four sections of the gastro-intestinal tract of rainbow trout (Oncorhynchus mykiss). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 88:95-102. [PMID: 23218722 DOI: 10.1016/j.ecoenv.2012.10.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 10/20/2012] [Accepted: 10/31/2012] [Indexed: 06/01/2023]
Abstract
This study links results from past in vitro and in vivo experiments, by implementing an in situ experiment in order to determine the relative importance for cadmium (Cd) uptake of different sections of the gastro-intestinal tract (GIT) of rainbow trout. Transport of Cd from four sections of the GIT of adult rainbow trout (~220 g) was individually examined by infusing ligated sections of the GIT in live, free-swimming fish with 50 μM Cd spiked with radiolabelled (109)Cd (0.5 μCi ml(-1)). Fish were exposed for an 8-h period. The percentage of the total injected (109)Cd which was internalized from the different segments was only between ~0.1 and ~7%, indicating low uptake efficiency. The stomach is the most important GIT segment for Cd transport into the internal compartment of the animal, while the posterior intestine also plays a significant role. The majority of (109)Cd recovered at the end of the flux period was detected within gut material (ranging from 28 to 95%); the portion of Cd which was internalized was largely found in the carcass (32 to 60%). Distribution between the measured organs varied with uptake from the various GIT sections. Our results also confirm that the GIT acts as a protective barrier against Cd uptake from dietary exposure.
Collapse
Affiliation(s)
- Joel S Klinck
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
19
|
Klinck JS, Singh A, Wood CM. In vitro characterization of calcium transport along the gastrointestinal tract of freshwater rainbow trout Oncorhynchus mykiss. JOURNAL OF FISH BIOLOGY 2012; 81:1-20. [PMID: 22747801 DOI: 10.1111/j.1095-8649.2012.03275.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Using an in vitro gut-sac technique, this study examined the mechanisms of calcium (Ca) uptake along the gastrointestinal tract (GIT) of rainbow trout Oncorhynchus mykiss. Ca uptake into three different compartments (mucous-bound, mucosal epithelium and blood space) of four distinct GIT segments (stomach, anterior intestine, mid intestine and posterior intestine) was monitored after luminal exposure to 10 mM Ca saline (radiolabelled with (45) Ca). Ca transport was determined to be both time-dependent and concentration-dependent. The concentration-dependent kinetics of Ca uptake was investigated using varying luminal concentrations of Ca (1, 10, 30, 60 and 100 mM). In the blood-space compartment, Ca uptake was saturable at high Ca concentrations in the mid intestine (suggesting mediated transport), while linear uptake was found in the other gut segments. In the mucous-bound and mucosal epithelium compartments, however, saturation kinetics were found for most GIT segments, also suggesting mediated transport. Manipulation of serosal saline osmotic pressure with mannitol demonstrated that Ca uptake was not greatly affected by solvent drag. Elevated mucosal cadmium (Cd) did not appear to inhibit Ca uptake into the blood space in any of the GIT sections, and Ca uptake did not appear to be sodium dependent. Maximum transport capacities for Ca and Cd were found to be comparable between the gills and gut, but affinities were much higher at the gills (up to 3000 times).
Collapse
Affiliation(s)
- J S Klinck
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1 Canada.
| | | | | |
Collapse
|
20
|
Bucking C, Schulte PM. Environmental and nutritional regulation of expression and function of two peptide transporter (PepT1) isoforms in a euryhaline teleost. Comp Biochem Physiol A Mol Integr Physiol 2011; 161:379-87. [PMID: 22227314 DOI: 10.1016/j.cbpa.2011.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/13/2011] [Accepted: 12/17/2011] [Indexed: 12/17/2022]
Abstract
Expression and function of the oligopeptide transporter PepT1 in response to changes in environmental salinity have received little study despite the important role that dipeptides play in piscine nutrition. We cloned and sequenced two novel full-length cDNAs that encode Fundulus heteroclitus PepT1-type oligopeptide transporters, and examined their expression and functional properties in freshwater- and seawater-acclimated fish and in response to fasting and re-feeding. Phylogenetic analysis of vertebrate SLC15A1 sequences confirms the presence of two PepT1 isoforms, named SLC15A1a and SLC15A1b, in fish. Similar to other vertebrate SLC15A1s, these isoforms have 12 transmembrane domains, and amino acids essential for PepT1 function are conserved. Expression analysis revealed novel environment-specific expression of the SLC15A1 isoforms in F. heteroclitus, with only SLC15A1b expressed in seawater-acclimated fish, and both isoforms expressed in freshwater-acclimated fish. Fasting and re-feeding induced changes in the expression of SLC15A1a and SLC15A1b mRNA. Short-term fasting resulted in up-regulation of PepT1 mRNA levels, while prolonged fasting resulted in down-regulation. The resumption of feeding resulted in up-regulation of PepT1 above pre-fasted levels. Experiments using the in vitro gut sac technique suggest that the PepT1 isoforms differ in functional characteristics. An increased luminal pH resulted in decreased intestinal dipeptide transport in freshwater-acclimated fish but suggested an increased dipeptide transport in seawater-acclimated fish. Overall, this is the first evidence of multiple isoforms of PepT1 in fish whose expression is environmentally dependent and results in functional differences in intestinal dipeptide transport.
Collapse
Affiliation(s)
- Carol Bucking
- University of British Columbia, Department of Zoology, 6270 University Blvd, Vancouver, BC, Canada V6T 1Z4.
| | | |
Collapse
|
21
|
Bucking C, Glover CN, Wood CM. Digestion under Duress: Nutrient Acquisition and Metabolism during Hypoxia in the Pacific Hagfish. Physiol Biochem Zool 2011; 84:607-17. [DOI: 10.1086/662630] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Glover CN, Bucking C, Wood CM. Characterisation of l-alanine and glycine absorption across the gut of an ancient vertebrate. J Comp Physiol B 2011; 181:765-71. [DOI: 10.1007/s00360-011-0571-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 03/07/2011] [Accepted: 03/09/2011] [Indexed: 10/18/2022]
|
23
|
|
24
|
|
25
|
Nadella SR, Hung CCY, Wood CM. Mechanistic characterization of gastric copper transport in rainbow trout. J Comp Physiol B 2010; 181:27-41. [DOI: 10.1007/s00360-010-0510-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 07/25/2010] [Accepted: 08/11/2010] [Indexed: 12/13/2022]
|
26
|
Bakke AM, Glover C, Krogdahl Å. Feeding, digestion and absorption of nutrients. FISH PHYSIOLOGY 2010. [DOI: 10.1016/s1546-5098(10)03002-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Kwong RWM, Niyogi S. The interactions of iron with other divalent metals in the intestinal tract of a freshwater teleost, rainbow trout (Oncorhynchusmykiss). Comp Biochem Physiol C Toxicol Pharmacol 2009; 150:442-9. [PMID: 19584005 DOI: 10.1016/j.cbpc.2009.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 06/22/2009] [Accepted: 06/30/2009] [Indexed: 10/20/2022]
Abstract
This study examined the concentration-dependent interactive effects of four essential (Cu(2+), Zn(2+), Ni(2+), Co(2+)) and two non-essential (Pb(2+) and Cd(2+)) divalent metals on intestinal iron (Fe(2+)) absorption in freshwater rainbow trout (Oncorhynchusmykiss) using an invitro gut sac technique. All of the divalent metals except cobalt inhibited the intestinal Fe(2+) absorption in fish, and the magnitude of inhibition followed the order of: Ni(2+)~Pb(2+)>Cd(2+)~Cu(2+)>Zn(2+). The mucosal epithelium of the intestine was found to be the most sensitive to inhibition relative to the mucus or blood compartment, suggesting that these interactions likely occur via the divalent metal transporter-1 (DMT1). In addition, the reciprocal effects of Fe(2+) on intestinal accumulation of lead and cadmium were investigated. Elevated Fe(2+) did not affect lead accumulation in the intestine, indicating a greater affinity of Pb(2+) to the Fe(2+) transport pathway and/or the existence of additional pathways for lead absorption. In contrast, the accumulation of cadmium in the intestine decreased considerably in the presence of excess Fe(2+), indicating the importance of the Fe(2+) absorption pathway in dietary cadmium accumulation in fish. Overall, our study provides important insights into the mechanisms of dietary uptake of several divalent metals in freshwater fish.
Collapse
Affiliation(s)
- Raymond W M Kwong
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada S7N 5B3
| | | |
Collapse
|
28
|
Bucking C, Fitzpatrick JL, Nadella SR, Wood CM. Post-prandial metabolic alkalosis in the seawater-acclimated trout: the alkaline tide comes in. ACTA ACUST UNITED AC 2009; 212:2159-66. [PMID: 19561205 DOI: 10.1242/jeb.027862] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The consequences of feeding and digestion on acid-base balance and regulation in a marine teleost (seawater-acclimated steelhead trout; Oncorhynchus mykiss) were investigated by tracking changes in blood pH and [HCO3-], as well as alterations in net acid or base excretion to the water following feeding. Additionally the role of the intestine in the regulation of acid-base balance during feeding was investigated with an in vitro gut sac technique. Feeding did not affect plasma glucose or urea concentrations, however, total plasma ammonia rose during feeding, peaking between 3 and 24 h following the ingestion of a meal, three-fold above resting control values (approximately 300 micromol ml(-1)). This increase in plasma ammonia was accompanied by an increase in net ammonia flux to the water (approximately twofold higher in fed fish versus unfed fish). The arterial blood also became alkaline with increases in pH and plasma [HCO3-] between 3 and 12 h following feeding, representing the first measurement of an alkaline tide in a marine teleost. There was no evidence of respiratory compensation for the measured metabolic alkalosis, as Pa CO2 remained unchanged throughout the post-feeding period. However, in contrast to an earlier study on freshwater-acclimated trout, fed fish did not exhibit a compensating increase in net base excretion, but rather took in additional base from the external seawater, amounting to approximately 8490 micromol kg(-1) over 48 h. In vitro experiments suggest that at least a portion of the alkaline tide was eliminated through increased HCO3- secretion coupled to Cl- absorption in the intestinal tract. This did not occur in the intestine of freshwater-acclimated trout. The marked effects of the external salinity (seawater versus freshwater) on different post-feeding patterns of acid-base balance are discussed.
Collapse
Affiliation(s)
- Carol Bucking
- McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1.
| | | | | | | |
Collapse
|
29
|
Klinck JS, Ng TYT, Wood CM. Cadmium accumulation and in vitro analysis of calcium and cadmium transport functions in the gastro-intestinal tract of trout following chronic dietary cadmium and calcium feeding. Comp Biochem Physiol C Toxicol Pharmacol 2009; 150:349-60. [PMID: 19527800 DOI: 10.1016/j.cbpc.2009.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 05/26/2009] [Accepted: 05/26/2009] [Indexed: 11/23/2022]
Abstract
Juvenile rainbow trout (Oncorhynchus mykiss) were fed diets made from Lumbriculus variegatus containing environmentally relevant concentrations of Cd (approximately 0.2 and 12 microg g(-1) dry wt) and/or Ca (1, 10, 20 and 60 mg g(-1) dry wt) for 4 weeks. Ten fish per treatment were removed weekly for tissue metal burden analysis. In all portions of the gastro-intestinal tract (GIT) (stomach, anterior, mid, and posterior intestine), chronic exposure to elevated dietary Ca decreased Cd tissue accumulation to varying degrees. At week five, the GITs of the remaining fish were subjected to an in vitro gut sac technique. Pre-exposure to the different treatments affected unidirectional uptake and binding rates of Cd and Ca in different manners, dependent on the specific GIT section. Ca and Cd uptake rates were highly correlated within all sections of the GIT, and the loosely binding rate of Cd to the GIT surfaces predicted the rate of new Cd absorption. Overall, this study indicates that elevated dietary Ca is protective against Cd uptake from an environmentally relevant diet, and that Ca and Cd uptake may occur through both common and separate pathways in the GIT.
Collapse
Affiliation(s)
- Joel S Klinck
- Department of Biology, McMaster University, Hamilton, Ontario, Canada.
| | | | | |
Collapse
|
30
|
Leonard EM, Nadella SR, Bucking C, Wood CM. Characterization of dietary Ni uptake in the rainbow trout, Oncorhynchus mykiss. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2009; 93:205-216. [PMID: 19515435 DOI: 10.1016/j.aquatox.2009.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 05/04/2009] [Accepted: 05/05/2009] [Indexed: 05/27/2023]
Abstract
We characterized dietary Ni uptake in the gastrointestinal tract of rainbow trout using both in vivo and in vitro techniques. Adult trout were fed a meal (3% of body mass) of uncontaminated commercial trout chow, labeled with an inert marker (ballotini beads). In vivo dietary Ni concentrations in the supernatant (fluid phase) of the gut contents averaged from 2 micromoll(-1) to 24 micromoll(-1), and net overall absorption efficiency of dietary Ni was approximately 50% from the single meal, similar to that for the essential metal Cu, adding to the growing evidence of Ni essentiality. The stomach and mid-intestine emerged as important sites of Ni uptake in vivo, accounting for 78.5% and 18.9% of net absorption respectively, while the anterior intestine was a site of net secretion. Most of the stomach uptake occurred in the first 4h. In vitro gut sac studies using radiolabeled Ni (at 30 micromoll(-1)) demonstrated that unidirectional uptake occurred in all segments, with area-weighted rates being highest in the anterior intestine. Differences between in vivo and in vitro results likely reflect the favourable uptake conditions in the stomach, and biliary secretion of Ni in the anterior intestine in vivo. The concentration-dependent kinetics of unidirectional Ni uptake in vitro were biphasic in nature, with a saturable Michaelis-Menten relationship observed at 1-30 micromoll(-1) Ni (K(m) - 11 micromoll(-1), J(max) - 53 pmolcm(-2)h(-1) in the stomach and K(m) - 42 micromoll(-1), J(max) - 215 pmolcm(-2)h(-1) in the mid-intestine), suggesting mediation by a channel or carrier process. A linear uptake relationship was seen at higher concentrations, indicative of simple diffusion. Ni uptake (at 30 micromoll(-1)) into the blood compartment was significantly reduced in the stomach by high Mg (50 mmoll(-1)), and in the mid-intestine by both Mg (50 mmoll(-1)) and Ca (50 mmoll(-1)). In both regions, kinetic analysis demonstrated reductions in J(max) with unchanged K(m), suggesting non-competitive interactions. Therefore the Mg and Ca content of the food will be an important consideration affecting the availability of Ni.
Collapse
Affiliation(s)
- Erin M Leonard
- Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1.
| | | | | | | |
Collapse
|
31
|
Ojo AA, Nadella SR, Wood CM. In vitro examination of interactions between copper and zinc uptake via the gastrointestinal tract of the rainbow trout (Oncorhynchus mykiss). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2009; 56:244-252. [PMID: 18592296 DOI: 10.1007/s00244-008-9190-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 06/09/2008] [Indexed: 05/26/2023]
Abstract
An in vitro gut sac technique was used to investigate whether reciprocal inhibitory effects occurred between Cu and Zn uptake in the gastrointestinal tract of the rainbow trout and, if so, whether there was regional variation among the stomach, anterior intestine, mid intestine, and posterior intestine in the phenomena. Metal accumulation in surface mucus and in the mucosal epithelium and transport into the blood space were assayed using radiolabeled Cu or Zn at environmentally realistic concentrations of 50 micromol L(-1) in the luminal saline, with 10-fold higher levels of the other metal (nonradioactive) as a potential inhibitor. Zn transport rates were generally higher than Cu transport rates in all compartments except the stomach, where they were lower. High [Zn] reduced Cu transport into the blood space in the mid and posterior intestines by 67% and 33%, respectively, whereas high [Cu] reciprocally reduced Zn transport into the blood space in these same sections by 54% and 78%. No inhibitions occurred in either the anterior intestine or the stomach. In these segments, elevated concentrations of the other metal stimulated Cu and Zn transport into the blood space and/or the mucosal epithelium by 50-100%, possibly by displacement from intracellular binding sites, thereby raising local concentrations at other transport sites. None of the treatments affected metal accumulation in surface mucus. The results indicate that one or more shared high-affinity pathways (possibly DMT1) occur in the mid and posterior intestine, which transport both Cu and Zn. These pathways appear to be absent from the stomach and anterior intestine, where other transport mechanisms may occur.
Collapse
Affiliation(s)
- Adeola A Ojo
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| | | | | |
Collapse
|
32
|
Ojo AA, Wood CM. In vitro characterization of cadmium and zinc uptake via the gastro-intestinal tract of the rainbow trout (Oncorhynchus mykiss): Interactive effects and the influence of calcium. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2008; 89:55-64. [PMID: 18619683 DOI: 10.1016/j.aquatox.2008.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 05/30/2008] [Accepted: 06/04/2008] [Indexed: 05/26/2023]
Abstract
An in vitro gut sac technique was employed to study whether Cd and Zn uptake mechanisms in the gastro-intestinal tract of the rainbow trout are similar to those at the gills, where both metals are taken up via the Ca transport pathway. Metal accumulation in surface mucus, in the mucosal epithelium, and transport into the blood space were assayed using radiolabelled Cd or Zn concentrations of 50micromolL(-1) in the luminal (internal) saline. Elevated luminal Ca (10 or 100mmolL(-1)versus 1mmolL(-1)) reduced Cd uptake into all three phases by approximately 60% in the stomach, but had no effect in the anterior, mid, or posterior intestine. This finding is in accordance with recent in vivo evidence that Ca is taken up mainly via the stomach, and that high [Ca] diets inhibit Cd accumulation from the food specifically in this section of the tract. In contrast, 10mmolL(-1) luminal Ca had no effect on Zn transport in any section, whereas 100mmolL(-1) Ca stimulated Zn uptake, by approximately threefold, into all three phases in the stomach only. There was no influence of elevated luminal Zn (10mmolL(-1)) on Cd uptake in the stomach or anterior intestine, or of high Cd (10mmolL(-1)) on Zn uptake in these sections. However, high [Zn] stimulated Cd transport into the blood space but inhibited accumulation in the mucosal epithelium and/or mucus-binding in the mid and posterior intestine, whereas high [Cd] exerted a reciprocal effect in the mid-intestine only. We conclude that Cd uptake occurs via an important Ca-sensitive mechanism in the stomach which is different from that at the gills, while Cd transport mechanisms in the intestine are not directly Ca-sensitive. Zn uptake does not appear to involve Ca uptake pathways, in contrast to the gills. These results are discussed in the context of other possible Cd and Zn transport pathways, and the emerging role of the stomach as an organ of divalent metal uptake.
Collapse
Affiliation(s)
- Adeola A Ojo
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | | |
Collapse
|
33
|
Kwong RWM, Niyogi S. An in vitro examination of intestinal iron absorption in a freshwater teleost, rainbow trout (Oncorhynchus mykiss). J Comp Physiol B 2008; 178:963-75. [PMID: 18542970 DOI: 10.1007/s00360-008-0279-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 05/20/2008] [Accepted: 05/25/2008] [Indexed: 11/25/2022]
Abstract
This study investigated the physiological characteristics of intestinal iron absorption in a freshwater teleost, rainbow trout (Oncorhynchus mykiss). Using an in vitro gastro-intestinal sac technique, we evaluated the spatial pattern and concentration dependent profile of iron uptake, and also the influence of luminal chemistry (pH and chelation) on iron absorption. We demonstrated that the iron uptake rate in the anterior intestine is significantly higher than that in the mid and posterior intestine. Interestingly, absorption of iron in the anterior intestine occurs likely via simple diffusion, whereas a carrier-mediated pathway is apparent in the mid and posterior intestine. The uptake of ferric and ferrous iron appeared to be linear over the entire range of iron concentration tested (0-20 microM), however the uptake of ferrous iron was significantly higher than that of ferric iron at high iron concentrations (>15 microM). An increase in mucosal pH from 7.4 to 8.2 significantly reduced iron absorption in both mid and posterior intestine, implying the involvement of a Fe(2+)/H(+) symporter. Iron chelators (nitrilotriacetic acid and desferrioxamine mesylate) had no effects on iron absorption, which suggests that fish are able to acquire chelated iron via intestine.
Collapse
Affiliation(s)
- Raymond W M Kwong
- Toxicology Center, University of Saskatchewan, Saskatoon, SK, Canada S7N 5B3
| | | |
Collapse
|
34
|
Glover CN, Wood CM. Histidine absorption across apical surfaces of freshwater rainbow trout intestine: mechanistic characterization and the influence of copper. J Membr Biol 2008; 221:87-95. [PMID: 18217179 DOI: 10.1007/s00232-007-9088-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 11/26/2007] [Indexed: 11/30/2022]
Abstract
The essential amino acid histidine performs critical roles in health and disease. These functions are generally attributed to the amino acid itself, but could also be mediated by a positive effect on trace element bioavailability. Mechanistic information regarding the absorption of histidine across the gastrointestinal tract is essential for understanding the interplay between amino acid and mineral nutrients and the implications of these interactions for nutrition and toxicology. Using intestinal brush-border membrane vesicles obtained from freshwater rainbow trout, absorption of histidine over the range 0.78-780 microM: was found to be saturable, with a maximal transport rate (J (max)) of 9.1 +/- 0.8 nmol mg protein(-1) min(-1) and a K (m) (histidine concentration required to reach 50% of this level) of 339 +/- 68 microM: . Histidine uptake was highly specific as 10-fold elevated levels of a variety of amino acids with putative shared transporters failed to significantly inhibit uptake. Elevated levels of D: -histidine, however, impaired uptake of the natural L: -isomer. The presence of "luminal" copper (8.3 microM: ) significantly increased both the J (max) and K (m) of histidine transport. This suggests that chelated copper-histidine species cross the brush-border epithelium through transport pathways distinct from those used by histidine alone.
Collapse
Affiliation(s)
- Chris N Glover
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway.
| | | |
Collapse
|
35
|
Zhang L, Wang WX. Gastrointestinal uptake of cadmium and zinc by a marine teleost Acanthopagrus schlegeli. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2007; 85:143-53. [PMID: 17904660 DOI: 10.1016/j.aquatox.2007.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 08/21/2007] [Accepted: 08/22/2007] [Indexed: 05/17/2023]
Abstract
Gastrointestinal metal uptake represents a potential route for metal bioaccumulation in marine fish. Drinking of seawater for osmoregulation causes constant waterborne exposure of the gastrointestinal tract. Tissue specific Cd and Zn accumulation and distribution were investigated in juvenile black sea bream (Acanthopagrus schlegeli) exposed to waterborne Cd (5.7 nM) and Zn (2.6 nM) for 4 h-7 days. The intestine accumulated a large portion of the Cd (43-58%) and Zn (18-28%), and had the highest Cd (>1.0 nmol g(-1)) and Zn (>1.8 nmol g(-1)) concentrations of all body fractions, suggesting that the intestines were the major uptake sites for these waterborne metals. Among all the segments of the gastrointestinal tract, the anterior intestine played the most important role in Cd and Zn uptake. A gastrointestinal injection assay was conducted to distinguish waterborne metal uptake by the intestines and the gills. The intestine contained over 90% of the Cd in the body after depuration for 3-7 days, suggesting that little waterborne Cd entered the rest of the body through the intestine, and that Cd may exert its toxic effects on the gastrointestinal system. In contrast, intestine retained less than 20% of the total Zn after depuration, suggesting that Zn tended to be transported from the intestine to the internal tissues via the cardiovascular system. The uptake kinetics of waterborne Cd and Zn by the intestines and the gills were determined as a first-order and saturated pattern, respectively, over a wide range of ambient metal concentrations (6.2 nM-4.5 microM for Cd, and 13 nM-15 microM for Zn). An in vitro intestinal perfusion assay investigated the effects of intestinal metal composition and drinking rate on uptake. The presence of EDTA significantly reduced intestinal Zn uptake to 11%, while cysteine improved it by 59%. The intestinal Cd and Zn uptake rates were unaffected by the perfusion rate.
Collapse
Affiliation(s)
- Li Zhang
- Department of Biology, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong
| | | |
Collapse
|
36
|
Klinck JS, Green WW, Mirza RS, Nadella SR, Chowdhury MJ, Wood CM, Pyle GG. Branchial cadmium and copper binding and intestinal cadmium uptake in wild yellow perch (Perca flavescens) from clean and metal-contaminated lakes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2007; 84:198-207. [PMID: 17643503 DOI: 10.1016/j.aquatox.2007.03.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 03/22/2007] [Accepted: 03/23/2007] [Indexed: 05/16/2023]
Abstract
Branchial binding kinetics and gastro-intestinal uptake of copper and cadmium where examined in yellow perch (Perca flavescens) from a metal-contaminated lake (Hannah Lake, Sudbury, Ontario, Canada) and an uncontaminated lake (James Lake, North Bay, Ontario, Canada). An in vivo approach was taken for gill binding comparisons while an in vitro gut binding assay was employed for gastro-intestinal tract (GIT) uptake analysis. By investigating metal uptake at the gill and the gut we cover the two main routes of metal entry into fish. Comparisons of water and sediment chemistries, metal burdens in benthic invertebrate, and metal burdens in the livers of perch from the two study lakes clearly show that yellow perch from Hannah L. are chronically exposed to a highly metal-contaminated environment compared to a reference lake. We found that metal-contaminated yellow perch showed no significant difference in gill Cd binding compared to reference fish, but they did show significant decreases in new Cd binding and absorption in their GITs. The results show that gill Cd binding may involve low-capacity, high-affinity binding sites, while gastro-intestinal Cd uptake involves binding sites that are high-capacity, low-affinity. From this we infer that Cd may be more critically controlled at the gut rather than gills. Significant differences in branchial Cu binding (increased binding) were observed in metal-contaminated yellow perch. We suggest that chronic waterborne exposure to Cu (and/or other metals) may be the dominant influence in gill Cu binding rather than chronic exposure to high Cu diets. We give supporting evidence that Cd is taken up in the GIT, at least in part, by a similar pathway as Ca(2+), principally that elevated dietary Ca(2+) reduces Cd binding and uptake. Overall our study reveals that metal pre-exposure via water and diet can alter uptake kinetics of Cu and Cd at the gill and/or the gut.
Collapse
Affiliation(s)
- J S Klinck
- Department of Biology, McMaster University, Hamilton, Ont. L8S 4K1, Canada.
| | | | | | | | | | | | | |
Collapse
|
37
|
Glover CN, Wood CM. Absorption of copper and copper–histidine complexes across the apical surface of freshwater rainbow trout intestine. J Comp Physiol B 2007; 178:101-9. [PMID: 17724600 DOI: 10.1007/s00360-007-0203-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2007] [Revised: 08/06/2007] [Accepted: 08/08/2007] [Indexed: 10/22/2022]
Abstract
Bioavailability is integral in mediating the delicate balance between nutritive and potentially toxic levels of copper in fish diets. Brush-border membrane vesicles isolated from freshwater rainbow trout intestine were used to characterise apical copper absorption, and to examine the influence of the amino acid histidine on this process. In the absence of histidine, a low affinity, high capacity copper uptake mechanism was described. However, when expressed as a function of ionic copper (Cu(2+)), absorption was linear, rather than saturable, suggesting that the saturable curve was an artifact of copper speciation. Conversely, in the presence of L: -histidine (780 microM) saturable uptake was characterised. The uptake capacity discerned (J (max) of 354 +/- 81 nmol mg protein(-1) min(-1)) in the presence of histidine indicated a significantly reduced capacity for copper transport than that in the absence of histidine. To determine if copper uptake was achievable through putative histidine uptake pathways, copper and histidine were incubated in the presence of tenfold greater concentrations of amino acids proposed to block histidine transporters. Accounting for changes in copper speciation, significant inhibition of uptake by glycine and lysine were noted at copper levels of 699 and 1,028 microM. These results suggest that copper-histidine complexes may be transportable via specific amino acid-transporters in the brush-border membrane.
Collapse
Affiliation(s)
- Chris N Glover
- National Institute of Nutrition and Seafood Research, Bergen, Norway.
| | | |
Collapse
|
38
|
Ojo AA, Wood CM. In vitro analysis of the bioavailability of six metals via the gastro-intestinal tract of the rainbow trout (Oncorhynchus mykiss). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2007; 83:10-23. [PMID: 17448547 DOI: 10.1016/j.aquatox.2007.03.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 03/09/2007] [Accepted: 03/12/2007] [Indexed: 05/15/2023]
Abstract
An in vitro gut sac technique was used to compare the uptake rates of essential (copper, zinc and nickel) and non-essential metals (silver, cadmium and lead) at 50 micromol L(-1) each (a typical nutritive level in solution in chyme) in the luminal saline in four sections of the gastro-intestinal tract (stomach, anterior, mid and posterior intestines) of the freshwater rainbow trout. Cu, Zn, Cd and Ag exhibited similar regional patterns: on an area-specific basis, uptake rates for these metals were highest in the anterior intestine, lowest in the stomach, and approximately equal in the mid and posterior intestinal segments. When these rates were converted to a whole animal basis, the predominance of the anterior intestine increased because of its greater area, while the contribution of the stomach rose slightly to approach those of the mid and posterior intestines. However, for Pb and Ni, area-specific and whole organism transport rates were greatest in the mid (Pb) and posterior (Ni) intestines. Surprisingly, total transport rates did not differ appreciably among the essential and non-essential metals, varying only from 0.025 (Ag) to 0.050 nmol g(-1)h(-1) (Ni), suggesting that a single rate constant can be applied for risk assessment purposes. These rates were generally comparable to previously reported uptake rates from waterborne exposures conducted at concentrations 1-4 orders of magnitude lower, indicating that both routes are likely important, and that gut transporters operate with much lower affinity than gill transporters. Except for Ni, more metal was bound to mucus and/or trapped in the mucosal epithelium than was transported into the blood space in every compartment except the anterior intestine, where net transport predominated. Overall, mucus binding was a significant predictor of net transport rate for every metal except Cd, and the strongest relationship was seen for Pb.
Collapse
Affiliation(s)
- Adeola A Ojo
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1.
| | | |
Collapse
|
39
|
Nadella SR, Grosell M, Wood CM. Mechanisms of dietary Cu uptake in freshwater rainbow trout: evidence for Na-assisted Cu transport and a specific metal carrier in the intestine. J Comp Physiol B 2007; 177:433-46. [PMID: 17279389 DOI: 10.1007/s00360-006-0142-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 12/18/2006] [Accepted: 12/20/2006] [Indexed: 11/26/2022]
Abstract
Copper (Cu) is both a vital nutrient and a potent toxicant. The objective of this study was to analyze the mechanistic nature of intestinal Cu transport in rainbow trout using radiolabeled Cu (64Cu) and an in vitro gut sac technique. Reduction of mucosal NaCl levels inhibited Cu transport while increase caused stimulation; Na(2)SO(4) had an identical effect, implicating Na(+) rather than the anion. These responses were unrelated to solvent drag, osmotic pressure or changes in transepithelial potential. The presence of elevated luminal Ag stimulated Cu and Na(+) uptake. Phenamil caused a partial inhibition of both Cu and Na(+) uptake while hypercapnia stimulated Na(+) and Cu transport. Cu uptake was sensitive to luminal pH and inhibited by a tenfold excess of Fe and Zn. These factors had no effect on Na(+ )uptake. On the basis of these results we propose a novel Na(+)-assisted mechanism of Cu uptake wherein the Na(+) gradient stimulates an increase in the H(+) concentration of the brushborder creating a suitable microenvironment for the effective transport of Cu via either DMT1 or Ctr1.
Collapse
Affiliation(s)
- Sunita Rao Nadella
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S4K1.
| | | | | |
Collapse
|