1
|
Zemljic-Harpf AE, Hoe LES, Schilling JM, Zuniga-Hertz JP, Nguyen A, Vaishnav YJ, Belza GJ, Budiono BP, Patel PM, Head BP, Dillmann WH, Mahata SK, Peart JN, Roth DM, Headrick JP, Patel HH. Morphine induces physiological, structural, and molecular benefits in the diabetic myocardium. FASEB J 2021; 35:e21407. [PMID: 33583084 PMCID: PMC10843897 DOI: 10.1096/fj.201903233r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 01/03/2023]
Abstract
The obesity epidemic has increased type II diabetes mellitus (T2DM) across developed countries. Cardiac T2DM risks include ischemic heart disease, heart failure with preserved ejection fraction, intolerance to ischemia-reperfusion (I-R) injury, and refractoriness to cardioprotection. While opioids are cardioprotective, T2DM causes opioid receptor signaling dysfunction. We tested the hypothesis that sustained opioid receptor stimulus may overcome diabetes mellitus-induced cardiac dysfunction via membrane/mitochondrial-dependent protection. In a murine T2DM model, we investigated effects of morphine on cardiac function, I-R tolerance, ultrastructure, subcellular cholesterol expression, mitochondrial protein abundance, and mitochondrial function. T2DM induced 25% weight gain, hyperglycemia, glucose intolerance, cardiac hypertrophy, moderate cardiac depression, exaggerated postischemic myocardial dysfunction, abnormalities in mitochondrial respiration, ultrastructure and Ca2+ -induced swelling, and cell death were all evident. Morphine administration for 5 days: (1) improved glucose homeostasis; (2) reversed cardiac depression; (3) enhanced I-R tolerance; (4) restored mitochondrial ultrastructure; (5) improved mitochondrial function; (6) upregulated Stat3 protein; and (7) preserved membrane cholesterol homeostasis. These data show that morphine treatment restores contractile function, ischemic tolerance, mitochondrial structure and function, and membrane dynamics in type II diabetic hearts. These findings suggest potential translational value for short-term, but high-dose morphine administration in diabetic patients undergoing or recovering from acute ischemic cardiovascular events.
Collapse
Affiliation(s)
- Alice E. Zemljic-Harpf
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Louise E. See Hoe
- Department of Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Jan M. Schilling
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Juan P. Zuniga-Hertz
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Alexander Nguyen
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Yash J. Vaishnav
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Gianna J. Belza
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Boris P. Budiono
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, QLD, Australia
| | - Piyush M. Patel
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Brian P. Head
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Wolfgang H. Dillmann
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sushil K. Mahata
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jason N. Peart
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, QLD, Australia
| | - David M. Roth
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - John P. Headrick
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, QLD, Australia
| | - Hemal H. Patel
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
2
|
Andrianova NV, Zorova LD, Pevzner IB, Popkov VA, Chernikov VP, Silachev DN, Plotnikov EY, Zorov DB. Resemblance and differences in dietary restriction nephroprotective mechanisms in young and old rats. Aging (Albany NY) 2020; 12:18693-18715. [PMID: 32970613 PMCID: PMC7585108 DOI: 10.18632/aging.103960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/21/2020] [Indexed: 01/24/2023]
Abstract
Dietary restriction (DR) is the strategy ameliorating the morbidity of various pathologies, including age-associated diseases. Acute kidney injury (AKI) remains a problem for the elderly with DR being a promising approach for diminishing its consequences. We evaluated the possible nephroprotective potential of short-term DR in young and old rats. DR in young rats resulted in pronounced beneficial effects normalizing lipid metabolism (triglycerides concentration, adiponectin level) activating autophagic-lysosomal system evaluated by LC3II/LC3I ratio, LAMP1, p62/SQSTM1 levels, and LysoTracker Green staining. DR had a remarkable recovering effect on mitochondrial structure and functions including regaining of mitochondrial membrane potential, the elevation of SIRT-3, PGC-1α, Bcl-XL levels and partial restoration of ultrastructure. The beneficial effects of DR resulted in the mitigation of oxidative stress including a decrease in levels of protein carbonylation and lipid peroxidation. Aging led to decreased activity of autophagy, elevated oxidative stress and impaired kidney regenerative capacity. Eventually, in old rats, even 8-week DR was not able to ameliorate AKI, but it caused some rejuvenating effects including elevation of mitochondrial membrane potential and Bcl-XL levels, as well as lowered severity of the oxidative stress. Thus, the age-associated decline of protective signaling demands extended DR to achieve nephroprotective potential in old animals.
Collapse
Affiliation(s)
- Nadezda V. Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Ljubava D. Zorova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia,V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia
| | - Irina B. Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia,V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia
| | - Vasily A. Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia,V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia
| | | | - Denis N. Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia,V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia,V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow 119991, Russia
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia,V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia
| |
Collapse
|
3
|
Refeeding abolishes beneficial effects of severe calorie restriction from birth on adipose tissue and glucose homeostasis of adult rats. Nutrition 2019; 66:87-93. [DOI: 10.1016/j.nut.2019.03.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 01/10/2023]
|
4
|
Russell J, Du Toit EF, Peart JN, Patel HH, Headrick JP. Myocyte membrane and microdomain modifications in diabetes: determinants of ischemic tolerance and cardioprotection. Cardiovasc Diabetol 2017; 16:155. [PMID: 29202762 PMCID: PMC5716308 DOI: 10.1186/s12933-017-0638-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease, predominantly ischemic heart disease (IHD), is the leading cause of death in diabetes mellitus (DM). In addition to eliciting cardiomyopathy, DM induces a ‘wicked triumvirate’: (i) increasing the risk and incidence of IHD and myocardial ischemia; (ii) decreasing myocardial tolerance to ischemia–reperfusion (I–R) injury; and (iii) inhibiting or eliminating responses to cardioprotective stimuli. Changes in ischemic tolerance and cardioprotective signaling may contribute to substantially higher mortality and morbidity following ischemic insult in DM patients. Among the diverse mechanisms implicated in diabetic impairment of ischemic tolerance and cardioprotection, changes in sarcolemmal makeup may play an overarching role and are considered in detail in the current review. Observations predominantly in animal models reveal DM-dependent changes in membrane lipid composition (cholesterol and triglyceride accumulation, fatty acid saturation vs. reduced desaturation, phospholipid remodeling) that contribute to modulation of caveolar domains, gap junctions and T-tubules. These modifications influence sarcolemmal biophysical properties, receptor and phospholipid signaling, ion channel and transporter functions, contributing to contractile and electrophysiological dysfunction, cardiomyopathy, ischemic intolerance and suppression of protective signaling. A better understanding of these sarcolemmal abnormalities in types I and II DM (T1DM, T2DM) can inform approaches to limiting cardiomyopathy, associated IHD and their consequences. Key knowledge gaps include details of sarcolemmal changes in models of T2DM, temporal patterns of lipid, microdomain and T-tubule changes during disease development, and the precise impacts of these diverse sarcolemmal modifications. Importantly, exercise, dietary, pharmacological and gene approaches have potential for improving sarcolemmal makeup, and thus myocyte function and stress-resistance in this ubiquitous metabolic disorder.
Collapse
Affiliation(s)
- Jake Russell
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Eugene F Du Toit
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Jason N Peart
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Hemal H Patel
- VA San Diego Healthcare System and Department of Anesthesiology, University of California San Diego, San Diego, USA
| | - John P Headrick
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia. .,School of Medical Science, Griffith University, Southport, QLD, 4217, Australia.
| |
Collapse
|
5
|
Melo DS, Costa-Pereira LV, Santos CS, Mendes BF, Costa KB, Santos CFF, Rocha-Vieira E, Magalhães FC, Esteves EA, Ferreira AJ, Guatimosim S, Dias-Peixoto MF. Severe Calorie Restriction Reduces Cardiometabolic Risk Factors and Protects Rat Hearts from Ischemia/Reperfusion Injury. Front Physiol 2016; 7:106. [PMID: 27092082 PMCID: PMC4824788 DOI: 10.3389/fphys.2016.00106] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/04/2016] [Indexed: 11/17/2022] Open
Abstract
Background and Aims: Recent studies have proposed that if a severe caloric restriction (SCR) is initiated at the earliest period of postnatal life, it can lead to beneficial cardiac adaptations later on. We investigated the effects of SCR in Wistar rats from birth to adult age on risk factors for cardiac diseases (CD), as well as cardiac function, redox status, and HSP72 content in response to ischemia/reperfusion (I/R) injury. Methods and Results: From birth to the age of 3 months, CR50 rats were fed 50% of the food that the ad libitum group (AL) was fed. Food intake was assessed daily and body weight were assessed weekly. In the last week of the SCR protocol, systolic blood pressure and heart rate were measured and the double product index was calculated. Also, oral glucose and intraperitoneal insulin tolerance tests were performed. Thereafter, rats were decapitated, visceral fat was weighed, and blood and hearts were harvested for biochemical, functional, tissue redox status, and western blot analyzes. Compared to AL, CR50 rats had reduced the main risk factors for CD. Moreover, the FR50 rats showed increased cardiac function both at baseline conditions (45% > AL rats) and during the post-ischemic period (60% > AL rats) which may be explained by a decreased cardiac oxidative stress and increased HSP72 content. Conclusion: SCR from birth to adult age reduced risk factors for CD, increased basal cardiac function and protected hearts from the I/R, possibly by a mechanism involving ROS.
Collapse
Affiliation(s)
- Dirceu S Melo
- Programa Multicêntrico de Pós Graduação em Ciências Fisiológicas, Sociedade Brasileira de FisiologiaSão Paulo, Brasil; Faculdade de Medicina, Campus JK, Universidade Federal dos Vales do Jequitinhonha e MucuriDiamantina, Brasil
| | - Liliane V Costa-Pereira
- Programa Multicêntrico de Pós Graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia São Paulo, Brasil
| | - Carina S Santos
- Programa Multicêntrico de Pós Graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia São Paulo, Brasil
| | - Bruno F Mendes
- Programa Multicêntrico de Pós Graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia São Paulo, Brasil
| | - Karine B Costa
- Programa Multicêntrico de Pós Graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia São Paulo, Brasil
| | - Cynthia Fernandes F Santos
- Faculdade de Medicina, Campus JK, Universidade Federal dos Vales do Jequitinhonha e Mucuri Diamantina, Brasil
| | - Etel Rocha-Vieira
- Programa Multicêntrico de Pós Graduação em Ciências Fisiológicas, Sociedade Brasileira de FisiologiaSão Paulo, Brasil; Faculdade de Medicina, Campus JK, Universidade Federal dos Vales do Jequitinhonha e MucuriDiamantina, Brasil
| | - Flávio C Magalhães
- Programa Multicêntrico de Pós Graduação em Ciências Fisiológicas, Sociedade Brasileira de FisiologiaSão Paulo, Brasil; Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e MucuriDiamantina, Brasil
| | - Elizabethe A Esteves
- Programa Multicêntrico de Pós Graduação em Ciências Fisiológicas, Sociedade Brasileira de FisiologiaSão Paulo, Brasil; Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e MucuriDiamantina, Brasil
| | - Anderson J Ferreira
- Departamento de Morfologia, Universidade Federal de Minas Gerais Belo Horizonte, Brasil
| | - Sílvia Guatimosim
- Programa Multicêntrico de Pós Graduação em Ciências Fisiológicas, Sociedade Brasileira de FisiologiaSão Paulo, Brasil; Departamento de Fisiologia e Biofísica, Universidade Federal de Minas GeraisBelo Horizonte, Brasil
| | - Marco F Dias-Peixoto
- Programa Multicêntrico de Pós Graduação em Ciências Fisiológicas, Sociedade Brasileira de FisiologiaSão Paulo, Brasil; Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e MucuriDiamantina, Brasil
| |
Collapse
|
6
|
Kim SS, Choi KM, Kim S, Park T, Cho IC, Lee JW, Lee CK. Whole-transcriptome analysis of mouse adipose tissue in response to short-term caloric restriction. Mol Genet Genomics 2016; 291:831-47. [PMID: 26606930 DOI: 10.1007/s00438-015-1150-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 11/16/2015] [Indexed: 12/22/2022]
Abstract
Caloric restriction (CR) has been shown to extend the lifespan of many species by improving cellular function and organismal health. Additionally, fat reduction by CR may play an important role in lengthening lifespan and preventing severe age-related diseases. Interestingly, CR induced the greatest transcriptome change in the epididymal fat of mice in our study. In this transcriptome analysis, we identified and categorized 446 genes that correlated with CR level. We observed down-regulation of several signaling pathways, including insulin/insulin-like growth factor 1 (insulin/IGF-1), epidermal growth factor (EGF), transforming growth factor beta (TGF-β), and canonical wingless-type mouse mammary tumor virus integration site (Wnt). Many genes related to structural features, including extracellular matrix structure, cell adhesion, and the cytoskeleton, were down-regulated, with a strong correlation to the degree of CR. Furthermore, genes related to the cell cycle and adipogenesis were down-regulated. These biological processes are well-identified targets of insulin/IGF-1, EGF, TGF-β, and Wnt signaling. In contrast, genes involved in specific metabolic processes, including the tricarboxylic acid cycle and the electron transport chain were up-regulated. We performed in silico analysis of the promoter sequences of CR-responsive genes and identified two associated transcription factors, Paired-like homeodomain 2 (Pitx2) and Paired box gene 6 (Pax6). Our results suggest that strict regulation of signaling pathways is critical for creating the optimal energy homeostasis to extend lifespan.
Collapse
Affiliation(s)
- Seung-Soo Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-701, Republic of Korea
| | - Kyung-Mi Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-701, Republic of Korea
| | - Soyoung Kim
- Department of Food and Nutrition, Yonsei University, Seoul, 120-749, Republic of Korea
| | - Taesun Park
- Department of Food and Nutrition, Yonsei University, Seoul, 120-749, Republic of Korea
| | - In-Cheol Cho
- Subtropical Animal Station, National Institute of Animal Science, Jeju, 690-150, Republic of Korea
| | - Jae-Won Lee
- Department of Statistics, Korea University, Seoul, 136-701, Republic of Korea
| | - Cheol-Koo Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-701, Republic of Korea.
| |
Collapse
|
7
|
Rohrbach S, Aslam M, Niemann B, Schulz R. Impact of caloric restriction on myocardial ischaemia/reperfusion injury and new therapeutic options to mimic its effects. Br J Pharmacol 2015; 171:2964-92. [PMID: 24611611 DOI: 10.1111/bph.12650] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 01/12/2014] [Accepted: 02/10/2014] [Indexed: 12/12/2022] Open
Abstract
Caloric restriction (CR) is the most reliable intervention to extend lifespan and prevent age-related disorders in various species from yeast to rodents. Short- and long-term CR confers cardio protection against ischaemia/reperfusion injury in young and even in aged rodents. A few human trials suggest that CR has the potential to mediate improvement of cardiac or vascular function and induce retardation of cardiac senescence also in humans. The underlying mechanisms are diverse and have not yet been clearly defined. Among the known mediators for the benefits of CR are NO, the AMP-activated PK, sirtuins and adiponectin. Mitochondria, which play a central role in such complex processes within the cell as apoptosis, ATP-production or oxidative stress, are centrally involved in many aspects of CR-induced protection against ischaemic injury. Here, we discuss the relevant literature regarding the protection against myocardial ischaemia/reperfusion injury conferred by CR. Furthermore, we will discuss drug targets to mimic CR and the possible role of calorie restriction in preserving cardiovascular function in humans.
Collapse
Affiliation(s)
- Susanne Rohrbach
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | | | | | | |
Collapse
|
8
|
Jongbloed F, de Bruin RWF, Pennings JLA, Payán-Gómez C, van den Engel S, van Oostrom CT, de Bruin A, Hoeijmakers JHJ, van Steeg H, IJzermans JNM, Dollé MET. Preoperative fasting protects against renal ischemia-reperfusion injury in aged and overweight mice. PLoS One 2014; 9:e100853. [PMID: 24959849 PMCID: PMC4069161 DOI: 10.1371/journal.pone.0100853] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/29/2014] [Indexed: 11/18/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is inevitable during kidney transplantation leading to oxidative stress and inflammation. We previously reported that preoperative fasting in young-lean male mice protects against IRI. Since patients are generally of older age with morbidities possibly leading to a different response to fasting, we investigated the effects of preoperative fasting on renal IRI in aged-overweight male and female mice. Male and female F1-FVB/C57BL6-hybrid mice, average age 73 weeks weighing 47.2 grams, were randomized to preoperative ad libitum feeding or 3 days fasting, followed by renal IRI. Body weight, kidney function and survival of the animals were monitored until day 28 postoperatively. Kidney histopathology was scored for all animals and gene expression profiles after fasting were analyzed in kidneys of young and aged male mice. Preoperative fasting significantly improved survival after renal IRI in both sexes compared with normal fed mice. Fasted groups had a better kidney function shown by lower serum urea levels after renal IRI. Histopathology showed less acute tubular necrosis and more regeneration in kidneys from fasted mice. A mRNA analysis indicated the involvement of metabolic processes including fatty acid oxidation and retinol metabolism, and the NRF2-mediated stress response. Similar to young-lean, healthy male mice, preoperative fasting protects against renal IRI in aged-overweight mice of both genders. These findings suggest a general protective response of fasting against renal IRI regardless of age, gender, body weight and genetic background. Therefore, fasting could be a non-invasive intervention inducing increased oxidative stress resistance in older and overweight patients as well.
Collapse
Affiliation(s)
- Franny Jongbloed
- Department of Surgery, Laboratory for Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus University Medical Center, Rotterdam, The Netherlands
- Laboratory of Health Protection Research, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Ron W. F. de Bruin
- Department of Surgery, Laboratory for Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jeroen L. A. Pennings
- Laboratory of Health Protection Research, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - César Payán-Gómez
- Department of Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
- Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Sandra van den Engel
- Department of Surgery, Laboratory for Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Conny T. van Oostrom
- Laboratory of Health Protection Research, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Alain de Bruin
- Dutch Molecular Pathology Center, Department of Pathobiology Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jan H. J. Hoeijmakers
- Department of Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Harry van Steeg
- Laboratory of Health Protection Research, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan N. M. IJzermans
- Department of Surgery, Laboratory for Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Martijn E. T. Dollé
- Laboratory of Health Protection Research, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
- * E-mail:
| |
Collapse
|
9
|
Robertson LT, Mitchell JR. Benefits of short-term dietary restriction in mammals. Exp Gerontol 2013; 48:1043-8. [PMID: 23376627 PMCID: PMC3745522 DOI: 10.1016/j.exger.2013.01.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 12/18/2022]
Abstract
Dietary or calorie restriction (DR, CR), defined as reduced food intake without malnutrition, imparts many benefits in model organisms. Extended longevity is the most popularized benefit but the least clinically relevant due to the requirement for long-term food restriction. DR also promotes stress resistance and metabolic fitness. Emerging data in experimental models and in humans indicate that these benefits occur rapidly upon initiation of DR, suggesting potential clinical relevance. Here we review data on the ability of short-term DR to induce beneficial effects on clinically relevant endpoints including surgical stress, inflammation, chemotherapy and insulin resistance. The encouraging results obtained in these preclinical and clinical studies, and the general lack of mechanistic understanding, both strongly suggest the need for further research in this emerging area.
Collapse
Affiliation(s)
- Lauren T Robertson
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA, United States
| | | |
Collapse
|
10
|
Melo DS, Riul TR, Esteves EA, Moraes PL, Ferreira FO, Gavioli M, Alves MNM, Almeida PWM, Guatimosim S, Ferreira AJ, Dias Peixoto MF. Effects of severe caloric restriction from birth on the hearts of adult rats. Appl Physiol Nutr Metab 2013; 38:879-85. [DOI: 10.1139/apnm-2012-0387] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There has been increasing evidence suggesting that a severe caloric restriction (SCR) (above 40%) has beneficial effects on the hearts of rats. However, most of the reports have focused on the effects of SCR that started in adulthood. We investigated the consequences of SCR on the hearts of rats subjected to SCR since birth (CR50). From birth to the age of 3 months, CR50 rats were fed 50% of the food that the ad libitum group (AL) was fed. Thereafter, a maximal aerobic test was performed to indirectly evaluate global cardiovascular function. Indices of contractility (+dT/dt) and relaxation (−dT/dt) were analyzed in isolated heart preparation, and cardiomyocyte diameter, number, density, and myocardium collagen content were obtained through histologic analysis. Ventricular myocytes were isolated, using standard methods to evaluate phosphorylated AKT levels, and Ca2+ handling was evaluated with a combination of Western blot analysis, intracellular Ca2+ imaging, and confocal microscopy. CR50 rats exhibited increased aerobic performance and cardiac function, as shown by the increase in ±dT/dt. Despite the smaller cardiomyocyte diameter, CR50 rats had an increased heart−body weight ratio, increased cardiomyocyte density and number, and similar levels of myocardium collagen content, compared with AL rats. AKT was hyperphosphorylated in cardiomyocytes from CR50 rats, and there were no significant differences in Ca2+ transient and SERCA2 levels in cardiomyocytes between CR50 and AL rats. Collectively, these observations reveal the beneficial effects of a 50% caloric restriction on the hearts of adult rats restricted since birth, which might involve cardiomyocyte AKT signaling.
Collapse
Affiliation(s)
- Dirceu Sousa Melo
- Department of Biological Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, MG, Brazil
| | - Tania Regina Riul
- Department of Nutrition, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, MG, Brazil
| | - Elizabeth Adriana Esteves
- Department of Nutrition, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, MG, Brazil
| | - Patrícia Lanza Moraes
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fernanda Oliveira Ferreira
- Department of Basic Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, MG, Brazil
| | - Mariana Gavioli
- Department Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Silvia Guatimosim
- Department Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anderson José Ferreira
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marco Fabricio Dias Peixoto
- Department of Physical Education, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, MG, Brazil
| |
Collapse
|
11
|
Van der Mieren G, Nevelsteen I, Vanderper A, Oosterlinck W, Flameng W, Herijgers P. Angiotensin-converting enzyme inhibition and food restriction in diabetic mice do not correct the increased sensitivity for ischemia-reperfusion injury. Cardiovasc Diabetol 2012; 11:89. [PMID: 22853195 PMCID: PMC3444392 DOI: 10.1186/1475-2840-11-89] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/18/2012] [Indexed: 01/14/2023] Open
Abstract
Background The number of patients with diabetes or the metabolic syndrome reaches epidemic proportions. On top of their diabetic cardiomyopathy, these patients experience frequent and severe cardiac ischemia-reperfusion (IR) insults, which further aggravate their degree of heart failure. Food restriction and angiotensin-converting enzyme inhibition (ACE-I) are standard therapies in these patients but the effects on cardiac IR injury have never been investigated. In this study, we tested the hypothesis that 1° food restriction and 2° ACE-I reduce infarct size and preserve cardiac contractility after IR injury in mouse models of diabetes and the metabolic syndrome. Methods C57Bl6/J wild type (WT) mice, leptin deficient ob/ob (model for type II diabetes) and double knock-out (LDLR-/-;ob/ob, further called DKO) mice with combined leptin and LDL-receptor deficiency (model for metabolic syndrome) were used. The effects of 12 weeks food restriction or ACE-I on infarct size and load-independent left ventricular contractility after 30 min regional cardiac ischemia were investigated. Differences between groups were analyzed for statistical significance by Student’s t-test or factorial ANOVA followed by a Fisher’s LSD post hoc test. Results Infarct size was larger in ob/ob and DKO versus WT. Twelve weeks of ACE-I improved pre-ischemic left ventricular contractility in ob/ob and DKO. Twelve weeks of food restriction, with a weight reduction of 35-40%, or ACE-I did not reduce the effect of IR. Conclusion ACE-I and food restriction do not correct the increased sensitivity for cardiac IR-injury in mouse models of type II diabetes and the metabolic syndrome.
Collapse
Affiliation(s)
- Gerry Van der Mieren
- Department of Cardiovascular Sciences, Research Unit Experimental Cardiac Surgery, K.U. Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
12
|
Celec P, Hodosy J, Jáni P, Janega P, Kúdela M, Kalousová M, Holzerová J, Parrák V, Halčák L, Zima T, Braun M, Pecháň I, Murín J, Šebeková K. Advanced glycation end products in myocardial reperfusion injury. Heart Vessels 2011; 27:208-15. [PMID: 21562777 DOI: 10.1007/s00380-011-0147-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 04/08/2011] [Indexed: 11/25/2022]
Abstract
Advanced glycation end products (AGEs) are associated with cardiovascular diseases. Whether the AGE levels change during myocardial reperfusion injury is currently unknown. The aim of our study was to investigate the dynamics of AGEs in myocardial reperfusion injury and to discuss potential reasons for these changes. The dynamics of AGEs, pentosidine and neopterin in the plasma of patients with acute myocardial infarction (AMI) treated using thrombolysis (n = 40) were analyzed. In addition, AGEs were measured in patients with open heart surgery (n = 12) and rabbits with induced AMI (n = 9). In all three studies of myocardial reperfusion injury, a significant decrease of AGEs was observed (by 26 ± 19% in patients with AMI, by 23 ± 14% in patients with open heart surgery and by 39 ± 10% in rabbits with AMI within 1 day of reperfusion; p < 0.05 in all studies). In additional studies, an association between lower AGEs and an activated immune system (R (2) = 0.09; p < 0.01) and fasting (decrease by 38%; p < 0.01) was shown. AGEs decrease in reperfusion injury of the heart. Indices pointing towards the involvement of immune system activation and fasting are presented. Further studies focusing on the underlying mechanism and on the clinical value of the observed dynamics of AGEs are needed.
Collapse
Affiliation(s)
- Peter Celec
- Institute of Molecular Biomedicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|