1
|
Mulè S, Rosso G, Botta M, Brovero A, Ferrari S, Galla R, Molinari C, Uberti F. Design of Mixed Medicinal Plants, Rich in Polyphenols, Vitamins B, and Palmitoylethanolamide-Based Supplement to Help Reduce Nerve Pain: A Preclinical Study. Int J Mol Sci 2024; 25:4790. [PMID: 38732008 PMCID: PMC11083932 DOI: 10.3390/ijms25094790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Neuropathy affects 7-10% of the general population and is caused by a lesion or disease of the somatosensory system. The limitations of current therapies highlight the necessity of a new innovative approach to treating neuropathic pain (NP) based on the close correlation between oxidative stress, inflammatory process, and antioxidant action. The advantageous outcomes of a novel combination composed of Hop extract, Propolis, Ginkgo Biloba, Vitamin B, and palmitoylethanolamide (PEA) used as a treatment was evaluated in this study. To assess the absorption and biodistribution of the combination, its bioavailability was first examined in a 3D intestinal barrier model that replicated intestinal absorption. Further, a 3D nerve tissue model was developed to study the biological impacts of the combination during the essential pathways involved in NP. Our findings show that the combination could cross the intestinal barrier and reach the peripheral nervous system, where it modulates the oxidative stress, inflammation levels, and myelination mechanism (increased NRG, MPZ, ERB, and p75 levels) under Schwann cells damaging. This study proves the effectiveness of Ginkgo Biloba, Propolis, Hop extract, Vitamin B, and PEA in avoiding nerve damage and suggests a potential alternative nutraceutical treatment for NP and neuropathies.
Collapse
Affiliation(s)
- Simone Mulè
- Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale (UPO), 13100 Vercelli, Italy; (S.M.); (G.R.); (M.B.); (S.F.); (R.G.); (C.M.)
| | - Giorgia Rosso
- Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale (UPO), 13100 Vercelli, Italy; (S.M.); (G.R.); (M.B.); (S.F.); (R.G.); (C.M.)
| | - Mattia Botta
- Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale (UPO), 13100 Vercelli, Italy; (S.M.); (G.R.); (M.B.); (S.F.); (R.G.); (C.M.)
| | - Arianna Brovero
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy;
| | - Sara Ferrari
- Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale (UPO), 13100 Vercelli, Italy; (S.M.); (G.R.); (M.B.); (S.F.); (R.G.); (C.M.)
| | - Rebecca Galla
- Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale (UPO), 13100 Vercelli, Italy; (S.M.); (G.R.); (M.B.); (S.F.); (R.G.); (C.M.)
- Noivita Srls, Spin Off, University of Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy
| | - Claudio Molinari
- Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale (UPO), 13100 Vercelli, Italy; (S.M.); (G.R.); (M.B.); (S.F.); (R.G.); (C.M.)
| | - Francesca Uberti
- Department for Sustainable Development and Ecological Transition, University of Piemonte Orientale (UPO), 13100 Vercelli, Italy; (S.M.); (G.R.); (M.B.); (S.F.); (R.G.); (C.M.)
| |
Collapse
|
2
|
Ferrari S, Mulè S, Galla R, Brovero A, Genovese G, Molinari C, Uberti F. Effects of Nutraceutical Compositions Containing Rhizoma Gastrodiae or Lipoic Acid in an In Vitro Induced Neuropathic Pain Model. Int J Mol Sci 2024; 25:2376. [PMID: 38397054 PMCID: PMC10889561 DOI: 10.3390/ijms25042376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Peripheral neuropathy is caused by a malfunction in the axons and myelin sheaths of peripheral nerves and motor and sensory neurons. In this context, nonpharmacological treatments with antioxidant potential have attracted much attention due to the issues that some conventional pharmaceutical therapy can generate. Most of these treatments contain lipoic acid, but issues have emerged regarding its use. Considering this, the present study evaluated the beneficial effects of nutraceuticals based on Gastrodiae elata dry extract 10:1 or lipoic acid in combination with other substances (such as citicholine, B vitamins, and acetyl L-carnitine). METHOD To assess the combination's absorption and biodistribution and exclude cytotoxicity, its bioavailability was first examined in a 3D intestinal barrier model that replicated oral ingestion. Subsequently, a 3D model of nerve tissue was constructed to investigate the impacts of the new combination on the significant pathways dysregulated in peripheral neuropathy. RESULTS Our findings show that the novel combination outperformed in initial pain relief response and in recovering the mechanism of nerve healing following Schwann cell injury by successfully crossing the gut barrier and reaching the target site. CONCLUSION This article describes a potential alternative nutraceutical approach supporting the effectiveness of combinations with Gastrodiae elata extract in decreasing neuropathy and regulating pain pathways.
Collapse
Affiliation(s)
- Sara Ferrari
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (S.F.); (S.M.); (R.G.); (G.G.)
| | - Simone Mulè
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (S.F.); (S.M.); (R.G.); (G.G.)
| | - Rebecca Galla
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (S.F.); (S.M.); (R.G.); (G.G.)
- Noivita Srls, Spin-Off, Via Alfieri 3, 28100 Novara, Italy
| | - Arianna Brovero
- Dipartimento di Scienze Cliniche e Biologiche, Università Degli Studi di Torino, 10043 Torino, Italy;
| | - Giulia Genovese
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (S.F.); (S.M.); (R.G.); (G.G.)
| | - Claudio Molinari
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, University of Piemonte Orientale, 13100 Vercelli, Italy;
| | - Francesca Uberti
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (S.F.); (S.M.); (R.G.); (G.G.)
| |
Collapse
|
3
|
Uberti F, Trotta F, Cavalli R, Galla R, Caldera F, Ferrari S, Mulè S, Brovero A, Molinari C, Pagliaro P, Penna C. Enhancing Vitamin D3 Efficacy: Insights from Complexation with Cyclodextrin Nanosponges and Its Impact on Gut-Brain Axes in Physiology and IBS Syndrome. Int J Mol Sci 2024; 25:2189. [PMID: 38396866 PMCID: PMC10889673 DOI: 10.3390/ijms25042189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Vitamin D3 (VitD3) plays a crucial role in various cellular functions through its receptor interaction. The biological activity of Vitamin D3 can vary based on its solubility and stability. Thus, the challenge lies in maximizing its biological effects through its complexation within cyclodextrin (βNS-CDI 1:4) nanosponges (NS) (defined as VitD3NS). Therefore, its activity has been evaluated on two different gut-brain axes (healthy gut/degenerative brain and inflammatory bowel syndrome gut/degenerative brain axis). At the gut level, VitD3-NS mitigated liposaccharide-induced damage (100 ng/mL; for 48 h), restoring viability, integrity, and activity of tight junctions and reducing ROS production, lipid peroxidation, and cytokines levels. Following intestinal transit, VitD3-NS improved the neurodegenerative condition in the healthy axis and the IBS model, suggesting the ability of VitD3-NS to preserve efficacy and beneficial effects even in IBS conditions. In conclusion, this study demonstrates the ability of this novel form of VitD3, named VitD3-NS, to act on the gut-brain axis in healthy and damaged conditions, emphasizing enhanced biological activity through VitD3 complexation, as such complexation increases the beneficial effect of vitamin D3 in both the gut and brain by about 50%.
Collapse
Affiliation(s)
- Francesca Uberti
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (F.U.); (R.G.); (S.F.); (S.M.)
| | - Francesco Trotta
- Dipartimento di Chimica and NIS, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy;
| | - Roberta Cavalli
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via P. Giuria 9, 10125 Torino, Italy;
| | - Rebecca Galla
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (F.U.); (R.G.); (S.F.); (S.M.)
| | - Fabrizio Caldera
- Dipartimento di Chimica and NIS, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy;
| | - Sara Ferrari
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (F.U.); (R.G.); (S.F.); (S.M.)
| | - Simone Mulè
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (F.U.); (R.G.); (S.F.); (S.M.)
| | - Arianna Brovero
- Laboratory of Cardiovascular Physiology, Dipartimento di Scienze Cliniche e Biologiche, Università Degli Studi di Torino, Regione Gonzole 10, 10043 Orbassano, Italy; (A.B.); (P.P.); (C.P.)
| | - Claudio Molinari
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, University of Piemonte Orientale, 13100 Vercelli, Italy;
| | - Pasquale Pagliaro
- Laboratory of Cardiovascular Physiology, Dipartimento di Scienze Cliniche e Biologiche, Università Degli Studi di Torino, Regione Gonzole 10, 10043 Orbassano, Italy; (A.B.); (P.P.); (C.P.)
- National Institute for Cardiovascular Research (INRC), 40126 Bologna, Italy
| | - Claudia Penna
- Laboratory of Cardiovascular Physiology, Dipartimento di Scienze Cliniche e Biologiche, Università Degli Studi di Torino, Regione Gonzole 10, 10043 Orbassano, Italy; (A.B.); (P.P.); (C.P.)
- National Institute for Cardiovascular Research (INRC), 40126 Bologna, Italy
| |
Collapse
|
4
|
Singh DP, Gopinath P. Tragacanth gum-based nano-nutraceuticals synthesis by encapsulation of beetroot juice and Ocimum basilicum leaves for micronutrient deficient population. Int J Biol Macromol 2023; 253:127502. [PMID: 37863139 DOI: 10.1016/j.ijbiomac.2023.127502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/22/2023]
Abstract
Micronutrient deficiencies, such as iron, folic acid, and vitamins C and D, are currently prevalent due to inadequate consumption of natural food sources, namely raw vegetables and fruits. This deficiency is compounded by the growing reliance on synthetic nutraceuticals and processed food, which exhibit poor absorbency within the gastrointestinal tract. Scientific studies consistently indicate that naturally prepared whole foods are superior in terms of nutrient absorption compared to processed and synthetic supplements. To address this issue, we utilized FDA-approved tragacanth gum (TG) in the synthesis of nano-nutraceuticals by encapsulating beetroot juice and ball-milled sweet basil (Ocimum basilicum). TG, in its micro or macro form, possesses the remarkable ability to form hydrogels capable of absorbing water up to 50 times its weight. However, the hydrogel-forming property diminishes when TG is reduced to the nanoscale. We effectively exploited these properties to facilitate the synthesis of nano-nutraceuticals. The procedure involved encapsulating beetroot juice and sweet basil nanopowder using TG hydrogel, followed by freeze-drying. Subsequently, the freeze-dried encapsulated TG composite was subjected to ball-milling to achieve the desired nano-nutraceuticals. These nano-nutraceuticals naturally contain essential nutrients such as iron, folic acid, ascorbic acid, chlorophyll, niacin, and sugars, without the need for chemical processing or preservatives.
Collapse
Affiliation(s)
- Dravin Pratap Singh
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - P Gopinath
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
5
|
Fanzaga M, Bollati C, Ranaldi G, Sucato S, Fustinoni S, Roda G, Lammi C. Bioavailability Assessment of an Iron Formulation Using Differentiated Human Intestinal Caco-2 Cells. Foods 2023; 12:3016. [PMID: 37628015 PMCID: PMC10453055 DOI: 10.3390/foods12163016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
In recent years, there has been growing interest in exploring alternative and innovative delivery systems to improve the efficacy of iron supplements, satisfying iron needs and lowering side effects. To address this issue, this study aimed at demonstrating the advantages of Ferro Supremo formulation (composed of encapsulated iron, vitamins, and micronutrients), in terms of capacity to improve iron intestinal absorption, in comparison with standard FeSO4. Hence, differentiated Caco-2 cells have been used for assessing the in vitro bioavailability and safety of FS and FeSO4. MTT experiments demonstrated that both FS and FeSO4 are not able to impair the viability of Caco-2 cells. Furthermore, the quantitative and qualitative analysis, conducted by atomic absorption spectrometry and fluorescence determinations, revealed that FS can enter, accumulate in the cytoplasm, and be transported by intestinal cells four times more efficiently than FeSO4. Our findings indicate that this formulation can be considered a valuable and efficiently good choice as food supplements for improving iron deficiency.
Collapse
Affiliation(s)
- Melissa Fanzaga
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.F.); (C.B.); (G.R.)
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.F.); (C.B.); (G.R.)
| | - Giulia Ranaldi
- CREA-Research Centre for Food and Nutrition, Via Ardeatina, 546, 00178 Rome, Italy;
| | - Sabrina Sucato
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (S.S.); (S.F.)
| | - Silvia Fustinoni
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (S.S.); (S.F.)
- IRCCS Ca’ Granda Foundation Maggiore Policlinico Hospital, 20122 Milan, Italy
| | - Gabriella Roda
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.F.); (C.B.); (G.R.)
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.F.); (C.B.); (G.R.)
| |
Collapse
|
6
|
Stefan MW, Gundermann DM, Sharp MH, Jennings BA, Gheith RH, Lowery RP, LowDog T, Ghatak SB, Barbosa J, Wilson JM. Assessment of the Efficacy of a Low-Dose Iron Supplement in Restoring Iron Levels to Normal Range among Healthy Premenopausal Women with Iron Deficiency without Anemia. Nutrients 2023; 15:nu15112620. [PMID: 37299583 DOI: 10.3390/nu15112620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
(1) Background: Iron deficiency without anemia (IDWA) is a prevalent health concern in premenopausal women. Oral supplementation of iron may be a viable solution to improve blood-iron status in women; however, the effects of a high-dose iron-supplement regimen have been associated with gastrointestinal side effects. Therefore, the purpose of the present study was to evaluate the effectiveness of a low-dose liquid fermented iron-bisglycinate supplement (LIS) on improving blood-iron status in premenopausal women with IDWA without increasing constipation or gastrointestinal distress. (2) Methods: 85 premenopausal women with IDWA (ferritin < 70 ng/dL and hemoglobin > 11.0 g/dL) took a LIS (27 mg) or a placebo (PLA) for 8 weeks. Blood draws were taken at Wk0 and Wk8 of the study to measure serum-iron markers. In addition, surveys of gastrointestinal distress were administered at Wk0, Wk4, and Wk8 while the profile of mood states (POMS) was surveyed at Wk0 and Wk8. (3) Results: Compared to the placebo, the LIS was able to increase serum ferritin (p = 0.03), total serum iron (p = 0.03), and mean corpuscular volume (p = 0.02), while exhibiting no significant interaction in subjective gastrointestinal distress (p > 0.05). No significant effects were detected for POMS (p > 0.05). (4) Conclusions: Supplementing with LIS appears to improve blood-iron status without causing significant gastrointestinal distress in premenopausal women with IDWA.
Collapse
Affiliation(s)
- Matthew W Stefan
- The Applied Science and Performance Institute, Research Division, Tampa, FL 33607, USA
| | | | - Matthew H Sharp
- The Applied Science and Performance Institute, Research Division, Tampa, FL 33607, USA
| | - Brooke A Jennings
- The Applied Science and Performance Institute, Research Division, Tampa, FL 33607, USA
| | - Raad H Gheith
- The Applied Science and Performance Institute, Research Division, Tampa, FL 33607, USA
| | - Ryan P Lowery
- The Applied Science and Performance Institute, Research Division, Tampa, FL 33607, USA
| | | | | | | | - Jacob M Wilson
- The Applied Science and Performance Institute, Research Division, Tampa, FL 33607, USA
| |
Collapse
|
7
|
Novel Approach to the Treatment of Neuropathic Pain Using a Combination with Palmitoylethanolamide and Equisetum arvense L. in an In Vitro Study. Int J Mol Sci 2023; 24:ijms24065503. [PMID: 36982577 PMCID: PMC10053612 DOI: 10.3390/ijms24065503] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Neuropathic pain is a typical patient disorder resulting from damage and dysfunction of the peripheral neuraxis. Injury to peripheral nerves in the upper extremities can result in a lifelong reduction in quality of life and a devastating loss of sensory and motor function. Since some standard pharmaceutical therapies can cause dependence or intolerance, nonpharmacological treatments have gained great interest in recent years. In this context, the beneficial effects of a new combination of palmitoylethanolamide and Equisetum arvense L. are evaluated in the present study. The bioavailability of the combination was initially analyzed in a 3D intestinal barrier simulating oral intake to analyze its absorption/biodistribution and exclude cytotoxicity. In a further step, a 3D nerve tissue model was performed to study the biological effects of the combination during the key mechanisms leading to peripheral neuropathy. Our results demonstrate that the combination successfully crossed the intestinal barrier and reached the target site, modulating the nerve recovery mechanism after Schwann cell injury and offering the initial response of relieving pain. This work supported the efficacy of palmitoylethanolamide and Equisetum arvense L. in reducing neuropathy and modifying the major pain mechanisms, outlining a possible alternative nutraceutical approach.
Collapse
|
8
|
Bonyadian M, Moeini E, Ebrahimnejad H, Askari N, Karimi I. The effect of iron sulfate nanoparticles and their fortified bread on Wistar rats and human cell lines. J Trace Elem Med Biol 2022; 73:127005. [PMID: 35660563 DOI: 10.1016/j.jtemb.2022.127005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 03/11/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Ferrous sulfate nanoparticles (FSNPs) were synthesized and characterized to mitigate the undesirable effects of ferrous sulfate bulk particles (FSBPs) as a supplement or fortificant in health/food industries. METHODS The toxicity of FSNPs and FSBPs was evaluated against AGS, PLC/PRF/5, and HGF1-PI 1 cell lines. Then, Wistar rats were fed three levels of FSNPs and FSBPs fortified-bread. Growth performance, hematological parameters, and histopathological changes in treated rats were assessed after 21 days. RESULTS High concentrations of FSNPs (3.125 and 6.25 mM) increased the necrosis of AGS cells. A low level of FSNPs (1.57 mM) did not affect the viability of cells after 72 h. Fibroblasts did not show apoptosis and necrosis after exposing 1.57 mM of FSNPs. In rats, 9 mg elemental iron of FSNPs/day enhanced hemoglobin, PCV, and ferritin values and increased the body weight gain (p < 0.05). FSNPs fortified-bread induced no clinical symptom or histopathological lesion in rats. CONCLUSION FSNPs affect cells in a dose-dependent manner. The results indicate that FSNPs at the low level do not have adverse effects on normal fibroblasts and rats. Significant weight gain in rats having a low level of FSNPs compared to the FSBPs indicates the negligible toxicity of FSNPs at low concentrations.
Collapse
Affiliation(s)
- Mojtaba Bonyadian
- Department of Food Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Elahe Moeini
- Department of Food Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Hadi Ebrahimnejad
- Department of Food Hygiene and Public Health, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman 7616914111, Iran.
| | - Nahid Askari
- Research Department of Biotechnology, Institute of Sciences and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Iraj Karimi
- Department of Pathology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
9
|
New Hyaluronic Acid from Plant Origin to Improve Joint Protection—An In Vitro Study. Int J Mol Sci 2022; 23:ijms23158114. [PMID: 35897688 PMCID: PMC9332867 DOI: 10.3390/ijms23158114] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Background: In recent decades, hyaluronic acid (HA) has attracted great attention as a new treatment option for osteoarthritis. Classical therapies are not able to stop the cartilage degeneration process nor do they favor tissue repair. Nowadays, it is accepted that high molecular weight HA can reduce inflammation by promoting tissue regeneration; therefore, the aim of this study was to verify the efficacy of a new high molecular weight HA of plant origin (called GreenIuronic®) in maintaining joint homeostasis and preventing the harmful processes of osteoarthritis. Methods: The bioavailability of GreenIuronic® was investigated in a 3D intestinal barrier model that mimics human oral intake while excluding damage to the intestinal barrier. Furthermore, the chemical significance and biological properties of GreenIuronic® were investigated in conditions that simulate osteoarthritis. Results: Our data demonstrated that GreenIuronic® crosses the intestinal barrier without side effects as it has a chemical–biological profile, which could be responsible for many specific chondrocyte functions. Furthermore, in the osteoarthritis model, GreenIuronic® can modulate the molecular mechanism responsible for preventing and restoring the degradation of cartilage. Conclusion: According to our results, this new form of HA appears to be well absorbed and distributed to chondrocytes, preserving their biological activities. Therefore, the oral administration of GreenIuronic® in humans can be considered a valid strategy to obtain beneficial therapeutic effects during osteoarthritis.
Collapse
|
10
|
Elmore C, Ellis J. Screening, Treatment, and Monitoring of Iron Deficiency Anemia in Pregnancy and Postpartum. J Midwifery Womens Health 2022; 67:321-331. [PMID: 35642737 DOI: 10.1111/jmwh.13370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/29/2022]
Abstract
Iron deficiency anemia is the most prevalent form of anemia worldwide. In the United States, clinicians routinely screen for iron deficiency anemia upon initiation of prenatal care, at the start of the third trimester, and prior to birth. Treatment of iron deficiency anemia generally begins with oral supplementation of elemental iron, which is associated with adverse gastrointestinal effects. These adverse effects can decrease adherence, leading to subtherapeutic treatment. Newer evidence highlights the benefits of early screening for iron deficiency before the onset of anemia, as well as the use of intravenous iron to expedite the treatment of iron deficiency anemia. More research is needed on the potential consequences of over-supplementation and iron deficiency without anemia to guide treatment. This article reviews the evidence for best practices for screening, treatment, and continued monitoring of iron deficiency anemia during pregnancy and postpartum. Maternal, fetal, and neonatal implications are reviewed, as well as the risks and benefits of treatment options. Finally, an evidence-based algorithm is proposed to guide clinicians on continued monitoring after treatment.
Collapse
Affiliation(s)
- Christina Elmore
- Birthcare Healthcare, University of Utah College of Nursing, Salt Lake City, Utah
| | - Jessica Ellis
- Birthcare Healthcare, University of Utah College of Nursing, Salt Lake City, Utah
| |
Collapse
|
11
|
Lavie A, Reicher L, Zohav E, Ram M, Malovitz S. Isolated fetal echogenic bowel and iron-rich mineral water supplement: a case series and review of the literature. J OBSTET GYNAECOL 2022; 42:1149-1154. [PMID: 35142237 DOI: 10.1080/01443615.2021.2024800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Natural iron-rich mineral water (IRMW) is a supplement with a higher iron bioavailability than oral iron supplement tablets. Five (4%) of 116 women who consumed IRMW starting from 16 weeks of gestation were diagnosed as having isolated foetal echogenic bowel at a single community maternity clinic between 2012 and 2015. The workup of all the women was otherwise negative. Four women taking IRMW were re-checked after discontinuation of the supplement and had a normal-appearing foetal bowel. Our observations suggest that isolated echogenic bowel may be related to the consumption of IRMW, possibly due to the high absorption of iron, leading to the coating of the internal wall of the foetal bowel and subsequent appearance of an echogenic bowel. Although this finding appears free of harmful ramifications, its possible sonographic effects on the appearance of the foetal bowel should be considered in light of the increasing popularity of IRMW use.IMPACT STATEMENTWhat is already known on this subject? IRMW is a highly absorbed iron supplement. The differential diagnosis for foetal echogenic bowel is broad and requires thorough investigation. Iron is secreted through the maternal blood to the amniotic fluid, which is swallowed by the foetus, reaching its bowel.What do the results of this study add? IRMW consumption is a possible aetiology of an isolated foetal echogenic bowel in the second half of pregnancy, conveying no risk of foetal morbidity or mortality.What are the implications of these findings for clinical practice and/or further research? In light of the increasing popularity of IRMW, we believe that it is important to increase the level of awareness of the possible effects of its intake on the sonographic appearance of the foetal bowel.
Collapse
Affiliation(s)
- Anat Lavie
- Lis Hospital for Women, Tel Aviv Sourasky Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lee Reicher
- Lis Hospital for Women, Tel Aviv Sourasky Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eyal Zohav
- Lis Hospital for Women, Tel Aviv Sourasky Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maya Ram
- Lis Hospital for Women, Tel Aviv Sourasky Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Malovitz
- Lis Hospital for Women, Tel Aviv Sourasky Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
The Usefulness of X-ray Diffraction and Thermal Analysis to Study Dietary Supplements Containing Iron. Molecules 2021; 27:molecules27010197. [PMID: 35011434 PMCID: PMC8746380 DOI: 10.3390/molecules27010197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/27/2022] Open
Abstract
X-ray powder diffraction (XRPD) and thermal analysis (differential scanning calorimetry/derivative of thermogravimetry (DSC/DTG)) are solid-state techniques that can be successfully used to identify and quantify various chemical compounds in polycrystalline mixtures, such as dietary supplements or drugs. In this work, 31 dietary supplements available on the Polish market that contain iron compounds, namely iron gluconate, fumarate, bisglycinate, citrate and pyrophosphate, were evaluated. The aim of the work was to identify iron compounds declared by the manufacturer as food supplements and to try to verify compliance with the manufacturer’s claims. Studies performed by X-ray and thermal analysis confirmed that crystalline iron compounds (iron (II) gluconate, iron (II) fumarate), declared by the manufacturers, were present in the investigated dietary supplements. Iron (II) bisglycinate proved to be semi-crystalline. However, depending on the composition of the formulation, it was possible to identify this compound in the tested supplements. For amorphous iron compounds (iron (III) citrate and iron (III) pyrophosphate), the diffraction pattern does not have characteristic diffraction lines. Food supplements containing crystalline iron compounds have a melting point close to the melting point of pure iron compounds. The presence of excipients was found to affect the shapes and positions of the endothermic peaks significantly. Widening of endothermic peaks and changes in their position were observed, as well as exothermic peaks indicating crystallization of amorphous compounds. Weight loss was determined for all dietary supplements tested. Analysis of the DTG curves showed that the thermal decomposition of most food supplements takes place in several steps. The results obtained by a combination of both simple, relatively fast and reliable XRPD and DSC/DTG methods are helpful in determining phase composition, pharmaceutical abnormalities or by detecting the presence of the correct polymorphic form.
Collapse
|
13
|
Galla R, Grisenti P, Farghali M, Saccuman L, Ferraboschi P, Uberti F. Ovotransferrin Supplementation Improves the Iron Absorption: An In Vitro Gastro-Intestinal Model. Biomedicines 2021; 9:biomedicines9111543. [PMID: 34829772 PMCID: PMC8615417 DOI: 10.3390/biomedicines9111543] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 02/07/2023] Open
Abstract
Transferrins constitute the most important iron regulation system in vertebrates and some invertebrates. Soluble transferrins, such as bovine lactoferrin and hen egg white ovotransferrin, are glycoproteins with a very similar structure with lobes that complex with iron. In this in vitro study, a comparison of bovine lactoferrin and ovotransferrin was undertaken to confirm the comparability of biological effects. An in vitro gastric barrier model using gastric epithelial cells GTL-16 and an in vitro intestinal barrier model using CaCo-2 cells was employed to evaluate iron absorption and barrier integrity. An analysis of the molecular pathways involving DMT-1 (divalent metal transporter 1), ferritin and ferroportin was also carried out. These in vitro data demonstrate the activity of both 15% saturated and 100% saturated ovotransferrin on the iron regulation system. Compared with the commercial bovine lactoferrin, both 15% saturated and 100% saturated ovotransferrin were found to act in a more physiological manner. Based on these data, it is possible to hypothesise that ovotransferrin may be an excellent candidate for iron supplementation in humans; in particular, 15% saturated ovotransferrin is the overall best performing product. In vivo studies should be performed to confirm this in vitro data.
Collapse
Affiliation(s)
- Rebecca Galla
- Laboratory Physiology, Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy; (R.G.); (M.F.); (L.S.)
| | - Paride Grisenti
- Bioseutica B.V., Landbouwweg 83, 3899 BD Zeewolde, The Netherlands;
| | - Mahitab Farghali
- Laboratory Physiology, Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy; (R.G.); (M.F.); (L.S.)
| | - Laura Saccuman
- Laboratory Physiology, Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy; (R.G.); (M.F.); (L.S.)
| | - Patrizia Ferraboschi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Saldini 50, 20133 Milan, Italy;
| | - Francesca Uberti
- Laboratory Physiology, Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy; (R.G.); (M.F.); (L.S.)
- Correspondence: ; Tel.: +39-03-2166-0653
| |
Collapse
|
14
|
Vitale SG, Fiore M, La Rosa VL, Rapisarda AMC, Mazza G, Paratore M, Commodari E, Caruso S. Liposomal ferric pyrophosphate and ascorbic acid supplementation in pregnant women with iron deficiency anaemia: haematochemical, obstetric, neonatal and psychological outcomes in a prospective observational study. Int J Food Sci Nutr 2021; 73:221-229. [PMID: 34238093 DOI: 10.1080/09637486.2021.1950129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study aimed to determine the effects of liposomal iron pyrophosphate/ascorbic acid on clinical and psychological outcomes in pregnant women. Women at the 11th-13th weeks of gestation with iron deficiency anaemia assuming Sideremil™ from April 2018 to May 2019 were recruited. Haematochemical, obstetric, neonatal and psychological outcomes were investigated at the enrolment, 21-23 weeks of gestation, 30-32 weeks of gestation and after 6 weeks from childbirth. Results showed significant positive effects on haemoglobin, ferritin, sideremia and transferrin levels, compared to baseline data. A significant improvement of anxiety and depression levels was also observed. Regarding the quality of life, all the domains significantly improved, especially the Physical Role domain. Our results indicate that Sideremil™ may be a valid treatment for iron deficiency anaemia in pregnant women, since it significantly improves haematological and mental health outcomes. However, further studies are needed to confirm these results.
Collapse
Affiliation(s)
- Salvatore Giovanni Vitale
- Obstetrics and Gynecology Unit, Department of General Surgery and Medical Surgical Specialties, University of Catania, Catania, Italy
| | - Maria Fiore
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | | | - Agnese Maria Chiara Rapisarda
- Obstetrics and Gynecology Unit, Department of General Surgery and Medical Surgical Specialties, University of Catania, Catania, Italy
| | - Gabriele Mazza
- Obstetrics and Gynecology Unit, Department of General Surgery and Medical Surgical Specialties, University of Catania, Catania, Italy
| | - Marco Paratore
- Obstetrics and Gynecology Unit, Department of General Surgery and Medical Surgical Specialties, University of Catania, Catania, Italy
| | - Elena Commodari
- Department of Educational Sciences, University of Catania, Catania, Italy
| | - Salvatore Caruso
- Obstetrics and Gynecology Unit, Department of General Surgery and Medical Surgical Specialties, University of Catania, Catania, Italy
| |
Collapse
|
15
|
Affonfere M, Chadare FJ, Fassinou FTK, Linnemann AR, Duodu KG. In-vitro Digestibility Methods and Factors Affecting Minerals Bioavailability: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1928692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Marius Affonfere
- Laboratoire De Sciences Et Technologie Des Aliments Et Bio-ressources Et De Nutrition Humaine, Centre Universitaire De Sakété, Université Nationale d’Agriculture, Sakété, République Du Bénin
- Laboratory of Food Science, Faculty of Agronomic Science, University of Abomey-Calavi, Jéricho, Cotonou
| | - Flora Josiane Chadare
- Laboratoire De Sciences Et Technologie Des Aliments Et Bio-ressources Et De Nutrition Humaine, Centre Universitaire De Sakété, Université Nationale d’Agriculture, Sakété, République Du Bénin
- Laboratory of Food Science, Faculty of Agronomic Science, University of Abomey-Calavi, Jéricho, Cotonou
| | - Finagnon Toyi Kévin Fassinou
- Laboratoire De Sciences Et Technologie Des Aliments Et Bio-ressources Et De Nutrition Humaine, Centre Universitaire De Sakété, Université Nationale d’Agriculture, Sakété, République Du Bénin
- Laboratory of Food Science, Faculty of Agronomic Science, University of Abomey-Calavi, Jéricho, Cotonou
| | - Anita Rachel Linnemann
- Food Quality and Design, (FQD/WUR), Wageningen University and Research, Wageningen, The Netherlands
| | - Kwaku Gyebi Duodu
- Department of Consumer and Food Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
16
|
Loginova NV, Harbatsevich HI, Osipovich NP, Ksendzova GA, Koval’chuk TV, Polozov GI. Metal Complexes as Promising Agents for Biomedical Applications. Curr Med Chem 2020; 27:5213-5249. [DOI: 10.2174/0929867326666190417143533] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/02/2019] [Accepted: 03/29/2019] [Indexed: 12/24/2022]
Abstract
Background::
In this review article, a brief overview of novel metallotherapeutic agents
(with an emphasis on the complexes of essential biometals) promising for medical application is
presented. We have also focused on the recent work carried out by our research team, specifically
the development of redox-active antimicrobial complexes of sterically hindered diphenols with some
essential biometals (copper, zinc, nickel).
Results::
The complexes of essential metals (manganese, iron, cobalt, nickel, copper, zinc) described
in the review show diverse in vitro biological activities, ranging from antimicrobial and antiinflammatory
to antiproliferative and enzyme inhibitory. It is necessary to emphasize that the type of
organic ligands in these metal complexes seems to be responsible for their pharmacological
activities. In the last decades, there has been a significant interest in synthesis and biological
evaluation of metal complexes with redox-active ligands. A substantial step in the development of
these redox-active agents is the study of their physicochemical and biological properties, including
investigations in vitro of model enzyme systems, which can provide evidence on a plausible
mechanism underlying the pharmacological activity. When considering the peculiarities of the
pharmacological activity of the sterically hindered diphenol derivatives and their nickel(II),
copper(II) and zinc(II) complexes synthesized, we took into account the following: (i) all these
compounds are potential antioxidants and (ii) their antimicrobial activity possibly results from their
ability to affect the electron-transport chain.
Conclusion::
We obtained novel data demonstrating that the level of antibacterial and antifungal
activity in the series of the above-mentioned metal-based antimicrobials depends not only on the
nature of the phenolic ligands and complexing metal ions, but also on the lipophilicity and reducing
ability of the ligands and metal complexes, specifically regarding the potential biotargets of their
antimicrobial action – ferricytochrome c and the superoxide anion radical. The combination of
antibacterial, antifungal and antioxidant activity allows one to consider these compounds as
promising substances for developing therapeutic agents with a broad spectrum of activities.
Collapse
Affiliation(s)
| | | | - Nikolai P. Osipovich
- Research Institute for Physico-Chemical Problems of the Belarusian State University, Minsk, Belarus
| | - Galina A. Ksendzova
- Research Institute for Physico-Chemical Problems of the Belarusian State University, Minsk, Belarus
| | | | | |
Collapse
|
17
|
Garzon S, Cacciato PM, Certelli C, Salvaggio C, Magliarditi M, Rizzo G. Iron Deficiency Anemia in Pregnancy: Novel Approaches for an Old Problem. Oman Med J 2020; 35:e166. [PMID: 32953141 PMCID: PMC7477519 DOI: 10.5001/omj.2020.108] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 03/27/2019] [Indexed: 12/13/2022] Open
Abstract
Iron needs increase exponentially during pregnancy to meet the increased demands of the fetoplacental unit, to expand maternal erythrocyte mass, and to compensate for iron loss at delivery. In more than 80% of countries in the world, the prevalence of anemia in pregnancy is > 20% and could be considered a major public health problem. The global prevalence of anemia in pregnancy is estimated to be approximately 41.8%. Undiagnosed and untreated iron deficiency anemia (IDA) can have a great impact on maternal and fetal health. Indeed, chronic iron deficiency can affect the general wellbeing of the mother and leads to fatigue and reduced working capacity. Given the significant adverse impact on maternal-fetal outcomes, early recognition and treatment of this clinical condition is fundamental. Therefore, the laboratory assays are recommended from the first trimester to evaluate the iron status. Oral iron supplementation is the first line of treatment in cases of mild anemia. However, considering the numerous gastrointestinal side effects that often lead to poor compliance, other therapeutic strategies should be evaluated. This review aims to provide an overview of the current evidence about the management of IDA in pregnancy and available treatment options.
Collapse
Affiliation(s)
- Simone Garzon
- Department of Obstetrics and Gynecology, University of Insubria, Filippo Del Ponte Hospital, Varese, Italy
| | | | - Camilla Certelli
- Gynecologic Oncology Unit, Department of Experimental Clinical Oncology, Regina Elena National Cancer Institute, Rome, Italy
| | - Calogero Salvaggio
- Azienda Sanitaria Provinciale 2 Caltanissetta, Sant'Elia Hospital, Caltanissetta, Italy
| | - Maria Magliarditi
- Department of Obstetrics and Gynecology, Policlinico Universitario Gazzi, University of Messina, Messina, Italy
| | | |
Collapse
|
18
|
Iron and Physical Activity: Bioavailability Enhancers, Properties of Black Pepper (Bioperine ®) and Potential Applications. Nutrients 2020; 12:nu12061886. [PMID: 32599787 PMCID: PMC7353321 DOI: 10.3390/nu12061886] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022] Open
Abstract
Black pepper (Piper nigrum L.) has been employed in medicine (epilepsy, headaches, and diabetes), where its effects are mainly attributed to a nitrogen alkaloid called piperidine (1-(1-[1,3-benzodioxol-5-yl]-1-oxo-2,4 pentenyl) piperidine). Piperine co-administered with vitamins and minerals has improved its absorption. Therefore, this study aimed to describe the impact of the joint administration of iron (Fe) plus black pepper in physically active healthy individuals. Fe is a micronutrient that aids athletic performance by influencing the physiological functions involved in endurance sports by improving the transport, storage, and utilization of oxygen. Consequently, athletes have risk factors for Fe depletion, Fe deficiency, and eventually, anemia, mainly from mechanical hemolysis, gastrointestinal disturbances, and loss of Fe through excessive sweating. Declines in Fe stores have been reported to negatively alter physical capacities such as aerobic capacity, strength, and skeletal muscle recovery in elite athletes. Thus, there is a need to maintain Fe storage, even if Fe intake meets the recommended daily allowance (RDA), and Fe supplementation may be justified in physically active individuals, in states of Fe deficiency, with or without anemia. Females, in particular, should monitor their Fe hematological profile. The recommended oral Fe supplements are ferrous or ferric salts, sulfate, fumarate, and gluconate. These preparations constitute the first line of treatment; however, the high doses administered have gastrointestinal side effects that reduce tolerance and adherence to treatment. Thus, a strategy to counteract these adverse effects is to improve the bioavailability of Fe. Therefore, piperine may benefit the absorption of Fe through its bioavailability enhancement properties. Three research studies of Fe associated with black pepper have reported improvements in parameters related to the metabolism of Fe, without adverse effects. Although more research is needed, this could represent an advance in oral Fe supplementation for physically active individuals.
Collapse
|
19
|
Filiponi MP, Gaigher B, Caetano-Silva ME, Alvim ID, Pacheco MTB. Microencapsulation performance of Fe-peptide complexes and stability monitoring. Food Res Int 2019; 125:108505. [DOI: 10.1016/j.foodres.2019.108505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 06/01/2019] [Accepted: 06/17/2019] [Indexed: 02/09/2023]
|
20
|
Mangan A, Le Roux CW, Miller NG, Docherty NG. Iron and Vitamin D/Calcium Deficiency after Gastric Bypass: Mechanisms Involved and Strategies to Improve Oral Supplement Disposition. Curr Drug Metab 2019; 20:244-252. [DOI: 10.2174/1389200219666181026160242] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 10/01/2018] [Accepted: 11/20/2018] [Indexed: 12/17/2022]
Abstract
Background:Nutritional deficiencies are common following Roux-en-Y Gastric Bypass (RYGB). Aetiology is diverse; including non-compliance, altered diet, unresolved preoperative deficiency and differential degrees of post-operative malabsorption occurring as function of length of bypassed intestine. Iron and calcium/vitamin D deficiency occur in up to 50% of patients following RYGB. Currently, treatment strategies recommend the prescription of oral supplements for those who become deficient. Meanwhile, debate exists regarding the absorption capacity of these post-operatively and their efficacy in treating deficiency.Objective:To examine the disposition of oral iron and calcium/vitamin D supplementation following RYGB. Methods: A literature review was carried out using PubMed and Embase. Data from the key interventional studies investigating iron and calcium/vitamin D oral supplement absorption and efficacy following RYGB was summarized.Results:Absorption of both iron and vitamin D/calcium is adversely affected following RYGB. Distribution and metabolism may be altered by the predominance of paracellular absorption pathways which promote unregulated influx into the circulatory system. Overall, studies indicate that current supplementation strategies are efficacious to a degree in treating deficiency following RYGB, generally restoration of optimal status is not achieved.Conclusion:Oral supplement disposition is altered following RYGB. As a result, patients are required to take regimens of oral supplementation indefinitely. The dosage which confers optimum health benefit while avoiding potential toxicity and tolerability issues remains unknown. Novel preparations with improved disposition could help limit the extent of post-RYGB nutritional deficiencies.
Collapse
Affiliation(s)
- Aisling Mangan
- Diabetes Complications Research Center, Conway Institute, University College Dublin, Dublin, Ireland
| | - Carel W. Le Roux
- Diabetes Complications Research Center, Conway Institute, University College Dublin, Dublin, Ireland
| | | | - Neil G. Docherty
- Diabetes Complications Research Center, Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
21
|
Christides T, Ganis JC, Sharp PA. In vitro assessment of iron availability from commercial Young Child Formulae supplemented with prebiotics. Eur J Nutr 2018; 57:669-678. [PMID: 27942845 PMCID: PMC5845627 DOI: 10.1007/s00394-016-1353-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 11/29/2016] [Indexed: 12/11/2022]
Abstract
PURPOSE Iron is essential for development and growth in young children; unfortunately, iron deficiency (ID) is a significant public health problem in this population. Young Child Formulae (YCF), milk-derived products fortified with iron and ascorbic acid (AA, an enhancer of iron absorption) may be good sources of iron to help prevent ID. Furthermore, some YCF are supplemented with prebiotics, non-digestible carbohydrates suggested to enhance iron bioavailability. The aim of our study was to evaluate iron bioavailability of YCF relative to prebiotic and AA concentrations. We hypothesised that YCF with the highest levels of prebiotics and AA would have the most bioavailable iron. METHODS We used the in vitro digestion/Caco-2 cell model to measure iron bioavailability from 4 commercially available YCF with approximately equal amounts of iron, but varying amounts of: AA and the prebiotics fructo- and galacto-oligosaccharides. Caco-2 cell ferritin formation was used as a surrogate marker for iron bioavailability. RESULTS The YCF with the highest concentration of prebiotics and AA had the highest iron bioavailability; conversely, the YCF with the lowest concentration of prebiotics and AA had the lowest. After the addition of exogenous prebiotics, so that all tested YCF had equivalent amounts, there was no longer a significant difference between YCF iron bioavailability. CONCLUSION Our results suggest that ascorbic acid and prebiotics in YCF improve iron bioavailability. Ensuring that iron is delivered in a bioavailable form would improve the nutritional benefits of YCF in relation to ID/IDA amongst young children; therefore, further exploration of our findings in vivo is warranted.
Collapse
Affiliation(s)
- Tatiana Christides
- Department of Life and Sports Sciences, Faculty of Engineering and Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent, ME4 4TB, UK.
| | - Julia Clark Ganis
- Department of Life and Sports Sciences, Faculty of Engineering and Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent, ME4 4TB, UK
| | - Paul Anthony Sharp
- Metal Metabolism Group, Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, London, UK
| |
Collapse
|
22
|
Uberti F, Morsanuto V, Ghirlanda S, Molinari C. Iron Absorption from Three Commercially Available Supplements in Gastrointestinal Cell Lines. Nutrients 2017; 9:nu9091008. [PMID: 28902140 PMCID: PMC5622768 DOI: 10.3390/nu9091008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/04/2017] [Accepted: 09/09/2017] [Indexed: 12/19/2022] Open
Abstract
This study compares the absorption characteristics of two iron-based dietary supplements and their biocompatibility to bisglycinate iron, a common chelated iron form. The Caco-2 cell line—a model of human intestinal absorption—and GTL-16 cell line—a model of gastric epithelial cells—were used to perform the experiments; in the first experiments, the kinetics of absorption have been evaluated analyzing the divalent metal transporter 1 (DMT1) expression. Three different iron combinations containing 50 µM iron (named Fisioeme®, Sideral® and bisglycinate) were used for different stimulation times (1–24 h). After this, the effects of the three iron formulations were assessed in both a short and a long time, in order to understand the extrusion mechanisms. The effects of the three different formulations were also analyzed at the end of stimulation period immediately after iron removal, and after some time in order to clarify whether the mechanisms were irreversibly activated. Findings obtained in this study demonstrate that Fisioeme® was able to maintain a significant beneficial effect on cell viability compared to control, to Sideral®, and to iron bisglycinate. This observation indicates that Fisioeme® formulation is the most suitable for gastric and intestinal epithelial cells.
Collapse
Affiliation(s)
- Francesca Uberti
- Laboratory of Physiology, Department of Translational Medicine, University of Eastern Piedmont, via Solaroli 17, 28100 Novara, Italy.
| | - Vera Morsanuto
- Laboratory of Physiology, Department of Translational Medicine, University of Eastern Piedmont, via Solaroli 17, 28100 Novara, Italy.
| | - Sabrina Ghirlanda
- noiVita s.r.l.s. Spin-Off of University of Eastern Piedmont, via A. Canobio 4/6, 28100 Novara, Italy.
| | - Claudio Molinari
- Laboratory of Physiology, Department of Translational Medicine, University of Eastern Piedmont, via Solaroli 17, 28100 Novara, Italy.
| |
Collapse
|
23
|
Christides T, Amagloh FK, Coad J. Iron Bioavailability and Provitamin A from Sweet Potato- and Cereal-Based Complementary Foods. Foods 2015; 4:463-476. [PMID: 28231217 PMCID: PMC5224543 DOI: 10.3390/foods4030463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/31/2015] [Accepted: 09/10/2015] [Indexed: 12/26/2022] Open
Abstract
Iron and vitamin A deficiencies in childhood are public health problems in the developing world. Introduction of cereal-based complementary foods, that are often poor sources of both vitamin A and bioavailable iron, increases the risk of deficiency in young children. Alternative foods with higher levels of vitamin A and bioavailable iron could help alleviate these micronutrient deficiencies. The objective of this study was to compare iron bioavailability of β-carotene-rich sweet potato-based complementary foods (orange-flesh based sweet potato (OFSP) ComFa and cream-flesh sweet potato based (CFSP) ComFa with a household cereal-based complementary food (Weanimix) and a commercial cereal (Cerelac®), using the in vitro digestion/Caco-2 cell model. Iron bioavailability relative to total iron, concentrations of iron-uptake inhibitors (fibre, phytates, and polyphenols), and enhancers (ascorbic acid, ß-carotene and fructose) was also evaluated. All foods contained similar amounts of iron, but bioavailability varied: Cerelac® had the highest, followed by OFSP ComFa and Weanimix, which had equivalent bioavailable iron; CFSP ComFa had the lowest bioavailability. The high iron bioavailability from Cerelac® was associated with the highest levels of ascorbic acid, and the lowest levels of inhibitors; polyphenols appeared to limit sweet potato-based food iron bioavailability. Taken together, the results do not support that CFSP- and OFSP ComFa are better sources of bioavailable iron compared with non-commercial/household cereal-based weaning foods; however, they may be a good source of provitamin A in the form of β-carotene.
Collapse
Affiliation(s)
- Tatiana Christides
- Department of Life & Sports Sciences, Faculty of Engineering & Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME4 4TB, UK.
| | - Francis Kweku Amagloh
- Food Processing Technology Unit, Faculty of Agriculture, University for Development Studies, Ghana.
| | - Jane Coad
- School of Food and Nutrition, Massey Institute of Food Science and Technology, College of Health, Te Kura Hauora Tangata, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| |
Collapse
|