1
|
Hasnain MA, Kang D, Moon GS. Research trends of next generation probiotics. Food Sci Biotechnol 2024; 33:2111-2121. [PMID: 39130671 PMCID: PMC11315851 DOI: 10.1007/s10068-024-01626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 08/13/2024] Open
Abstract
Gut represents one of the largest interfaces for the interaction of host factors and the environmental ones. Gut microbiota, largely dominated by bacterial community, plays a significant role in the health status of the host. The healthy gut microbiota fulfills several vital functions such as energy metabolism, disease protection, and immune modulation. Dysbiosis, characterized by microbial imbalance, can contribute to the development of various disorders, including intestinal, systemic, metabolic, and neurodegenerative conditions. Probiotics offer the potential to address dysbiosis and improve overall health. Advancements in high-throughput sequencing, bioinformatics, and omics have enabled mechanistic studies for the development of bespoke probiotics, referred to as next generation probiotics. These tailor-made probiotics have the potential to ameliorate specific disease conditions and thus fulfill the specific consumer needs. This review discusses recent updates on the most promising next generation probiotics, along with the challenges that must be addressed to translate this concept into reality.
Collapse
Affiliation(s)
- Muhammad Adeel Hasnain
- Major in IT·Biohealth Convergence, Department of IT·Energy Convergence, Graduate School, Korea National University of Transportation, Chungju, 27469 Republic of Korea
| | - Dae‑Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan, 31116 Republic of Korea
| | - Gi-Seong Moon
- Major in IT·Biohealth Convergence, Department of IT·Energy Convergence, Graduate School, Korea National University of Transportation, Chungju, 27469 Republic of Korea
- Major in Biotechnology, Korea National University of Transportation, Jeungpyeong, 27909 Republic of Korea
- 4D Convergence Technology Institute, Korea National University of Transportation, Jeungpyeong, 27909 Republic of Korea
| |
Collapse
|
2
|
Rivero-Pino F, Casquete M, Castro MJ, Redondo del Rio P, Gutierrez E, Mayo-Iscar A, Nocito M, Corell A. Prospective, Randomized, Double-Blind Parallel Group Nutritional Study to Evaluate the Effects of Routine Intake of Fresh vs. Pasteurized Yogurt on the Immune System in Healthy Adults. Nutrients 2024; 16:1969. [PMID: 38931322 PMCID: PMC11206341 DOI: 10.3390/nu16121969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The immune system is affected by the dietary products humans intake. Immune system regulation by nutrition has uses in the clinical context, but it can also benefit healthy populations by delaying or preventing the emergence of immune-mediated chronic illnesses. In this study, the purpose was to describe and compare the modulator effects on the immune system of the routine ingestion of fresh vs. pasteurized yogurt. A unicentral, prospective, randomized, double-blind, parallel group 8-week nutritional study was carried out comparing the ingestion of 125 g of the products in healthy adults three times a day. A complete battery of in vitro tests on the activity of the immune system, processes and phenomena was performed. Exclusive immune-modulatory effects of fresh yogurt with respect to base line were found in terms of increased systemic IgM (primary immune responses), increased synthesis of IFN-gamma upon stimulation (Th1) and increased peripheral T cells (mainly "naive" CD4s). In the three interventions, we observed an increased phagocytic activity and burst test in granulocytes, together with increased secretion of IL-6, IL-1 β and IL-8 (pro-inflammatory) and increased CD16 expression (FcR favoring phagocytosis) in granulocytes. Overall, it is concluded that regardless of bacteria being alive or thermally inactivated, yogurt has common effects on the innate system, but the presence of live bacteria is necessary to achieve a potentiating effect on the specific immune response.
Collapse
Affiliation(s)
- Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain
| | - Mar Casquete
- Departamento de Pediatría, Inmunología, Obstetricia-Ginecología, Nutrición-Bromatología, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Maria José Castro
- Departamento de Enfermería, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Paz Redondo del Rio
- Departamento de Pediatría, Inmunología, Obstetricia-Ginecología, Nutrición-Bromatología, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Eloina Gutierrez
- Departamento de Pediatría, Inmunología, Obstetricia-Ginecología, Nutrición-Bromatología, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Agustín Mayo-Iscar
- Departamento de Estadística e Investigación Operativa & IMUVA, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Mercedes Nocito
- Inmunología, Hospital Clínico de Zaragoza, 50009 Zaragoza, Spain
| | - Alfredo Corell
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain
- Departamento de Pediatría, Inmunología, Obstetricia-Ginecología, Nutrición-Bromatología, Universidad de Valladolid, 47005 Valladolid, Spain
| |
Collapse
|
3
|
Damani JJ, Oh ES, De Souza MJ, Strock NC, Williams NI, Nakatsu CH, Lee H, Weaver C, Rogers CJ. Prune Consumption Attenuates Proinflammatory Cytokine Secretion and Alters Monocyte Activation in Postmenopausal Women: Secondary Outcome Analysis of a 12-Mo Randomized Controlled Trial: The Prune Study. J Nutr 2024; 154:1699-1710. [PMID: 37984741 PMCID: PMC11347809 DOI: 10.1016/j.tjnut.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/03/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Proinflammatory cytokines are implicated in the pathophysiology of postmenopausal bone loss. Clinical studies demonstrate that prunes prevent bone mineral density loss; however, the mechanism underlying this effect is unknown. OBJECTIVE We investigated the effect of prune supplementation on immune, inflammatory, and oxidative stress markers. METHODS A secondary analysis was conducted in the Prune Study, a single-center, parallel-arm, 12-mo randomized controlled trial of postmenopausal women (55-75 y old; n = 235 recruited; n = 183 completed) who were assigned to 1 of 3 groups: "no-prune" control, 50 g prune/d and 100 g prune/d groups. At baseline and after 12 mo of intervention, blood samples were collected to measure serum high-sensitivity C-reactive protein (hs-CRP), serum total antioxidant capacity (TAC), plasma 8-isoprostane, proinflammatory cytokines [interleukin (IL)-1β, IL-6, IL-8, monocyte chemoattractant protein-1, and tumor necrosis factor (TNF)-α] concentrations in plasma and lipopolysaccharide (LPS)-stimulated peripheral blood mononuclear cells (PBMCs) culture supernatants, and the percentage and activation of circulating monocytes, as secondary outcomes. RESULTS Prune supplementation did not alter hs-CRP, TAC, 8-isoprostane, and plasma cytokine concentrations. However, percent change from baseline in circulating activated monocytes was lower in the 100 g prune/d group compared with the control group (mean ± SD, -1.8% ± 4.0% in 100 g prune/d compared with 0.1% ± 2.9% in control; P < 0.01). Furthermore, in LPS-stimulated PBMC supernatants, the percent change from baseline in TNF-α secretion was lower in the 50 g prune/d group compared with the control group (-4.4% ± 43.0% in 50 g prune/d compared with 24.3% ± 70.7% in control; P < 0.01), and the percent change from baseline in IL-1β, IL-6, and IL-8 secretion was lower in the 100 g prune/d group compared with the control group (-8.9% ± 61.6%, -4.3% ± 75.3%, -14.3% ± 60.8% in 100 g prune/d compared with 46.9% ± 107.4%, 16.9% ± 70.6%, 39.8% ± 90.8% in control for IL-1β, IL-6, and IL-8, respectively; all P < 0.05). CONCLUSIONS Dietary supplementation with 50-100 g prunes for 12 mo reduced proinflammatory cytokine secretion from PBMCs and suppressed the circulating levels of activated monocytes in postmenopausal women. This trial was registered at clinicaltrials.gov as NCT02822378.
Collapse
Affiliation(s)
- Janhavi J Damani
- The Intercollege Graduate Degree Program in Integrative and Biomedical Physiology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Ester S Oh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States; Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Mary Jane De Souza
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States
| | - Nicole Ca Strock
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States
| | - Nancy I Williams
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States
| | - Cindy H Nakatsu
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | - Hang Lee
- Biostatistics Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Connie Weaver
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Connie J Rogers
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States; Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, United States; Department of Nutritional Sciences, University of Georgia, Athens, GA, United States.
| |
Collapse
|
4
|
Mitchell M, Suh M, Hooda N, Bylsma LC, Cohen SS. The effect of bovine dairy products and their components on the incidence and natural history of infection: a systematic literature review. Nutr J 2024; 23:26. [PMID: 38413931 PMCID: PMC10898086 DOI: 10.1186/s12937-024-00923-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Dairy products and their components may impact immune function, although the current evidence base has some research gaps. As part of a larger systematic literature review of dairy products/components (including probiotics, dairy proteins, and dairy fats) and immune function, we identified the available epidemiologic research on the impact of dairy products/components on incidence and natural history of infectious diseases. METHODS PubMed and Embase databases were systematically searched through May 2022 to identify eligible studies using pre-defined Population, Intervention, Comparator, Outcomes, and Study design criteria. Herein, we focused on describing the impacts of dairy product/component on infectious disease outcomes, including the effect on leukocyte and cytokine response in humans. Risk of bias assessment was performed using the Academy of Nutrition and Dietetics Quality Criteria Checklist. The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines were followed. RESULTS Among 9,832 studies identified from the larger literature search, 133 relevant publications from 128 studies reported on dairy product/component and infectious disease outcomes. Few studies are available on the impact of non-fermented milk and traditional yogurt on infectious disease. Evidence was identified to suggest milk and yogurt drinks fermented with Lactobacillus strains reduce the risk and burden of common infectious diseases (CIDs), although the findings are mixed and difficult to reconcile due to heterogenous study populations, bacterial strains, and study methods. Few studies are available on the impact of dairy products/components on the natural history of infection, with the available findings indicating probiotics may both improve gastrointestinal symptoms among HIV-infected persons and help eradicate and alleviate the symptoms of Heliobacter (H.) pylori. The available evidence also suggests lactoferrin may reduce the virological burden of COVID-19 and hepatitis C virus. No consistent changes in leukocytes or cytokine production were observed for any type of dairy product or their components, but probiotics appeared to enhance natural killer cell levels/activity and the phagocytic process. CONCLUSIONS Dairy products, particularly those with added probiotics, may represent an easily accessible nutritional intervention to prevent and improve the course of infectious diseases. This review highlights the need for additional research in this potentially impactful area. PROSPERO REGISTRATION CRD42022333780.
Collapse
Affiliation(s)
- Meghan Mitchell
- EpidStrategies, a division of ToxStrategies, LLC, 23501 Cinco Ranch Blvd, Suite B226, Katy, TX, 77494, USA.
| | - Mina Suh
- EpidStrategies, a division of ToxStrategies, LLC, 23501 Cinco Ranch Blvd, Suite B226, Katy, TX, 77494, USA
| | - Naushin Hooda
- EpidStrategies, a division of ToxStrategies, LLC, 23501 Cinco Ranch Blvd, Suite B226, Katy, TX, 77494, USA
| | - Lauren C Bylsma
- EpidStrategies, a division of ToxStrategies, LLC, 23501 Cinco Ranch Blvd, Suite B226, Katy, TX, 77494, USA
| | - Sarah S Cohen
- Independent contractor to ToxStrategies, LLC, Durham, NC, USA
| |
Collapse
|
5
|
Maftei NM, Raileanu CR, Balta AA, Ambrose L, Boev M, Marin DB, Lisa EL. The Potential Impact of Probiotics on Human Health: An Update on Their Health-Promoting Properties. Microorganisms 2024; 12:234. [PMID: 38399637 PMCID: PMC10891645 DOI: 10.3390/microorganisms12020234] [Citation(s) in RCA: 89] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Probiotics, known to be live microorganisms, have been shown to improve or restore the gut microbiota, which in turn has been linked to improved health. It is believed that probiotics are the modern equivalent of a panacea, with claims that they may treat or prevent different diseases both in children and adults (e.g., from colic in babies to cardiovascular disease, respiratory infection, and cancer in adults). Ever since the early 2000s, probiotic-based fermented foods have had a resurgence in popularity, mostly due to claims made regarding their health benefits. Fermented foods have been associated with the prevention of irritable bowel syndrome, lactose intolerance, gastroenteritis, and obesity, but also other conditions such as chronic diarrhea, allergies, dermatitis, and bacterial and viral infections, all of which are closely related to an unhealthy lifestyle. Recent and ongoing developments in microbiome/microbiota science have given us new research directions for probiotics. The new types, mechanisms, and applications studied so far, and those currently under study, have a great potential to change scientific understanding of probiotics' nutritional applications and human health care. The expansion of fields related to the study of the microbiome and the involvement of probiotics in its improvement foreshadow an era of significant changes. An expanding range of candidate probiotic species is emerging that can address newly elucidated data-driven microbial niches and host targets. In the probiotic field, new variants of microbiome-modulating interventions are being developed, including prebiotics, symbiotics, postbiotics, microbial consortia, live biotherapeutic products, and genetically modified organisms, with renewed interest in polyphenols, fibers, and fermented foods to ensure human health. This manuscript aims to analyze recent, emerging, and anticipated trends in probiotics (sources, doses, mechanism of action, diseases for which probiotics are administered, side effects, and risks) and create a vision for the development of related areas of influence in the field.
Collapse
Affiliation(s)
- Nicoleta-Maricica Maftei
- Department of Pharmaceutical Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (N.-M.M.); (E.L.L.)
- Clinic Laboratory Department, Clinical Hospital of Children Hospital “Sf. Ioan”, 800487 Galati, Romania
- Research Centre in the Medical-Pharmaceutical Field, “Dunarea de Jos” University of Galati, 800010 Galati, Romania
| | - Cosmin Raducu Raileanu
- Department of Morphological and Functional Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (C.R.R.); (L.A.)
| | - Alexia Anastasia Balta
- Medical Department Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania;
| | - Lenuta Ambrose
- Department of Morphological and Functional Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (C.R.R.); (L.A.)
| | - Monica Boev
- Department of Pharmaceutical Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (N.-M.M.); (E.L.L.)
- Research Centre in the Medical-Pharmaceutical Field, “Dunarea de Jos” University of Galati, 800010 Galati, Romania
| | - Denisa Batîr Marin
- Department of Pharmaceutical Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (N.-M.M.); (E.L.L.)
- Research Centre in the Medical-Pharmaceutical Field, “Dunarea de Jos” University of Galati, 800010 Galati, Romania
| | - Elena Lacramioara Lisa
- Department of Pharmaceutical Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (N.-M.M.); (E.L.L.)
- Research Centre in the Medical-Pharmaceutical Field, “Dunarea de Jos” University of Galati, 800010 Galati, Romania
| |
Collapse
|
6
|
Van Syoc EP, Damani J, DiMattia Z, Ganda E, Rogers CJ. The Effects of Bifidobacterium Probiotic Supplementation on Blood Glucose: A Systematic Review and Meta-Analysis of Animal Models and Clinical Evidence. Adv Nutr 2024; 15:100137. [PMID: 37923223 PMCID: PMC10831893 DOI: 10.1016/j.advnut.2023.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/21/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
Probiotic supplementation is a potential therapeutic for metabolic diseases, including obesity, metabolic syndrome (MetS), and type 2 diabetes (T2D), but most studies deliver multiple species of bacteria in addition to prebiotics or oral pharmaceuticals. This may contribute to conflicting evidence in existing meta-analyses of probiotics in these populations and warrants a systematic review of the literature to assess the contribution of a single probiotic genus to better understand the contribution of individual probiotics to modulate blood glucose. We conducted a systematic review and meta-analysis of animal studies and human randomized controlled trials (RCTs) to assess the effects of Bifidobacterium (BF) probiotic supplementation on markers of glycemia. In a meta-analysis of 6 RCTs, BF supplementation had no effect on fasting blood glucose {FBG; mean difference [MD] = -1.99 mg/dL [95% confidence interval (CI): -4.84, 0.86], P = 0.13}, and there were no subgroup differences between subjects with elevated FBG concentrations and normoglycemia. However, BF supplementation reduced FBG concentrations in a meta-analysis comprised of studies utilizing animal models of obesity, MetS, or T2D [n = 16; MD = -36.11 mg/dL (CI: -49.04, -23.18), P < 0.0001]. Translational gaps from animal to human trials include paucity of research in female animals, BF supplementation in subjects that were normoglycemic, and lack of methodologic reporting regarding probiotic viability and stability. More research is necessary to assess the effects of BF supplementation in human subjects with elevated FBG concentrations. Overall, there was consistent evidence of the efficacy of BF probiotics to reduce elevated FBG concentrations in animal models but not clinical trials, suggesting that BF alone may have minimal effects on glycemic control, may be more effective when combined with multiple probiotic species, or may be more effective in conditions of hyperglycemia rather than elevated FBG concentrations.
Collapse
Affiliation(s)
- Emily P Van Syoc
- Dual-Title Ph.D Program in Integrative & Biomedical Physiology and Clinical & Translational Science, The Pennsylvania State University, University Park, PA, United States; Department of Animal Science, The Pennsylvania State University, University Park, PA, United States; The One Health Microbiome Center, The Pennsylvania State University, University Park, PA, United States
| | - Janhavi Damani
- The Intercollege Graduate Degree Program in Integrative and Biomedical Physiology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Zachary DiMattia
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Erika Ganda
- Department of Animal Science, The Pennsylvania State University, University Park, PA, United States; The One Health Microbiome Center, The Pennsylvania State University, University Park, PA, United States
| | - Connie J Rogers
- Department of Nutritional Sciences, University of Georgia, Athens, GA, United States.
| |
Collapse
|
7
|
Sharma D, Gajjar D, Seshadri S. Understanding the role of gut microfloral bifidobacterium in cancer and its potential therapeutic applications. MICROBIOME RESEARCH REPORTS 2023; 3:3. [PMID: 38455077 PMCID: PMC10917622 DOI: 10.20517/mrr.2023.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/28/2023] [Accepted: 10/30/2023] [Indexed: 03/09/2024]
Abstract
Gut microbiota research has gained a tremendous amount of attention from the scientific community because of its contribution to gut homeostasis, human health, and various pathophysiological conditions. The early colonizer of the human gut, i.e., bifidobacteria, has emerged as an efficient probiotic in various diseased conditions, including cancer. This review explores the pros and cons of Bifidobacterium in various malignancies and various therapeutic strategies. We have illustrated the controversial role of bifidobacteria participating in various malignancies as well as described the current knowledge regarding its use in anticancer therapies. Ultimately, this article also addresses the need for further extensive research in elucidating the mechanism of how bifidobacteria is involved and is indirectly affecting the tumor microenvironment. Exhaustive and large-scale research is also required to solve the controversial questions regarding the involvement of bifidobacteria in cancer research.
Collapse
Affiliation(s)
| | | | - Sriram Seshadri
- Institute of Science, Nirma University, 382481 Ahmedabad, Gujarat, India
| |
Collapse
|
8
|
Aleman RS, Page R, Cedillos R, Montero-Fernández I, Fuentes JAM, Olson DW, Aryana K. Influences of Yogurt with Functional Ingredients from Various Sources That Help Treat Leaky Gut on Intestinal Barrier Dysfunction in Caco-2 Cells. Pharmaceuticals (Basel) 2023; 16:1511. [PMID: 38004377 PMCID: PMC10675128 DOI: 10.3390/ph16111511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
The impact of yogurts made with starter culture bacteria (L. bulgaricus and S. thermophilus) and supplemented with ingredients (maitake mushrooms, quercetin, L-glutamine, slippery elm bark, licorice root, N-acetyl-D-glucosamine, zinc orotate, and marshmallow root) that can help treat leaky gut were investigated using the Caco-2 cell monolayer as a measure of intestinal barrier dysfunction. Milk from the same source was equally dispersed into nine pails, and the eight ingredients were randomly allocated to the eight pails. The control had no ingredients. The Caco-2 cells were treated with isoflavone genistein (negative control) and growth media (positive control). Inflammation was stimulated using an inflammatory cocktail of cytokines (interferon-γ, tumor necrosis factor-α, and interleukin-1β) and lipopolysaccharide. The yogurt without ingredients (control yogurt) was compared to the yogurt treatments (yogurts with ingredients) that help treat leaky gut. Transepithelial electrical resistance (TEER) and paracellular permeability were measured to evaluate the integrity of the Caco-2 monolayer. Transmission electron microscopy (TEM), immunofluorescence microscopy (IM), and real-time quantitative polymerase chain reaction (RTQPCR) were applied to measure the integrity of tight junction proteins. The yogurts were subjected to gastric and intestinal digestion, and TEER was recorded. Ferrous ion chelating activity, ferric reducing potential, and DPPH radical scavenging were also examined to determine the yogurts' antioxidant capacity. Yogurt with quercetin and marshmallow root improved the antioxidant activity and TEER and had the lowest permeability in fluorescein isothiocyanate (FITC)-dextran and Lucifer yellow flux among the yogurt samples. TEM, IM, and RTQPCR revealed that yogurt enhanced tight junction proteins' localization and gene expression. Intestinal digestion of the yogurt negatively impacted inflammation-induced Caco-2 barrier dysfunction, while yogurt with quercetin, marshmallow root, maitake mushroom, and licorice root had the highest TEER values compared to the control yogurt. Yogurt fortification with quercetin, marshmallow root, maitake mushroom, and licorice root may improve functionality when dealing with intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Ricardo S. Aleman
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70802, USA; (R.S.A.); (R.P.); (R.C.); (D.W.O.)
| | - Ryan Page
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70802, USA; (R.S.A.); (R.P.); (R.C.); (D.W.O.)
| | - Roberto Cedillos
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70802, USA; (R.S.A.); (R.P.); (R.C.); (D.W.O.)
| | - Ismael Montero-Fernández
- Department of Plant Biology, Ecology and Earth Sciencies, Faculty of Science, Universidad de Extremadura, Avda. de Elvas s/n, 06071 Badajoz, Spain;
| | - Jhunior Abraham Marcia Fuentes
- Faculty of Technological Sciences, Universidad Nacional de Agricultura, Road to Dulce Nombre de Culmí, Km 215, Barrio El Espino, Catacamas 16201, Honduras;
| | - Douglas W. Olson
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70802, USA; (R.S.A.); (R.P.); (R.C.); (D.W.O.)
| | - Kayanush Aryana
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70802, USA; (R.S.A.); (R.P.); (R.C.); (D.W.O.)
| |
Collapse
|
9
|
Hamid M, Zahid S. Ameliorative effects of probiotics in AlCl 3-induced mouse model of Alzheimer's disease. Appl Microbiol Biotechnol 2023; 107:5803-5812. [PMID: 37462697 DOI: 10.1007/s00253-023-12686-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 08/20/2023]
Abstract
In recent years, gut microbiome alterations have been linked with complex underlying mechanisms of neurodegenerative disorders including Alzheimer's disease (AD). The gut microbiota modulates gut brain axis by facilitating development of hypothalamic-pituitary-adrenal axis and synthesis of neuromodulators. The study was designed to unravel the effect of combined consumption of probiotics; Lactobacillus rhamnosus GG (LGG®) and Bifidobacterium BB-12 (BB-12®) (1 × 109 CFU) on AlCl3-induced AD mouse model in comparison with potent acetylcholine esterase inhibitor drug for AD, donepezil. Mice were randomly allocated to six different study groups (n = 8). Behavioral tests were conducted to assess effect of AlCl3 (300 mg/kg) and probiotics treatment on cognition and anxiety through Morris Water Maze (MWM), Novel Object Recognition (NOR), Elevated Plus Maze (EPM), and Y-maze. The results indicated that the combined probiotic treatment significantly (p < 0.0001) reduced anxiety-like behavior post AlCl3 exposure. The AlCl3 + LGG® and BB-12®-treated group showed significantly improved spatial (p < 0.0001) and recognition memory (p < 0.0001) in comparison to AlCl3-treated group. The expression status of inflammatory cytokines (TNF-α and IL-1β) was also normalized upon treatment with LGG® and BB-12® post AlCl3 exposure. Our findings indicated that the probiotics LGG® and BB-12® have strong potential to overcome neuroinflammatory imbalance, cognitive deficits and anxiety-like behavior, therefore can be considered as a combination therapy for AD through modulation of gut brain axis. KEY POINTS: • Bifidobacterium BB-12 and Lactobacillus rhamnosus GG were fed to AlCl3-induced Alzheimer's disease mice. • This combination of probiotics had remarkable ameliorating effects on anxiety, neuroinflammation and cognitive deficits. • These effects may suggest that combined consumption of these probiotics instigate potential mitigation of AD associated consequences through gut brain axis modulation.
Collapse
Affiliation(s)
- Maryam Hamid
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Saadia Zahid
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| |
Collapse
|
10
|
Oh L, Ab Rahman S, Dubinsky K, Azanan MS, Ariffin H. Manipulating the Gut Microbiome as a Therapeutic Strategy to Mitigate Late Effects in Childhood Cancer Survivors. Technol Cancer Res Treat 2023; 22:15330338221149799. [PMID: 36624625 PMCID: PMC9834799 DOI: 10.1177/15330338221149799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Recent studies have identified causal links between altered gut microbiome, chronic inflammation, and inflammation-driven conditions such as diabetes and cardiovascular disease. Childhood cancer survivors (CCS) show late effects of therapy in the form of inflammaging-related disorders as well as microbial dysbiosis, supporting a hypothesis that the conditions are interconnected. Given the susceptibility of the gut microbiome to alteration, a number of therapeutic interventions have been investigated for the treatment of inflammatory conditions, though not within the context of cancer survivorship in children and adolescents. Here, we evaluate the potential for these interventions, which include probiotic supplementation, prebiotics/fiber-rich diet, exercise, and fecal microbiota transplantation for prevention and treatment of cancer treatment-related microbial dysbiosis in survivors. We also make recommendations to improve adherence and encourage long-term lifestyle changes for maintenance of healthy gut microbiome in CCS as a potential strategy to mitigate treatment-related late effects.
Collapse
Affiliation(s)
- Lixian Oh
- University of Malaya, Kuala Lumpur, Malaysia
| | | | | | | | - Hany Ariffin
- University of Malaya, Kuala Lumpur, Malaysia,Hany Ariffin, Department of Pediatrics,
University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
11
|
Tarapatzi G, Filidou E, Kandilogiannakis L, Spathakis M, Gaitanidou M, Arvanitidis K, Drygiannakis I, Valatas V, Kotzampassi K, Manolopoulos VG, Kolios G, Vradelis S. The Probiotic Strains Bifidοbacterium lactis, Lactobacillus acidophilus, Lactiplantibacillus plantarum and Saccharomyces boulardii Regulate Wound Healing and Chemokine Responses in Human Intestinal Subepithelial Myofibroblasts. Pharmaceuticals (Basel) 2022; 15:1293. [PMID: 36297405 PMCID: PMC9611312 DOI: 10.3390/ph15101293] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
Bifidobacterium lactis, Lactobacillus acidophilus, Lactiplantibacillus plantarum and Saccharomyces boulardii are common probiotic supplements. Colonic subepithelial myofibroblasts (cSEMFs) are actively involved in mucosal wound healing and inflammation. cSEMFs, isolated from healthy individuals, were stimulated with 102 or 104 cfu/mL of these probiotic strains alone and in combination, and their effect on chemokine and wound healing factor expression was assessed by qRT-PCR, ELISA and Sircol Assay, and on cSEMFs migration, by Wound Healing Assay. These strains remained viable and altered cSEMFs’ inflammatory and wound healing behavior, depending on the strain and concentration. cSEMFs treated with a combination of the four probiotics had a moderate, but statistically significant, increase in the mRNA and/or protein expression of chemokines CXCL1, CXCL2, CXCL4, CXCL8, CXCL10, CCL2 and CCL5, and healing factors, collagen type I and III, fibronectin and tissue factor. In contrast, when each strain was administered alone, different effects were observed, with greater increase or decrease in chemokine and healing factor expression, which was balanced by the mixture. Overall, this study highlights that the use of multiple probiotic strains can potentially alert the gut mucosal immune system and promote wound healing, having a better effect on mucosal immunity than the use of single probiotics.
Collapse
Affiliation(s)
- Gesthimani Tarapatzi
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Eirini Filidou
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Leonidas Kandilogiannakis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Michail Spathakis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Maria Gaitanidou
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Konstantinos Arvanitidis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Ioannis Drygiannakis
- Gastroenterology and Hepatology Research Laboratory, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Vassilis Valatas
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Gastroenterology and Hepatology Research Laboratory, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Katerina Kotzampassi
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Vangelis G. Manolopoulos
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - George Kolios
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Stergios Vradelis
- Second Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
12
|
You S, Ma Y, Yan B, Pei W, Wu Q, Ding C, Huang C. The promotion mechanism of prebiotics for probiotics: A review. Front Nutr 2022; 9:1000517. [PMID: 36276830 PMCID: PMC9581195 DOI: 10.3389/fnut.2022.1000517] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 12/18/2022] Open
Abstract
Prebiotics and probiotics play a positive role in promoting human nutrition and health. Prebiotics are compounds that cannot be digested by the host, but can be used and fermented by probiotics, so as to promote the reproduction and metabolism of intestinal probiotics for the health of body. It has been confirmed that probiotics have clinical or health care functions in preventing or controlling intestinal, respiratory, and urogenital infections, allergic reaction, inflammatory bowel disease, irritable bowel syndrome and other aspects. However, there are few systematic summaries of these types, mechanisms of action and the promotion relationship between prebiotics and probiotic. Therefore, we summarized the various types of prebiotics and probiotics, their individual action mechanisms, and the mechanism of prebiotics promoting probiotics in the intestinal tract. It is hoped this review can provide new ideas for the application of prebiotics and probiotics in the future.
Collapse
Affiliation(s)
- Siyong You
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Yuchen Ma
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Food Science and Technology Center, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Bowen Yan
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Wenhui Pei
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Qiming Wu
- Nutrilite Health Institute, Shanghai, China
- *Correspondence: Qiming Wu
| | - Chao Ding
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Chao Ding
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Caoxing Huang
| |
Collapse
|
13
|
Damani JJ, De Souza MJ, VanEvery HL, Strock NCA, Rogers CJ. The Role of Prunes in Modulating Inflammatory Pathways to Improve Bone Health in Postmenopausal Women. Adv Nutr 2022; 13:1476-1492. [PMID: 34978320 PMCID: PMC9526830 DOI: 10.1093/advances/nmab162] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/31/2021] [Accepted: 12/30/2021] [Indexed: 01/28/2023] Open
Abstract
The prevalence of osteoporosis among women aged 50 y and older is expected to reach 13.6 million by 2030. Alternative nonpharmaceutical agents for osteoporosis, including nutritional interventions, are becoming increasingly popular. Prunes (dried plums; Prunus domestica L.) have been studied as a potential whole-food dietary intervention to mitigate bone loss in preclinical models of osteoporosis and in osteopenic postmenopausal women. Sixteen preclinical studies using in vivo rodent models of osteopenia or osteoporosis have established that dietary supplementation with prunes confers osteoprotective effects both by preventing and reversing bone loss. Increasing evidence from 10 studies suggests that, in addition to antiresorptive effects, prunes exert anti-inflammatory and antioxidant effects. Ten preclinical studies have found that prunes and/or their polyphenol extracts decrease malondialdehyde and NO secretion, increase antioxidant enzyme expression, or suppress NF-κB activation and proinflammatory cytokine production. Two clinical trials have investigated the impact of dried plum consumption (50-100 g/d for 6-12 mo) on bone health in postmenopausal women and demonstrated promising effects on bone mineral density and bone biomarkers. However, less is known about the impact of prune consumption on oxidative stress and inflammatory mediators in humans and their possible role in modulating bone outcomes. In this review, the current state of knowledge on the relation between inflammation and bone health is outlined. Findings from preclinical and clinical studies that have assessed the effect of prunes on oxidative stress, inflammatory mediators, and bone outcomes are summarized, and evidence supporting a potential role of prunes in modulating inflammatory and immune pathways is highlighted. Key future directions to bridge the knowledge gap in the field are proposed.
Collapse
Affiliation(s)
- Janhavi J Damani
- Intercollege Graduate Degree Program in Integrative and Biomedical Physiology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Mary Jane De Souza
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Hannah L VanEvery
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Nicole C A Strock
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Connie J Rogers
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
- Center for Molecular Immunology and Infectious Disease, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
14
|
De Souza MJ, Strock NC, Rogers CJ, Williams NI, Ferruzzi MG, Nakatsu CH, Simpson AM, Weaver C. Rationale and study design of Randomized Controlled Trial of Dietary Supplementation with prune (dried plums) on bone density, geometry, and estimated bone strength in postmenopausal women: The Prune study. Contemp Clin Trials Commun 2022; 28:100941. [PMID: 35669487 PMCID: PMC9163423 DOI: 10.1016/j.conctc.2022.100941] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/24/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
The use of non-pharmacological alternatives to pharmacological interventions, e.g., nutritional therapy, to improve or maintain bone mineral density (BMD) in postmenopausal women has gained traction over the past decade, but limited data exist regarding its efficacy. This paper describes the design of the Prune Study, a randomized controlled trial (RCT) that explored the effectiveness of a 12-month intervention of daily prune consumption on bone density, bone structure and strength estimates, bone turnover, various biomarkers of immune function, inflammation, and cardiovascular health, as well as phenolic and gut microbiota analyses. Postmenopausal women between the ages of 55-75 years were randomized into either control group (no prune consumption; n = 78), 50g prune (50g prune/day; n = 79), or 100g prune (100g prune/day; n = 78). All participants received 1200 mg calcium +800 IU vitamin D3 daily as standard of care. The Prune Study is the largest and most comprehensive investigation of a dose response of prune consumption on bone health, biomarkers of immune function, inflammation, and cardiovascular health, as well as detailed phenolic and gut microbiota analyses in postmenopausal women. 235 women were randomized and 183 women completed the entire study. The findings of this study will help expand our current understanding of clinical implications and mechanisms underlying the resultant health effects of prune as a functional food therapy.
Collapse
Affiliation(s)
- Mary Jane De Souza
- Department of Kinesiology, Pennsylvania State University, University Park, PA, USA
| | - Nicole C.A. Strock
- Department of Kinesiology, Pennsylvania State University, University Park, PA, USA
| | - Connie J. Rogers
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA
| | - Nancy I. Williams
- Department of Kinesiology, Pennsylvania State University, University Park, PA, USA
| | - Mario G. Ferruzzi
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Cindy H. Nakatsu
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | | | | |
Collapse
|
15
|
Lovell AL, Eriksen H, McKeen S, Mullaney J, Young W, Fraser K, Altermann E, Gasser O, Kussmann M, Roy NC, McNabb WC, Wall CR. "Nourish to Flourish": complementary feeding for a healthy infant gut microbiome-a non-randomised pilot feasibility study. Pilot Feasibility Stud 2022; 8:103. [PMID: 35585649 PMCID: PMC9116017 DOI: 10.1186/s40814-022-01059-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/03/2022] [Indexed: 11/10/2022] Open
Abstract
Background The introduction of complementary foods and changes in milk feeding result in modifications to gastrointestinal function. The interplay between indigestible carbohydrates, host physiology, and microbiome, and immune system development are areas of intense research relevant to early and later-life health. Methods This 6-month prospective non-randomised feasibility study was conducted in Auckland, New Zealand (NZ), in January 2018. Forty parents/caregivers and their infants were enrolled, with 30 infants allocated to receive a prebiotic NZ kūmara (flesh and skin; a type of sweet potato) prepared as a freeze-dried powder, and ten infants allocated to receive a commercially available probiotic control known to show relevant immune benefits (109 CFU Bifidobacterium lactis BB-12®). The primary outcome was the study feasibility measures which are reported here. Results Recruitment, participant retention, and data collection met feasibility targets. Some limitations to biological sample collection were encountered, with difficulties in obtaining sufficient plasma sample volumes for the proposed immune parameter analyses. Acceptability of the kūmara powder was met with no reported adverse events. Conclusion This study indicates that recruiting infants before introducing complementary foods is feasible, with acceptable adherence to the food-based intervention. These results will inform the protocol of a full-scale randomised controlled trial (RCT) with adjustments to the collection of biological samples to examine the effect of a prebiotic food on the prevalence of respiratory tract infections during infancy. Trial registration Australia New Zealand Clinical Trials Registry ACTRN12618000157279. Prospectively registered on 02/01/2018. Supplementary Information The online version contains supplementary material available at 10.1186/s40814-022-01059-3.
Collapse
Affiliation(s)
- Amy L Lovell
- Department of Nutrition and Dietetics, The University of Auckland Faculty of Medical and Health Sciences, Private Bag 92019, Auckland, 1142, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Hannah Eriksen
- Department of Nutrition and Dietetics, The University of Auckland Faculty of Medical and Health Sciences, Private Bag 92019, Auckland, 1142, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Starin McKeen
- High-Value Nutrition National Science Challenge, Auckland, New Zealand.,AgResearch Ltd. Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand.,Riddet Institute, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Jane Mullaney
- High-Value Nutrition National Science Challenge, Auckland, New Zealand.,AgResearch Ltd. Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand.,Riddet Institute, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Wayne Young
- High-Value Nutrition National Science Challenge, Auckland, New Zealand.,AgResearch Ltd. Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand.,Riddet Institute, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Karl Fraser
- High-Value Nutrition National Science Challenge, Auckland, New Zealand.,AgResearch Ltd. Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand.,Riddet Institute, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Eric Altermann
- High-Value Nutrition National Science Challenge, Auckland, New Zealand.,AgResearch Ltd. Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand.,Riddet Institute, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Olivier Gasser
- High-Value Nutrition National Science Challenge, Auckland, New Zealand.,Malaghan Institute of Medical Research, PO Box 7060, Newtown, Wellington, 6242, New Zealand
| | | | - Nicole C Roy
- High-Value Nutrition National Science Challenge, Auckland, New Zealand.,University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Warren C McNabb
- High-Value Nutrition National Science Challenge, Auckland, New Zealand.,Riddet Institute, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Clare R Wall
- Department of Nutrition and Dietetics, The University of Auckland Faculty of Medical and Health Sciences, Private Bag 92019, Auckland, 1142, New Zealand. .,High-Value Nutrition National Science Challenge, Auckland, New Zealand.
| |
Collapse
|
16
|
Oh ES, Petersen KS, Kris-Etherton PM, Rogers CJ. Four weeks of spice consumption lowers plasma proinflammatory cytokines and alters the function of monocytes in adults at risk of cardiometabolic disease: secondary outcome analysis in a 3-period, randomized, crossover, controlled feeding trial. Am J Clin Nutr 2022; 115:61-72. [PMID: 34601551 PMCID: PMC8755038 DOI: 10.1093/ajcn/nqab331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/27/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Numerous studies demonstrate acute anti-inflammatory properties of individual spices, but none have examined the effect of longer-term consumption of a spice blend incorporated in a meal. OBJECTIVES We investigated the effect of longer-term spice consumption on inflammatory cytokines and monocyte subsets [classical (CM), intermediate (IM), nonclassical (NCM)] in adults at risk of cardiometabolic disease. METHODS A 3-period, randomized, crossover, controlled feeding trial was conducted. Participants (n = 71 recruited; n = 63 completed) randomly consumed diets differing in terms of the quantity of spices: 0.547 g (low-dose spice diet; LSD), 3.285 g (medium-dose spice diet; MSD), or 6.571 g (high-dose spice diet; HSD) · d-1 · 2100 kcal-1, for 4 wk with a ≥2-wk washout between diets. At baseline and after each diet period, proinflammatory cytokines (IL-1β, IL-6, IL-8, monocyte chemoattractant protein-1, and TNF-α) in plasma and LPS-stimulated peripheral blood mononuclear cell culture supernatants, and the phenotype and function of monocyte subsets, were measured in fasted participants. Postprandial proinflammatory cytokines also were quantified at baseline by consumption of a low-spice-dose test meal, and after each diet period by consumption of a test meal containing a spice dose corresponding to daily spice consumption during the preceding 4-wk diet period. RESULTS Fasting plasma IL-6 was reduced (mean ± SEM: -118.26 ± 50.63 fg/mL; P < 0.05) after MSD compared with baseline. Postprandial plasma IL-1β, IL-8, and TNF-α were lower (mean ± SEM : -9.47 ± 2.70 fg/mL, -0.20 ± 0.05 pg/mL, and -33.28 ± 12.35 fg/mL, respectively) after MSD compared with LSD (main diet effect; P < 0.05). CM adherence was reduced (mean ± SEM: -0.86 ± 0.34; P = 0.034) after HSD compared with LSD. IM migration was reduced after MSD and HSD compared with LSD (mean ± SEM: -0.39 ± 0.09 and -0.56 ± 0.14, respectively; P < 0.05). CONCLUSIONS Four weeks of MSD consumption reduced fasting plasma IL-6 and postprandial plasma IL-1β, IL-8, and TNF-α as well as altering monocyte function.This trial was registered at clinicaltrials.gov as NCT03064932.
Collapse
Affiliation(s)
- Ester S Oh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | | | - Penny M Kris-Etherton
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Connie J Rogers
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
- Center for Molecular Immunology and Infectious Disease, Huck Institutes for the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
17
|
Kadja L, Dib AL, Lakhdara N, Bouaziz A, Espigares E, Gagaoua M. Influence of Three Probiotics Strains, Lactobacillus rhamnosus GG, Bifidobacterium animalis subsp. Lactis BB-12 and Saccharomyces boulardii CNCM I-745 on the Biochemical and Haematological Profiles and Body Weight of Healthy Rabbits. BIOLOGY 2021; 10:biology10111194. [PMID: 34827188 PMCID: PMC8615081 DOI: 10.3390/biology10111194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary Currently, probiotics are used as growth promoters on a large scale to improve the productivity of several animals’ species within the aim of reducing the presence of antibiotic residues in animal products consumed by humans. Several reports evidenced the positive effect of probiotic supplementation on the growth performances and health of rabbits, mainly through the balance of the intestinal microbiota of the host animal. Therefore, certain probiotics, including Lactobacilli, Bifidobacteria, Saccharomyces, can improve the biochemical and haematological profiles, especially in production animals. In this context, this study was performed on rabbits for the economic importance they play as a source of meat proteins in developing countries and their use as experimental models in research and biomedicine. This study then aimed to evaluate the effect of three strains of probiotics: Lactobacillus rhamnosus GG Bifidobacterium animalis subsp. Lactis BB-12 and Saccharomyces boulardii CNCM I-745, on the biochemical and haematological parameters and their influence on the rabbit’s weight of the ITELV2006 strain. The findings evidenced that the probiotic strain affected the biochemical and haematological parameters. Further, the strains showed a positive effect on the weight gain of the rabbits. Abstract This study aimed to investigate the effects of three strains of probiotics, these being Lactobacillus rhamnosus GG, Bifidobacterium animalis subsp. Lactis BB-12 and Saccharomyces boulardii CNCM I-745, on the body weight, animal performances and blood parameters of rabbits (male and female) of the ITELV2006 strain. The supplementation of the feed of the rabbits with the three probiotic strains allowed observing positive effects on most of the biochemical and haematological parameters investigated during a period of 60 days (30 days of supplementation and 30 days without treatment). Further, there was a significant improvement in the body weight of the rabbits at the end of the experiment. The effect of the three probiotics investigated in this trial was found to be related to the sex of the rabbits and to the intake period (duration). Ultimately, these findings raise the possibility of using probiotics to investigate in an in-depth and specific manner based on fixed factors such as the strain, the gender and age of the animals, the main underlying mechanisms and effects, which would allow achieving optimal and adapted health benefits and sustainable production. In the context of animal production, it is worth investigating in a targeted study the effect of the three strains on muscle growth and development and finding evidence of the possible consequences on meat quality traits of the rabbits supplemented with probiotics.
Collapse
Affiliation(s)
- Louiza Kadja
- Gestion Santé et Productions Animales Research Laboratory, Institut des Sciences Vétérinaires El-Khroub, Université Frères Mentouri Constantine 1, Constantine 25000, Algeria; (L.K.); (A.L.D.); (N.L.); (A.B.)
| | - Amira Leila Dib
- Gestion Santé et Productions Animales Research Laboratory, Institut des Sciences Vétérinaires El-Khroub, Université Frères Mentouri Constantine 1, Constantine 25000, Algeria; (L.K.); (A.L.D.); (N.L.); (A.B.)
| | - Nedjoua Lakhdara
- Gestion Santé et Productions Animales Research Laboratory, Institut des Sciences Vétérinaires El-Khroub, Université Frères Mentouri Constantine 1, Constantine 25000, Algeria; (L.K.); (A.L.D.); (N.L.); (A.B.)
| | - Assia Bouaziz
- Gestion Santé et Productions Animales Research Laboratory, Institut des Sciences Vétérinaires El-Khroub, Université Frères Mentouri Constantine 1, Constantine 25000, Algeria; (L.K.); (A.L.D.); (N.L.); (A.B.)
| | - Elena Espigares
- Department of Preventive Medicine and Public Health, Faculty of pharmacy, University of Granada, 18071 Granada, Spain;
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland
- Correspondence: or
| |
Collapse
|
18
|
Silva SF, Rocha RS, Esmerino EA, Pimentel TC, Gomes da Cruz A, Rodrigues Anjos CA. Impact of different modified atmosphere packaging on quality parameters and probiotic survival during storage of Minas Frescal cheese. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Arenas-Padilla M, González-Rascón A, Hernández-Mendoza A, Calderón de la Barca AM, Hernández J, Mata-Haro V. Immunomodulation by Bifidobacterium animalis subsp. lactis Bb12: Integrative Analysis of miRNA Expression and TLR2 Pathway-Related Target Proteins in Swine Monocytes. Probiotics Antimicrob Proteins 2021; 14:510-522. [PMID: 34283392 PMCID: PMC8289881 DOI: 10.1007/s12602-021-09816-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
Bifidobacterium animalis subsp. lactis Bb12 is a widely used probiotic that provides numerous health benefits to its host, many due to its immunomodulatory properties. Although the precise mechanism of modulation is still under investigation, several reports associate the interaction of TLR2 with components of the bacterial cell wall inducing a signaling cascade that culminates with the production of cytokines and co-stimulatory molecules. MicroRNAs (miRNAs) have emerged as important post-transcriptional regulators of immune responses, including those toward probiotics. In this study, we analyzed the miRNA expression profile in swine monocytes exposed to Bb12 by using an anti-TLR2 blocking strategy and Bb12 involvement in the regulation of the TLR2 pathway. As a result, the expression of 40 miRNAs was influenced by the treatments (p < 0.01), and 15 differentially expressed miRNAs with validated miRNA–mRNA interactions with around 26 proteins related to the TLR2 pathway were identified. The miRNAs upregulated in response to Bb12 included miR-15a-5p, miR-16-5p, miR-26a-5p, miR-29b-3p, and miR-30d-5p, and the following showed downregulation: miR-181a-5p, miR-19b-3p, miR-21-5p, miR-23a-5p, and miR-221-3p. The expression of let-7c-5p, let-7f-5p, miR-146b-5p, miR-150-5p, and miR-155-5p was increased by Bb12 only when TLR2 was blocked. The identified miRNA common targets were downstream proteins from bacterial recognition via TLR2, such as MyD88, TRAF6, and MAPK members; transcription factors such as NF-κB and AP-1; and cytokines such as IL-6, IL-10, and TNF-α. TLR2 participation was abrogated by anti-TLR2 antibody and suggests that bacterial recognition is complemented by other receptors since there were still changes in the microtranscriptome.
Collapse
Affiliation(s)
- Marina Arenas-Padilla
- Laboratorio de Microbiología e Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo E. Astiazarán 46, 83304, Hermosillo, Sonora, Mexico
| | - Anna González-Rascón
- Laboratorio de Microbiología e Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo E. Astiazarán 46, 83304, Hermosillo, Sonora, Mexico
| | - Adrián Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo E. Astiazarán 46, 83304, Hermosillo, Sonora, Mexico
| | - Ana María Calderón de la Barca
- Departamento de Nutrición y Metabolismo, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo E. Astiazarán 46, 83304, Hermosillo, Sonora, Mexico
| | - Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo E. Astiazarán 46, 83304, Hermosillo, Sonora, Mexico
| | - Verónica Mata-Haro
- Laboratorio de Microbiología e Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo E. Astiazarán 46, 83304, Hermosillo, Sonora, Mexico.
| |
Collapse
|
20
|
Matrix Effects on the Delivery Efficacy of Bifidobacterium animalis subsp. lactis BB-12 on Fecal Microbiota, Gut Transit Time, and Short-Chain Fatty Acids in Healthy Young Adults. mSphere 2021; 6:e0008421. [PMID: 34232082 PMCID: PMC8386398 DOI: 10.1128/msphere.00084-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Probiotics are consumed in fermented dairy products or as capsules for their putative health benefits. However, little research has been done to evaluate the effects of the delivery matrix on the health benefits of probiotics in humans. To examine the effects of delivering Bifidobacterium animalis subsp. lactis BB-12 (BB-12) (log10 10 ± 0.5 CFU/day) via a yogurt smoothie versus a capsule, we monitored the fecal microbiota, gut transit times (GTTs), and fecal excretion of short-chain fatty acids (SCFAs) in healthy adults. In a randomized, four-period, crossover study performed in a partially blind manner, 36 adults were recruited and randomly assigned to four treatments: control yogurt smoothie (YS), yogurt smoothie with BB-12 added prefermentation (PRE), yogurt smoothie with BB-12 added postfermentation (POST), and capsule containing BB-12 (CAP). Participants’ fecal microbiota was assessed using 16S rRNA sequencing, GTTs via SmartPill, and fecal SCFAs by gas chromatography (GC) before (baseline) and after each intervention. Participants had significantly higher percentage of Streptococcus after consuming YS versus CAP (P = 0.01). Bifidobacterium-specific terminal restriction fragment length polymorphism analysis revealed a significantly higher percentage of B. animalis after consuming PRE and POST compared to baseline, YS, CAP, and final washout (P < 0.0001). The predominant SCFAs were negatively correlated with GTTs. Consumption of BB-12 delivered in a yogurt smoothie or capsule did not significantly alter the composition of the gut microbiota, GTTs, or fecal SCFA concentration of the study cohort. However, daily consumption of BB-12 in yogurt smoothie may result in higher relative abundance of B. animalis in healthy adults. (This trial has been registered at ClinicalTrials.gov under identifier NCT01399996.) IMPORTANCEBifidobacterium animalis subsp. lactis BB-12 is a probiotic strain that has been used worldwide since 1985. It has commonly been delivered in fermented dairy products for perceived benefits associated with gut health and enhanced immune function. In addition to fermented dairy products, many new probiotic-containing alternatives such as probiotic-containing juice, probiotic-containing chocolate, and capsules have been developed. While these products provide more options for people to access probiotics, little research has been done on the effect of delivery matrix (dairy versus nondairy) on their efficacy in humans. In addition, it was unclear how yogurt fermentation may influence the survival of BB-12 in the product or on its performance in vivo. The significance of our study is in simultaneously assessing the effect of BB-12, alone and in different delivery vehicles, on the gut transit time, fecal short-chain fatty acids, and the composition of the gut microbiota of the study cohort.
Collapse
|
21
|
Li T, Yan Q, Wen Y, Liu J, Sun J, Jiang Z. Synbiotic yogurt containing konjac mannan oligosaccharides and Bifidobacterium animalis ssp. lactis BB12 alleviates constipation in mice by modulating the stem cell factor (SCF)/c-Kit pathway and gut microbiota. J Dairy Sci 2021; 104:5239-5255. [PMID: 33663840 DOI: 10.3168/jds.2020-19449] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022]
Abstract
Synbiotic dietary supplements, as an effective means of regulating the gut microbiota, may have a beneficial effect on constipation. This study evaluated the effects of synbiotic yogurt containing konjac mannan oligosaccharides (KMOS) and Bifidobacterium animalis ssp. lactis BB12 (BB12) on constipated Kunming mice (the model group). Following administration of yogurt containing 2.0% KMOS and BB12 (YBK2.0), black fecal weight and number and gastrointestinal transit rate increased by 97.5, 106.3, and 55.7%, respectively, compared with the model group. Serum levels of excitability neurotransmitters (motilin, substance P, and acetylcholine) in the YBK2.0 group were increased by 139.7, 120.4, and 91.8%, respectively, and serum levels of inhibitory neurotransmitters (vasoactive intestinal peptide, nitric oxide, and acetylcholine) were decreased. Moreover, synbiotic yogurt supplementation significantly downregulated the expression of vasoactive intestinal peptide receptor 1 (VIPR1) and upregulated the expression of serotonin receptor 4 (5-HT4) in the colon, and enhanced the expression of the stem cell factor (SCF)/c-Kit pathway. Additionally, YBK2.0 treatment significantly regulated the community composition and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of gut microbiota, which were positively correlated with physiological parameters of constipation. Thus, supplementation with synbiotic yogurt composed of KMOS and BB12 could facilitate fecal excretion by regulating related pathways and the gut microbiota. These findings demonstrated that the synbiotic yogurt can be considered a functional food for alleviating constipation.
Collapse
Affiliation(s)
- Tao Li
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Qiaojuan Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Yongping Wen
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Inner Mongolia Meng Niu Dairy Industry (Group) Co. Ltd., Hohhot, Inner Mongolia, 011500, China
| | - Jun Liu
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jian Sun
- Inner Mongolia Meng Niu Dairy Industry (Group) Co. Ltd., Hohhot, Inner Mongolia, 011500, China
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
22
|
Kong XJ, Wan G, Tian R, Liu S, Liu K, Clairmont C, Lin X, Zhang X, Sherman H, Zhu J, Wang Y, Fong M, Li A, Wang BK, Wang J, Liu J, Yu Z, Shen C, Cui X, Cao H, Du T, Cao X. The Effects of Probiotic Supplementation on Anthropometric Growth and Gut Microbiota Composition in Patients With Prader-Willi Syndrome: A Randomized Double-Blinded Placebo-Controlled Trial. Front Nutr 2021; 8:587974. [PMID: 33681271 PMCID: PMC7933553 DOI: 10.3389/fnut.2021.587974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/02/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Prader-Willi Syndrome (PWS) is a rare genetic disorder associated with developmental delay, obesity, and neuropsychiatric comorbidities. Bifidobacterium animalis subsp. lactis has demonstrated anti-obesity and anti-inflammatory effects in previous studies. Aim: To evaluate the effects of Bifidobacterium animalis subsp. lactis probiotics supplementation on anthropometric growth, behavioral symptoms, and gut microbiome composition in patients with PWS. Methods: Ethical Approval was issued by the Internal Review Board (IRB) of the Second Affiliated Hospital of Kunming Medical University (Review-YJ-2016-06). We conducted a 12-week, randomized, double-blind, placebo-controlled trial in 68 patients with Prader-Willi syndrome aged 11 months-16 years (mean = 4.2 years old) who were randomly assigned to receive daily B. lactis-11 probiotics (6 × 1010 CFUs) or a placebo sachet. Weight, height, ASQ-3, ABC, SRS-2, and CGI-I were compared between the two groups at baseline and at 6 and 12 weeks into treatment. Gut microbiome data were analyzed with the QIIME 2 software package, and functional gene analysis was conducted with PICRUSt-2. Results: We found a significant increase in height (mean difference = 2.68 cm, P < 0.05) and improvement in CGI-I (P < 0.05) in the probiotics group compared to the placebo group. No significant change in weight or psychological measures were observed. Probiotic treatment altered the microbiome composition to favor weight loss and gut health and increased the abundance of antioxidant production-related genes. Conclusions: The findings suggest a novel therapeutic potential for Bifidobacterium animalis subsp. lactis probiotics in Prader-Willi syndrome patients, although further investigation is warranted.
Collapse
Affiliation(s)
- Xue-Jun Kong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Medicine and Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Guobin Wan
- Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Ruiyi Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Siyu Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Kevin Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Cullen Clairmont
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | | | | | - Hannah Sherman
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Junli Zhu
- Yale University, New Haven, CT, United States
| | - Yelan Wang
- Bentley University, Waltham, MA, United States
| | - Michelle Fong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Alice Li
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | | | - Jinghan Wang
- New York University, New York, NY, United States
| | - Jun Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Zhehao Yu
- Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chen Shen
- Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xianghua Cui
- Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hanyu Cao
- Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ting Du
- Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xia Cao
- Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
23
|
Oh ES, Petersen KS, Kris-Etherton PM, Rogers CJ. Spices in a High-Saturated-Fat, High-Carbohydrate Meal Reduce Postprandial Proinflammatory Cytokine Secretion in Men with Overweight or Obesity: A 3-Period, Crossover, Randomized Controlled Trial. J Nutr 2020; 150:1600-1609. [PMID: 32211803 PMCID: PMC7269750 DOI: 10.1093/jn/nxaa063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/25/2019] [Accepted: 02/24/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Postprandial inflammation that occurs concurrently with hyperglycemia and hyperlipidemia after ingestion of a high-saturated-fat, high-carbohydrate meal (HFCM) is a risk factor for cardiovascular disease (CVD). Numerous preclinical and clinical studies demonstrate anti-inflammatory effects of individual spices. However, the effect of consumption of a spice blend on inflammatory mediators has not been examined in a randomized controlled trial. OBJECTIVES The objective of this study was to investigate the postprandial effect of a blend of spices in a HFCM on inflammatory cytokine responses. METHODS Nonsmoking men (40-65 y old) with overweight/obesity (25 ≤ BMI ≤ 35 kg/m2), elevated waist circumference (≥ 94 cm), and ≥ 1 CVD risk factor were recruited for a 3-period crossover study ( n = 12). In random order, participants consumed the following: a HFCM (∼1000 kcal, 33% kcal from saturated fat and 36% kcal from carbohydrate), a HFCM containing 2 g spice blend, or an HFCM containing 6 g spice blend. The spice blend consisted of basil, bay leaf, black pepper, cinnamon, coriander, cumin, ginger, oregano, parsley, red pepper, rosemary, thyme, and turmeric. Blood was collected before, and hourly for 4 h after the HFCM. Peripheral blood mononuclear cells (PBMCs) were isolated, and the percentage of CD14 +/Human Leukocyte Antigen-DR isotype + (HLA-DR +) monocytes and proinflammatory cytokine concentrations in plasma and LPS-stimulated PBMCs were quantified as secondary outcomes. RESULTS There was a significant spice-by-time interaction on IL-1β (P < 0.001), IL-8 (P = 0.020), and TNF-α (P = 0.009) secretion from LPS-stimulated PBMCs. IL-1β secretion from LPS-stimulated PBMCs was significantly reduced (1314%) at 240 min after HFCM consumption containing 6 g, but not 2 g, of spice blend compared with 0 g spice blend. CONCLUSIONS A HFCM containing 6 g spice blend attenuated HFCM-induced postprandial IL-1β secretion in men with overweight/obesity.This trial was registered at clinicaltrials.gov as NCT03064958.
Collapse
Affiliation(s)
- Ester S Oh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Kristina S Petersen
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Penny M Kris-Etherton
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Connie J Rogers
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
- Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
24
|
Bozkurt HS, Kara B. A new treatment for ulcerative colitis: Intracolonic Bifidobacterium and xyloglucan application. EUR J INFLAMM 2020; 18:205873922094262. [DOI: 10.1177/2058739220942626] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025] Open
Abstract
Ulcerative colitis (UC) pathogenesis includes the altered gut microbiota, environmental factors, and human immune and genetic predisposition. Recently, its association with reduced bifidobacteria quantity in the microbiota is reported. Xyloglucan, a plant-based prebiotic oligosaccharide, causes increase in bifidobacteria quantity. In this article, we share the results of our UC cases treated by intracolonic single-dose administration of Bifidobacterium animalis subsp. lactis and xyloglucan combination. Intracolonic single-dose administration of 200 billion colony-forming units (CFUs) of B. animalis subsp. lactis and 4 g of xyloglucan combination was administrated to 10 severe UC patients, who were either unresponsive or had inadequate response to treatment. All patients continued treatment after the procedure. Treatment responses were evaluated by colonoscopic, laboratory, and clinical examination after 6 weeks. Intracolonic single-dose administration of B. animalis subsp. lactis and xyloglucan was found effective in the mucosal healing and resolution of colonic symptoms in UC patients. Intracolonic administration of B. animalis subsp. lactis and xyloglucan in UC is a new single-strain and strain-specific prebiotic combination method. It is easy to apply and has no observable side effect. Its effectiveness on mucosal healing could be attributed to the enhancement of non-stimulatory status and biodiversity in colonic mucosa. Nonetheless, it is still necessary to develop diagnostic strategies to determine the patients to whom this method would be the most applicable.
Collapse
Affiliation(s)
- Huseyin Sancar Bozkurt
- Clinic of Gastroenterology, Internal Medicine Department, Faculty of Medicine, Maltepe University, Istanbul, Turkey
| | - Banu Kara
- Clinic of Gastroenterology, Adana City Research and Education Hospital, University of Health Sciences, Adana, Turkey
| |
Collapse
|
25
|
Chowdhury AH, Cámara M, Verma C, Eremin O, Kulkarni AD, Lobo DN. Modulation of T Regulatory and Dendritic Cell Phenotypes Following Ingestion of Bifidobacterium longum, AHCC ® and Azithromycin in Healthy Individuals. Nutrients 2019; 11:nu11102470. [PMID: 31618905 PMCID: PMC6835407 DOI: 10.3390/nu11102470] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
The probiotic Bifidus BB536 (BB536), which contains Bifidobacterium longum, has been shown to have enhanced probiotic effects when given together with a standardized extract of cultured Lentinula edodes mycelia (AHCC®, Amino Up Co. Ltd., Sapporo, Japan). BB536 and AHCC® may modulate T cell and dendritic cell (DC) phenotypes, and cytokine profiles to favour anti-inflammatory responses following antibiotic ingestion. We tested the hypothesis that orally administered BB536 and/or AHCC®, results in modulation of immune effector cells with polarisation towards anti-inflammatory responses following antibiotic usage. Forty healthy male volunteers divided into 4 equal groups were randomised to receive either placebo, BB536, AHCC® or a combination for 12 days in a double-blind manner. After 7 days volunteers also received 250 mg azithromycin for 5 days. Cytokine profiles from purified CD3+ T cells stimulated with PDB-ionomycin were assessed. CD4+ CD25+ forkhead box P3 (Foxp3) expression and peripheral blood DC subsets were assessed prior to treatment and subsequently at 7 and 13 days. There was no difference in cytokine secretion from stimulated CD3+ T cells between treatment groups. Compared with baseline, Foxp3 expression (0.45 ± 0.1 vs. 1.3 ± 0.4; p = 0.002) and interferon-gamma/interleukin-4 (IFN-γ/IL-4) ratios were increased post-treatment in volunteers receiving BB536 (p = 0.031), although differences between groups were not significant. For volunteers receiving combination BB536 and AHCC®, there was an increase in myeloid dendritic cells (mDC) compared with plasmacytoid DC (pDC) counts (80% vs. 61%; p = 0.006) at post treatment time points. mDC2 phenotypes were more prevalent, compared with baseline, following combination treatment (0.16% vs. 0.05%; p = 0.002). Oral intake of AHCC® and BB536 may modulate T regulatory and DC phenotypes to favour anti-inflammatory responses following antibiotic usage.
Collapse
Affiliation(s)
- Abeed H Chowdhury
- Gastrointestinal Surgery, Nottingham Digestive Diseases Centre, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| | - Miguel Cámara
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Chandan Verma
- Gastrointestinal Surgery, Nottingham Digestive Diseases Centre, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| | - Oleg Eremin
- Gastrointestinal Surgery, Nottingham Digestive Diseases Centre, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| | - Anil D Kulkarni
- Department of Surgery, The University of Texas Health Science Center and McGovern Medical School, 6431 Fannin Street, MSB 4022-B, Houston, TX 77030, USA.
| | - Dileep N Lobo
- Gastrointestinal Surgery, Nottingham Digestive Diseases Centre, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
26
|
Associations of Probiotic Fermented Milk (PFM) and Yogurt Consumption with Bifidobacterium and Lactobacillus Components of the Gut Microbiota in Healthy Adults. Nutrients 2019; 11:nu11030651. [PMID: 30889821 PMCID: PMC6470543 DOI: 10.3390/nu11030651] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023] Open
Abstract
The current study investigates whether probiotic fermented milk (PFM) and yogurt consumption (YC) are related to both the ingested bacteria taxa and the overall gut microbiota (GM) composition in healthy adults. PFM and YC habits were analyzed in 260 subjects (51% male) by specific questionnaires, and the following groups were considered: (1) PFM groups: nonconsumers (PFM-NC, n = 175) and consumers (PFM, n = 85), divided as follows: Bifidobacterium-containing PFM (Bif-PFM; n = 33), Lactobacillus-containing PFM (Lb-PFM; n = 14), and mixed Bifidobacterium and Lactobacillus-containing PFM (Mixed-PFM; n = 38); (2) PFM-NC were classified as: yogurt nonconsumers (Y-NC; n = 40) and yogurt consumers (n = 135). GM was analyzed through 16S rRNA sequencing. PFM consumers showed higher Bifidobacteria taxa levels compared to NC, from phylum through to species. Specifically, Bif-PFM consumption was related to higher B. animalis levels (p < 0.001), whereas Lb-PFM consumption was associated to higher levels of Bifidobacterium (p < 0.045) and B. longum (p = 0.011). YC was related to higher levels of the yogurt starter Streptococcus thermophilus (p < 0.001). Lactobacilli and the overall GM were not related either to YC or PFM consumption. According to these results, healthy adults might benefit from PFM intake by increasing Bifidobacterium levels.
Collapse
|
27
|
Yan S, Yang B, Stanton C, Ross RP, Zhao J, Zhang H, Chen W. Ropy exopolysaccharide-producing Bifidobacterium longum
YS108R as a starter culture for fermented milk. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shuang Yan
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi 214122 China
- School of Food Science and Technology; Jiangnan University; Wuxi 214122 China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi 214122 China
- School of Food Science and Technology; Jiangnan University; Wuxi 214122 China
- International Joint Research Center for Probiotics & Gut Health; Jiangnan University; Wuxi 214122 China
| | - Catherine Stanton
- International Joint Research Center for Probiotics & Gut Health; Jiangnan University; Wuxi 214122 China
- Teagasc Food Research Centre; Moorepark Fermoy Cork R93 XE12 Ireland
- APC Microbiome Ireland; University College Cork; Cork T12 K8AF Ireland
| | - Reynolds Paul Ross
- International Joint Research Center for Probiotics & Gut Health; Jiangnan University; Wuxi 214122 China
- APC Microbiome Ireland; University College Cork; Cork T12 K8AF Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi 214122 China
- School of Food Science and Technology; Jiangnan University; Wuxi 214122 China
- International Joint Research Center for Probiotics & Gut Health; Jiangnan University; Wuxi 214122 China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi 214122 China
- International Joint Research Center for Probiotics & Gut Health; Jiangnan University; Wuxi 214122 China
- Beijing Innovation Centre of Food Nutrition and Human Health; Beijing Technology & Business University; Beijing 100048 China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi 214122 China
- School of Food Science and Technology; Jiangnan University; Wuxi 214122 China
- International Joint Research Center for Probiotics & Gut Health; Jiangnan University; Wuxi 214122 China
- Beijing Innovation Centre of Food Nutrition and Human Health; Beijing Technology & Business University; Beijing 100048 China
| |
Collapse
|
28
|
Lactobacilli can attenuate inflammation in mouse macrophages exposed to polyethylene particles in vitro. BMC Res Notes 2018; 11:567. [PMID: 30089517 PMCID: PMC6083625 DOI: 10.1186/s13104-018-3676-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/03/2018] [Indexed: 11/10/2022] Open
Abstract
Objective It is well established that polyethylene (PE) wear particles induce macrophage production of cytokines and mediators associated with the pathogenesis of inflammatory osteolysis. The objective of this study was to examine the potential of three Lactobacillus strains to attenuate the TNF-α cytokine response of macrophages exposed to Ceridust 3615 PE particles. An in vitro experimental model using the RAW 246.7 macrophage cell line and PE particles was utilized. Results Lactobacillus strains were found to modulate the cytokines in a strain and dose specific manner. Only the Lactobacillus acidophilus strain that was tested was able to attenuate PE particle-induced TNF-α production by RAW 246.7 macrophages. This effect was independent of IL-10 cytokine levels since all three strains of lactobacilli yielded comparable levels of IL-10. It was concluded that some, but not all, Lactobacillus strains may be useful in reducing the risk of inflammatory osteolysis and that further studies in appropriate in vivo models are warranted. Furthermore, this in vitro model can be used to evaluate the inflammatory potential of new materials being tested for use as joint implants.
Collapse
|
29
|
Food pyramid for subjects with chronic pain: foods and dietary constituents as anti-inflammatory and antioxidant agents. Nutr Res Rev 2018; 31:131-151. [PMID: 29679994 DOI: 10.1017/s0954422417000270] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Emerging literature suggests that diet constituents may play a modulatory role in chronic pain (CP) through management of inflammation/oxidative stress, resulting in attenuation of pain. We performed a narrative review to evaluate the existing evidence regarding the optimum diet for the management of CP, and we built a food pyramid on this topic. The present review also describes the activities of various natural compounds contained in foods (i.e. phenolic compounds in extra-virgin olive oil (EVO)) listed on our pyramid, which have comparable effects to drug management therapy. This review included 172 eligible studies. The pyramid shows that carbohydrates with low glycaemic index should be consumed every day (three portions), together with fruits and vegetables (five portions), yogurt (125 ml), red wine (125 ml) and EVO; weekly: legumes and fish (four portions); white meat, eggs and fresh cheese (two portions); red or processed meats (once per week); sweets can be consumed occasionally. The food amounts are estimates based on nutritional and practical considerations. At the top of the pyramid there is a pennant: it means that CP subjects may need a specific customised supplementation (vitamin B12, vitamin D, n-3 fatty acids, fibre). The food pyramid proposal will serve to guide dietary intake with to the intent of alleviating pain in CP patients. Moreover, a targeted diet can also help to solve problems related to the drugs used to combat CP, i.e. constipation. However, this paper would be an early hypothetical proposal due to the limitations of the studies.
Collapse
|
30
|
Ruiz L, Delgado S, Ruas-Madiedo P, Sánchez B, Margolles A. Bifidobacteria and Their Molecular Communication with the Immune System. Front Microbiol 2017; 8:2345. [PMID: 29255450 PMCID: PMC5722804 DOI: 10.3389/fmicb.2017.02345] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/15/2017] [Indexed: 12/16/2022] Open
Abstract
Bifidobacterium represents a genus within the phylum Actinobacteria which is one of the major phyla in the healthy intestinal tract of humans. Bifidobacterium is one of the most abundant genera in adults, but its predominance is even more pronounced in infants, especially during lactation, when they can constitute the majority of the total bacterial population. They are one of the pioneering colonizers of the early gut microbiota, and they are known to play important roles in the metabolism of dietary components, otherwise indigestible in the upper parts of the intestine, and in the maturation of the immune system. Bifidobacteria have been shown to interact with human immune cells and to modulate specific pathways, involving innate and adaptive immune processes. In this mini-review, we provide an overview of the current knowledge on the immunomodulatory properties of bifidobacteria and the mechanisms and molecular players underlying these processes, focusing on the corresponding implications for human health. We deal with in vitro models suitable for studying strain-specific immunomodulatory activities. These include peripheral blood mononuclear cells and T cell-mediated immune responses, both effector and regulatory cell responses, as well as the modulation of the phenotype of dendritic cells, among others. Furthermore, preclinical studies, mainly germ-free, gnotobiotic, and conventional murine models, and human clinical trials, are also discussed. Finally, we highlight evidence supporting the immunomodulatory effects of bifidobacterial molecules (proteins and peptides, exopolysaccharides, metabolites, and DNA), as well as the role of bifidobacterial metabolism in maintaining immune homeostasis through cross-feeding mechanisms.
Collapse
Affiliation(s)
- Lorena Ruiz
- Dairy Research Institute, Spanish National Research Council (Instituto de Productos Lácteos de Asturias - CSIC), Villaviciosa, Spain
| | - Susana Delgado
- Dairy Research Institute, Spanish National Research Council (Instituto de Productos Lácteos de Asturias - CSIC), Villaviciosa, Spain
| | - Patricia Ruas-Madiedo
- Dairy Research Institute, Spanish National Research Council (Instituto de Productos Lácteos de Asturias - CSIC), Villaviciosa, Spain
| | - Borja Sánchez
- Dairy Research Institute, Spanish National Research Council (Instituto de Productos Lácteos de Asturias - CSIC), Villaviciosa, Spain
| | - Abelardo Margolles
- Dairy Research Institute, Spanish National Research Council (Instituto de Productos Lácteos de Asturias - CSIC), Villaviciosa, Spain
| |
Collapse
|
31
|
Lee Y, Ba Z, Roberts RF, Rogers CJ, Fleming JA, Meng H, Furumoto EJ, Kris-Etherton PM. Effects of Bifidobacterium animalis subsp. lactis BB-12 ® on the lipid/lipoprotein profile and short chain fatty acids in healthy young adults: a randomized controlled trial. Nutr J 2017; 16:39. [PMID: 28662676 PMCID: PMC5492721 DOI: 10.1186/s12937-017-0261-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/20/2017] [Indexed: 12/31/2022] Open
Abstract
Background Some probiotics have hypocholesterolemic effects in animal studies, which are mediated, in part, by increases in fecal short chain fatty acids (SCFAs). Clinical trials of probiotics on lipids/lipoproteins are inconsistent. Objective We examined the effects of Bifidobacterium animalis subsp. lactis BB-12® (BB-12®) (3.16 × 109 CFUs/day) on lipids and lipoproteins and fecal excretion of SCFAs in healthy adults. Methods In a randomized, partially blinded, 4-period, crossover study, 30 adults (11 men, 19 women) aged 18–40 years were randomly assigned to: 1) yogurt smoothie with no BB-12® (YS), 2) yogurt smoothie with BB-12® added pre-fermentation (PRE), 3) yogurt smoothie with BB-12® added post-fermentation (POST), 4) BB-12® containing capsule (CAP). We measured serum lipids/lipoproteins, glucose, insulin, C-reactive protein (CRP), and fecal SCFAs at baseline and after each treatment period. Results Total cholesterol (TC), LDL cholesterol (LDL-C), HDL cholesterol (HDL-C), and triglycerides (TGs) did not differ after the PRE, POST, and CAP periods versus the YS or between treatments. Compared to baseline, fecal acetate was significantly increased after the YS (Δ = 211.89 ± 75.87 μg/g, P = 0.007) and PRE (Δ = 204.98 ± 75.70 μg/g, P = 0.009) periods. The percent increase in fecal acetate was significantly greater after the YS versus the POST period (52.2 ± 13.2% vs. 24.5 ± 13.2%, P = 0.023). Fecal total SCFAs, propionate and butyrate did not differ between treatment periods. Fecal total SCFAs were negatively associated with TC (r = -0.22, P = 0.01), LDL-C (r = -0.24, P = 0.004), age (r = -0.33, P < 0.001), and waist circumference (r = -0.25, P = 0.003). Conclusions BB-12® supplementation did not improve lipids, lipoproteins and total and individual fecal SCFAs. Fecal SCFAs were negatively associated with TC, LDL-C, age, and waist circumference. Trial registration This trial was registered at clinicaltrials.gov as NCT01399996.
Collapse
Affiliation(s)
- Yujin Lee
- Department of Nutritional Sciences, Pennsylvania State University, 110 Chandlee Laboratory, University Park, PA, 16802, USA
| | - Zhaoyong Ba
- Department of Food Science, Pennsylvania State University, 206 Rodney A. Erickson Food Science Building, University Park, PA, 16802, USA
| | - Robert F Roberts
- Department of Food Science, Pennsylvania State University, 206 Rodney A. Erickson Food Science Building, University Park, PA, 16802, USA
| | - Connie J Rogers
- Department of Nutritional Sciences, Pennsylvania State University, 110 Chandlee Laboratory, University Park, PA, 16802, USA
| | - Jennifer A Fleming
- Department of Nutritional Sciences, Pennsylvania State University, 110 Chandlee Laboratory, University Park, PA, 16802, USA
| | - Huicui Meng
- Department of Nutritional Sciences, Pennsylvania State University, 110 Chandlee Laboratory, University Park, PA, 16802, USA
| | - Emily J Furumoto
- Department of Food Science, Pennsylvania State University, 206 Rodney A. Erickson Food Science Building, University Park, PA, 16802, USA
| | - Penny M Kris-Etherton
- Department of Nutritional Sciences, Pennsylvania State University, 110 Chandlee Laboratory, University Park, PA, 16802, USA.
| |
Collapse
|
32
|
Wen L, Duffy A. Factors Influencing the Gut Microbiota, Inflammation, and Type 2 Diabetes. J Nutr 2017; 147:1468S-1475S. [PMID: 28615382 DOI: 10.3945/jn.116.240754] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/12/2016] [Accepted: 01/11/2017] [Indexed: 12/17/2022] Open
Abstract
The gut microbiota is a complex community of bacteria residing in the intestine. Animal models have demonstrated that several factors contribute to and can significantly alter the composition of the gut microbiota, including genetics; the mode of delivery at birth; the method of infant feeding; the use of medications, especially antibiotics; and the diet. There may exist a gut microbiota signature that promotes intestinal inflammation and subsequent systemic low-grade inflammation, which in turn promotes the development of type 2 diabetes. There are preliminary studies that suggest that the consumption of probiotic bacteria such as those found in yogurt and other fermented milk products can beneficially alter the composition of the gut microbiome, which in turn changes the host metabolism. Obesity, insulin resistance, fatty liver disease, and low-grade peripheral inflammation are more prevalent in patients with low α diversity in the gut microbiome than they are in patients with high α diversity. Fermented milk products, such as yogurt, deliver a large number of lactic acid bacteria to the gastrointestinal tract. They may modify the intestinal environment, including inhibiting lipopolysaccharide production and increasing the tight junctions of gut epithelia cells.
Collapse
Affiliation(s)
- Li Wen
- Section of Endocrinology and
| | - Andrew Duffy
- Department of Surgery, Yale University School of Medicine, New Haven, CT
| |
Collapse
|