1
|
Ortego-Isasa I, Ortega-Morán JF, Lozano H, Stieglitz T, Sánchez-Margallo FM, Usón-Gargallo J, Pagador JB, Ramos-Murguialday A. Colonic Electrical Stimulation for Chronic Constipation: A Perspective Review. Biomedicines 2024; 12:481. [PMID: 38540095 PMCID: PMC10967790 DOI: 10.3390/biomedicines12030481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 11/11/2024] Open
Abstract
Chronic constipation affects around 20% of the population and there is no efficient solution. This perspective review explores the potential of colonic electric stimulation (CES) using neural implants and methods of bioelectronic medicine as a therapeutic way to treat chronic constipation. The review covers the neurophysiology of colonic peristaltic function, the pathophysiology of chronic constipation, the technical aspects of CES, including stimulation parameters, electrode placement, and neuromodulation target selection, as well as a comprehensive analysis of various animal models highlighting their advantages and limitations in elucidating the mechanistic insights and translational relevance for CES. Finally, the main challenges and trends in CES are discussed.
Collapse
Affiliation(s)
- Iñaki Ortego-Isasa
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 San Sebastian, Spain; (H.L.); (A.R.-M.)
| | | | - Héctor Lozano
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 San Sebastian, Spain; (H.L.); (A.R.-M.)
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering–IMTEK and BrainLinks-BrainTools Center, University of Freiburg, 79110 Freiburg, Germany;
| | - Francisco M. Sánchez-Margallo
- Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (J.F.O.-M.); (F.M.S.-M.); (J.U.-G.)
- TERAV/ISCIII, Red Española de Terapias Avanzadas, Instituto de Salud Carlos III (RICORS, RD21/0017/0029), 28029 Madrid, Spain
| | - Jesús Usón-Gargallo
- Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (J.F.O.-M.); (F.M.S.-M.); (J.U.-G.)
| | - J. Blas Pagador
- Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (J.F.O.-M.); (F.M.S.-M.); (J.U.-G.)
- TERAV/ISCIII, Red Española de Terapias Avanzadas, Instituto de Salud Carlos III (RICORS, RD21/0017/0029), 28029 Madrid, Spain
| | - Ander Ramos-Murguialday
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 San Sebastian, Spain; (H.L.); (A.R.-M.)
- Department of Neurology and Stroke, University of Tubingen, 72076 Tubingen, Germany
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tubingen, 72076 Tubingen, Germany
- Athenea Neuroclinics, 20014 San Sebastian, Spain
| |
Collapse
|
2
|
Barth BB, Travis L, Spencer NJ, Grill WM. Control of colonic motility using electrical stimulation to modulate enteric neural activity. Am J Physiol Gastrointest Liver Physiol 2021; 320:G675-G687. [PMID: 33624530 PMCID: PMC8238160 DOI: 10.1152/ajpgi.00463.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 01/31/2023]
Abstract
Electrical stimulation of the enteric nervous system (ENS) is an attractive approach to modify gastrointestinal transit. Colonic motor complexes (CMCs) occur with a periodic rhythm, but the ability to elicit a premature CMC depends, at least in part, upon the intrinsic refractory properties of the ENS, which are presently unknown. The objectives of this study were to record myoelectric complexes (MCs, the electrical correlates of CMCs) in the smooth muscle and 1) determine the refractory periods of MCs, 2) inform and evaluate closed-loop stimulation to repetitively evoke MCs, and 3) identify stimulation methods to suppress MC propagation. We dissected the colon from male and female C57BL/6 mice, preserving the integrity of intrinsic circuitry while removing the extrinsic nerves, and measured properties of spontaneous and evoked MCs in vitro. Hexamethonium abolished spontaneous and evoked MCs, confirming the necessary involvement of the ENS for electrically evoked MCs. Electrical stimulation reduced the mean interval between evoked and spontaneous CMCs (24.6 ± 3.5 vs. 70.6 ± 15.7 s, P = 0.0002, n = 7). The absolute refractory period was 4.3 s (95% confidence interval (CI) = 2.8-5.7 s, R2 = 0.7315, n = 8). Electrical stimulation applied during fluid distention-evoked MCs led to an arrest of MC propagation, and following stimulation, MC propagation resumed at an increased velocity (n = 9). The timing parameters of electrical stimulation increased the rate of evoked MCs and the duration of entrainment of MCs, and the refractory period provides insight into timing considerations for designing neuromodulation strategies to treat colonic dysmotility.NEW & NOTEWORTHY Maintained physiological distension of the isolated mouse colon induces rhythmic cyclic myoelectric complexes (MCs). MCs evoked repeatedly by closed-loop electrical stimulation entrain MCs more frequently than spontaneously occurring MCs. Electrical stimulation delivered at the onset of a contraction temporarily suppresses the propagation of MC contractions. Controlled electrical stimulation can either evoke MCs or temporarily delay MCs in the isolated mouse colon, depending on timing relative to ongoing activity.
Collapse
Affiliation(s)
- Bradley B Barth
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Lee Travis
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Nick J Spencer
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina
- Department of Neurobiology, Duke University, Durham, North Carolina
- Department of Neurosurgery, Duke University, Durham, North Carolina
| |
Collapse
|
3
|
Chen S, Liu L, Li Y, Li H, Sun X, Zhu D, Meng Q, Yao S, Du S. Comparison of the effects of colonic electrical stimulation and prucalopride on gastrointestinal transit and defecation in a canine model of constipation. Scand J Gastroenterol 2021; 56:137-144. [PMID: 33307879 DOI: 10.1080/00365521.2020.1856919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/03/2020] [Accepted: 11/21/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE The aim of this study was to compare the effects of colonic electrical stimulation (CES) and prucalopride on gastrointestinal transit and defecation and to verify the safety of CES in a canine model of constipation. METHODS Eight beagles received CES implantation and induction drugs for slow transit constipation (STC). In the STC model, the gastrointestinal transit time (GITT), colonic transit time (CTT), stool frequency and stool consistency were assessed to compare the effects of CES and prucalopride on gastrointestinal transit and defecation. The histocompatibility of the implantable device was evaluated. RESULTS The individualized parameters for CES varied greatly among the animals, and the GITTs were not significantly shortened by CES or prucalopride; however, both the CES and prucalopride treatment significantly accelerated CTT and improved stool consistency compared with sham stimulation. CES treatment also resulted in significantly higher stool frequency than prucalopride treatment, which did not significantly change the stool frequency. No severe inflammation response was detected in the gross and microscopic appearance around the implants. CONCLUSION CES and prucalopride treatment may yield similar short-term effects for improving gastrointestinal transit and stool consistency, and CES outperformed prucalopride treatment in terms of defecation inducement in the short term. There were ideal levels of endurance and histocompatibility for the animals that underwent CES.
Collapse
Affiliation(s)
- Shuo Chen
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing China
| | - Liang Liu
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Yanmei Li
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing China
| | - Hailong Li
- Department of Gastroenterology, Peking University International Hospital, Beijing, China
| | - Xizhen Sun
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Dan Zhu
- Department of Geriatrics, China-Japan Friendship Hospital, Beijing China
| | - Qiao Meng
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing China
| | - Shukun Yao
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing China
| | - Shiyu Du
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing China
| |
Collapse
|
4
|
Ramadi KB, Srinivasan SS, Traverso G. Electroceuticals in the Gastrointestinal Tract. Trends Pharmacol Sci 2020; 41:960-976. [PMID: 33127099 PMCID: PMC8186669 DOI: 10.1016/j.tips.2020.09.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 02/08/2023]
Abstract
The field of electroceuticals has attracted considerable attention over the past few decades as a novel therapeutic modality. The gastrointestinal (GI) tract (GIT) holds significant potential as a target for electroceuticals as the intersection of neural, endocrine, and immune systems. We review recent developments in electrical stimulation of various portions of the GIT (including esophagus, stomach, and small and large intestine) and nerves projecting to the GIT and supportive organs. This has been tested with varying degrees of success for several dysmotility, inflammatory, hormonal, and neurologic disorders. We outline a vision for the future of GI electroceuticals, building on advances in mechanistic understanding of GI physiology coupled with novel ingestible technologies. The next wave of electroceutical therapies will be minimally invasive and more targeted than current approaches, making them an indispensable tool in the clinical armamentarium.
Collapse
Affiliation(s)
- Khalil B Ramadi
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shriya S Srinivasan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Giovanni Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
5
|
Larauche M, Wang Y, Wang PM, Dubrovsky G, Lo YK, Hsiang EL, Dunn JC, Taché Y, Liu W, Million M. The effect of colonic tissue electrical stimulation and celiac branch of the abdominal vagus nerve neuromodulation on colonic motility in anesthetized pigs. Neurogastroenterol Motil 2020; 32:e13925. [PMID: 32578346 PMCID: PMC7606494 DOI: 10.1111/nmo.13925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 04/20/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Knowledge on optimal electrical stimulation (ES) modalities and region-specific functional effects of colonic neuromodulation is lacking. We aimed to map the regional colonic motility in response to ES of (a) the colonic tissue and (b) celiac branch of the abdominal vagus nerve (CBVN) in an anesthetized porcine model. METHODS In male Yucatan pigs, direct ES (10 Hz, 2 ms, 15 mA) of proximal (pC), transverse (tC), or distal (dC) colon was done using planar flexible multi-electrode array panels and CBVN ES (2 Hz, 0.3-4 ms, 5 mA) using pulse train (PT), continuous (10 min), or square-wave (SW) modalities, with or without afferent nerve block (200 Hz, 0.1 ms, 2 mA). The regional luminal manometric changes were quantified as area under the curve of contractions (AUC) and luminal pressure maps generated. Contractions frequency power spectral analysis was performed. Contraction propagation was assessed using video animation of motility changes. KEY RESULTS Direct colon ES caused visible local circular (pC, tC) or longitudinal (dC) muscle contractions and increased luminal pressure AUC in pC, tC, and dC (143.0 ± 40.7%, 135.8 ± 59.7%, and 142.0 ± 62%, respectively). The colon displayed prominent phasic pressure frequencies ranging from 1 to 12 cpm. Direct pC and tC ES increased the dominant contraction frequency band (1-6 cpm) power locally. Pulse train CBVN ES (2 Hz, 4 ms, 5 mA) triggered pancolonic contractions, reduced by concurrent afferent block. Colon contractions propagated both orally and aborally in short distances. CONCLUSION AND INFERENCES In anesthetized pigs, the dominant contraction frequency band is 1-6 cpm. Direct colonic ES causes primarily local contractions. The CBVN ES-induced pancolonic contractions involve central neural network.
Collapse
Affiliation(s)
- Muriel Larauche
- CURE: Digestive Diseases Research Center (DDRCC), Center for Neurobiology of Stress and Resilience (CNSR), Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Yushan Wang
- Department of Bioengineering, California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - Po-Min Wang
- Department of Bioengineering, California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | | | - Yi-Kai Lo
- Department of Bioengineering, California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - En-Lin Hsiang
- Department of Bioengineering, California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - James C.Y. Dunn
- Departments of Surgery and Bioengineering, Stanford University, Stanford, CA, USA
| | - Yvette Taché
- CURE: Digestive Diseases Research Center (DDRCC), Center for Neurobiology of Stress and Resilience (CNSR), Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Wentai Liu
- Department of Bioengineering, California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - Mulugeta Million
- CURE: Digestive Diseases Research Center (DDRCC), Center for Neurobiology of Stress and Resilience (CNSR), Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
6
|
Southwell BR. Electro‐Neuromodulation for Colonic Disorders—Review of Meta‐Analyses, Systematic Reviews, and RCTs. Neuromodulation 2020; 23:1061-1081. [DOI: 10.1111/ner.13099] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/30/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Bridget R. Southwell
- Surgical Research Group Murdoch Children's Research Institute Melbourne Australia
- Department of Urology Royal Children's Hospital Melbourne Australia
- Department of Paediatrics University of Melbourne Melbourne Australia
| |
Collapse
|
7
|
Besendörfer M, Kohl M, Schellerer V, Carbon R, Diez S. A Pilot Study of Non-invasive Sacral Nerve Stimulation in Treatment of Constipation in Childhood and Adolescence. Front Pediatr 2020; 8:169. [PMID: 32373563 PMCID: PMC7176809 DOI: 10.3389/fped.2020.00169] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/25/2020] [Indexed: 12/22/2022] Open
Abstract
Background/Aims: Constipation shows both, a high prevalence and a significant impact. However, it is often perceived as minor and treatment choices are limited. The neuromodulation approach is a valuable option to be considered. This study assesses the use of non-invasive sacral nerve stimulation to reduce constipation in children. Methods: Between February 2013 and May 2015, pediatric patients with chronic constipation were treated with this non-invasive neuromodulation procedure, adapted from classical sacral nerve stimulation. A stimulation device attached to adhesive electrodes on the lower abdomen and back generated an electrical field with a stable frequency of 15 Hz via variable stimulation intensity (1-10 V). The effect of therapy was evaluated in routine check-ups and by specialized questionnaires. Results: The study assessed non-invasive sacral nerve stimulation in 17 patients (9 boys, 8 girls, mean age 6.5 years). They underwent stimulation with 6-9 V for a mean of 11 h per day (range 0.5-24 h) over a mean of 12.7 weeks. Improvement of constipation was achieved in more than half of the patients (12/17) and sustained in almost half of these patients (5/12). Complications were minor (skin irritation, electrode dislocation). Conclusions: Non-invasive sacral nerve stimulation appears to be effective in achieving improvement in pediatric patients with chronic constipation. As an additional external neuromodulation concept, this stimulation may represent a relevant addition to currently available therapeutic options. Further studies are needed to confirm these results.
Collapse
Affiliation(s)
- Manuel Besendörfer
- Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Department of Surgery, Section Pediatric Surgery, University Hospital Erlangen, Erlangen, Germany
| | - Martin Kohl
- Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Department of Surgery, Section Pediatric Surgery, University Hospital Erlangen, Erlangen, Germany
| | - Vera Schellerer
- Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Department of Surgery, Section Pediatric Surgery, University Hospital Erlangen, Erlangen, Germany
| | - Roman Carbon
- Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Department of Surgery, Section Pediatric Surgery, University Hospital Erlangen, Erlangen, Germany
| | - Sonja Diez
- Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Department of Surgery, Section Pediatric Surgery, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
8
|
Yao S, Li Y, Chen S. Colonic Electrical Stimulation for Constipation. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00120-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Tse G, Lai ETH, Lee APW, Yan BP, Wong SH. Electrophysiological Mechanisms of Gastrointestinal Arrhythmogenesis: Lessons from the Heart. Front Physiol 2016; 7:230. [PMID: 27378939 PMCID: PMC4906021 DOI: 10.3389/fphys.2016.00230] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/30/2016] [Indexed: 01/09/2023] Open
Abstract
Disruptions in the orderly activation and recovery of electrical excitation traveling through the heart and the gastrointestinal (GI) tract can lead to arrhythmogenesis. For example, cardiac arrhythmias predispose to thromboembolic events resulting in cerebrovascular accidents and myocardial infarction, and to sudden cardiac death. By contrast, arrhythmias in the GI tract are usually not life-threatening and much less well characterized. However, they have been implicated in the pathogenesis of a number of GI motility disorders, including gastroparesis, dyspepsia, irritable bowel syndrome, mesenteric ischaemia, Hirschsprung disease, slow transit constipation, all of which are associated with significant morbidity. Both cardiac and gastrointestinal arrhythmias can broadly be divided into non-reentrant and reentrant activity. The aim of this paper is to compare and contrast the mechanisms underlying arrhythmogenesis in both systems to provide insight into the pathogenesis of GI motility disorders and potential molecular targets for future therapy.
Collapse
Affiliation(s)
- Gary Tse
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong KongHong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong KongHong Kong, China
| | - Eric T. H. Lai
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong KongHong Kong, China
| | - Alex P. W. Lee
- Department of Medicine and Therapeutics, The Chinese University of Hong KongHong Kong, China
| | - Bryan P. Yan
- Department of Medicine and Therapeutics, The Chinese University of Hong KongHong Kong, China
| | - Sunny H. Wong
- Department of Medicine and Therapeutics, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong KongHong Kong, China
| |
Collapse
|
10
|
Tse G, Lai ETH, Yeo JM, Tse V, Wong SH. Mechanisms of Electrical Activation and Conduction in the Gastrointestinal System: Lessons from Cardiac Electrophysiology. Front Physiol 2016; 7:182. [PMID: 27303305 PMCID: PMC4885840 DOI: 10.3389/fphys.2016.00182] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/06/2016] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal (GI) tract is an electrically excitable organ system containing multiple cell types, which coordinate electrical activity propagating through this tract. Disruption in its normal electrophysiology is observed in a number of GI motility disorders. However, this is not well characterized and the field of GI electrophysiology is much less developed compared to the cardiac field. The aim of this article is to use the established knowledge of cardiac electrophysiology to shed light on the mechanisms of electrical activation and propagation along the GI tract, and how abnormalities in these processes lead to motility disorders and suggest better treatment options based on this improved understanding. In the first part of the article, the ionic contributions to the generation of GI slow wave and the cardiac action potential (AP) are reviewed. Propagation of these electrical signals can be described by the core conductor theory in both systems. However, specifically for the GI tract, the following unique properties are observed: changes in slow wave frequency along its length, periods of quiescence, synchronization in short distances and desynchronization over long distances. These are best described by a coupled oscillator theory. Other differences include the diminished role of gap junctions in mediating this conduction in the GI tract compared to the heart. The electrophysiology of conditions such as gastroesophageal reflux disease and gastroparesis, and functional problems such as irritable bowel syndrome are discussed in detail, with reference to ion channel abnormalities and potential therapeutic targets. A deeper understanding of the molecular basis and physiological mechanisms underlying GI motility disorders will enable the development of better diagnostic and therapeutic tools and the advancement of this field.
Collapse
Affiliation(s)
- Gary Tse
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong KongHong Kong, China
| | - Eric Tsz Him Lai
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong KongHong Kong, China
| | - Jie Ming Yeo
- School of Medicine, Imperial College LondonLondon, UK
| | - Vivian Tse
- Department of Physiology, McGill UniversityMontreal, QC, Canada
| | - Sunny Hei Wong
- Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Sciences, Chinese University of Hong KongHong Kong, China
| |
Collapse
|