1
|
Zhang CY, Hu HL, Wang Y, Zhang L, Ding GH. Combined effects of thermal environment and gene regulation on metabolic enzyme activities of major metabolic tissues in a winter-breeding amphibian. J Therm Biol 2024; 125:104000. [PMID: 39489062 DOI: 10.1016/j.jtherbio.2024.104000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/08/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
Variations in thermal environments can provoke diverse physiological responses in amphibians. Despite extensive studies on the thermal sensitivity of amphibian metabolic physiology, including enzyme activity at different temperatures, the rationale for selecting specific metabolic enzymes and their relationship with gene expression remains unclear. Cytochrome c oxidase (CCO), succinate dehydrogenase (SDH), and lactate dehydrogenase (LDH) are key metabolic enzymes within the primary metabolic regulatory tissues of animals. Through a comparative analysis of the effects of two different thermal conditions (12 and 18 °C) on the activities and mRNA expression levels of these enzymes within the kidney and liver tissues of a winter-breeding amphibian (Leptobrachium liui), with the field group during the breeding season as the control, we provide insights into the interplay between temperature and gene expression. The mRNA levels of CCO subunits 1 (cox1), 2 (cox2), and 3 (cox3), and LDH subunit A (ldha) were significantly higher in the kidney than in the liver of all individuals. High-temperature acclimation resulted in significantly decreased expression levels of cox1-3, ldha, and SDH complex flavoprotein subunit A (sdha) in the kidney. In the liver, the expression levels of sdha and ldha significantly reduced under high-temperature treatment, whereas cox3 expression increased. SDH and LDH activities displayed tissue-specific variations, while no significant differences in CCO activity were observed between tissues. CCO, SDH, and LDH activities in both liver and kidney tissues significantly declined after high-temperature acclimation, but simultaneously increased with up-regulated gene expression, indicating that the thermal environment and corresponding gene expression combined affect the activities of these metabolic enzymes. In conclusion, the thermal environment is a key factor affecting the physiological and biochemical responses of L. liui. Prolonged exposure to high temperatures during the breeding season could inhibit the activity of primary metabolic enzymes in the winter-breeding amphibian.
Collapse
Affiliation(s)
- Chi-Ying Zhang
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000, Zhejiang, China; College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Hua-Li Hu
- Administration Center of Zhejiang Jiulongshan National Nature Reserve, Suichang, 323300, Zhejiang, China.
| | - Yu Wang
- Administration Center of Zhejiang Jiulongshan National Nature Reserve, Suichang, 323300, Zhejiang, China.
| | - Lin Zhang
- Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Shizhen Laboratory, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, Hubei, China.
| | - Guo-Hua Ding
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000, Zhejiang, China.
| |
Collapse
|
2
|
Wang H, Guo Y, Yan W, Cao L, Bai X, Zhao J, Dang K, Gao Y. Weakened Contractile Performance and Mitochondrial Respiratory Complex Activity in Skeletal Muscle Improve during Interbout Arousal in Hibernating Daurian Ground Squirrel, Spermophilus dauricus. Int J Mol Sci 2023; 24:15785. [PMID: 37958769 PMCID: PMC10650195 DOI: 10.3390/ijms242115785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/28/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Mammalian hibernation is composed of multiple episodes of torpor bout, separated by phases of interbout arousal. During torpor, the skeletal muscles of mammals are undoubtedly inactive, but it has been proven to mitigate disuse atrophy. While interbout arousal has been implicated in the prevention of muscle atrophy, the underlying mechanisms sustaining muscle contraction remain to be explored. In the present study, Daurian ground squirrels (Spermophilus dauricus) were divided into four groups: pre-hibernation (PRE), torpor (TOR), interbout arousal (IBA), and post-hibernation (POST). The contractile performance of slow-twitch soleus muscle (SOL) and fast-twitch extensor digitorum longus muscle (EDL) was detected both in situ and in vitro. Concurrently, mitochondrial respiratory chain complex activity in these muscles was quantified. Our findings revealed that in situ contractile properties of both muscles, including force, power output, time duration, and force development/relaxation rates of twitch contraction, and force and power output of tetanic contraction declined in the TOR group compared to the PRE group, but improved in the IBA and POST groups. Fatigue resistance of muscles, determined by the power output of repetitive tetanic contractions in situ, decreased in the TOR group but recovered in the IBA and POST groups. In vitro studies demonstrated that tetanic contraction power output in isolated muscles increased with muscle temperature in both TOR and IBA groups. However, at the same temperature, power output was consistently lower in the TOR group compared to the IBA group. Moreover, the activity of the mitochondrial respiratory chain complex, especially Complexes I and II, decreased in the TOR group but showed recovery in the IBA and POST groups. These findings suggest that both the contractile performance and fatigue resistance of mammalian skeletal muscle are compromised during torpor but can be improved during interbout arousal and post-hibernation. The rebound in body temperature and rise in mitochondrial respiratory chain complex activity in skeletal muscle are involved in enhancing contractile performance and fatigue resistance. This study suggests that interbout arousal functions as a vital temporal interval during which skeletal muscles can transition from the inactivity induced by torpor to a state of restored contractile functionality. Thus, interbout arousal serves as a behavioral safeguard against disuse-induced damage to skeletal muscles during hibernation.
Collapse
Affiliation(s)
- Huiping Wang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China; (H.W.); (Y.G.); (W.Y.); (L.C.); (X.B.); (J.Z.)
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Yuxi Guo
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China; (H.W.); (Y.G.); (W.Y.); (L.C.); (X.B.); (J.Z.)
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Wenjing Yan
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China; (H.W.); (Y.G.); (W.Y.); (L.C.); (X.B.); (J.Z.)
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Liqi Cao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China; (H.W.); (Y.G.); (W.Y.); (L.C.); (X.B.); (J.Z.)
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Xiaozhuo Bai
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China; (H.W.); (Y.G.); (W.Y.); (L.C.); (X.B.); (J.Z.)
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Jing Zhao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China; (H.W.); (Y.G.); (W.Y.); (L.C.); (X.B.); (J.Z.)
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Kai Dang
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yunfang Gao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China; (H.W.); (Y.G.); (W.Y.); (L.C.); (X.B.); (J.Z.)
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi’an 710069, China
| |
Collapse
|
3
|
Staples JF, Mathers KE, Duffy BM. Mitochondrial Metabolism in Hibernation: Regulation and Implications. Physiology (Bethesda) 2022; 37:0. [PMID: 35658625 DOI: 10.1152/physiol.00006.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hibernators rapidly and reversibly suppress mitochondrial respiration and whole animal metabolism. Posttranslational modifications likely regulate these mitochondrial changes, which may help conserve energy in winter. These modifications are affected by reactive oxygen species (ROS), so suppressing mitochondrial ROS production may also be important for hibernators, just as it is important for surviving ischemia-reperfusion injury.
Collapse
Affiliation(s)
- James F Staples
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Katherine E Mathers
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Brynne M Duffy
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
4
|
Zhao Y, Cheng R, Zhao Y, Ge W, Yang Y, Ding Z, Xu X, Wang Z, Wu Z, Zhang J. Type 2 diabetic mice enter a state of spontaneous hibernation-like suspended animation following accumulation of uric acid. J Biol Chem 2021; 297:101166. [PMID: 34487763 PMCID: PMC8484811 DOI: 10.1016/j.jbc.2021.101166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/28/2021] [Accepted: 09/02/2021] [Indexed: 11/25/2022] Open
Abstract
Hibernation is an example of extreme hypometabolic behavior. How mammals achieve such a state of suspended animation remains unclear. Here we show that several strains of type 2 diabetic mice spontaneously enter into hibernation-like suspended animation (HLSA) in cold temperatures. Nondiabetic mice injected with ATP mimic the severe hypothermia analogous to that observed in diabetic mice. We identified that uric acid, an ATP metabolite, is a key molecular in the entry of HLSA. Uric acid binds to the Na+ binding pocket of the Na+/H+ exchanger protein and inhibits its activity, acidifying the cytoplasm and triggering a drop in metabolic rate. The suppression of uric acid biosynthesis blocks the occurrence of HLSA, and hyperuricemic mice induced by treatment with an uricase inhibitor can spontaneously enter into HLSA similar to that observed in type 2 diabetic mice. In rats and dogs, injection of ATP induces a reversible state of HLSA similar to that seen in mice. However, ATP injection fails to induce HLSA in pigs due to the lack of their ability to accumulate uric acid. Our results raise the possibility that nonhibernating mammals could spontaneously undergo HLSA upon accumulation of ATP metabolite, uric acid.
Collapse
Affiliation(s)
- Yang Zhao
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Rui Cheng
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Yue Zhao
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Wenhao Ge
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Yunxia Yang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Zhao Ding
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Zhongqiu Wang
- Affiliated Hospital of Nanjing, University of Chinese Medicine, Nanjing, China
| | - Zhenguo Wu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China.
| |
Collapse
|
5
|
Farhat E, Weber JM. Hypometabolic Responses to Chronic Hypoxia: A Potential Role for Membrane Lipids. Metabolites 2021; 11:503. [PMID: 34436444 PMCID: PMC8399526 DOI: 10.3390/metabo11080503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023] Open
Abstract
Metabolic suppression is an essential strategy to cope with chronic hypoxia. This review examines the physiological processes used to survive in low oxygen environments. It proposes a novel mechanism-the remodeling of membrane lipids-to suppress ATP use and production. Temperature (homeoviscous adaptation), diet (natural doping in migrant birds) and body mass (membrane pacemaker of metabolism) have an impact on the lipid composition of membranes, which, in turn, modulates metabolic capacity. Vertebrate champions of hypoxia tolerance show extensive changes in membrane lipids upon in vivo exposure to low oxygen. These changes and those observed in hibernating mammals can promote the downregulation of ion pumps (major ATP consumers), ion channels, mitochondrial respiration capacity (state 3, proton leak, cytochrome c oxidase), and energy metabolism (β-oxidation and glycolysis). A common membrane signal regulating the joint inhibition of ion pumps and channels could be an exquisite way to preserve the balance between ATP supply and demand in hypometabolic states. Membrane remodeling together with more traditional mechanisms could work in concert to cause metabolic suppression.
Collapse
Affiliation(s)
| | - Jean-Michel Weber
- Biology Department, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| |
Collapse
|
6
|
Jensen BS, Pardue S, Duffy B, Kevil CG, Staples JF, Fago A. Suppression of mitochondrial respiration by hydrogen sulfide in hibernating 13-lined ground squirrels. Free Radic Biol Med 2021; 169:181-186. [PMID: 33887435 PMCID: PMC8809085 DOI: 10.1016/j.freeradbiomed.2021.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/18/2021] [Accepted: 04/08/2021] [Indexed: 12/30/2022]
Abstract
Hibernating mammals may suppress their basal metabolic rate during torpor by up to 95% to reduce energy expenditure during winter, but the underlying mechanisms remain poorly understood. Here we show that hydrogen sulfide (H2S), a ubiquitous signaling molecule, is a powerful inhibitor of respiration of liver mitochondria isolated from torpid 13-lined ground squirrels, but has a weak effect on mitochondria isolated during summer and hibernation arousals, where metabolic rate is normal. Consistent with these in vitro effects, we find strong seasonal variations of in vivo levels of H2S in plasma and increases of H2S levels in the liver of squirrels during torpor compared to levels during arousal and summer. The in vivo changes of liver H2S levels correspond with low activity of the mitochondrial H2S oxidizing enzyme sulfide:quinone oxidoreductase (SQR) during torpor. Taken together, these results suggest that during torpor, H2S accumulates in the liver due to a low SQR activity and contributes to inhibition of mitochondrial respiration, while during arousals and summer these effects are reversed, H2S is degraded by active SQR and mitochondrial respiration rates increase. This study provides novel insights into mechanisms underlying mammalian hibernation, pointing to SQR as a key enzyme involved in the control of mitochondrial function.
Collapse
Affiliation(s)
- Birgitte S Jensen
- Department of Biology, Aarhus University, Aarhus C, 8000, Denmark; Department of Biology, University of Western Ontario, London, ON N6A 5B8, Canada
| | - Sibile Pardue
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Brynne Duffy
- Department of Biology, University of Western Ontario, London, ON N6A 5B8, Canada
| | - Christopher G Kevil
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - James F Staples
- Department of Biology, University of Western Ontario, London, ON N6A 5B8, Canada
| | - Angela Fago
- Department of Biology, Aarhus University, Aarhus C, 8000, Denmark.
| |
Collapse
|
7
|
Tessier SN, Breedon SA, Storey KB. Modulating Nrf2 transcription factor activity: Revealing the regulatory mechanisms of antioxidant defenses during hibernation in 13-lined ground squirrels. Cell Biochem Funct 2021; 39:623-635. [PMID: 33624895 DOI: 10.1002/cbf.3627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 11/09/2022]
Abstract
Mammalian hibernators undergo major behavioural, physiological and biochemical changes to survive hypothermia, ischaemia-reperfusion and finite fuel reserves during days or weeks of continuous torpor. During hibernation, the 13-lined ground squirrel (Ictidomys tridecemlineatus) undergoes a global suppression of energetically expensive processes such as transcription and translation, while selectively upregulating certain genes/proteins to mitigate torpor-related damage. Antioxidant defenses are critical for preventing damage caused by reactive oxygen species (ROS) during torpor and arousal, and Nrf2 is a critical regulator of these antioxidant genes. This study analysed the relative protein expression levels of Nrf2, KEAP1, small Mafs (MafF, MafK and MafG) and catalase and the regulation of Nrf2 transcription factors by post-translational modifications (PTMs) and protein-protein interactions with a negative regulator (KEAP1) during hibernation. It was found that a significant increase in MafK during late torpor predicated an increase in relative Nrf2 and catalase levels seen in arousal. Additionally, Nrf2-KEAP1 protein-protein interactions and Nrf2 PTMs, including serine phosphorylation and lysine acetylation, were responsive to cycles of torpor-arousal with peak responses occurring during arousal. These peaks seen during arousal correspond to a surge in oxygen consumption, which causes increased ROS production. Thus, these regulatory mechanisms could be important during hibernation because they provide mechanisms for mitigating the deleterious effects of oxidative stress by modifying Nrf2 expression and function in an energetically inexpensive manner.
Collapse
Affiliation(s)
- Shannon N Tessier
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada.,BioMEMS Resource Center & Center for Engineering in Medicine and Surgery, Massachusetts General Hospital & Harvard Medical School, Charlestown, Massachusetts, USA
| | - Sarah A Breedon
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Khunderyakova NV, Zakharova NM. Activities of Succinate Dehydrogenase and Lactate Dehydrogenase in Blood Lymphocytes in Yakut Ground Squirrels Spermophilus undulatus During Hibernation and in the Active State. Bull Exp Biol Med 2020; 169:445-449. [PMID: 32910399 DOI: 10.1007/s10517-020-04906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Indexed: 10/23/2022]
Abstract
We studied energy metabolism in blood lymphocytes of Yakut ground squirrels Spermophilus undulatus in active state and during hibernation. Activities of succinate dehydrogenase (SDH) and lactate dehydrogenase (LDH), marker enzymes of mitochondrial respiration and glycolysis, were measured by a cytobiochemical method based on quantitative assessment of a product of NBT reduction to diformazan in blood lymphocytes immobilized on glass. To measure SDH and LDH activities, cytobiochemical staining of immobilized cells was performed with succinate, lactate, and NAD. In the state of hibernation, SDH activity decreased by 3 times and LDH activity decreased by 10 times or more. These results suggest that the decrease in metabolic activity in lymphocytes of ground squirrels during hypothermia is associated with inhibition of glycolysis, rather than with mitochondrial energy supply.
Collapse
Affiliation(s)
- N V Khunderyakova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Moscow, Russia.
| | - N M Zakharova
- Institute of Cell Biophysics, Russian Academy of Science - Separate Division of Federal Research Center Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
9
|
Niu Y, Cao W, Storey KB, He J, Wang J, Zhang T, Tang X, Chen Q. Metabolic characteristics of overwintering by the high-altitude dwelling Xizang plateau frog, Nanorana parkeri. J Comp Physiol B 2020; 190:433-444. [PMID: 32274534 DOI: 10.1007/s00360-020-01275-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/20/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022]
Abstract
The Xizang plateau frog, Nanorana parkeri, has the highest altitudinal distribution of all frogs in the world and survives the cold of winter without feeding by entering into a hibernating state. However, little attention has been paid to its physiological and biochemical characteristics that support overwintering underwater in small ponds. Here, we measured metabolic rate and heart rate, and collected liver and muscle samples from N. parkeri in summer and winter for analysis of mitochondrial respiration rate, and activities and relative mRNA transcript expression of metabolic enzymes. Compared with summer-collected frogs, both resting metabolic rate and heart rate were significantly reduced in winter-collected frogs. Both state 3 and state 4 respiration of liver mitochondria were also significantly reduced in winter but muscle mitochondria showed a decline only in state 3 respiration in winter. The activities and corresponding mRNA expression of cytochrome c oxidase showed a marked decline in winter, whereas the activities and corresponding mRNA expression of lactate dehydrogenase increased in winter-collected frogs, compared to summer. The thermal sensitivity (Q10 values) for state 3 respiration rate by liver mitochondria, and activities of lactate dehydrogenase, and cytochrome c oxidase all increased in winter-collected frogs, compared with summer frogs, suggesting that overwintering frogs were more sensitive to changes in external temperature. Enzyme changes mainly result from lower overall quantities of these enzymes as well as post-translational modifications. We conclude that overwintering N. parkeri exhibit a seasonal, temperature-independent suppression of metabolism that is mediated at multiple levels: physiological, mitochondrial, gene expression and enzyme activity levels.
Collapse
Affiliation(s)
- Yonggang Niu
- School of Life Sciences, Dezhou University, Dezhou, China.,Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China.,State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Wangjie Cao
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Jie He
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Jinzhou Wang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Tao Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Xiaolong Tang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Qiang Chen
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China. .,State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China.
| |
Collapse
|
10
|
Mathers KE, Staples JF. Differential posttranslational modification of mitochondrial enzymes corresponds with metabolic suppression during hibernation. Am J Physiol Regul Integr Comp Physiol 2019; 317:R262-R269. [PMID: 31067076 DOI: 10.1152/ajpregu.00052.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During hibernation, small mammals, including the 13-lined ground squirrel (Ictidomys tridecemlineatus), cycle between two distinct metabolic states: torpor, where metabolic rate is suppressed by >95% and body temperature falls to ~5°C, and interbout euthermia (IBE), where both metabolic rate and body temperature rapidly increase to euthermic levels. Suppression of whole animal metabolism during torpor is paralleled by rapid, reversible suppression of mitochondrial respiration. We hypothesized that these changes in mitochondrial metabolism are regulated by posttranslational modifications to mitochondrial proteins. Differential two-dimensional gel electrophoresis and two-dimensional blue-native PAGE revealed differences in the isoelectric point of several liver mitochondrial proteins between torpor and IBE. Quadrupole time-of-flight LC/MS and matrix-assisted laser desorption/ionization MS identified these as proteins involved in β-oxidation, the tricarboxylic acid cycle, reactive oxygen species detoxification, and the electron transport system (ETS). Immunoblots revealed that subunit 1 of ETS complex IV was acetylated during torpor but not IBE. Phosphoprotein staining revealed significantly greater phosphorylation of succinyl-CoA ligase and the flavoprotein subunit of ETS complex II in IBE than torpor. In addition, the 75-kDa subunit of ETS complex I was 1.5-fold more phosphorylated in torpor. In vitro treatment with alkaline phosphatase increased the maximal activity of complex I from liver mitochondria isolated from torpid, but not IBE, animals. By contrast, phosphatase treatment decreased complex II activity in IBE but not torpor. These findings suggest that the rapid changes in mitochondrial metabolism in hibernators are mediated by posttranslational modifications of key metabolic enzymes, perhaps by intramitochondrial kinases and deacetylases.
Collapse
Affiliation(s)
- Katherine E Mathers
- Department of Biology, University of Western Ontario , London, Ontario , Canada.,Department of Physiology and Pharmacology, University of Western Ontario , London, Ontario , Canada
| | - James F Staples
- Department of Biology, University of Western Ontario , London, Ontario , Canada
| |
Collapse
|
11
|
Effect of hypothermia on the functional activity of liver mitochondria of grass snake (Natrix natrix): inhibition of succinate-fueled respiration and K + transport, ROS-induced activation of mitochondrial permeability transition. J Bioenerg Biomembr 2019; 51:219-229. [PMID: 30982206 DOI: 10.1007/s10863-019-09796-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/04/2019] [Indexed: 12/16/2022]
Abstract
The article considers the comparative analysis of the functional activity of mitochondria isolated from the liver of grass snakes, Natrix natrix (Linnaeus, 1758) that were kept at different temperatures (23-26 °C and 4-5 °C). It was found that liver mitochondria of hypothermia-exposed grass snakes are characterized by weak coupling of oxidative phosphorylation as compared to mitochondria of active animals which is caused by inhibition of succinate-fuelled respiration in ADP-stimulated state, as well as by activation of basal non-phosphorylating rate. Inhibition of mitochondrial respiration in hibernating animals is associated with a decrease in the activity of the respiratory chain complexes of organelles. A significant decrease in the rate of K+ transport in the liver mitochondria of hibernating animals has been established. Under these conditions, a decrease in the calcium capacity of the organelles was also revealed, which indicates a decrease in the resistance of the mitochondria of hibernating animals to the induction of the Ca2+-dependent mitochondrial pore. All these changes in the functional activity of mitochondria are observed on the background of increasing H2O2 production as well as increasing the proportion of polyunsaturated fatty acids in phospholipid composition of mitochondrial membranes, which are the targets of reactive oxygen species. It can lead to increased formation of lipid peroxides and activation of destructive processes associated with the induction of Ca2+-dependent mitochondrial pore.
Collapse
|
12
|
Cortes PA, Bozinovic F, Blier PU. Mitochondrial phenotype during torpor: Modulation of mitochondrial electron transport system in the Chilean mouse-opossum Thylamys elegans. Comp Biochem Physiol A Mol Integr Physiol 2018; 221:7-14. [PMID: 29551753 DOI: 10.1016/j.cbpa.2017.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/30/2017] [Accepted: 12/08/2017] [Indexed: 12/20/2022]
Abstract
Mammalian torpor is a phenotype characterized by a controlled decline of metabolic rate, generally followed by a reduction in body temperature. During arousal from torpor, both metabolic rate and body temperature rapidly returns to resting levels. Metabolic rate reduction experienced by torpid animals is triggered by active suppression of mitochondrial respiration, which is rapidly reversed during rewarming process. In this study, we analyzed the changes in the maximal activity of key enzymes related to electron transport system (complexes I, III and IV) in six tissues of torpid, arousing and euthermic Chilean mouse-opossums (Thylamys elegans). We observed higher maximal activities of complexes I and IV during torpor in brain, heart and liver, the most metabolically active organs in mammals. On the contrary, higher enzymatic activities of complexes III were observed during torpor in kidneys and lungs. Moreover, skeletal muscle was the only tissue without significant differences among stages in all complexes evaluated, suggesting no modulation of oxidative capacities of electron transport system components in this thermogenic tissue. In overall, our data suggest that complexes I and IV activity plays a major role in initiation and maintenance of metabolic suppression during torpor in Chilean mouse-opossum, whereas improvement of oxidative capacities in complex III might be critical to sustain metabolic machinery in organs that remains metabolically active during torpor.
Collapse
Affiliation(s)
- Pablo A Cortes
- Escuela de Agronomía, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Chile; Departamento de Ecología, Center of Applied Ecology and Sustainability, Facultad de Ciencias Biológicas, Universidad Católica de Chile, Santiago 6513677, Chile.
| | - Francisco Bozinovic
- Departamento de Ecología, Center of Applied Ecology and Sustainability, Facultad de Ciencias Biológicas, Universidad Católica de Chile, Santiago 6513677, Chile
| | - Pierre U Blier
- Département de Biologie, Laboratoire de Physiologie Animale Intégrative, Université du Québec, Rimouski G5L 3A1, QC, Canada
| |
Collapse
|
13
|
MacCannell ADV, Jackson EC, Mathers KE, Staples JF. An improved method for detecting torpor entrance and arousal in a mammalian hibernator using heart rate data. ACTA ACUST UNITED AC 2018; 221:jeb.174508. [PMID: 29361606 DOI: 10.1242/jeb.174508] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/10/2018] [Indexed: 12/22/2022]
Abstract
We used electrocardiogram (ECG) telemeters to measure the heart rate of hibernating Ictidomys tridecemlineatus (thirteen-lined ground squirrel). An increase in heart rate from 2.2 to 5 beats min-1 accurately identified arousal from torpor before any change in body temperature was detected. Variability in raw heart rate data was significantly reduced by a forward-backward Butterworth low-pass filter, allowing for discrete differential analysis. A decrease in filtered heart rate to 70% of maximum values in interbout euthermia (from approximately 312 to 235 beats min-1) accurately detected entrance into torpor bouts. At this point, body temperature had fallen from 36.1°C to only 34.7°C, much higher than the 30°C typically used to identify entrance. Using these heart rate criteria allowed advanced detection of entrance and arousal (detected 51.9 and 76 min earlier, respectively), compared with traditional body temperature criteria. This method will improve our ability to detect biochemical and molecular markers underlying these transition periods, during which many physiological changes occur.
Collapse
Affiliation(s)
| | - Ethan C Jackson
- Department of Computer Science, University of Western Ontario, London ON, N6A5B7, Canada
| | - Katherine E Mathers
- Department of Biology, University of Western Ontario, London ON, N6A5B8, Canada
| | - James F Staples
- Department of Biology, University of Western Ontario, London ON, N6A5B8, Canada
| |
Collapse
|
14
|
Heim AB, Chung D, Florant GL, Chicco AJ. Tissue-specific seasonal changes in mitochondrial function of a mammalian hibernator. Am J Physiol Regul Integr Comp Physiol 2017; 313:R180-R190. [DOI: 10.1152/ajpregu.00427.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 05/03/2017] [Accepted: 05/25/2017] [Indexed: 01/09/2023]
Abstract
Mammalian hibernators, such as golden-mantled ground squirrels ( Callospermophilus lateralis; GMGS), cease to feed while reducing metabolic rate and body temperature during winter months, surviving exclusively on endogenous fuels stored before hibernation. We hypothesized that mitochondria, the cellular sites of oxidative metabolism, undergo tissue-specific seasonal adjustments in carbohydrate and fatty acid utilization to facilitate or complement this remarkable phenotype. To address this, we performed high-resolution respirometry of mitochondria isolated from GMGS liver, heart, skeletal muscle, and brown adipose tissue (BAT) sampled during summer (active), fall (prehibernation), and winter (hibernation) seasons using multisubstrate titration protocols. Mitochondrial phospholipid composition was examined as a postulated intrinsic modulator of respiratory function across tissues and seasons. Respirometry revealed seasonal variations in mitochondrial oxidative phosphorylation capacity, substrate utilization, and coupling efficiency that reflected the distinct functions and metabolic demands of the tissues they support. A consistent finding across tissues was a greater influence of fatty acids (palmitoylcarnitine) on respiratory parameters during the prehibernation and hibernation seasons. In particular, fatty acids had a greater suppressive effect on pyruvate-supported oxidative phosphorylation in heart, muscle, and liver mitochondria and enhanced uncoupled respiration in BAT and muscle mitochondria in the colder seasons. Seasonal variations in the mitochondrial membrane composition reflected changes in the supply and utilization of polyunsaturated fatty acids but were generally mild and inconsistent with functional variations. In conclusion, mitochondria respond to seasonal variations in physical activity, temperature, and nutrient availability in a tissue-specific manner that complements circannual shifts in the bioenergetic and thermoregulatory demands of mammalian hibernators.
Collapse
Affiliation(s)
- Ashley B. Heim
- Department of Biology, Colorado State University, Fort Collins, Colorado
| | - Dillon Chung
- Department of Zoology, University of British Colombia, Vancouver, British Columbia, Canada; and
| | - Gregory L. Florant
- Department of Biology, Colorado State University, Fort Collins, Colorado
| | - Adam J. Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
15
|
Ballinger MA, Schwartz C, Andrews MT. Enhanced oxidative capacity of ground squirrel brain mitochondria during hibernation. Am J Physiol Regul Integr Comp Physiol 2017; 312:R301-R310. [PMID: 28077389 DOI: 10.1152/ajpregu.00314.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 01/06/2017] [Accepted: 01/08/2017] [Indexed: 11/22/2022]
Abstract
During hibernation, thirteen-lined ground squirrels (Ictidomys tridecemlineatus) regularly cycle between bouts of torpor and interbout arousal (IBA). Most of the brain is electrically quiescent during torpor but regains activity quickly upon arousal to IBA, resulting in extreme oscillations in energy demand during hibernation. We predicted increased functional capacity of brain mitochondria during hibernation compared with spring to accommodate the variable energy demands of hibernation. To address this hypothesis, we examined mitochondrial bioenergetics in the ground squirrel brain across three time points: spring (SP), torpor (TOR), and IBA. Respiration rates of isolated brain mitochondria through complex I of the electron transport chain were more than twofold higher in TOR and IBA than in SP (P < 0.05). We also found a 10% increase in membrane potential between hibernation and spring (P < 0.05), and that proton leak was lower in TOR and IBA than in SP. Finally, there was a 30% increase in calcium loading in SP brain mitochondria compared with TOR and IBA (P < 0.01). To analyze brain mitochondrial abundance between spring and hibernation, we measured the ratio of copy number in a mitochondrial gene (ND1) vs. a nuclear gene (B2M) in frozen cerebral cortex samples. No significant differences were observed in DNA copies between SP and IBA. These data show that brain mitochondrial bioenergetics are not static across the year and suggest that brain mitochondria function more effectively during the hibernation season, allowing for rapid production of energy to meet demand when extreme physiological changes are occurring.
Collapse
Affiliation(s)
- Mallory A Ballinger
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota; and
| | - Christine Schwartz
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota; and.,Department of Biology, University of Wisconsin-La Crosse, La Crosse, Wisconsin
| | - Matthew T Andrews
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota; and
| |
Collapse
|
16
|
McFarlane SV, Mathers KE, Staples JF. Reversible temperature-dependent differences in brown adipose tissue respiration during torpor in a mammalian hibernator. Am J Physiol Regul Integr Comp Physiol 2017; 312:R434-R442. [PMID: 28077390 DOI: 10.1152/ajpregu.00316.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/06/2016] [Accepted: 01/06/2017] [Indexed: 01/23/2023]
Abstract
Although seasonal modifications of brown adipose tissue (BAT) in hibernators are well documented, we know little about functional regulation of BAT in different phases of hibernation. In the 13-lined ground squirrel, liver mitochondrial respiration is suppressed by up to 70% during torpor. This suppression is reversed during arousal and interbout euthermia (IBE), and corresponds with patterns of maximal activities of electron transport system (ETS) enzymes. Uncoupling of BAT mitochondria is controlled by free fatty acid release stimulated by sympathetic activation of adipocytes, so we hypothesized that further regulation at the level of the ETS would be of little advantage. As predicted, maximal ETS enzyme activities of isolated BAT mitochondria did not differ between torpor and IBE. In contrast to this pattern, respiration rates of mitochondria isolated from torpid individuals were suppressed by ~60% compared with rates from IBE individuals when measured at 37°C. At 10°C, however, mitochondrial respiration rates tended to be greater in torpor than IBE. As a result, the temperature sensitivity (Q10) of mitochondrial respiration was significantly lower in torpor (~1.4) than IBE (~2.4), perhaps facilitating energy savings during entrance into torpor and thermogenesis at low body temperatures. Despite the observed differences in isolated mitochondria, norepinephrine-stimulated respiration rates of isolated BAT adipocytes did not differ between torpor and IBE, perhaps because the adipocyte isolation requires lengthy incubation at 37°C, potentially reversing any changes that occur in torpor. Such changes may include remodeling of BAT mitochondrial membrane phospholipids, which could change in situ enzyme activities and temperature sensitivities.
Collapse
Affiliation(s)
- Sarah V McFarlane
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Katherine E Mathers
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - James F Staples
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
17
|
Salin K, Auer SK, Rudolf AM, Anderson GJ, Selman C, Metcalfe NB. Variation in Metabolic Rate among Individuals Is Related to Tissue-Specific Differences in Mitochondrial Leak Respiration. Physiol Biochem Zool 2016; 89:511-523. [DOI: 10.1086/688769] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Regulation of mitochondrial metabolism during hibernation by reversible suppression of electron transport system enzymes. J Comp Physiol B 2016; 187:227-234. [DOI: 10.1007/s00360-016-1022-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 07/12/2016] [Accepted: 07/18/2016] [Indexed: 01/07/2023]
|
19
|
Quinones QJ, Zhang Z, Ma Q, Smith MP, Soderblom E, Moseley MA, Bain J, Newgard CB, Muehlbauer MJ, Hirschey M, Drew KL, Barnes BM, Podgoreanu MV. Proteomic Profiling Reveals Adaptive Responses to Surgical Myocardial Ischemia-Reperfusion in Hibernating Arctic Ground Squirrels Compared to Rats. Anesthesiology 2016; 124:1296-310. [PMID: 27187119 PMCID: PMC4874524 DOI: 10.1097/aln.0000000000001113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hibernation is an adaptation to extreme environments known to provide organ protection against ischemia-reperfusion (I/R) injury. An unbiased systems approach was utilized to investigate hibernation-induced changes that are characteristic of the hibernator cardioprotective phenotype, by comparing the myocardial proteome of winter hibernating arctic ground squirrels (AGS), summer active AGS, and rats subjected to I/R, and further correlating with targeted metabolic changes. METHODS In a well-defined rodent model of I/R by deep hypothermic circulatory arrest followed by 3 or 24 h of reperfusion or sham, myocardial protein abundance in AGS (hibernating summer active) and rats (n = 4 to 5/group) was quantified by label-free proteomics (n = 4 to 5/group) and correlated with metabolic changes. RESULTS Compared to rats, hibernating AGS displayed markedly reduced plasma levels of troponin I, myocardial apoptosis, and left ventricular contractile dysfunction. Of the 1,320 rat and 1,478 AGS proteins identified, 545 were differentially expressed between hibernating AGS and rat hearts (47% up-regulated and 53% down-regulated). Gene ontology analysis revealed down-regulation in hibernating AGS hearts of most proteins involved in mitochondrial energy transduction, including electron transport chain complexes, acetyl CoA biosynthesis, Krebs cycle, glycolysis, and ketogenesis. Conversely, fatty acid oxidation enzymes and sirtuin-3 were up-regulated in hibernating AGS, with preserved peroxisome proliferator-activated receptor-α activity and reduced tissue levels of acylcarnitines and ceramides after I/R. CONCLUSIONS Natural cardioprotective adaptations in hibernators involve extensive metabolic remodeling, featuring increased expression of fatty acid metabolic proteins and reduced levels of toxic lipid metabolites. Robust up-regulation of sirtuin-3 suggests that posttranslational modifications may underlie organ protection in hibernating mammals.
Collapse
Affiliation(s)
| | - Zhiquan Zhang
- Duke Department of Anesthesiology, Duke University, Durham, NC
| | - Qing Ma
- Duke Department of Anesthesiology, Duke University, Durham, NC
| | | | - Erik Soderblom
- Duke Center for Genomic and Computational Biology – Proteomics Shared Resource, Duke University, Durham, NC
| | - M. Arthur Moseley
- Duke Center for Genomic and Computational Biology – Proteomics Shared Resource, Duke University, Durham, NC
| | - James Bain
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University, Durham, NC
| | - Christopher B. Newgard
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University, Durham, NC
| | - Michael J. Muehlbauer
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University, Durham, NC
| | - Matthew Hirschey
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University, Durham, NC
| | - Kelly L. Drew
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK
| | - Brian M. Barnes
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK
| | - Mihai V. Podgoreanu
- Duke Department of Anesthesiology, Duke University, Durham, NC
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK
| |
Collapse
|
20
|
Ballinger MA, Hess C, Napolitano MW, Bjork JA, Andrews MT. Seasonal changes in brown adipose tissue mitochondria in a mammalian hibernator: from gene expression to function. Am J Physiol Regul Integr Comp Physiol 2016; 311:R325-36. [PMID: 27225952 DOI: 10.1152/ajpregu.00463.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 05/24/2016] [Indexed: 12/25/2022]
Abstract
Brown adipose tissue (BAT) is a thermogenic organ that is vital for hibernation in mammals. Throughout the hibernation season, BAT mitochondrial uncoupling protein 1 (UCP1) enables rapid rewarming from hypothermic torpor to periodic interbout arousals (IBAs), as energy is dissipated as heat. However, BAT's unique ability to rewarm the body via nonshivering thermogenesis is not necessary outside the hibernation season, suggesting a potential seasonal change in the regulation of BAT function. Here, we examined the BAT mitochondrial proteome and mitochondrial bioenergetics in the thirteen-lined ground squirrel (Ictidomys tridecemlineatus) across four time points: spring, fall, torpor, and IBA. Relative mitochondrial content of BAT was estimated by measuring BAT pad mass, UCP1 protein content, and mitochondrial DNA (mtDNA) copy number. BAT mtDNA content was significantly lower in spring compared with torpor and IBA (P < 0.05). UCP1 mRNA and protein levels were highest during torpor and IBA. Respiration rates of isolated BAT mitochondria were interrogated at each complex of the electron transport chain. Respiration at complex II was significantly higher in torpor and IBA compared with spring (P < 0.05), suggesting an enhancement in mitochondrial respiratory capacity during hibernation. Additionally, proteomic iTRAQ labeling identified 778 BAT mitochondrial proteins. Proteins required for mitochondrial lipid translocation and β-oxidation were upregulated during torpor and IBA and downregulated in spring. These data imply that BAT bioenergetics and mitochondrial content are not static across the year, despite the year-round presence of UCP1.
Collapse
Affiliation(s)
| | - Clair Hess
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota
| | - Max W Napolitano
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota
| | - James A Bjork
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota
| | - Matthew T Andrews
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota
| |
Collapse
|
21
|
Abstract
Many environmental conditions can constrain the ability of animals to obtain sufficient food energy, or transform that food energy into useful chemical forms. To survive extended periods under such conditions animals must suppress metabolic rate to conserve energy, water, or oxygen. Amongst small endotherms, this metabolic suppression is accompanied by and, in some cases, facilitated by a decrease in core body temperature-hibernation or daily torpor-though significant metabolic suppression can be achieved even with only modest cooling. Within some ectotherms, winter metabolic suppression exceeds the passive effects of cooling. During dry seasons, estivating ectotherms can reduce metabolism without changes in body temperature, conserving energy reserves, and reducing gas exchange and its inevitable loss of water vapor. This overview explores the similarities and differences of metabolic suppression among these states within adult animals (excluding developmental diapause), and integrates levels of organization from the whole animal to the genome, where possible. Several similarities among these states are highlighted, including patterns and regulation of metabolic balance, fuel use, and mitochondrial metabolism. Differences among models are also apparent, particularly in whether the metabolic suppression is intrinsic to the tissue or depends on the whole-animal response. While in these hypometabolic states, tissues from many animals are tolerant of hypoxia/anoxia, ischemia/reperfusion, and disuse. These natural models may, therefore, serve as valuable and instructive models for biomedical research.
Collapse
Affiliation(s)
- James F Staples
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
22
|
Komelina NP, Polskaya AI, Amerkhanov ZG. Artificial hypothermia in rats, unlike natural hibernation in ground squirrels Spermophilus undulatus, is not accompanied by the inhibition of respiration in liver mitochondria. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2015. [DOI: 10.1134/s1990747815050062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Proteomics approaches shed new light on hibernation physiology. J Comp Physiol B 2015; 185:607-27. [PMID: 25976608 DOI: 10.1007/s00360-015-0905-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/11/2015] [Accepted: 04/19/2015] [Indexed: 10/23/2022]
Abstract
The broad phylogenetic distribution and rapid phenotypic transitions of mammalian hibernators imply that hibernation is accomplished by differential expression of common genes. Traditional candidate gene approaches have thus far explained little of the molecular mechanisms underlying hibernation, likely due to (1) incomplete and imprecise sampling of a complex phenotype, and (2) the forming of hypotheses about which genes might be important based on studies of model organisms incapable of such dynamic physiology. Unbiased screening approaches, such as proteomics, offer an alternative means to discover the cellular underpinnings that permit successful hibernation and may reveal previously overlooked, important pathways. Here, we review the findings that have emerged from proteomics studies of hibernation. One striking feature is the stability of the proteome, especially across the extreme physiological shifts of torpor-arousal cycles during hibernation. This has led to subsequent investigations of the role of post-translational protein modifications in altering protein activity without energetically wasteful removal and rebuilding of protein pools. Another unexpected finding is the paucity of universal proteomic adjustments across organ systems in response to the extreme metabolic fluctuations despite the universality of their physiological challenges; rather each organ appears to respond in a unique, tissue-specific manner. Additional research is needed to extend and synthesize these results before it will be possible to address the whole body physiology of hibernation.
Collapse
|
24
|
Mathers KE, Staples JF. Saponin-permeabilization is not a viable alternative to isolated mitochondria for assessing oxidative metabolism in hibernation. Biol Open 2015; 4:858-64. [PMID: 25979709 PMCID: PMC4571088 DOI: 10.1242/bio.011544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saponin permeabilization of tissue slices is increasingly popular for characterizing mitochondrial function largely because it is fast, easy, requires little tissue and leaves much of the cell intact. This technique is well described for mammalian muscle and brain, but not for liver. We sought to evaluate how saponin permeabilization reflects aspects of liver energy metabolism typically assessed in isolated mitochondria. We studied the ground squirrel (Ictidomys tridecemlineatus Mitchell), a hibernating mammal that shows profound and acute whole-animal metabolic suppression in the transition from winter euthermia to torpor. This reversible metabolic suppression is also reflected in the metabolism of isolated liver mitochondria. In this study we compared euthermic and torpid animals using saponin permeabilized tissue and mitochondria isolated from the same livers. As previously demonstrated, isolated mitochondria have state 3 respiration rates, fueled by succinate, that are suppressed by 60-70% during torpor. This result holds whether respiration is standardized to mitochondrial protein, cytochrome a content or citrate synthase activity. In contrast, saponin-permeabilized liver tissue, show no such suppression in torpor. Neither citrate synthase activity nor VDAC content differ between torpor and euthermia, indicating that mitochondrial content remains constant in both permeabilized tissue and isolated mitochondria. In contrast succinate dehydrogenase activity is suppressed during torpor in isolated mitochondria, but not in permeabilized tissue. Mechanisms underlying metabolic suppression in torpor may have been reversed by the permeabilization process. As a result we cannot recommend saponin permeabilization for assessing liver mitochondrial function under conditions where acute changes in metabolism are known to occur.
Collapse
Affiliation(s)
- Katherine E Mathers
- Department of Biology, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - James F Staples
- Department of Biology, University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
25
|
Staples JF. Metabolic suppression in mammalian hibernation: the role of mitochondria. ACTA ACUST UNITED AC 2015; 217:2032-6. [PMID: 24920833 DOI: 10.1242/jeb.092973] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hibernation evolved in some small mammals that live in cold environments, presumably to conserve energy when food supplies are low. Throughout the winter, hibernators cycle spontaneously between torpor, with low metabolism and near-freezing body temperatures, and euthermia, with high metabolism and body temperatures near 37°C. Understanding the mechanisms underlying this natural model of extreme metabolic plasticity is important for fundamental and applied science. During entrance into torpor, reductions in metabolic rate begin before body temperatures fall, even when thermogenesis is not active, suggesting active mechanisms of metabolic suppression, rather than passive thermal effects. Mitochondrial respiration is suppressed during torpor, especially when measured in liver mitochondria fuelled with succinate at 37°C in vitro. This suppression of mitochondrial metabolism appears to be invoked quickly during entrance into torpor when body temperature is high, but is reversed slowly during arousal when body temperature is low. This pattern may reflect body temperature-sensitive, enzyme-mediated post-translational modifications of oxidative phosphorylation complexes, for instance by phosphorylation or acetylation.
Collapse
Affiliation(s)
- James F Staples
- Department of Biology, University of Western Ontario, London, ON, Canada, N6A 5B8
| |
Collapse
|
26
|
Tessier SN, Storey KB. To be or not to be: the regulation of mRNA fate as a survival strategy during mammalian hibernation. Cell Stress Chaperones 2014; 19:763-76. [PMID: 24789358 PMCID: PMC4389848 DOI: 10.1007/s12192-014-0512-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/13/2014] [Indexed: 12/20/2022] Open
Abstract
Mammalian hibernators undergo profound behavioral, physiological, and biochemical changes in order to cope with hypothermia, ischemia-reperfusion, and finite fuel reserves over days or weeks of continuous torpor. Against a backdrop of global reductions in energy-expensive processes such as transcription and translation, a subset of genes/proteins are strategically upregulated in order to meet challenges associated with hibernation. Consequently, hibernation involves substantial transcriptional and posttranscriptional regulatory mechanisms and provides a phenomenon with which to understand how a set of common genes/proteins can be differentially regulated in order to enhance stress tolerance beyond that which is possible for nonhibernators. The present review focuses on the involvement of messenger RNA (mRNA) interacting factors that play a role in the regulation of gene/protein expression programs that define the hibernating phenotype. These include proteins involved in mRNA processing (i.e., capping, splicing, and polyadenylation) and the possible role of alternative splicing as a means of enhancing protein diversity. Since the total pool of mRNA remains constant throughout torpor, mechanisms which enhance mRNA stability are discussed in the context of RNA binding proteins and mRNA decay pathways. Furthermore, mechanisms which control the global reduction of cap-dependent translation and the involvement of internal ribosome entry sites in mRNAs encoding stress response proteins are also discussed. Finally, the concept of regulating each of these factors in discrete subcellular compartments for enhanced efficiency is addressed. The analysis draws on recent research from several well-studied mammalian hibernators including ground squirrels, bats, and bears.
Collapse
Affiliation(s)
- Shannon N. Tessier
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6 Canada
| | - Kenneth B. Storey
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6 Canada
| |
Collapse
|
27
|
Tessier SN, Audas TE, Wu CW, Lee S, Storey KB. The involvement of mRNA processing factors TIA-1, TIAR, and PABP-1 during mammalian hibernation. Cell Stress Chaperones 2014; 19:813-25. [PMID: 24590458 PMCID: PMC4389841 DOI: 10.1007/s12192-014-0505-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 01/10/2023] Open
Abstract
Mammalian hibernators survive low body temperatures, ischemia-reperfusion, and restricted nutritional resources via global reductions in energy-expensive cellular processes and selective increases in stress pathways. Consequently, studies that analyze hibernation uncover mechanisms which balance metabolism and support survival by enhancing stress tolerance. We hypothesized processing factors that influence messenger ribonucleic acid (mRNA) maturation and translation may play significant roles in hibernation. We characterized the amino acid sequences of three RNA processing proteins (T cell intracellular antigen 1 (TIA-1), TIA1-related (TIAR), and poly(A)-binding proteins (PABP-1)) from thirteen-lined ground squirrels (Ictidomys tridecemlineatus), which all displayed a high degree of sequence identity with other mammals. Alternate Tia-1 and TiaR gene variants were found in the liver with higher expression of isoform b versus a in both cases. The localization of RNA-binding proteins to subnuclear structures was assessed by immunohistochemistry and confirmed by subcellular fractionation; TIA-1 was identified as a major component of subnuclear structures with up to a sevenfold increase in relative protein levels in the nucleus during hibernation. By contrast, there was no significant difference in the relative protein levels of TIARa/TIARb in the nucleus, and a decrease was observed for TIAR isoforms in cytoplasmic fractions of torpid animals. Finally, we used solubility tests to analyze the formation of reversible aggregates that are associated with TIA-1/R function during stress; a shift towards the soluble fraction (TIA-1a, TIA-1b) was observed during hibernation suggesting enhanced protein aggregation was not present during torpor. The present study identifies novel posttranscriptional regulatory mechanisms that may play a role in reducing translational rates and/or mRNA processing under unfavorable environmental conditions.
Collapse
Affiliation(s)
- Shannon N. Tessier
- />Institute of Biochemistry, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6 Canada
| | - Timothy E. Audas
- />Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5 Canada
| | - Cheng-Wei Wu
- />Institute of Biochemistry, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6 Canada
| | - Stephen Lee
- />Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5 Canada
| | - Kenneth B. Storey
- />Institute of Biochemistry, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6 Canada
| |
Collapse
|
28
|
Cooper AN, Brown JCL, Staples JF. Are long chain acyl CoAs responsible for suppression of mitochondrial metabolism in hibernating 13-lined ground squirrels? Comp Biochem Physiol B Biochem Mol Biol 2014; 170:50-7. [PMID: 24561259 DOI: 10.1016/j.cbpb.2014.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/11/2014] [Accepted: 02/13/2014] [Indexed: 11/18/2022]
Abstract
Hibernation in 13-lined ground squirrels (Ictidomys tridecemlineatus) is associated with a substantial suppression of whole-animal metabolism. We compared the metabolism of liver mitochondria isolated from torpid ground squirrels with those from interbout euthermic (IBE; recently aroused from torpor) and summer euthermic conspecifics. Succinate-fuelled state 3 respiration, calculated relative to mitochondrial protein, was suppressed in torpor by 48% and 44% compared with IBE and summer, respectively. This suppression remains when respiration is expressed relative to cytochrome c oxidase activity. We hypothesized that this suppression was caused by inhibition of succinate transport at the dicarboxylate transporter (DCT) by long-chain fatty acyl CoAs that may accumulate during torpor. We predicted, therefore, that exogenous palmitoyl CoA would inhibit respiration in IBE more than in torpor. Palmitoyl CoA inhibited respiration ~70%, in both torpor and IBE. The addition of carnitine, predicted to reverse palmitoyl CoA suppression by facilitating its transport into the mitochondrial matrix, did not rescue the respiration rates in IBE or torpor. Liver mitochondrial activities of carnitine palmitoyl transferase did not differ among IBE, torpor and summer animals. Although palmitoyl CoA inhibits succinate-fuelled respiration, this suppression is likely not related exclusively to inhibition of the DCT, and may involve additional mitochondrial transporters such as the adenine-nucleotide transporter.
Collapse
Affiliation(s)
- Alex N Cooper
- Department of Biology, University of Western Ontario, London, ON N6A5B8, Canada
| | - Jason C L Brown
- Department of Biology, University of Western Ontario, London, ON N6A5B8, Canada
| | - James F Staples
- Department of Biology, University of Western Ontario, London, ON N6A5B8, Canada.
| |
Collapse
|
29
|
Substrate-specific changes in mitochondrial respiration in skeletal and cardiac muscle of hibernating thirteen-lined ground squirrels. J Comp Physiol B 2014; 184:401-14. [PMID: 24408585 DOI: 10.1007/s00360-013-0799-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/20/2013] [Accepted: 12/29/2013] [Indexed: 10/25/2022]
Abstract
During torpor, the metabolic rate (MR) of thirteen-lined ground squirrels (Ictidomys tridecemlineatus) is considerably lower relative to euthermia, resulting in part from temperature-independent mitochondrial metabolic suppression in liver and skeletal muscle, which together account for ~40% of basal MR. Although heart accounts for very little (<0.5%) of basal MR, in the present study, we showed that respiration rates were decreased up to 60% during torpor in both subsarcolemmal (SS) and intermyofibrillar (IM) mitochondria from cardiac muscle. We further demonstrated pronounced seasonal (summer vs. winter [i.e., interbout] euthermia) changes in respiration rates in both mitochondrial subpopulations in this tissue, consistent with a shift in fuel use away from carbohydrates and proteins and towards fatty acids and ketones. By contrast, these seasonal changes in respiration rates were not observed in either SS or IM mitochondria isolated from hind limb skeletal muscle. Both populations of skeletal muscle mitochondria, however, did exhibit metabolic suppression during torpor, and this suppression was 2- to 3-fold greater in IM mitochondria, which provide ATP for Ca(2+)- and myosin ATPases, the activities of which are likely quite low in skeletal muscle during torpor because animals are immobile. Finally, these changes in mitochondrial respiration rates were still evident when standardized to citrate synthase activity rather than to total mitochondrial protein.
Collapse
|
30
|
Vucetic M, Stancic A, Otasevic V, Jankovic A, Korac A, Markelic M, Velickovic K, Golic I, Buzadzic B, Storey KB, Korac B. The impact of cold acclimation and hibernation on antioxidant defenses in the ground squirrel (Spermophilus citellus): an update. Free Radic Biol Med 2013; 65:916-924. [PMID: 24013092 DOI: 10.1016/j.freeradbiomed.2013.08.188] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 08/14/2013] [Accepted: 08/28/2013] [Indexed: 01/07/2023]
Abstract
Any alteration in oxidative metabolism is coupled with a corresponding response by an antioxidant defense (AD) in appropriate subcellular compartments. Seasonal hibernators pass through circannual metabolic adaptations that allow them to either maintain euthermy (cold acclimation) or enter winter torpor with body temperature falling to low values. The present study aimed to investigate the corresponding pattern of AD enzyme protein expressions associated with these strategies in the main tissues involved in whole animal energy homeostasis: brown and white adipose tissues (BAT and WAT, respectively), liver, and skeletal muscle. European ground squirrels (Spermophilus citellus) were exposed to low temperature (4 ± 1 °C) and then divided into two groups: (1) animals fell into torpor (hibernating group) and (2) animals stayed active and euthermic for 1, 3, 7, 12, or 21 days (cold-exposed group). We examined the effects of cold acclimation and hibernation on the tissue-dependent protein expression of four enzymes which catalyze the two-step detoxification of superoxide to water: superoxide dismutase 1 and 2 (SOD 1 and 2), catalase (CAT), and glutathione peroxidase (GSH-Px). The results showed that hibernation induced an increase of AD enzyme protein expressions in BAT and skeletal muscle. However, AD enzyme contents in liver were largely unaffected during torpor. Under these conditions, different WAT depots responded by elevating the amounts of specific enzymes, as follows: SOD 1 in retroperitoneal WAT, GSH-Px in gonadal WAT, and CAT in subcutaneous WAT. Similar perturbations of AD enzymes contents were seen in all tissues during cold acclimation, often in a time-dependent manner. It can be concluded that BAT and muscle AD capacity undergo the most dramatic changes during both cold acclimation and hibernation, while liver is relatively unaffected by either condition. Additionally, this study provides a basis for further metabolic study that will illuminate the causes of these tissue-specific AD responses, particularly the novel finding of distinct responses by different WAT depots in hibernators.
Collapse
Affiliation(s)
- Milica Vucetic
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic," Department of Physiology, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Ana Stancic
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic," Department of Physiology, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Vesna Otasevic
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic," Department of Physiology, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Aleksandra Jankovic
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic," Department of Physiology, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Aleksandra Korac
- University of Belgrade, Faculty of Biology, Center for Electron Microscopy, Belgrade, Serbia
| | - Milica Markelic
- University of Belgrade, Faculty of Biology, Center for Electron Microscopy, Belgrade, Serbia
| | - Ksenija Velickovic
- University of Belgrade, Faculty of Biology, Center for Electron Microscopy, Belgrade, Serbia
| | - Igor Golic
- University of Belgrade, Faculty of Biology, Center for Electron Microscopy, Belgrade, Serbia
| | - Biljana Buzadzic
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic," Department of Physiology, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Kenneth B Storey
- Carleton University, Department of Biology, Ottawa, Ontario, Canada
| | - Bato Korac
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic," Department of Physiology, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| |
Collapse
|
31
|
Dindia L, Faught E, Leonenko Z, Thomas R, Vijayan MM. Rapid cortisol signaling in response to acute stress involves changes in plasma membrane order in rainbow trout liver. Am J Physiol Endocrinol Metab 2013; 304:E1157-66. [PMID: 23531621 DOI: 10.1152/ajpendo.00500.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The activation of genomic signaling in response to stressor-mediated cortisol elevation has been studied extensively in teleosts. However, very little is known about the rapid signaling events elicited by this steroid. We tested the hypothesis that cortisol modulates key stress-related signaling pathways in response to an acute stressor in fish liver. To this end, we investigated the effect of an acute stressor on biophysical properties of plasma membrane and on stressor-related protein phosphorylation in rainbow trout (Oncorhynchus mykiss) liver. A role for cortisol in modulating the acute cellular stress response was ascertained by blocking the stressor-induced elevation of this steroid by metyrapone. The acute stressor exposure increased plasma cortisol levels and liver membrane fluidity (measured by anisotropy of 1,6-diphenyl-1,3,5-hexatriene), but these responses were abolished by metyrapone. Atomic force microscopy further confirmed biophysical alterations in liver plasma membrane in response to stress, including changes in membrane domain topography. The changes in membrane order did not correspond to any changes in membrane fatty acid components after stress, suggesting that changes in membrane structure may be associated with cortisol incorporation into the lipid bilayer. Plasma cortisol elevation poststress correlated positively with activation of intracellular stress signaling pathways, including increased phosphorylation of extracellular signal-related kinases as well as several putative PKA and PKC but not Akt substrate proteins. Together, our results indicate that stressor-induced elevation of plasma cortisol level is associated with alterations in plasma membrane fluidity and rapid activation of stress-related signaling pathways in trout liver.
Collapse
Affiliation(s)
- Laura Dindia
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | | | | | | | | |
Collapse
|
32
|
Chung DJ, Szyszka B, Brown JCL, Hüner NPA, Staples JF. Changes in the mitochondrial phosphoproteome during mammalian hibernation. Physiol Genomics 2013; 45:389-99. [PMID: 23572536 DOI: 10.1152/physiolgenomics.00171.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammalian hibernation involves periods of substantial suppression of metabolic rate (torpor) allowing energy conservation during winter. In thirteen-lined ground squirrels (Ictidomys tridecemlineatus), suppression of liver mitochondrial respiration during entrance into torpor occurs rapidly (within 2 h) before core body temperature falls below 30°C, whereas reversal of this suppression occurs slowly during arousal from torpor. We hypothesized that this pattern of rapid suppression in entrance and slow reversal during arousal was related to changes in the phosphorylation state of mitochondrial enzymes during torpor catalyzed by temperature-dependent kinases and phosphatases. We compared mitochondrial protein phosphorylation among hibernation metabolic states using immunoblot analyses and assessed how phosphorylation related to mitochondrial respiration rates. No proteins showed torpor-specific changes in phosphorylation, nor did phosphorylation state correlate with mitochondrial respiration. However, several proteins showed seasonal (summer vs. winter) differences in phosphorylation of threonine or serine residues. Using matrix-assisted laser desorption/ionization-time of flight/time of flight mass spectrometry, we identified three of these proteins: F1-ATPase α-chain, long chain-specific acyl-CoA dehydrogenase, and ornithine transcarbamylase. Therefore, we conclude that protein phosphorylation is likely a mechanism involved in bringing about seasonal changes in mitochondrial metabolism in hibernating ground squirrels, but it seems unlikely to play any role in acute suppression of mitochondrial metabolism during torpor.
Collapse
Affiliation(s)
- Dillon J Chung
- Department of Biology, University of Western Ontario, London, Ontario, Canada.
| | | | | | | | | |
Collapse
|
33
|
Brown JCL, Chung DJ, Cooper AN, Staples JF. Regulation of succinate-fuelled mitochondrial respiration in liver and skeletal muscle of hibernating thirteen-lined ground squirrels. ACTA ACUST UNITED AC 2013; 216:1736-43. [PMID: 23348944 DOI: 10.1242/jeb.078519] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hibernating ground squirrels (Ictidomys tridecemlineatus) alternate between two distinct metabolic states throughout winter: torpor, during which metabolic rate (MR) and body temperature (Tb) are considerably suppressed, and interbout euthermia (IBE), during which MR and Tb briefly return to euthermic levels. Previous studies showed suppression of succinate-fuelled respiration during torpor in liver and skeletal muscle mitochondria; however, these studies used only a single, saturating succinate concentration. Therefore, they could not address whether mitochondrial metabolic suppression occurs under physiological substrate concentrations or whether differences in the kinetics of mitochondrial responses to changing substrate concentration might also contribute to mitochondrial metabolic regulation during torpor. The present study confirmed that succinate oxidation is reduced during torpor in liver and skeletal muscle at 37 and 10°C over a 100-fold range of succinate concentrations. At 37°C, this suppression resulted from inhibition of succinate dehydrogenase (SDH), which had a greater affinity for oxaloacetate (an SDH inhibitor) during torpor. At 10°C, SDH was not inhibited, suggesting that SDH inhibition initiates but does not maintain mitochondrial suppression during torpor. Moreover, in both liver and skeletal muscle, mitochondria from torpid animals maintained relatively higher respiration rates at low succinate concentrations, which reduces the extent of energy savings that can be achieved during torpor, but may also maintain mitochondrial oxidative capacity above some lower critical threshold, thereby preventing cellular and/or mitochondrial injury during torpor and facilitating rapid recruitment of oxidative capacity during arousal.
Collapse
Affiliation(s)
- Jason C L Brown
- Department of Biology, University of Western Ontario, London, ON, Canada, N6A 5B7.
| | | | | | | |
Collapse
|
34
|
Gallagher K, Staples JF. Metabolism of Brain Cortex and Cardiac Muscle Mitochondria in Hibernating 13-Lined Ground SquirrelsIctidomys tridecemlineatus. Physiol Biochem Zool 2013; 86:1-8. [DOI: 10.1086/668853] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
35
|
Brown JCL, Chung DJ, Belgrave KR, Staples JF. Mitochondrial metabolic suppression and reactive oxygen species production in liver and skeletal muscle of hibernating thirteen-lined ground squirrels. Am J Physiol Regul Integr Comp Physiol 2012; 302:R15-28. [DOI: 10.1152/ajpregu.00230.2011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During hibernation, animals cycle between periods of torpor, during which body temperature (Tb) and metabolic rate (MR) are suppressed for days, and interbout euthermia (IBE), during which Tb and MR return to resting levels for several hours. In this study, we measured respiration rates, membrane potentials, and reactive oxygen species (ROS) production of liver and skeletal muscle mitochondria isolated from ground squirrels ( Ictidomys tridecemlineatus ) during torpor and IBE to determine how mitochondrial metabolism is suppressed during torpor and how this suppression affects oxidative stress. In liver and skeletal muscle, state 3 respiration measured at 37°C with succinate was 70% and 30% lower, respectively, during torpor. In liver, this suppression was achieved largely via inhibition of substrate oxidation, likely at succinate dehydrogenase. In both tissues, respiration by torpid mitochondria further declined up to 88% when mitochondria were cooled to 10°C, close to torpid Tb. In liver, this passive thermal effect on respiration rate reflected reduced activity of all components of oxidative phosphorylation (substrate oxidation, phosphorylation, and proton leak). With glutamate + malate and succinate, mitochondrial free radical leak (FRL; proportion of electrons leading to ROS production) was higher in torpor than IBE, but only in liver. With succinate, higher FRL likely resulted from increased reduction state of complex III during torpor. With glutamate + malate, higher FRL resulted from active suppression of complex I ROS production during IBE, which may limit ROS production during arousal. In both tissues, ROS production and FRL declined with temperature, suggesting ROS production is also reduced during torpor by passive thermal effects.
Collapse
Affiliation(s)
- Jason C. L. Brown
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Dillon J. Chung
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | | | - James F. Staples
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
36
|
Florant GL, Healy JE. The regulation of food intake in mammalian hibernators: a review. J Comp Physiol B 2011; 182:451-67. [PMID: 22080368 DOI: 10.1007/s00360-011-0630-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 10/20/2011] [Accepted: 10/29/2011] [Indexed: 12/20/2022]
Abstract
One of the most profound hallmarks of mammalian hibernation is the dramatic reduction in food intake during the winter months. Several species of hibernator completely cease food intake (aphagia) for nearly 7 months regardless of ambient temperature and in many cases, whether or not food is available to them. Food intake regulation has been studied in mammals that hibernate for over 50 years and still little is known about the physiological mechanisms that control this important behavior in hibernators. It is well known from lesion experiments in non-hibernators that the hypothalamus is the main brain region controlling food intake and therefore body mass. In hibernators, the regulation of food intake and body mass is presumably governed by a circannual rhythm since there is a clear seasonal rhythm to food intake: animals increase food intake in the summer and early autumn, food intake declines in autumn and actually ceases in winter in many species, and resumes again in spring as food becomes available in the environment. Changes in circulating hormones (e.g., leptin, insulin, and ghrelin), nutrients (glucose, and free fatty acids), and cellular enzymes such as AMP-activated protein kinase (AMPK) have been shown to determine the activity of neurons involved in the food intake pathway. Thus, it appears likely that the food intake pathway is controlled by a variety of inputs, but is also acted upon by upstream regulators that are presumably rhythmic in nature. Current research examining the molecular mechanisms and integration of environmental signals (e.g., temperature and light) with these molecular mechanisms will hopefully shed light on how animals can turn off food intake and survive without eating for months on end.
Collapse
Affiliation(s)
- Gregory L Florant
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | | |
Collapse
|