1
|
Aherrahrou R, Reinberger T, Hashmi S, Erdmann J. GWAS breakthroughs: mapping the journey from one locus to 393 significant coronary artery disease associations. Cardiovasc Res 2024; 120:1508-1530. [PMID: 39073758 DOI: 10.1093/cvr/cvae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/20/2024] [Accepted: 06/12/2024] [Indexed: 07/30/2024] Open
Abstract
Coronary artery disease (CAD) poses a substantial threat to global health, leading to significant morbidity and mortality worldwide. It has a significant genetic component that has been studied through genome-wide association studies (GWAS) over the past 17 years. These studies have made progress with larger sample sizes, diverse ancestral backgrounds, and the discovery of multiple genomic regions related to CAD risk. In this review, we provide a comprehensive overview of CAD GWAS, including information about the genetic makeup of the disease and the importance of ethnic diversity in these studies. We also discuss challenges of identifying causal genes and variants within GWAS loci with a focus on non-coding regions. Additionally, we highlight tissues and cell types relevant to CAD, and discuss clinical implications of GWAS findings including polygenic risk scores, sex-specific differences in CAD genetics, ethnical aspects of personalized interventions, and GWAS guided drug development.
Collapse
Affiliation(s)
- Rédouane Aherrahrou
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Institute for Cardiogenetics, University of Lübeck, Marie-Curie-Str. Haus 67/BMF, 23562 Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Institute for Cardiogenetics, Universität zu Lübeck, Partner Site Hamburg/Kiel/Lübeck, Germany
- University Heart Centre Lübeck, University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Tobias Reinberger
- Institute for Cardiogenetics, University of Lübeck, Marie-Curie-Str. Haus 67/BMF, 23562 Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Institute for Cardiogenetics, Universität zu Lübeck, Partner Site Hamburg/Kiel/Lübeck, Germany
- University Heart Centre Lübeck, University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Satwat Hashmi
- Department of Biological and Biomedical Sciences, Aga Khan University, Stadium Road, 74800 Karachi, Pakistan
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Marie-Curie-Str. Haus 67/BMF, 23562 Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Institute for Cardiogenetics, Universität zu Lübeck, Partner Site Hamburg/Kiel/Lübeck, Germany
- University Heart Centre Lübeck, University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562 Lübeck, Germany
| |
Collapse
|
2
|
Koch E, Pardiñas AF, O'Connell KS, Selvaggi P, Camacho Collados J, Babic A, Marshall SE, Van der Eycken E, Angulo C, Lu Y, Sullivan PF, Dale AM, Molden E, Posthuma D, White N, Schubert A, Djurovic S, Heimer H, Stefánsson H, Stefánsson K, Werge T, Sønderby I, O'Donovan MC, Walters JTR, Milani L, Andreassen OA. How Real-World Data Can Facilitate the Development of Precision Medicine Treatment in Psychiatry. Biol Psychiatry 2024; 96:543-551. [PMID: 38185234 PMCID: PMC11758919 DOI: 10.1016/j.biopsych.2024.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Precision medicine has the ambition to improve treatment response and clinical outcomes through patient stratification and holds great potential for the treatment of mental disorders. However, several important factors are needed to transform current practice into a precision psychiatry framework. Most important are 1) the generation of accessible large real-world training and test data including genomic data integrated from multiple sources, 2) the development and validation of advanced analytical tools for stratification and prediction, and 3) the development of clinically useful management platforms for patient monitoring that can be integrated into health care systems in real-life settings. This narrative review summarizes strategies for obtaining the key elements-well-powered samples from large biobanks integrated with electronic health records and health registry data using novel artificial intelligence algorithms-to predict outcomes in severe mental disorders and translate these models into clinical management and treatment approaches. Key elements are massive mental health data and novel artificial intelligence algorithms. For the clinical translation of these strategies, we discuss a precision medicine platform for improved management of mental disorders. We use cases to illustrate how precision medicine interventions could be brought into psychiatry to improve the clinical outcomes of mental disorders.
Collapse
Affiliation(s)
- Elise Koch
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Antonio F Pardiñas
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kevin S O'Connell
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pierluigi Selvaggi
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - José Camacho Collados
- CardiffNLP, School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
| | | | | | - Erik Van der Eycken
- Global Alliance of Mental Illness Advocacy Networks-Europe, Brussels, Belgium
| | - Cecilia Angulo
- Global Alliance of Mental Illness Advocacy Networks-Europe, Brussels, Belgium
| | - Yi Lu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden
| | - Patrick F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden; Departments of Genetics and Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| | - Anders M Dale
- Multimodal Imaging Laboratory, University of California San Diego, La Jolla, California; Departments of Radiology, Psychiatry, and Neurosciences, University of California, San Diego, La Jolla, California
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Nathan White
- CorTechs Laboratories, Inc., San Diego, California
| | | | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; The Norwegian Centre for Mental Disorders Research Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Hakon Heimer
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Nordic Society of Human Genetics and Precision Medicine, Copenhagen, Denmark
| | | | | | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark; Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark; Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ida Sønderby
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Michael C O'Donovan
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - James T R Walters
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia; Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
3
|
Safhi AY, Albariqi AH, Sabei FY, Alsalhi A, Khalil FMA, Waheed A, Arbi FM, White A, Anthony S, Alissa M. Journey into tomorrow: cardiovascular wellbeing transformed by nano-scale innovations. Curr Probl Cardiol 2024; 49:102428. [PMID: 38311274 DOI: 10.1016/j.cpcardiol.2024.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Worldwide, cardiovascular diseases (CVDs) account for the vast majority of deaths and place enormous financial strains on healthcare systems. Gold nanoparticles, quantum dots, polymeric nanoparticles, carbon nanotubes, and lipids are innovative nanomaterials promising in tackling CVDs. In the setting of CVDs, these nanomaterials actively impact cellular responses due to their distinctive properties, including surface energy and topographies. Opportunities to more precisely target CVDs have arisen due to recent developments in nanomaterial science, which have introduced fresh approaches. An in-depth familiarity with the illness and its targeted mechanisms is necessary to use nanomaterials in CVDs effectively. We support the academic community's efforts to prioritize Nano-technological techniques in addressing risk factors linked with cardiovascular diseases, acknowledging the far-reaching effects of these conditions. The significant impact of nanotechnology on the early detection and treatment of cardiovascular diseases highlights the critical need for novel approaches to this pressing health problem, which is affecting people worldwide.
Collapse
Affiliation(s)
- Awaji Y Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Ahmed H Albariqi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Fahad Y Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdullah Alsalhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Fatma Mohamed Ameen Khalil
- King Khalid University, Collage of Science and Art, Department of Biology, Mohayil Asir Abha 61421, Saudi Arabia
| | | | - Fawad Mueen Arbi
- Quaid-e-Azam Medical College, Bahawalpur, Punjab 63100, Pakistan
| | - Alexandra White
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University Liaoning Provence China, PR China
| | - Stefan Anthony
- Cardiovascular Center of Excellence at Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
4
|
Khan SU, Saeed S, Alsuhaibani AM, Fatima S, Ur Rehman K, Zaman U, Ullah M, Refati MS, Lu K. Advances and Challenges for GWAS Analysis in Cardiac Diseases: A Focus on Coronary Artery Disease (CAD). Curr Probl Cardiol 2023:101821. [PMID: 37211304 DOI: 10.1016/j.cpcardiol.2023.101821] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
The achievement of genome-wide association studies (GWAS) has rapidly progressed our understanding of the etiology of coronary artery disease (CAD). It unlocks new strategies to strengthen the stalling of CAD drug development. In this review, we highlighted the recent drawbacks, mainly pointing out those involved in identifying causal genes and interpreting the connections between disease pathology and risk variants. We also benchmark the novel insights into the biological mechanism behind the disease primarily based on outcomes of GWAS. Furthermore, we also shed light on the successful discovery of novel treatment targets by introducing various layers of "omics" data and applying systems genetics strategies. Lastly, we discuss in-depth the significance of precision medicine that is helpful to improve through GWAS analysis in cardiovascular research.
Collapse
Affiliation(s)
- Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China; Women Medical and Dental College, Khyber Medical University, Peshawar, KPK, Pakistan
| | - Sumbul Saeed
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia
| | - Amnah Mohammed Alsuhaibani
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Sumaya Fatima
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Khalil Ur Rehman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Umber Zaman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Muneeb Ullah
- Department of Pharmacy, Kohat University of Science and Technology, 26000, KPK, Pakistan
| | - Moamen S Refati
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China.
| |
Collapse
|
5
|
Wong D, Auguste G, Cardenas CLL, Turner AW, Chen Y, Song Y, Ma L, Perry RN, Aherrahrou R, Kuppusamy M, Yang C, Mosquera JV, Dube CJ, Khan MD, Palmore M, Kalra JK, Kavousi M, Peyser PA, Matic L, Hedin U, Manichaikul A, Sonkusare SK, Civelek M, Kovacic JC, Björkegren JL, Malhotra R, Miller CL. FHL5 Controls Vascular Disease-Associated Gene Programs in Smooth Muscle Cells. Circ Res 2023; 132:1144-1161. [PMID: 37017084 PMCID: PMC10147587 DOI: 10.1161/circresaha.122.321692] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/21/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND Genome-wide association studies have identified hundreds of loci associated with common vascular diseases, such as coronary artery disease, myocardial infarction, and hypertension. However, the lack of mechanistic insights for many GWAS loci limits their translation into the clinic. Among these loci with unknown functions is UFL1-four-and-a-half LIM (LIN-11, Isl-1, MEC-3) domain 5 (FHL5; chr6q16.1), which reached genome-wide significance in a recent coronary artery disease/ myocardial infarction GWAS meta-analysis. UFL1-FHL5 is also associated with several vascular diseases, consistent with the widespread pleiotropy observed for GWAS loci. METHODS We apply a multimodal approach leveraging statistical fine-mapping, epigenomic profiling, and ex vivo analysis of human coronary artery tissues to implicate FHL5 as the top candidate causal gene. We unravel the molecular mechanisms of the cross-phenotype genetic associations through in vitro functional analyses and epigenomic profiling experiments in coronary artery smooth muscle cells. RESULTS We prioritized FHL5 as the top candidate causal gene at the UFL1-FHL5 locus through expression quantitative trait locus colocalization methods. FHL5 gene expression was enriched in the smooth muscle cells and pericyte population in human artery tissues with coexpression network analyses supporting a functional role in regulating smooth muscle cell contraction. Unexpectedly, under procalcifying conditions, FHL5 overexpression promoted vascular calcification and dysregulated processes related to extracellular matrix organization and calcium handling. Lastly, by mapping FHL5 binding sites and inferring FHL5 target gene function using artery tissue gene regulatory network analyses, we highlight regulatory interactions between FHL5 and downstream coronary artery disease/myocardial infarction loci, such as FOXL1 and FN1 that have roles in vascular remodeling. CONCLUSIONS Taken together, these studies provide mechanistic insights into the pleiotropic genetic associations of UFL1-FHL5. We show that FHL5 mediates vascular disease risk through transcriptional regulation of downstream vascular remodeling gene programs. These transacting mechanisms may explain a portion of the heritable risk for complex vascular diseases.
Collapse
Affiliation(s)
- Doris Wong
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Gaëlle Auguste
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Christian L. Lino Cardenas
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Adam W. Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Yixuan Chen
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Yipei Song
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Lijiang Ma
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - R. Noah Perry
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Redouane Aherrahrou
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Maniselvan Kuppusamy
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Chaojie Yang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Jose Verdezoto Mosquera
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Collin J. Dube
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Mohammad Daud Khan
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Meredith Palmore
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Jaspreet K. Kalra
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, The Netherlands
| | | | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ani Manichaikul
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Swapnil K. Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Mete Civelek
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Jason C. Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
- St. Vincent’s Clinical School, University of New South Wales, Sydney, Australia
| | - Johan L.M. Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, USA
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Rajeev Malhotra
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Clint L. Miller
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Güldener U, Kessler T, von Scheidt M, Hawe JS, Gerhard B, Maier D, Lachmann M, Laugwitz KL, Cassese S, Schömig AW, Kastrati A, Schunkert H. Machine Learning Identifies New Predictors on Restenosis Risk after Coronary Artery Stenting in 10,004 Patients with Surveillance Angiography. J Clin Med 2023; 12:2941. [PMID: 37109283 PMCID: PMC10142067 DOI: 10.3390/jcm12082941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/31/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
OBJECTIVE Machine learning (ML) approaches have the potential to uncover regular patterns in multi-layered data. Here we applied self-organizing maps (SOMs) to detect such patterns with the aim to better predict in-stent restenosis (ISR) at surveillance angiography 6 to 8 months after percutaneous coronary intervention with stenting. METHODS In prospectively collected data from 10,004 patients receiving percutaneous coronary intervention (PCI) for 15,004 lesions, we applied SOMs to predict ISR angiographically 6-8 months after index procedure. SOM findings were compared with results of conventional uni- and multivariate analyses. The predictive value of both approaches was assessed after random splitting of patients into training and test sets (50:50). RESULTS Conventional multivariate analyses revealed 10, mostly known, predictors for restenosis after coronary stenting: balloon-to-vessel ratio, complex lesion morphology, diabetes mellitus, left main stenting, stent type (bare metal vs. first vs. second generation drug eluting stent), stent length, stenosis severity, vessel size reduction, and prior bypass surgery. The SOM approach identified all these and nine further predictors, including chronic vessel occlusion, lesion length, and prior PCI. Moreover, the SOM-based model performed well in predicting ISR (AUC under ROC: 0.728); however, there was no meaningful advantage in predicting ISR at surveillance angiography in comparison with the conventional multivariable model (0.726, p = 0.3). CONCLUSIONS The agnostic SOM-based approach identified-without clinical knowledge-even more contributors to restenosis risk. In fact, SOMs applied to a large prospectively sampled cohort identified several novel predictors of restenosis after PCI. However, as compared with established covariates, ML technologies did not improve identification of patients at high risk for restenosis after PCI in a clinically relevant fashion.
Collapse
Affiliation(s)
- Ulrich Güldener
- Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, 80636 Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, 80636 Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
| | - Moritz von Scheidt
- Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, 80636 Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
| | - Johann S. Hawe
- Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, 80636 Munich, Germany
| | | | - Dieter Maier
- Biomax, Robert-Koch-Str. 2, 82152 Planegg, Germany
| | - Mark Lachmann
- Department of Cardiology, Klinikum Rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Karl-Ludwig Laugwitz
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
- Department of Cardiology, Klinikum Rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Salvatore Cassese
- Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, 80636 Munich, Germany
| | - Albert W. Schömig
- Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, 80636 Munich, Germany
| | - Adnan Kastrati
- Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, 80636 Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
| | - Heribert Schunkert
- Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, 80636 Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
| |
Collapse
|
7
|
G Protein-Coupled Receptor 15 Expression Is Associated with Myocardial Infarction. Int J Mol Sci 2022; 24:ijms24010180. [PMID: 36613626 PMCID: PMC9820726 DOI: 10.3390/ijms24010180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Beyond the influence of lifestyle-related risk factors for myocardial infarction (MI), the mechanisms of genetic predispositions for MI remain unclear. We sought to identify and characterize differentially expressed genes in early-onset MI in a translational approach. In an observational case−control study, transcriptomes from 112 early-onset MI individuals showed upregulated G protein-coupled receptor 15 (GPR15) expression in peripheral blood mononuclear cells compared to controls (fold change = 1.4, p = 1.87 × 10−7). GPR15 expression correlated with intima-media thickness (β = 0.8498, p = 0.111), C-reactive protein (β = 0.2238, p = 0.0052), ejection fraction (β = −0.9991, p = 0.0281) and smoking (β = 0.7259, p = 2.79 × 10−10). The relation between smoking and MI was diminished after the inclusion of GPR15 expression as mediator in mediation analysis (from 1.27 (p = 1.9 × 10−5) to 0.46 (p = 0.21)). The DNA methylation of two GPR15 sites was 1%/5% lower in early-onset MI individuals versus controls (p = 2.37 × 10−6/p = 0.0123), with site CpG3.98251219 significantly predicting risk for incident MI (hazard ratio = 0.992, p = 0.0177). The nucleotide polymorphism rs2230344 (C/T) within GPR15 was associated with early-onset MI (odds ratio = 3.61, p = 0.044). Experimental validation showed 6.3-fold increased Gpr15 expression in an ischemic mouse model (p < 0.05) and 4-fold increased Gpr15 expression in cardiomyocytes under ischemic stress (p < 0.001). After the induction of MI, Gpr15gfp/gfp mice showed lower survival (p = 0.042) and deregulated gene expression for response to hypoxia and signaling pathways. Using a translational approach, our data provide evidence that GPR15 is linked to cardiovascular diseases, mediating the adverse effects of smoking.
Collapse
|
8
|
TREML4 polymorphisms increase the mRNA in blood leukocytes in the progression of atherosclerosis. Sci Rep 2022; 12:18612. [PMID: 36329152 PMCID: PMC9633690 DOI: 10.1038/s41598-022-22040-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
TREML4 and other members of the triggering receptor expressed in the myeloid cell family are associated with a risk of atherosclerosis and progression in coronary artery disease, acute coronary syndrome, and coronary artery calcification. Herein, the relationship between TREML4 expression and its polymorphisms (rs2803495 and rs280396) was evaluated in patients with subclinical atherosclerosis (n = 340) and heart failure post-acute myocardial infarction (MI) (n = 68) for the first time. TREML4 variants rs2803495 (A > G) and rs2803496 (T > C) and leukocyte mRNA expression was analyzed by qRT-PCR. The rs2803495 G allele was associated with TREML4 expression (OR 8.01, CI 3.78-16.99, p < 0.001). Patients carrying the rs2803496 C minor allele (TC/CC genotypes) were more likely to express TREML4 than those without the C allele (OR 10.42, CI 4.76-22.78, p < 0.001), as well as having higher levels of TREML4 expression (OR 4.88, CI 2.35-10.12, p < 0.001). Thus, we report for the first time that TREML4 is not associated with the early stages of atherosclerotic plaque formation and later stages after MI. In conclusion, TREML4 mRNA expression in blood leukocytes is influenced by minor alleles (G and C) and may regulate differently during the atherosclerosis progression stages, but not in asymptomatic atherosclerosis disease and post-MI.
Collapse
|
9
|
Identification Markers of Carotid Vulnerable Plaques: An Update. Biomolecules 2022; 12:biom12091192. [PMID: 36139031 PMCID: PMC9496377 DOI: 10.3390/biom12091192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Vulnerable plaques have been a hot topic in the field of stroke and carotid atherosclerosis. Currently, risk stratification and intervention of carotid plaques are guided by the degree of luminal stenosis. Recently, it has been recognized that the vulnerability of plaques may contribute to the risk of stroke. Some classical interventions, such as carotid endarterectomy, significantly reduce the risk of stroke in symptomatic patients with severe carotid stenosis, while for asymptomatic patients, clinically silent plaques with rupture tendency may expose them to the risk of cerebrovascular events. Early identification of vulnerable plaques contributes to lowering the risk of cerebrovascular events. Previously, the identification of vulnerable plaques was commonly based on imaging technologies at the macroscopic level. Recently, some microscopic molecules pertaining to vulnerable plaques have emerged, and could be potential biomarkers or therapeutic targets. This review aimed to update the previous summarization of vulnerable plaques and identify vulnerable plaques at the microscopic and macroscopic levels.
Collapse
|
10
|
Vilne B, Ķibilds J, Siksna I, Lazda I, Valciņa O, Krūmiņa A. Could Artificial Intelligence/Machine Learning and Inclusion of Diet-Gut Microbiome Interactions Improve Disease Risk Prediction? Case Study: Coronary Artery Disease. Front Microbiol 2022; 13:627892. [PMID: 35479632 PMCID: PMC9036178 DOI: 10.3389/fmicb.2022.627892] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
Coronary artery disease (CAD) is the most common cardiovascular disease (CVD) and the main leading cause of morbidity and mortality worldwide, posing a huge socio-economic burden to the society and health systems. Therefore, timely and precise identification of people at high risk of CAD is urgently required. Most current CAD risk prediction approaches are based on a small number of traditional risk factors (age, sex, diabetes, LDL and HDL cholesterol, smoking, systolic blood pressure) and are incompletely predictive across all patient groups, as CAD is a multi-factorial disease with complex etiology, considered to be driven by both genetic, as well as numerous environmental/lifestyle factors. Diet is one of the modifiable factors for improving lifestyle and disease prevention. However, the current rise in obesity, type 2 diabetes (T2D) and CVD/CAD indicates that the “one-size-fits-all” approach may not be efficient, due to significant variation in inter-individual responses. Recently, the gut microbiome has emerged as a potential and previously under-explored contributor to these variations. Hence, efficient integration of dietary and gut microbiome information alongside with genetic variations and clinical data holds a great promise to improve CAD risk prediction. Nevertheless, the highly complex nature of meals combined with the huge inter-individual variability of the gut microbiome poses several Big Data analytics challenges in modeling diet-gut microbiota interactions and integrating these within CAD risk prediction approaches for the development of personalized decision support systems (DSS). In this regard, the recent re-emergence of Artificial Intelligence (AI) / Machine Learning (ML) is opening intriguing perspectives, as these approaches are able to capture large and complex matrices of data, incorporating their interactions and identifying both linear and non-linear relationships. In this Mini-Review, we consider (1) the most used AI/ML approaches and their different use cases for CAD risk prediction (2) modeling of the content, choice and impact of dietary factors on CAD risk; (3) classification of individuals by their gut microbiome composition into CAD cases vs. controls and (4) modeling of the diet-gut microbiome interactions and their impact on CAD risk. Finally, we provide an outlook for putting it all together for improved CAD risk predictions.
Collapse
Affiliation(s)
- Baiba Vilne
- Bioinformatics Lab, Riga Stradins University, Riga, Latvia
- COST Action CA18131 - Statistical and Machine Learning Techniques in Human Microbiome Studies, Brussels, Belgium
- *Correspondence: Baiba Vilne
| | - Juris Ķibilds
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| | - Inese Siksna
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| | - Ilva Lazda
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| | - Olga Valciņa
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| | - Angelika Krūmiņa
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
- Department of Infectology and Dermatology, Riga Stradins University, Riga, Latvia
| |
Collapse
|
11
|
Vilne B, Sawant A, Rudaka I. Examining the Association between Mitochondrial Genome Variation and Coronary Artery Disease. Genes (Basel) 2022; 13:genes13030516. [PMID: 35328073 PMCID: PMC8953999 DOI: 10.3390/genes13030516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/04/2022] Open
Abstract
Large-scale genome-wide association studies have identified hundreds of single-nucleotide variants (SNVs) significantly associated with coronary artery disease (CAD). However, collectively, these explain <20% of the heritability. Hypothesis: Here, we hypothesize that mitochondrial (MT)-SNVs might present one potential source of this “missing heritability”. Methods: We analyzed 265 MT-SNVs in ~500,000 UK Biobank individuals, exploring two different CAD definitions: a more stringent (myocardial infarction and/or revascularization; HARD = 20,405), and a more inclusive (angina and chronic ischemic heart disease; SOFT = 34,782). Results: In HARD cases, the most significant (p < 0.05) associations were for m.295C>T (control region) and m.12612A>G (ND5), found more frequently in cases (OR = 1.05), potentially related to reduced cardiorespiratory fitness in response to exercise, as well as for m.12372G>A (ND5) and m.11467A>G (ND4), present more frequently in controls (OR = 0.97), previously associated with lower ROS production rate. In SOFT cases, four MT-SNVs survived multiple testing corrections (at FDR < 5%), all potentially conferring increased CAD risk. Of those, m.11251A>G (ND4) and m.15452C>A (CYB) have previously shown significant associations with body height. In line with this, we observed that CAD cases were slightly less physically active, and their average body height was ~2.00 cm lower compared to controls; both traits are known to be related to increased CAD risk. Gene-based tests identified CO2 associated with HARD/SOFT CAD, whereas ND3 and CYB associated with SOFT cases (p < 0.05), dysfunction of which has been related to MT oxidative stress, obesity/T2D (CO2), BMI (ND3), and angina/exercise intolerance (CYB). Finally, we observed that macro-haplogroup I was significantly (p < 0.05) more frequent in HARD cases vs. controls (3.35% vs. 3.08%), potentially associated with response to exercise. Conclusions: We found only spurious associations between MT genome variation and HARD/SOFT CAD and conclude that more MT-SNV data in even larger study cohorts may be needed to conclusively determine the role of MT DNA in CAD.
Collapse
Affiliation(s)
- Baiba Vilne
- Bioinformatics Lab, Rīga Stradiņš University, LV-1007 Riga, Latvia;
- Correspondence:
| | - Aniket Sawant
- Bioinformatics Lab, Rīga Stradiņš University, LV-1007 Riga, Latvia;
| | - Irina Rudaka
- Scientific Laboratory of Molecular Genetics, Rīga Stradiņš University, LV-1007 Riga, Latvia;
| |
Collapse
|
12
|
Interplay of physical activity and genetic variants of the endothelial lipase on cardiovascular disease risk factors. Pediatr Res 2022; 91:929-936. [PMID: 33859368 DOI: 10.1038/s41390-021-01519-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND The aim of this study was to investigate the association of endothelial lipase gene (LIPG) polymorphisms with cardiovascular disease (CVD) risk factors in adolescents and their interaction with physical activity. METHODS Six polymorphisms of LIPG were genotyped in 1057 European adolescents (12-18 years old) enrolled in the Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) Study. CVD risk factors related to lipid profile, blood pressure, adiposity and glucose regulation were recorded. Physical activity was objectively measured by accelerometry. RESULTS The major C allele of rs2000813, the minor T allele of rs2276269 and the minor G allele of rs9951026 were associated with lower levels of several CVD risk factors related to lipid profile. We also found a significant association of the TTACA LIPG haplotype (rs2000812, rs2000813, rs8093249, rs2276269 and rs9951026) with higher concentrations of low-density cholesterol and apolipoprotein B. Finally, the interaction between physical activity and the polymorphisms rs2000813, rs2276269 and rs9951026 had a significant influence on several CVD risk factors. CONCLUSIONS LIPG polymorphisms were significantly associated with CVD risk factors in European adolescents. Interestingly, alleles of these polymorphisms were associated with a better cardiovascular profile in physically active adolescents only. High physical activity may reduce the development of CVD, modulating its genetic risk. IMPACT Using gene-phenotype and gene × environment analyses, we detected associations between the endothelial lipase gene and cardiovascular risk factors, along with interactions with physical activity. This study shows that physical activity may modulate the influence of LIPG gene on cardiovascular risk in adolescents. These results bring insights into the mechanisms by which physical activity positively influences CVD in adolescents.
Collapse
|
13
|
Bryzgalov LO, Korbolina EE, Damarov IS, Merkulova TI. The functional insight into the genetics of cardiovascular disease: results from the post-GWAS study. Vavilovskii Zhurnal Genet Selektsii 2022; 26:65-73. [PMID: 35342858 PMCID: PMC8892170 DOI: 10.18699/vjgb-22-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/19/2022] Open
Abstract
Cardiovascular diseases (CVDs), the leading cause of death worldwide, generally refer to a range of pathological conditions with the involvement of the heart and the blood vessels. A sizable fraction of the susceptibility loci is known, but the underlying mechanisms have been established only for a small proportion. Therefore, there is an increasing need to explore the functional relevance of trait-associated variants and, moreover, to search for novel risk genetic variation. We have reported the bioinformatic approach allowing effective identification of functional non-coding variants by integrated analysis of genome-wide data. Here, the analysis of 1361 previously identified regulatory SNPs (rSNPs) was performed to provide new insights into cardiovascular risk. We found 773,471 coding co-segregating markers for input rSNPs using the 1000 Genomes Project. The intersection of GWAS-derived SNPs with a relevance to cardiovascular traits with these markers was analyzed within a window of 10 Kbp. The effects on the transcription factor (TF) binding sites were explored by DeFine models. Functional pathway enrichment and protein– protein interaction (PPI) network analyses were performed on the targets and the extended genes by STRING and DAVID. Eighteen rSNPs were functionally linked to cardiovascular risk. A significant impact on binding sites of thirteen TFs including those involved in blood cells formation, hematopoiesis, macrophage function, inflammation, and vasoconstriction was found in K562 cells. 21 rSNP gene targets and 5 partners predicted by PPI were enriched for spliceosome and endocytosis KEGG pathways, endosome sorting complex and mRNA splicing REACTOME pathways. Related Gene Ontology terms included mRNA splicing and processing, endosome transport and protein catabolic processes. Together, the findings provide further insight into the biological basis of CVDs and highlight the importance of the precise regulation of splicing and alternative splicing.
Collapse
Affiliation(s)
- L. O. Bryzgalov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - E. E. Korbolina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - I. S. Damarov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - T. I. Merkulova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
| |
Collapse
|
14
|
The Role of Mitochondrial DNA Mutations in Cardiovascular Diseases. Int J Mol Sci 2022; 23:ijms23020952. [PMID: 35055137 PMCID: PMC8778138 DOI: 10.3390/ijms23020952] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
Cardiovascular diseases (CVD) are one of the leading causes of morbidity and mortality worldwide. mtDNA (mitochondrial DNA) mutations are known to participate in the development and progression of some CVD. Moreover, specific types of mitochondria-mediated CVD have been discovered, such as MIEH (maternally inherited essential hypertension) and maternally inherited CHD (coronary heart disease). Maternally inherited mitochondrial CVD is caused by certain mutations in the mtDNA, which encode structural mitochondrial proteins and mitochondrial tRNA. In this review, we focus on recently identified mtDNA mutations associated with CVD (coronary artery disease and hypertension). Additionally, new data suggest the role of mtDNA mutations in Brugada syndrome and ischemic stroke, which before were considered only as a result of mutations in nuclear genes. Moreover, we discuss the molecular mechanisms of mtDNA involvement in the development of the disease.
Collapse
|
15
|
Lim SY, Selvaraji S, Lau H, Li SFY. Application of omics beyond the central dogma in coronary heart disease research: A bibliometric study and literature review. Comput Biol Med 2022; 140:105069. [PMID: 34847384 DOI: 10.1016/j.compbiomed.2021.105069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022]
Abstract
Despite remarkable progress in disease diagnosis and treatment, coronary heart disease (CHD) remains the number one leading cause of death worldwide. Many practical challenges still faced in clinical settings necessitates the pursuit of omics studies to identify alternative/orthogonal biomarkers, as well as to discover novel insights into disease mechanisms. Albeit relatively nascent as compared to the omics frontrunners (genomics, transcriptomics, and proteomics), omics beyond the central dogma (OBCD; e.g., metabolomics, lipidomics, glycomics, and metallomics) have undeniable contributions and prospects in CHD research. In this bibliometric study, we characterised the global trends in publication/citation outputs, collaborations, and research hotspots concerning OBCD-CHD, with a focus on the more prolific fields of metabolomics and lipidomics. As for glycomics and metallomics, there were insufficient publication records on their applications in CHD research for quantitative bibliometrics analysis. Thus, we reviewed their applications in health/disease research in general, discussed and justified their potential in CHD research, and suggested important/promising research avenues. By summarising evidence obtained both quantitatively and qualitatively, this study offers a first and comprehensive picture of OBCD applications in CHD, facilitating the establishment of future research directions.
Collapse
Affiliation(s)
- Si Ying Lim
- Integrative Sciences & Engineering Programme, NUS Graduate School, National University of Singapore, University Hall, Tan Chin Tuan Wing, Singapore 119077, Singapore; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Sharmelee Selvaraji
- Integrative Sciences & Engineering Programme, NUS Graduate School, National University of Singapore, University Hall, Tan Chin Tuan Wing, Singapore 119077, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, 2 Medical Drive MD9, National University of Singapore, Singapore 117593, Singapore
| | - Hazel Lau
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Sam Fong Yau Li
- Integrative Sciences & Engineering Programme, NUS Graduate School, National University of Singapore, University Hall, Tan Chin Tuan Wing, Singapore 119077, Singapore; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| |
Collapse
|
16
|
Neiburga KD, Vilne B, Bauer S, Bongiovanni D, Ziegler T, Lachmann M, Wengert S, Hawe JS, Güldener U, Westerlund AM, Li L, Pang S, Yang C, Saar K, Huebner N, Maegdefessel L, DigiMed Bayern Consortium, Lange R, Krane M, Schunkert H, von Scheidt M. Vascular Tissue Specific miRNA Profiles Reveal Novel Correlations with Risk Factors in Coronary Artery Disease. Biomolecules 2021; 11:1683. [PMID: 34827683 PMCID: PMC8615466 DOI: 10.3390/biom11111683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. Non-coding RNAs have already been linked to CVD development and progression. While microRNAs (miRs) have been well studied in blood samples, there is little data on tissue-specific miRs in cardiovascular relevant tissues and their relation to cardiovascular risk factors. Tissue-specific miRs derived from Arteria mammaria interna (IMA) from 192 coronary artery disease (CAD) patients undergoing coronary artery bypass grafting (CABG) were analyzed. The aims of the study were 1) to establish a reference atlas which can be utilized for identification of novel diagnostic biomarkers and potential therapeutic targets, and 2) to relate these miRs to cardiovascular risk factors. Overall, 393 individual miRs showed sufficient expression levels and passed quality control for further analysis. We identified 17 miRs-miR-10b-3p, miR-10-5p, miR-17-3p, miR-21-5p, miR-151a-5p, miR-181a-5p, miR-185-5p, miR-194-5p, miR-199a-3p, miR-199b-3p, miR-212-3p, miR-363-3p, miR-548d-5p, miR-744-5p, miR-3117-3p, miR-5683 and miR-5701-significantly correlated with cardiovascular risk factors (correlation coefficient >0.2 in both directions, p-value (p < 0.006, false discovery rate (FDR) <0.05). Of particular interest, miR-5701 was positively correlated with hypertension, hypercholesterolemia, and diabetes. In addition, we found that miR-629-5p and miR-98-5p were significantly correlated with acute myocardial infarction. We provide a first atlas of miR profiles in IMA samples from CAD patients. In perspective, these miRs might play an important role in improved risk assessment, mechanistic disease understanding and local therapy of CAD.
Collapse
Affiliation(s)
| | - Baiba Vilne
- Bioinformatics Lab, Riga Stradiņš University, LV-1007 Riga, Latvia;
- SIA Net-OMICS, LV-1011 Riga, Latvia
- German Heart Centre Munich, Department of Cardiology, Technical University Munich, 80636 Munich, Germany; (S.B.); (J.S.H.); (U.G.); (A.M.W.); (L.L.); (S.P.); (C.Y.)
| | - Sabine Bauer
- German Heart Centre Munich, Department of Cardiology, Technical University Munich, 80636 Munich, Germany; (S.B.); (J.S.H.); (U.G.); (A.M.W.); (L.L.); (S.P.); (C.Y.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany; (D.B.); (L.M.); (R.L.); (M.K.)
| | - Dario Bongiovanni
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany; (D.B.); (L.M.); (R.L.); (M.K.)
- Department of Internal Medicine I, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (T.Z.); (M.L.)
| | - Tilman Ziegler
- Department of Internal Medicine I, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (T.Z.); (M.L.)
| | - Mark Lachmann
- Department of Internal Medicine I, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (T.Z.); (M.L.)
| | - Simon Wengert
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, 85764 Neuherberg, Germany;
| | - Johann S. Hawe
- German Heart Centre Munich, Department of Cardiology, Technical University Munich, 80636 Munich, Germany; (S.B.); (J.S.H.); (U.G.); (A.M.W.); (L.L.); (S.P.); (C.Y.)
| | - Ulrich Güldener
- German Heart Centre Munich, Department of Cardiology, Technical University Munich, 80636 Munich, Germany; (S.B.); (J.S.H.); (U.G.); (A.M.W.); (L.L.); (S.P.); (C.Y.)
| | - Annie M. Westerlund
- German Heart Centre Munich, Department of Cardiology, Technical University Munich, 80636 Munich, Germany; (S.B.); (J.S.H.); (U.G.); (A.M.W.); (L.L.); (S.P.); (C.Y.)
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Munich, Germany
| | - Ling Li
- German Heart Centre Munich, Department of Cardiology, Technical University Munich, 80636 Munich, Germany; (S.B.); (J.S.H.); (U.G.); (A.M.W.); (L.L.); (S.P.); (C.Y.)
| | - Shichao Pang
- German Heart Centre Munich, Department of Cardiology, Technical University Munich, 80636 Munich, Germany; (S.B.); (J.S.H.); (U.G.); (A.M.W.); (L.L.); (S.P.); (C.Y.)
| | - Chuhua Yang
- German Heart Centre Munich, Department of Cardiology, Technical University Munich, 80636 Munich, Germany; (S.B.); (J.S.H.); (U.G.); (A.M.W.); (L.L.); (S.P.); (C.Y.)
| | - Kathrin Saar
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (K.S.); (N.H.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Norbert Huebner
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (K.S.); (N.H.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Lars Maegdefessel
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany; (D.B.); (L.M.); (R.L.); (M.K.)
- Department of Vascular and Endovascular Surgery, Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
| | | | - Rüdiger Lange
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany; (D.B.); (L.M.); (R.L.); (M.K.)
- German Heart Centre Munich, Department of Cardiac Surgery, Technical University Munich, 80636 Munich, Germany
| | - Markus Krane
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany; (D.B.); (L.M.); (R.L.); (M.K.)
- German Heart Centre Munich, Department of Cardiac Surgery, Technical University Munich, 80636 Munich, Germany
- Division of Cardiac Surgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Heribert Schunkert
- German Heart Centre Munich, Department of Cardiology, Technical University Munich, 80636 Munich, Germany; (S.B.); (J.S.H.); (U.G.); (A.M.W.); (L.L.); (S.P.); (C.Y.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany; (D.B.); (L.M.); (R.L.); (M.K.)
| | - Moritz von Scheidt
- German Heart Centre Munich, Department of Cardiology, Technical University Munich, 80636 Munich, Germany; (S.B.); (J.S.H.); (U.G.); (A.M.W.); (L.L.); (S.P.); (C.Y.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany; (D.B.); (L.M.); (R.L.); (M.K.)
| |
Collapse
|
17
|
Kessler T, Schunkert H. Coronary Artery Disease Genetics Enlightened by Genome-Wide Association Studies. JACC Basic Transl Sci 2021; 6:610-623. [PMID: 34368511 PMCID: PMC8326228 DOI: 10.1016/j.jacbts.2021.04.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/04/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
Abstract
Many cardiovascular diseases are facilitated by strong inheritance. For example, large-scale genetic studies identified hundreds of genomic loci that affect the risk of coronary artery disease. At each of these loci, common variants are associated with disease risk with robust statistical evidence but individually small effect sizes. Only a minority of candidate genes found at these loci are involved in the pathophysiology of traditional risk factors, but experimental research is making progress in identifying novel, and, in part, unexpected mechanisms. Targets identified by genome-wide association studies have already led to the development of novel treatments, specifically in lipid metabolism. This review summarizes recent genetic and experimental findings in this field. In addition, the development and possible clinical usefulness of polygenic risk scores in risk prediction and individualization of treatment, particularly in lipid metabolism, are discussed.
Collapse
Affiliation(s)
- Thorsten Kessler
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany.,German Centre for Cardiovascular Research (DZHK e.V.), partner site Munich Heart Alliance, Munich, Germany
| | - Heribert Schunkert
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany.,German Centre for Cardiovascular Research (DZHK e.V.), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
18
|
Luo JY, Fang BB, Du GL, Liu F, Li YH, Tian T, Li XM, Gao XM, Yang YN. Association between MIF gene promoter rs755622 and susceptibility to coronary artery disease and inflammatory cytokines in the Chinese Han population. Sci Rep 2021; 11:8050. [PMID: 33850223 PMCID: PMC8044220 DOI: 10.1038/s41598-021-87580-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 03/17/2021] [Indexed: 02/01/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is an essential mediator of atherosclerotic plaque progression and instability leading to intracoronary thrombosis, therefore contributing to coronary artery disease (CAD). In this study, we investigated the relationship between MIF gene polymorphism and CAD in Chinese Han population. Three single nucleotide polymorphisms (SNP, rs755622, rs1007888 and rs2096525) of MIF gene were genotyped by TaqMan genotyping assay in 1120 control participants and 1176 CAD patients. Coronary angiography was performed in all CAD patients and Gensini score was used to assess the severity of coronary artery lesions. The plasma levels of MIF and other inflammatory mediators were measured by ELISA. The CAD patients had a higher frequency of CC genotype and C allele of rs755622 compared with that in control subjects (CC genotype: 6.5% vs. 3.9%, P = 0.008, C allele: 24.0% vs. 20.6%, P = 0.005). The rs755622 CC genotype was associated with an increased risk of CAD (OR: 1.804, 95%CI: 1.221-2.664, P = 0.003). CAD patients with a variation of rs755622 CC genotype had significantly higher Gensini score compared with patients with GG or CG genotype (all P < 0.05). In addition, the circulating MIF level was highest in CAD patients carrying rs755622 CC genotype (40.7 ± 4.2 ng/mL) and then followed by GC (37.9 ± 3.4 ng/mL) or GG genotype (36.9 ± 3.7 ng/mL, all P < 0.01). Our study showed an essential relationship between the MIF gene rs755622 variation and CAD in Chinese Han population. Individuals who carrying MIF gene rs755622 CC genotype were more susceptible to CAD and had more severe coronary artery lesion. This variation also had a potential influence in circulating MIF levels.
Collapse
Affiliation(s)
- Jun-Yi Luo
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China
| | - Bin-Bin Fang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China
| | - Guo-Li Du
- Department of Endocrinology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Fen Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China
| | - Yan-Hong Li
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ting Tian
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China
| | - Xiao-Mei Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China
| | - Xiao-Ming Gao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China.
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China.
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China.
| | - Yi-Ning Yang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China.
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
19
|
Laguzzi F, Maitusong B, Strawbridge RJ, Baldassarre D, Veglia F, Humphries SE, Rauramaa R, Kurl S, Smit AJ, Giral P, Silveira A, Tremoli E, Hamsten A, de Faire U, Gigante B, Leander K. Intake of food rich in saturated fat in relation to subclinical atherosclerosis and potential modulating effects from single genetic variants. Sci Rep 2021; 11:7866. [PMID: 33846368 PMCID: PMC8042105 DOI: 10.1038/s41598-021-86324-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/08/2021] [Indexed: 11/21/2022] Open
Abstract
The relationship between intake of saturated fats and subclinical atherosclerosis, as well as the possible influence of genetic variants, is poorly understood and investigated. We aimed to investigate this relationship, with a hypothesis that it would be positive, and to explore whether genetics may modulate it, using data from a European cohort including 3,407 participants aged 54-79 at high risk of cardiovascular disease. Subclinical atherosclerosis was assessed by carotid intima-media thickness (C-IMT), measured at baseline and after 30 months. Logistic regression (OR; 95% CI) was employed to assess the association between high intake of food rich in saturated fat (vs. low) and: (1) the mean and the maximum values of C-IMT in the whole carotid artery (C-IMTmean, C-IMTmax), in the bifurcation (Bif-), the common (CC-) and internal (ICA-) carotid arteries at baseline (binary, cut-point ≥ 75th), and (2) C-IMT progression (binary, cut-point > zero). For the genetic-diet interaction analyses, we considered 100,350 genetic variants. We defined interaction as departure from additivity of effects. After age- and sex-adjustment, high intake of saturated fat was associated with increased C-IMTmean (OR:1.27;1.06-1.47), CC-IMTmean (OR:1.22;1.04-1.44) and ICA-IMTmean (OR:1.26;1.07-1.48). However, in multivariate analysis results were no longer significant. No clear associations were observed between high intake of saturated fat and risk of atherosclerotic progression. There was no evidence of interactions between high intake of saturated fat and any of the genetic variants considered, after multiple testing corrections. High intake of saturated fats was not independently associated with subclinical atherosclerosis. Moreover, we did not identify any significant genetic-dietary fat interactions in relation to risk of subclinical atherosclerosis.
Collapse
Affiliation(s)
- Federica Laguzzi
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Box 210, 17177, Stockholm, Sweden.
| | - Buamina Maitusong
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Box 210, 17177, Stockholm, Sweden
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Rona J Strawbridge
- Institute of Mental Health and Wellbeing, Mental Health and Wellbeing, University of Glasgow, Glasgow, UK
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Health Data Research United Kingdom, London, UK
| | - Damiano Baldassarre
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | | | - Steve E Humphries
- Centre for Cardiovascular Genetics, Institute Cardiovascular Science, University College London, London, UK
| | - Rainer Rauramaa
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Sudhir Kurl
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Andries J Smit
- Department of Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Philippe Giral
- Assistance Publique-Hôpitaux de Paris, Service Endocrinologie-Métabolisme, Groupe Hospitalier Pitié-Salpétrière, Unités de Prévention Cardiovasculaire, Paris, France
| | - Angela Silveira
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska Hospital, Stockholm, Sweden
| | | | - Anders Hamsten
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska Hospital, Stockholm, Sweden
| | - Ulf de Faire
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Box 210, 17177, Stockholm, Sweden
| | - Bruna Gigante
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Karin Leander
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Box 210, 17177, Stockholm, Sweden
| |
Collapse
|
20
|
von Scheidt M, Zhao Y, de Aguiar Vallim TQ, Che N, Wierer M, Seldin MM, Franzén O, Kurt Z, Pang S, Bongiovanni D, Yamamoto M, Edwards PA, Ruusalepp A, Kovacic JC, Mann M, Björkegren JLM, Lusis AJ, Yang X, Schunkert H. Transcription Factor MAFF (MAF Basic Leucine Zipper Transcription Factor F) Regulates an Atherosclerosis Relevant Network Connecting Inflammation and Cholesterol Metabolism. Circulation 2021; 143:1809-1823. [PMID: 33626882 DOI: 10.1161/circulationaha.120.050186] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Coronary artery disease (CAD) is a multifactorial condition with both genetic and exogenous causes. The contribution of tissue-specific functional networks to the development of atherosclerosis remains largely unclear. The aim of this study was to identify and characterize central regulators and networks leading to atherosclerosis. METHODS Based on several hundred genes known to affect atherosclerosis risk in mouse (as demonstrated in knockout models) and human (as shown by genome-wide association studies), liver gene regulatory networks were modeled. The hierarchical order and regulatory directions of genes within the network were based on Bayesian prediction models, as well as experimental studies including chromatin immunoprecipitation DNA-sequencing, chromatin immunoprecipitation mass spectrometry, overexpression, small interfering RNA knockdown in mouse and human liver cells, and knockout mouse experiments. Bioinformatics and correlation analyses were used to clarify associations between central genes and CAD phenotypes in both human and mouse. RESULTS The transcription factor MAFF (MAF basic leucine zipper transcription factor F) interacted as a key driver of a liver network with 3 human genes at CAD genome-wide association studies loci and 11 atherosclerotic murine genes. Most importantly, expression levels of the low-density lipoprotein receptor (LDLR) gene correlated with MAFF in 600 CAD patients undergoing bypass surgery (STARNET [Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task]) and a hybrid mouse diversity panel involving 105 different inbred mouse strains. Molecular mechanisms of MAFF were tested in noninflammatory conditions and showed positive correlation between MAFF and LDLR in vitro and in vivo. Interestingly, after lipopolysaccharide stimulation (inflammatory conditions), an inverse correlation between MAFF and LDLR in vitro and in vivo was observed. Chromatin immunoprecipitation mass spectrometry revealed that the human CAD genome-wide association studies candidate BACH1 (BTB domain and CNC homolog 1) assists MAFF in the presence of lipopolysaccharide stimulation with respective heterodimers binding at the MAF recognition element of the LDLR promoter to transcriptionally downregulate LDLR expression. CONCLUSIONS The transcription factor MAFF was identified as a novel central regulator of an atherosclerosis/CAD-relevant liver network. MAFF triggered context-specific expression of LDLR and other genes known to affect CAD risk. Our results suggest that MAFF is a missing link between inflammation, lipid and lipoprotein metabolism, and a possible treatment target.
Collapse
Affiliation(s)
- Moritz von Scheidt
- Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany (M.v.S., S.P., H.S.).,Deutsches Zentrum für Herz- und Kreislauferkrankungen, Partner Site Munich Heart Alliance, Germany (M.v.S., D.B., H.S.)
| | | | - Thomas Q de Aguiar Vallim
- Departments of Medicine (T.Q.d.A.V., N.C., P.A.E., A.J.L.), David Geffen School of Medicine, University of California, Los Angeles.,Biological Chemistry (T.Q.d.A.V., P.A.E.), David Geffen School of Medicine, University of California, Los Angeles
| | - Nam Che
- Departments of Medicine (T.Q.d.A.V., N.C., P.A.E., A.J.L.), David Geffen School of Medicine, University of California, Los Angeles.,Microbiology, Immunology and Molecular Genetics (N.C., A.J.L.), David Geffen School of Medicine, University of California, Los Angeles.,Human Genetics (N.C., A.J.L.), David Geffen School of Medicine, University of California, Los Angeles
| | - Michael Wierer
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany (M.W., M.M.)
| | - Marcus M Seldin
- Department of Biological Chemistry and Center for Epigenetics and Metabolism, University of California, Irvine (M.M.S.)
| | - Oscar Franzén
- Integrated Cardio Metabolic Centre, Karolinska Institutet, Novum, Huddinge, Sweden (O.F., J.L.M.B.)
| | - Zeyneb Kurt
- Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom (Z.K.)
| | - Shichao Pang
- Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany (M.v.S., S.P., H.S.)
| | - Dario Bongiovanni
- Deutsches Zentrum für Herz- und Kreislauferkrankungen, Partner Site Munich Heart Alliance, Germany (M.v.S., D.B., H.S.).,Department of Internal Medicine, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, Germany (D.B.)
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan (M.Y.)
| | - Peter A Edwards
- Departments of Medicine (T.Q.d.A.V., N.C., P.A.E., A.J.L.), David Geffen School of Medicine, University of California, Los Angeles.,Biological Chemistry (T.Q.d.A.V., P.A.E.), David Geffen School of Medicine, University of California, Los Angeles
| | - Arno Ruusalepp
- Department of Cardiac Surgery, Tartu University Hospital, Estonia (A.R.).,Clinical Gene Networks AB, Stockholm, Sweden (A.R., J.L.M.B.)
| | - Jason C Kovacic
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York (J.C.K., J.L.M.B.)
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany (M.W., M.M.)
| | - Johan L M Björkegren
- Integrated Cardio Metabolic Centre, Karolinska Institutet, Novum, Huddinge, Sweden (O.F., J.L.M.B.).,Clinical Gene Networks AB, Stockholm, Sweden (A.R., J.L.M.B.).,Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York (J.C.K., J.L.M.B.)
| | - Aldons J Lusis
- Departments of Medicine (T.Q.d.A.V., N.C., P.A.E., A.J.L.), David Geffen School of Medicine, University of California, Los Angeles.,Microbiology, Immunology and Molecular Genetics (N.C., A.J.L.), David Geffen School of Medicine, University of California, Los Angeles.,Human Genetics (N.C., A.J.L.), David Geffen School of Medicine, University of California, Los Angeles
| | - Xia Yang
- Department of Integrative Biology and Physiology, Institute for Quantitative and Computational Biosciences (Y.Z., X.Y.), David Geffen School of Medicine, University of California, Los Angeles
| | - Heribert Schunkert
- Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany (M.v.S., S.P., H.S.).,Deutsches Zentrum für Herz- und Kreislauferkrankungen, Partner Site Munich Heart Alliance, Germany (M.v.S., D.B., H.S.)
| |
Collapse
|
21
|
Ghafil FA, Mohammad BI, Al-Janabi HS, Hadi NR, Al-Aubaidy HA. Genetic Polymorphism of Angiotensin II Type 1 Receptors and Their Effect on the Clinical Outcome of Captopril Treatment in Arab Iraqi Patients with Acute Coronary Syndrome (Mid Euphrates). Indian J Clin Biochem 2021; 36:81-87. [PMID: 33505131 DOI: 10.1007/s12291-019-00860-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/15/2019] [Indexed: 10/25/2022]
Abstract
Genetic variation in the angiotensin II type 1 receptor (AT1R) has an important effect on the outcome of acute coronary syndrome (ACS) initiated treatment with captopril. This study aims to investigate the impact of genetic polymorphism of AT1R (rs5186 and rs275651) on the ACS outcome in Iraqi patients treated with captopril. A total of 250 Iraqi individuals with ACS were included in this case-control study and they were divided into two study groups; Study group 1 included 125 participants who were prescribed captopril, 25 mg twice daily and study group 2 included 125 participants who received no captopril as part of their ACS treatment (control study). The AT1R gene (rs5186) CC genotype was found to be associated with ST-elevation myocardial infarction (STEMI) (Odd's ratio (O.R) = 1.2, P = 0.7), while AC was associated with Non-ST-elevation myocardial infarction (NSTEMI) and unstable angina (UA) (O.R = 1.2, P = 0.8). AC genotype is more prone to have Percutaneous coronary intervention (PCI) after ACS attack (O.R = 1.2, P = 0.6). CC genotype had a risk to get less improvement (O.R = 1.6, P = 0.5), so might require higher doses of captopril during acute coronary insult. The AT1R gene (rs275651) AA genotype was associated with UA (O.R = 1.3, P = 0.9). AA and AT genotypes were more prone to have PCI after ACS attack (O.R = 3.9 P = 0.2, O.R = 3.5, P = 0.3 respectively) and thus requiring higher doses of captopril. We conclude that the AT1R rs5186, rs275651 genetic polymorphisms might partially affect the clinical outcome of ACS patients treated with captopril and might have captopril resistance which requires higher doses.
Collapse
Affiliation(s)
- Fadhaa A Ghafil
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, University of Kufa, Kufa, Iraq
| | | | - Hussain S Al-Janabi
- Department of Medicine, College of Medicine, University of Kufa, Al-Diwaniyah, Iraq
| | - Najah R Hadi
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, University of Kufa, Kufa, Iraq
| | - Hayder A Al-Aubaidy
- School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Bundoora, Melbourne, VIC 3086 Australia
| |
Collapse
|
22
|
Abstract
Cyclic guanosine 3',5'-monophosphate (cGMP) is the key second messenger molecule in nitric oxide signaling. Its rapid generation and fate, but also its role in mediating acute cellular functions has been extensively studied. In the past years, genetic studies suggested an important role for cGMP in affecting the risk of chronic cardiovascular diseases, for example, coronary artery disease and myocardial infarction. Here, we review the role of cGMP in atherosclerosis and other cardiovascular diseases and discuss recent genetic findings and identified mechanisms. Finally, we highlight open questions and promising research topics.
Collapse
|
23
|
Alencar GF, Owsiany KM, Karnewar S, Sukhavasi K, Mocci G, Nguyen AT, Williams CM, Shamsuzzaman S, Mokry M, Henderson CA, Haskins R, Baylis RA, Finn AV, McNamara CA, Zunder ER, Venkata V, Pasterkamp G, Björkegren J, Bekiranov S, Owens GK. Stem Cell Pluripotency Genes Klf4 and Oct4 Regulate Complex SMC Phenotypic Changes Critical in Late-Stage Atherosclerotic Lesion Pathogenesis. Circulation 2020; 142:2045-2059. [PMID: 32674599 PMCID: PMC7682794 DOI: 10.1161/circulationaha.120.046672] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/16/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Rupture and erosion of advanced atherosclerotic lesions with a resultant myocardial infarction or stroke are the leading worldwide cause of death. However, we have a limited understanding of the identity, origin, and function of many cells that make up late-stage atherosclerotic lesions, as well as the mechanisms by which they control plaque stability. METHODS We conducted a comprehensive single-cell RNA sequencing of advanced human carotid endarterectomy samples and compared these with single-cell RNA sequencing from murine microdissected advanced atherosclerotic lesions with smooth muscle cell (SMC) and endothelial lineage tracing to survey all plaque cell types and rigorously determine their origin. We further used chromatin immunoprecipitation sequencing (ChIP-seq), bulk RNA sequencing, and an innovative dual lineage tracing mouse to understand the mechanism by which SMC phenotypic transitions affect lesion pathogenesis. RESULTS We provide evidence that SMC-specific Klf4- versus Oct4-knockout showed virtually opposite genomic signatures, and their putative target genes play an important role regulating SMC phenotypic changes. Single-cell RNA sequencing revealed remarkable similarity of transcriptomic clusters between mouse and human lesions and extensive plasticity of SMC- and endothelial cell-derived cells including 7 distinct clusters, most negative for traditional markers. In particular, SMC contributed to a Myh11-, Lgals3+ population with a chondrocyte-like gene signature that was markedly reduced with SMC-Klf4 knockout. We observed that SMCs that activate Lgals3 compose up to two thirds of all SMC in lesions. However, initial activation of Lgals3 in these cells does not represent conversion to a terminally differentiated state, but rather represents transition of these cells to a unique stem cell marker gene-positive, extracellular matrix-remodeling, "pioneer" cell phenotype that is the first to invest within lesions and subsequently gives rise to at least 3 other SMC phenotypes within advanced lesions, including Klf4-dependent osteogenic phenotypes likely to contribute to plaque calcification and plaque destabilization. CONCLUSIONS Taken together, these results provide evidence that SMC-derived cells within advanced mouse and human atherosclerotic lesions exhibit far greater phenotypic plasticity than generally believed, with Klf4 regulating transition to multiple phenotypes including Lgals3+ osteogenic cells likely to be detrimental for late-stage atherosclerosis plaque pathogenesis.
Collapse
Affiliation(s)
- Gabriel F. Alencar
- Robert M. Berne Cardiovascular Research Center (G.F.A., K.M.O, S.K., A.N., C.M.W., S.S., C.A.H., R.H., R.A.B., C.A.M., E.R.Z., G.K.O.), University of Virginia, Charlottesville
- Department of Biochemistry and Molecular Genetics (G.F.A., K.M.O., C.A.H., R.A.B., S.B.), University of Virginia, Charlottesville
| | - Katherine M. Owsiany
- Robert M. Berne Cardiovascular Research Center (G.F.A., K.M.O, S.K., A.N., C.M.W., S.S., C.A.H., R.H., R.A.B., C.A.M., E.R.Z., G.K.O.), University of Virginia, Charlottesville
- Department of Biochemistry and Molecular Genetics (G.F.A., K.M.O., C.A.H., R.A.B., S.B.), University of Virginia, Charlottesville
| | - Santosh Karnewar
- Robert M. Berne Cardiovascular Research Center (G.F.A., K.M.O, S.K., A.N., C.M.W., S.S., C.A.H., R.H., R.A.B., C.A.M., E.R.Z., G.K.O.), University of Virginia, Charlottesville
| | | | - Giuseppe Mocci
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden (G.M., V.V., J.B.)
| | - Anh T. Nguyen
- Robert M. Berne Cardiovascular Research Center (G.F.A., K.M.O, S.K., A.N., C.M.W., S.S., C.A.H., R.H., R.A.B., C.A.M., E.R.Z., G.K.O.), University of Virginia, Charlottesville
| | - Corey M. Williams
- Robert M. Berne Cardiovascular Research Center (G.F.A., K.M.O, S.K., A.N., C.M.W., S.S., C.A.H., R.H., R.A.B., C.A.M., E.R.Z., G.K.O.), University of Virginia, Charlottesville
- Department of Biomedical Engineering (C.M.W., E.R.Z.), University of Virginia, Charlottesville
| | - Sohel Shamsuzzaman
- Robert M. Berne Cardiovascular Research Center (G.F.A., K.M.O, S.K., A.N., C.M.W., S.S., C.A.H., R.H., R.A.B., C.A.M., E.R.Z., G.K.O.), University of Virginia, Charlottesville
| | - Michal Mokry
- Laboratory of Clinical Chemistry and Hematology, Division Laboratories and Pharmacy (M.M., G.P.), University Medical Center Utrecht, University Utrecht, The Netherlands
- Department of Cardiology (M.M.), University Medical Center Utrecht, University Utrecht, The Netherlands
| | - Christopher A. Henderson
- Robert M. Berne Cardiovascular Research Center (G.F.A., K.M.O, S.K., A.N., C.M.W., S.S., C.A.H., R.H., R.A.B., C.A.M., E.R.Z., G.K.O.), University of Virginia, Charlottesville
- Department of Biochemistry and Molecular Genetics (G.F.A., K.M.O., C.A.H., R.A.B., S.B.), University of Virginia, Charlottesville
| | - Ryan Haskins
- Robert M. Berne Cardiovascular Research Center (G.F.A., K.M.O, S.K., A.N., C.M.W., S.S., C.A.H., R.H., R.A.B., C.A.M., E.R.Z., G.K.O.), University of Virginia, Charlottesville
| | - Richard A. Baylis
- Robert M. Berne Cardiovascular Research Center (G.F.A., K.M.O, S.K., A.N., C.M.W., S.S., C.A.H., R.H., R.A.B., C.A.M., E.R.Z., G.K.O.), University of Virginia, Charlottesville
- Department of Biochemistry and Molecular Genetics (G.F.A., K.M.O., C.A.H., R.A.B., S.B.), University of Virginia, Charlottesville
| | | | - Coleen A. McNamara
- Robert M. Berne Cardiovascular Research Center (G.F.A., K.M.O, S.K., A.N., C.M.W., S.S., C.A.H., R.H., R.A.B., C.A.M., E.R.Z., G.K.O.), University of Virginia, Charlottesville
- School of Medicine, Division of Cardiovascular Medicine, Department of Medicine (C.A.M.), University of Virginia, Charlottesville
| | - Eli R. Zunder
- Robert M. Berne Cardiovascular Research Center (G.F.A., K.M.O, S.K., A.N., C.M.W., S.S., C.A.H., R.H., R.A.B., C.A.M., E.R.Z., G.K.O.), University of Virginia, Charlottesville
- Department of Biomedical Engineering (C.M.W., E.R.Z.), University of Virginia, Charlottesville
| | - Vamsidhar Venkata
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden (G.M., V.V., J.B.)
| | - Gerard Pasterkamp
- Laboratory of Clinical Chemistry and Hematology, Division Laboratories and Pharmacy (M.M., G.P.), University Medical Center Utrecht, University Utrecht, The Netherlands
| | - Johan Björkegren
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden (G.M., V.V., J.B.)
- Department of Genetics and Genomic Sciences (J.B.), Icahn School of Medicine at Mount Sinai, New York
- Icahn Institute of Genomics and Multiscale Biology (J.B.), Icahn School of Medicine at Mount Sinai, New York
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics (G.F.A., K.M.O., C.A.H., R.A.B., S.B.), University of Virginia, Charlottesville
| | - Gary K. Owens
- Robert M. Berne Cardiovascular Research Center (G.F.A., K.M.O, S.K., A.N., C.M.W., S.S., C.A.H., R.H., R.A.B., C.A.M., E.R.Z., G.K.O.), University of Virginia, Charlottesville
| |
Collapse
|
24
|
Shrivastava A, Haase T, Zeller T, Schulte C. Biomarkers for Heart Failure Prognosis: Proteins, Genetic Scores and Non-coding RNAs. Front Cardiovasc Med 2020; 7:601364. [PMID: 33330662 PMCID: PMC7719677 DOI: 10.3389/fcvm.2020.601364] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
Heart failure (HF) is a complex disease in which cardiomyocyte injury leads to a cascade of inflammatory and fibrosis pathway activation, thereby causing decrease in cardiac function. As a result, several biomolecules are released which can be identified easily in circulating body fluids. The complex biological processes involved in the development and worsening of HF require an early treatment strategy to stop deterioration of cardiac function. Circulating biomarkers provide not only an ideal platform to detect subclinical changes, their clinical application also offers the opportunity to monitor disease treatment. Many of these biomarkers can be quantified with high sensitivity; allowing their clinical application to be evaluated beyond diagnostic purposes as potential tools for HF prognosis. Though the field of biomarkers is dominated by protein molecules, non-coding RNAs (microRNAs, long non-coding RNAs, and circular RNAs) are novel and promising biomarker candidates that encompass several ideal characteristics required in the biomarker field. The application of genetic biomarkers as genetic risk scores in disease prognosis, albeit in its infancy, holds promise to improve disease risk estimation. Despite the multitude of biomarkers that have been available and identified, the majority of novel biomarker candidates are not cardiac-specific, and instead may simply be a readout of systemic inflammation or other pathological processes. Thus, the true value of novel biomarker candidates in HF prognostication remains unclear. In this article, we discuss the current state of application of protein, genetic as well as non-coding RNA biomarkers in HF risk prognosis.
Collapse
Affiliation(s)
- Apurva Shrivastava
- Clinic for Cardiology, University Heart and Vascular Center, University Medical Center Eppendorf, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, University Medical Center Eppendorf, Hamburg, Germany
| | - Tina Haase
- Clinic for Cardiology, University Heart and Vascular Center, University Medical Center Eppendorf, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, University Medical Center Eppendorf, Hamburg, Germany
| | - Tanja Zeller
- Clinic for Cardiology, University Heart and Vascular Center, University Medical Center Eppendorf, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, University Medical Center Eppendorf, Hamburg, Germany
| | - Christian Schulte
- Clinic for Cardiology, University Heart and Vascular Center, University Medical Center Eppendorf, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, University Medical Center Eppendorf, Hamburg, Germany.,King's British Heart Foundation Centre, King's College London, London, United Kingdom
| |
Collapse
|
25
|
Lechner K, Kessler T, Schunkert H. Should We Use Genetic Scores in the Determination of Treatment Strategies to Control Dyslipidemias? Curr Cardiol Rep 2020; 22:146. [DOI: 10.1007/s11886-020-01408-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Katano H, Nishikawa Y, Yamada H, Iwata T, Mase M. Profile of genetic variations in severely calcified carotid plaques by whole-exome sequencing. Surg Neurol Int 2020; 11:286. [PMID: 33033648 PMCID: PMC7538800 DOI: 10.25259/sni_387_2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/19/2020] [Indexed: 01/26/2023] Open
Abstract
Background: The precise mechanisms of carotid calcification and its clinical significance have not been established. Methods: We classified ten plaques from carotid endarterectomy patients into high- and low-calcified plaques based on the Agatston calcium scores. We performed whole-exome sequencing for genetic profiles with single nucleotide variations (SNVs), insertions, and deletions. Bioinformatic data mining was then conducted to disclose specific gene variations to either high- or low-calcified carotid plaques. Results: In the carotid plaques, G:C>A:T/C:G>T:A transitions as SNVs, insT after C/insC after A as insertions, and delA after G/delT after C as deletions were most frequently observed, but no significant difference was observed between the high- and low-calcified plaque groups in their proportion of base-pair substitution types. In the bioinformatic analysis, SNVs of ATP binding cassette subfamily C member 6 (ADCC6) were more commonly found in high-calcified plaques and SNVs of KLKB1 were more commonly found in low-calcified plaques compared to the other group. No new genetic variants related to calcification or atherosclerosis among those not registered in dbSNP was detected. Conclusion: Our findings clarified the features of base-pair substitutions in carotid plaques, showing no relation to calcification. However, genetic variants in ADCC6 relating to vascular calcification for high-calcified plaques, and in KLKB1 encoding kallikrein associated with vascular regulation of atherosclerosis for low-calcified plaques were more specifically extracted. These results contribute to a better understanding of the genetic basis of molecular activity and calcium formation in carotid plaques.
Collapse
Affiliation(s)
- Hiroyuki Katano
- Department of Neurosurgery and Medical Informatics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Yusuke Nishikawa
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Hiroshi Yamada
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Takashi Iwata
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Mitsuhito Mase
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| |
Collapse
|
27
|
Osler M, Villumsen MD, Jørgensen MB, Hjelmborg JVB, Christensen K, Wium-Andersen MK. Familial risk and heritability of ischemic heart disease and stroke in Danish twins. Scand J Public Health 2020; 50:199-204. [PMID: 32880216 DOI: 10.1177/1403494820953322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aim: Our aim was to explore whether familial factors influence the risk of ischemic heart disease, stroke, and their co-occurrence. Methods: In total, 23,498 monozygotic and 39,540 same-sex dizygotic twins from the Danish Twin Registry were followed from 1977 to 2011 in the Danish National Patient Registry for ischemic heart disease and stroke. Time-to-event analyses accounting for censoring and competing risk of death were used to estimate familial risk (casewise concordance relative to the cumulative incidence) and heritability of ischemic heart disease, stroke, and the co-occurrence by age. Results: During follow-up, we observed 5561 and 4186 twin individuals with ischemic heart disease and stroke respectively, with 936 twin pairs concordant for ischemic heart disease and stroke. Familial risks were significant for both, with higher cumulative risks in monozygotic than in dizygotic twins. Estimates for heritability were significant for ischemic heart disease as well as for stroke diagnosed after the age of 80. The casewise concordance of ischemic heart disease in twins whose co-twin was diagnosed with stroke did not differ for monozygotic and dizygotic twins; however, from age 55 it was 10% higher than the cumulative risk in the overall twin cohort and was 25% higher at age 90. A similar pattern was seen for stroke following the co-twin's ischemic heart disease. Conclusions: As in previous studies, we found a higher heritability of ischemic heart disease than of stroke. There was a significant familial risk but no heritability for the co-occurrence of ischemic heart disease and stroke. The co-occurrence is therefore likely due to other shared familial than genetic factors, highlighting that preventive initiatives should target families rather than individuals.
Collapse
Affiliation(s)
- Merete Osler
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Denmark.,Department of Public Health, Section of Epidemiology, University of Copenhagen, Denmark
| | - Martin Dalgaard Villumsen
- Department of Epidemiology, Biostatistics, and Biodemography, Institute of Public Health, University of Southern Denmark, Denmark.,The Danish Twin Registry, University of Southern Denmark
| | - Martin Balslev Jørgensen
- Psychiatric Center Copenhagen, Rigshospital, Denmark.,Institute of Clinical Medicine, University of Copenhagen, Denmark
| | - Jacob V B Hjelmborg
- Department of Epidemiology, Biostatistics, and Biodemography, Institute of Public Health, University of Southern Denmark, Denmark.,The Danish Twin Registry, University of Southern Denmark
| | - Kaare Christensen
- Department of Epidemiology, Biostatistics, and Biodemography, Institute of Public Health, University of Southern Denmark, Denmark.,The Danish Twin Registry, University of Southern Denmark
| | | |
Collapse
|
28
|
Wienbergen H, Fach A, Erdmann J, Katalinic A, Eisemann N, Krawitz P, Maj C, Borisov O, Munz M, Noethen M, Meyer-Saraei R, Osteresch R, Schmucker J, Linke A, Eitel I, Hambrecht R, Langer H. New technologies for intensive prevention programs after myocardial infarction: rationale and design of the NET-IPP trial. Clin Res Cardiol 2020; 110:153-161. [DOI: 10.1007/s00392-020-01695-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/19/2020] [Indexed: 12/15/2022]
|
29
|
Villar D, Frost S, Deloukas P, Tinker A. The contribution of non-coding regulatory elements to cardiovascular disease. Open Biol 2020; 10:200088. [PMID: 32603637 PMCID: PMC7574544 DOI: 10.1098/rsob.200088] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular disease collectively accounts for a quarter of deaths worldwide. Genome-wide association studies across a range of cardiovascular traits and pathologies have highlighted the prevalence of common non-coding genetic variants within candidate loci. Here, we review genetic, epigenomic and molecular approaches to investigate the contribution of non-coding regulatory elements in cardiovascular biology. We then discuss recent insights on the emerging role of non-coding variation in predisposition to cardiovascular disease, with a focus on novel mechanistic examples from functional genomics studies. Lastly, we consider the clinical significance of these findings at present, and some of the current challenges facing the field.
Collapse
Affiliation(s)
- Diego Villar
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Stephanie Frost
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Panos Deloukas
- William Harvey Research Institute, Heart Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Andrew Tinker
- William Harvey Research Institute, Heart Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
30
|
Wong D, Turner AW, Miller CL. Genetic Insights Into Smooth Muscle Cell Contributions to Coronary Artery Disease. Arterioscler Thromb Vasc Biol 2020; 39:1006-1017. [PMID: 31043074 DOI: 10.1161/atvbaha.119.312141] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Coronary artery disease is a complex cardiovascular disease involving an interplay of genetic and environmental influences over a lifetime. Although considerable progress has been made in understanding lifestyle risk factors, genetic factors identified from genome-wide association studies may capture additional hidden risk undetected by traditional clinical tests. These genetic discoveries have highlighted many candidate genes and pathways dysregulated in the vessel wall, including those involving smooth muscle cell phenotypic modulation and injury responses. Here, we summarize experimental evidence for a few genome-wide significant loci supporting their roles in smooth muscle cell biology and disease. We also discuss molecular quantitative trait locus mapping as a powerful discovery and fine-mapping approach applied to smooth muscle cell and coronary artery disease-relevant tissues. We emphasize the critical need for alternative genetic strategies, including cis/trans-regulatory network analysis, genome editing, and perturbations, as well as single-cell sequencing in smooth muscle cell tissues and model organisms, under both normal and disease states. By integrating multiple experimental and analytical modalities, these multidimensional datasets should improve the interpretation of coronary artery disease genome-wide association studies and molecular quantitative trait locus signals and inform candidate targets for therapeutic intervention or risk prediction.
Collapse
Affiliation(s)
- Doris Wong
- From the Center for Public Health Genomics (D.W., A.W.T., C.L.M.), University of Virginia, Charlottesville.,Department of Biochemistry and Molecular Genetics (D.W., C.L.M.), University of Virginia, Charlottesville
| | - Adam W Turner
- From the Center for Public Health Genomics (D.W., A.W.T., C.L.M.), University of Virginia, Charlottesville
| | - Clint L Miller
- From the Center for Public Health Genomics (D.W., A.W.T., C.L.M.), University of Virginia, Charlottesville.,Department of Biochemistry and Molecular Genetics (D.W., C.L.M.), University of Virginia, Charlottesville.,Department of Biomedical Engineering (C.L.M.), University of Virginia, Charlottesville.,Department of Public Health Sciences (C.L.M.), University of Virginia, Charlottesville
| |
Collapse
|
31
|
Li HW, Shen M, Gao PY, Li ZR, Cao JL, Zhang WL, Sui BB, Wang YX, Wang YJ. Association between ADAMTS7 polymorphism and carotid artery plaque vulnerability. Medicine (Baltimore) 2019; 98:e17438. [PMID: 31651847 PMCID: PMC6824807 DOI: 10.1097/md.0000000000017438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 12/22/2022] Open
Abstract
Recent genome-wide association studies (GWAS) indicated that polymorphisms in ADAMTS7 were associated with artery disease caused by atherosclerosis. However, the correlation between the ADAMTS7 polymorphism and plaque stability remains unclear. The objective of this study was to evaluate the association between 2 ADAMTS7 variants rs3825807 and rs7173743 and ischemic stroke or atherosclerotic plaque vulnerability.This research is an observational study. Patients with ischemic stroke and normal control individuals admitted to Beijing Tiantan Hospital from May 2014 to October 2017 were enrolled. High-resolution magnetic resonance imaging was used to distinguish vulnerable and stable carotid plaques. The ADAMTS7 SNPs were genotyped using TaqMan assays on real-time PCR system. The multivariate logistic regression analyses were used to adjust for multiple risk factors between groups.Three hundred twenty-six patients with ischemic stroke (189 patients with vulnerable plaque and 81 patients with stable plaque) and 432 normal controls were included. ADAMTS7 polymorphisms of both rs7173743 and rs3825807 were associated with carotid plaque vulnerability but not the prevalence of ischemic stroke. The T/T genotype of rs7173743 [odds ratio (OR) = 1.885, 95% confidence interval (CI) = 1.067-3.328, P = .028] and A/A genotype of rs3825807 (OR = 2.146, 95% CI = 1.163-3.961, P = .013) were considered as risk genotypes for vulnerable plaque susceptibility.In conclusion, ADAMTS7 variants rs3825807 and rs7173743 are associated with the risk for carotid plaque vulnerability.
Collapse
Affiliation(s)
- Hao-wen Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital
- Advanced Innovation Center for Human Brain Protection, Capital Medical University
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease
| | - Mi Shen
- Department of Neuroradiology, Beijing Tiantan Hospital, Capital Medical University
| | - Pei-yi Gao
- Department of Neuroradiology, Beijing Tiantan Hospital, Capital Medical University
- Beijing Neurosurgical Institute
| | - Zi-rui Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital
- Advanced Innovation Center for Human Brain Protection, Capital Medical University
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease
| | - Jing-li Cao
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital
- Advanced Innovation Center for Human Brain Protection, Capital Medical University
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease
| | - Wen-li Zhang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital
| | - Bin-bin Sui
- Department of Neuroradiology, Beijing Tiantan Hospital, Capital Medical University
| | - Yu-xin Wang
- Department of Neuroradiology, Beijing Tiantan Hospital, Capital Medical University
| | - Ya-jie Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Prediction and management of CAD risk based on genetic stratification. Trends Cardiovasc Med 2019; 30:328-334. [PMID: 31543237 DOI: 10.1016/j.tcm.2019.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/01/2019] [Accepted: 08/20/2019] [Indexed: 12/24/2022]
Abstract
Discovery of genetic risk variants for CAD and their assembly on a computerized microarray enables a genetic risk score (GRS) to be expressed as a single number. Utilizing this array, genetic risk stratification has been performed in over 1 million cases and controls. The genetic score based on one's DNA can be determined anytime from birth on and is independent of age and conventional risk factors. Utilizing the GRS, one can select those at highest risk and would benefit most from primary prevention. Clinical trials have shown that modifying lifestyle or using statin therapy reduces the risk for CAD by approximately 50%. The use of the GRS for primary prevention will have a transformative effect on preventing the spread of CAD.
Collapse
|
33
|
Izadpanah P, Khabbzi E, Erfanian S, Jafaripour S, Shojaie M. Case-control study on the association between the GATA2 gene and premature myocardial infarction in the Iranian population. Herz 2019; 46:71-75. [PMID: 31468074 DOI: 10.1007/s00059-019-04841-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/05/2019] [Accepted: 07/13/2019] [Indexed: 10/26/2022]
Abstract
In recent decades, due to the high prevalence of coronary artery disease (CAD) and myocardial infarction (MI), numerous studies have attempted to elucidate genetic contributing factors in these complex disorders. A very interesting gene in this regard is GATA-binding protein 2 (GATA2), an important regulator of various gene expressions in vascular endothelial cells. Accordingly, the association of different GATA2 polymorphisms with CAD and MI has already been evaluated. Rs2713604 is a genetic marker whose association with CAD has not been reproduced in previous studies. Considering the importance of replicating the initial association, the present case-control study aimed to examine the association of this intronic variant with premature MI in a sample of the Iranian population. In this study, 193 participants from Jahrom Hospital (Jahrom, Iran) were consecutively recruited during a 1.5-year period, and, following blood sampling, genomic DNA was extracted. We then proceeded to genotype rs2713604 using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method and statistically analyzed the data. After adjustment for hyperlipidemia, hypertension, and type 2 diabetes mellitus, the results of the multivariate regression analysis showed no significant association between rs2713604 and premature MI. Interestingly, the risk allele (A-allele) of rs2713604 displayed a slightly higher frequency among controls compared to cases.
Collapse
Affiliation(s)
- Peyman Izadpanah
- Cardiology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Khabbzi
- School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Saiedeh Erfanian
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran. .,Department of Advanced Medical Sciences and Technologies, School of Medicine, Jahrom University of Medical Sciences, Motahhari Street, 74148-46199, Jahrom, Iran.
| | - Simin Jafaripour
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Vakil abad Blv., 99191-91778, Mashhad, Iran.
| | - Mohammad Shojaie
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| |
Collapse
|
34
|
Kälsch AI, Scharnagl H, Kleber ME, Windpassinger C, Sattler W, Leipe J, Krämer BK, März W, Malle E. Long- and short-term association of low-grade systemic inflammation with cardiovascular mortality in the LURIC study. Clin Res Cardiol 2019; 109:358-373. [PMID: 31263995 DOI: 10.1007/s00392-019-01516-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/21/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND The present study aimed to evaluate biomarkers representing low-grade systemic inflammation and their association with cardiovascular mortality in the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. METHODS The included 3134 consecutive patients underwent coronary angiography between June 1997 and May 2001 with a median follow-up of 9.9 years. Plasma levels of IL-6, and acute-phase reactants serum amyloid A (SAA) and C-reactive protein (CRP) were measured. SAA and IL-6 polymorphisms were genotyped. RESULTS During a median observation time of 9.9 years, 949 deaths (30.3%) occurred, of these 597 (19.2%) died from cardiovascular causes. High plasma levels of IL-6, CRP and SAA were associated with unstable CAD, as well as established risk factors including type 2 diabetes mellitus, smoking, low glomerular filtration rate, low TGs and low HDL-C. After adjusting for established cardiovascular risk markers and the other two inflammatory markers, SAA was found to be an independent risk factor for cardiovascular mortality after a short-term follow-up (6 months-1 year) with a HR per SD of 1.41. IL-6 was identified as an independent risk factor for long-term follow-up (3, 5, and 9.9 years) with HRs per SD of 1.21, 1.22 and 1.18. CRP lost significance after adjustment. Although 6 out of 27 SAA SNPs were significantly associated with SAA plasma concentrations, the genetic risk score was not associated with cardiovascular mortality. CONCLUSIONS The present findings from the large, prospective LURIC cohort underline the importance of inflammation in CAD and the prognostic relevance of inflammatory biomarkers that independently predict cardiovascular mortality.
Collapse
Affiliation(s)
- Anna-Isabelle Kälsch
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Marcus E Kleber
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,European Center for Angioscience ECAS, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Christian Windpassinger
- Diagnostic and Research Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Wolfgang Sattler
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6/VI 21, 8010, Graz, Austria
| | - Jan Leipe
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Bernhard K Krämer
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,European Center for Angioscience ECAS, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Winfried März
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria.,Synlab Academy, Mannheim, Germany
| | - Ernst Malle
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6/VI 21, 8010, Graz, Austria.
| |
Collapse
|
35
|
Du L, Gong T, Yao M, Dai H, Ren HG, Wang H. Contribution of the polymorphism rs1800469 of transforming growth factor β in the development of myocardial infarction: meta-analysis of 5460 cases and 8413 controls (MOOSE-compliant article). Medicine (Baltimore) 2019; 98:e15946. [PMID: 31261499 PMCID: PMC6617069 DOI: 10.1097/md.0000000000015946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Studies investigating the association between transforming growth factor (TGF-β-509C/T, rs1800469) promoter polymorphism and myocardial infarction (MI) risk reported inconsistent results. The aim of our study was to assess the association between the 509C/T polymorphism of the TGF-β gene (rs1800469) and MI risk.A total of 5460 cases and 8413 controls in 7 case-control studies were incorporated in our current meta-analysis. The original studies were selected through searching the databases of the PubMed and EMBASE. The odds ratio (OR) and 95% confidence interval (95% CI) of TGF-β 509C/T (rs1800469) for MI risk were applied to estimate the strength of the association.Our results showed that T allele carriers had a 13% increased risk of MI, when compared with the C allele carriers (OR = 1.13, 95% CI: 1.00-1.27). In the subset analysis by the type of MI, significantly elevated risk of MI was associated with the homozygote TT and heterozygote C/T in no-AMI subjects, when compared with the CC homozygote carriers (OR = 1.12, 95% CI:1.02-1.23).Our meta-analysis shows that the polymorphism with homozygote TT and heterozygote C/T of TGF-β 509C/T (rs1800469) is significantly associated with the increased risk of MI.
Collapse
Affiliation(s)
- Ling Du
- Department of Cardiovascular Medicine, Chong Gang Iron and Steel General Hospital, Great Dukou District, Chongqing City, China
| | - Tao Gong
- Department of Cardiovascular Medicine, Chong Gang Iron and Steel General Hospital, Great Dukou District, Chongqing City, China
| | - Minghui Yao
- Department of Cardiovascular Medicine, Chong Gang Iron and Steel General Hospital, Great Dukou District, Chongqing City, China
| | - Henghua Dai
- Department of Cardiovascular Medicine, Chong Gang Iron and Steel General Hospital, Great Dukou District, Chongqing City, China
| | - Hong Gang Ren
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Haitao Wang
- Cardiac Surgery Center and Heart Failure Center of Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Affiliated Hospital of University of Electronic Science and Technology, China
| |
Collapse
|
36
|
TREML4 mRNA Expression and Polymorphisms in Blood Leukocytes are Associated with Atherosclerotic Lesion Extension in Coronary Artery Disease. Sci Rep 2019; 9:7229. [PMID: 31076644 PMCID: PMC6510738 DOI: 10.1038/s41598-019-43745-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/30/2019] [Indexed: 01/23/2023] Open
Abstract
Members of the triggering receptor expressed on myeloid cells (TREM) family are associated with atherosclerosis risk and progression. TREML4 is upregulated in the early phase of acute coronary syndrome. We investigated the relationship between the mRNA expression of 13 genes in blood leukocytes, TREML4 polymorphisms, and coronary artery lesion extension (Friesinger index) in patients with coronary artery disease (CAD) (n = 137). TREML4 rs2803495 (A > G) and rs2803496 (T > C) variants and leukocyte mRNA expression were analysed by qRT-PCR. TREML4 expression was higher in patients with major coronary artery lesions than in subjects without or with low and intermediate lesions (p < 0.05). However, TREML4 polymorphisms were not associated with coronary lesion extent. Presence of the rs2803495 G allele was not associated with increased TREML4 mRNA expression. Patients carrying the rs2803496 C allele (TC/CC genotypes) were more likely to express TREML4 mRNA than non-C allele carriers (allele C: OR 7.3, and 95% CI 1.9–27.5, p = 0.03). In conclusion, increased TREML4 mRNA expression in blood leukocytes is influenced by gene polymorphisms and is associated with more severe coronary artery lesions, suggesting its potential as a biomarker of the extent of coronary lesions in patients with CAD.
Collapse
|
37
|
Osadnik T, Pawlas N, Osadnik K, Bujak K, Góral M, Lejawa M, Fronczek M, Reguła R, Czarnecka H, Gawlita M, Strzelczyk JK, Gonera M, Gierlotka M, Poloński L, Gąsior M. High progesterone levels are associated with family history of premature coronary artery disease in young healthy adult men. PLoS One 2019; 14:e0215302. [PMID: 30986240 PMCID: PMC6464341 DOI: 10.1371/journal.pone.0215302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/29/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND & AIMS The offspring of patients with premature coronary artery disease (P-CAD) are at higher risk for cardiovascular disease, compared with subjects without a family history (FH) of P-CAD. The increased risk for cardiovascular disease in subjects with FH of early-onset CAD results from unfavorable genetic variants as well as social, behavioral and environmental factors, which are more prevalent in this group. Previous studies have shown that specific sex hormone levels may be associated with the risk of cardiovascular disease. The aim of this study was to compare wide range of biochemical marker levels including i.e. the levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), progesterone, estradiol, testosterone and sex-hormone binding globulin (SHBG) between young healthy male adults with and without FH of P-CAD. METHODS The study group consisted of young healthy Polish male adults enrolled in a MAGNETIC case-control study, who were recruited between July 2015 and October 2017. The inclusion criteria were as follows: male sex, age ≥18 and ≤35 years old, FH of P-CAD (cases) or no P-CAD in first-degree relatives (controls). The comparison of continuous and categorical variables was performed using the Student's t-test or the U-Mann-Whitney test, and Fisher's exact test, respectively. The correlations between FSH, LH, testosterone, progesterone, SHBG and other laboratory parameters were assessed using the Spearman rank correlation test. Both univariable and multivariable logistic regression analyses were performed to assess the association between analyzed variables and FH of P-CAD. RESULTS A total of 411 subjects (223 cases and 188 controls) were included in the study. There was a higher prevalence of major cardiovascular risk factors in subjects with FH of P-CAD (smoking, higher total and LDL cholesterol levels, higher body mass index and lower HDL cholesterol level). Moreover, the offspring of patients with P-CAD had lower SHBG level, and higher LH and progesterone levels in the crude comparison, compared with individuals without FH of P-CAD. After adjustment for confounding variables, progesterone and LH were determined to be independently associated with FH of P-CAD. CONCLUSION Progesterone and LH levels are significantly associated with FH of P-CAD, independent of traditional risk factors for CAD.
Collapse
Affiliation(s)
- Tadeusz Osadnik
- 2nd Department of Cardiology and Angiology, Silesian Center for Heart Diseases, Zabrze, Poland
- Chair and Department of Pharmacology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Natalia Pawlas
- Chair and Department of Pharmacology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
- Institute of Occupational Medicine and Environmental Health, Sosnowiec, Poland
| | - Kamila Osadnik
- Chair and Department of Pharmacology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Kamil Bujak
- 3rd Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Silesian Center for Heart Diseases, Zabrze, Poland
| | - Marta Góral
- Students’ Scientific Society, 3rd Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Silesian Center for Heart Diseases, Zabrze, Poland
| | - Mateusz Lejawa
- Chair and Department of Pharmacology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Martyna Fronczek
- Department of Medical and Molecular Biology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Rafał Reguła
- 3rd Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Silesian Center for Heart Diseases, Zabrze, Poland
| | - Hanna Czarnecka
- Clinical Laboratory, Silesian Center for Heart Diseases, Zabrze, Poland
| | - Marcin Gawlita
- Department of Environmental Medicine and Epidemiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Małgorzata Gonera
- Regional Specialized Hospital No. 4, Anesthesiology and Intensive Care Unit, Bytom, Poland
| | - Marek Gierlotka
- 3rd Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Silesian Center for Heart Diseases, Zabrze, Poland
- Department of Cardiology, University Hospital in Opole, Faculty of Natural Sciences and Technology, Institute of Medicine, University of Opole, Opole, Poland
| | - Lech Poloński
- 3rd Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Silesian Center for Heart Diseases, Zabrze, Poland
| | - Mariusz Gąsior
- 3rd Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Silesian Center for Heart Diseases, Zabrze, Poland
| |
Collapse
|
38
|
Gene variants in the NF-KB pathway (NFKB1, NFKBIA, NFKBIZ) and risk for early-onset coronary artery disease. Immunol Lett 2019; 208:39-43. [PMID: 30902734 DOI: 10.1016/j.imlet.2019.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/13/2019] [Accepted: 02/01/2019] [Indexed: 02/06/2023]
Abstract
The nuclear-factor kappa-beta (NF-KB) is a driver of inflammation, and plays an important role in the pathogenesis of atherosclerosis and coronary artery disease (CAD). Early-onset CAD is defined as a coronary ischaemic episode at an age ≤55 years, and in our population was strongly associated with male sex and smoking. Our aim was to determine whether common variants in three NF-KB genes were associated with early-onset CAD. We studied 609 patients with early-onset CAD and 423 healthy controls, all male. Allele and genotype frequencies for the NFKB1 rs28362491 (-94 delATTG) and NFKBIA rs8904 were not significantly different between the two groups. For the NFKBIZ rs3217713, the deletion allele was significantly more frequent in the patients than in controls (0.27 vs. 0.22; p = 0.004). Deletion-carriers were more frequent in the patients (p < 0.001), with an OR = 1.48 (95%CI = 1.15-1.90). We performed a multiple logistic regression (linear generalized model) with smoking, hypercholesterolemia, type 2 diabetes, hypertension, and the rs3217713 deletion carriers remained significantly associated with early-onset CAD (p = 0.01). In our population, the NFKBIZ variant was an independent risk factor for developing early-onset CAD.
Collapse
|
39
|
Glucose-6-phosphate dehydrogenase deficiency and risk of cardiovascular disease: A propensity score-matched study. Atherosclerosis 2019; 282:148-153. [DOI: 10.1016/j.atherosclerosis.2019.01.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 01/03/2023]
|
40
|
On the origin of proteins in human drusen: The meet, greet and stick hypothesis. Prog Retin Eye Res 2018; 70:55-84. [PMID: 30572124 DOI: 10.1016/j.preteyeres.2018.12.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/12/2022]
Abstract
Retinal drusen formation is not only a clinical hallmark for the development of age-related macular degeneration (AMD) but also for other disorders, such as Alzheimer's disease and renal diseases. The initiation and growth of drusen is poorly understood. Attention has focused on lipids and minerals, but relatively little is known about the origin of drusen-associated proteins and how they are retained in the space between the basal lamina of the retinal pigment epithelium and the inner collagenous layer space (sub-RPE-BL space). While some authors suggested that drusen proteins are mainly derived from cellular debris from processed photoreceptor outer segments and the RPE, others suggest a choroidal cell or blood origin. Here, we reviewed and supplemented the existing literature on the molecular composition of the retina/choroid complex, to gain a more complete understanding of the sources of proteins in drusen. These "drusenomics" studies showed that a considerable proportion of currently identified drusen proteins is uniquely originating from the blood. A smaller, but still large fraction of drusen proteins comes from both blood and/or RPE. Only a small proportion of drusen proteins is uniquely derived from the photoreceptors or choroid. We next evaluated how drusen components may "meet, greet and stick" to each other and/or to structures like hydroxyapatite spherules to form macroscopic deposits in the sub-RPE-BL space. Finally, we discuss implications of our findings with respect to the previously proposed homology between drusenogenesis in AMD and plaque formation in atherosclerosis.
Collapse
|