1
|
Despite similar clinical features metabolomics reveals distinct signatures in insulin resistant and progressively obese minipigs. J Physiol Biochem 2022. [DOI: 10.1007/s13105-022-00940-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
2
|
Muroya S. An insight into farm animal skeletal muscle metabolism based on a metabolomics approach. Meat Sci 2022; 195:108995. [DOI: 10.1016/j.meatsci.2022.108995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 01/10/2023]
|
3
|
Bae H, Lam K, Jang C. Metabolic flux between organs measured by arteriovenous metabolite gradients. Exp Mol Med 2022; 54:1354-1366. [PMID: 36075951 PMCID: PMC9534916 DOI: 10.1038/s12276-022-00803-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/15/2022] [Accepted: 03/04/2022] [Indexed: 12/15/2022] Open
Abstract
Mammalian organs convert dietary nutrients into circulating metabolites and share them to maintain whole-body metabolic homeostasis. While the concentrations of circulating metabolites have been frequently measured in a variety of pathophysiological conditions, the exchange flux of circulating metabolites between organs is not easily measurable due to technical difficulties. Isotope tracing is useful for measuring such fluxes for a metabolite of interest, but the shuffling of isotopic atoms between metabolites requires mathematical modeling. Arteriovenous metabolite gradient measurements can complement isotope tracing to infer organ-specific net fluxes of many metabolites simultaneously. Here, we review the historical development of arteriovenous measurements and discuss their advantages and limitations with key example studies that have revealed metabolite exchange flux between organs in diverse pathophysiological contexts.
Collapse
Affiliation(s)
- Hosung Bae
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Katie Lam
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
4
|
Mohamed AB, Rémond D, Gual-Grau A, Bernalier-Donnadille A, Capel F, Michalski MC, Laugerette F, Cohade B, Hafnaoui N, Béchet D, Coudy-Gandilhon C, Gueugneau M, Salles J, Migné C, Dardevet D, David J, Polakof S, Savary-Auzeloux I. A Mix of Dietary Fibres Changes Interorgan Nutrients Exchanges and Muscle-Adipose Energy Handling in Overfed Mini-Pigs. Nutrients 2021; 13:nu13124202. [PMID: 34959754 PMCID: PMC8704711 DOI: 10.3390/nu13124202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
This study evaluates the capacity of a bread enriched with fermentable dietary fibres to modulate the metabolism and nutrients handling between tissues, gut and peripheral, in a context of overfeeding. Net fluxes of glucose, lactate, urea, short chain fatty acids (SCFA), and amino acids were recorded in control and overfed female mini-pigs supplemented or not with fibre-enriched bread. SCFA in fecal water and gene expressions, but not protein levels or metabolic fluxes, were measured in muscle, adipose tissue, and intestine. Fibre supplementation increased the potential for fatty acid oxidation and mitochondrial activity in muscle (acox, ucp2, sdha and cpt1-m, p < 0.05) as well as main regulatory transcription factors of metabolic activity such as pparα, pgc-1α and nrf2. All these features were associated with a reduced muscle fibre cross sectional area, resembling to controls (i.e., lean phenotype). SCFA may be direct inducers of these cross-talk alterations, as their feces content (+52%, p = 0.05) was increased in fibre-supplemented mini-pigs. The SCFA effects could be mediated at the gut level by an increased production of incretins (increased gcg mRNA, p < 0.05) and an up-regulation of SCFA receptors (increased gpr41 mRNA, p < 0.01). Hence, consumption of supplemented bread with fermentable fibres can be an appropriate strategy to activate muscle energy catabolism and limit the establishment of an obese phenotype.
Collapse
Affiliation(s)
- Ahmed Ben Mohamed
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Didier Rémond
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Andreu Gual-Grau
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Annick Bernalier-Donnadille
- Unité de Microbiologie Environnement Digestif et Santé, Unité Mixte de Recherches 0454, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France;
| | - Frédéric Capel
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Marie-Caroline Michalski
- CarMeN Laboratory, Unité Mixte de Recherches 1397, INRAE/Institut National de la Santé et de la Recherche Médicale (Inserm), Université Claude Bernard Lyon 1, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 69310 Pierre-Bénite, France; (M.-C.M.); (F.L.)
| | - Fabienne Laugerette
- CarMeN Laboratory, Unité Mixte de Recherches 1397, INRAE/Institut National de la Santé et de la Recherche Médicale (Inserm), Université Claude Bernard Lyon 1, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 69310 Pierre-Bénite, France; (M.-C.M.); (F.L.)
| | - Benoit Cohade
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Noureddine Hafnaoui
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Daniel Béchet
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Cécile Coudy-Gandilhon
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Marine Gueugneau
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Jerome Salles
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Carole Migné
- MetaboHUB Clermont, Plateforme d’Exploration du Métabolisme, Unité de Nutrition Humaine (UNH), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université Clermont Auvergne, 63000 Clermont-Ferrand, France;
| | - Dominique Dardevet
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Jérémie David
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Sergio Polakof
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Isabelle Savary-Auzeloux
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
- Correspondence:
| |
Collapse
|
5
|
Obesity Development and Signs of Metabolic Abnormalities in Young Göttingen Minipigs Consuming Energy Dense Diets Varying in Carbohydrate Quality. Nutrients 2021; 13:nu13051560. [PMID: 34066330 PMCID: PMC8148203 DOI: 10.3390/nu13051560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 01/10/2023] Open
Abstract
Consumption of fructose has been associated with a higher risk of developing obesity and metabolic syndrome (MetS). The aim of this study was to examine the long-term effects of fructose compared to starch from high-amylose maize starch (HiMaize) at ad libitum feeding in a juvenile Göttingen Minipig model with 20% of the diet provided as fructose as a high-risk diet (HR, n = 15) and 20% as HiMaize as a lower-risk control diet (LR, n = 15). The intake of metabolizable energy was on average similar (p = 0.11) among diets despite increased levels of the satiety hormone PYY measured in plasma (p = 0.0005) of the LR pigs. However, after over 20 weeks of ad libitum feeding, no difference between diets was observed in daily weight gain (p = 0.103), and a difference in BW was observed only at the end of the experiment. The ad libitum feeding promoted an obese phenotype over time in both groups with increased plasma levels of glucose (p = 0.005), fructosamine (p < 0.001), insulin (p = 0.03), and HOMA-IR (p = 0.02), whereas the clinical markers of dyslipidemia were unaffected. When compared to the LR diet, fructose did not accelerate the progression of MetS associated parameters and largely failed to change markers that indicate a stimulated de novo lipogenesis.
Collapse
|
6
|
Obesity-Related Metabolome and Gut Microbiota Profiles of Juvenile Göttingen Minipigs-Long-Term Intake of Fructose and Resistant Starch. Metabolites 2020; 10:metabo10110456. [PMID: 33198236 PMCID: PMC7697781 DOI: 10.3390/metabo10110456] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 01/04/2023] Open
Abstract
The metabolome and gut microbiota were investigated in a juvenile Göttingen minipig model. This study aimed to explore the metabolic effects of two carbohydrate sources with different degrees of risk in obesity development when associated with a high fat intake. A high-risk (HR) high-fat diet containing 20% fructose was compared to a control lower-risk (LR) high-fat diet where a similar amount of carbohydrate was provided as a mix of digestible and resistant starch from high amylose maize. Both diets were fed ad libitum. Non-targeted metabolomics was used to explore plasma, urine, and feces samples over five months. Plasma and fecal short-chain fatty acids were targeted and quantified. Fecal microbiota was analyzed using genomic sequencing. Data analysis was performed using sparse multi-block partial least squares regression. The LR diet increased concentrations of fecal and plasma total short-chain fatty acids, primarily acetate, and there was a higher relative abundance of microbiota associated with acetate production such as Bacteroidetes and Ruminococcus. A higher proportion of Firmicutes was measured with the HR diet, together with a lower alpha diversity compared to the LR diet. Irrespective of diet, the ad libitum exposure to the high-energy diets was accompanied by well-known biomarkers associated with obesity and diabetes, particularly branched-chain amino acids, keto acids, and other catabolism metabolites.
Collapse
|
7
|
Tremblay-Franco M, Poupin N, Amiel A, Canlet C, Rémond D, Debrauwer L, Dardevet D, Jourdan F, Savary-Auzeloux I, Polakof S. Postprandial NMR-Based Metabolic Exchanges Reflect Impaired Phenotypic Flexibility across Splanchnic Organs in the Obese Yucatan Mini-Pig. Nutrients 2020; 12:nu12082442. [PMID: 32823827 PMCID: PMC7468879 DOI: 10.3390/nu12082442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
The postprandial period represents one of the most challenging phenomena in whole-body metabolism, and it can be used as a unique window to evaluate the phenotypic flexibility of an individual in response to a given meal, which can be done by measuring the resilience of the metabolome. However, this exploration of the metabolism has never been applied to the arteriovenous (AV) exploration of organs metabolism. Here, we applied an AV metabolomics strategy to evaluate the postprandial flexibility across the liver and the intestine of mini-pigs subjected to a high fat–high sucrose (HFHS) diet for 2 months. We identified for the first time a postprandial signature associated to the insulin resistance and obesity outcomes, and we showed that the splanchnic postprandial metabolome was considerably affected by the meal and the obesity condition. Most of the changes induced by obesity were observed in the exchanges across the liver, where the metabolism was reorganized to maintain whole body glucose homeostasis by routing glucose formed de novo from a large variety of substrates into glycogen. Furthermore, metabolites related to lipid handling and energy metabolism showed a blunted postprandial response in the obese animals across organs. Finally, some of our results reflect a loss of flexibility in response to the HFHS meal challenge in unsuspected metabolic pathways that must be further explored as potential new events involved in early obesity and the onset of insulin resistance.
Collapse
Affiliation(s)
- Marie Tremblay-Franco
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, 31300 Toulouse, France; (M.T.-F.); (N.P.); (A.A.); (C.C.); (L.D.); (F.J.)
- Axiom Platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, 31300 Toulouse, France
| | - Nathalie Poupin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, 31300 Toulouse, France; (M.T.-F.); (N.P.); (A.A.); (C.C.); (L.D.); (F.J.)
| | - Aurélien Amiel
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, 31300 Toulouse, France; (M.T.-F.); (N.P.); (A.A.); (C.C.); (L.D.); (F.J.)
- Axiom Platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, 31300 Toulouse, France
| | - Cécile Canlet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, 31300 Toulouse, France; (M.T.-F.); (N.P.); (A.A.); (C.C.); (L.D.); (F.J.)
- Axiom Platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, 31300 Toulouse, France
| | - Didier Rémond
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (D.R.); (D.D.); (I.S.-A.)
| | - Laurent Debrauwer
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, 31300 Toulouse, France; (M.T.-F.); (N.P.); (A.A.); (C.C.); (L.D.); (F.J.)
- Axiom Platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, 31300 Toulouse, France
| | - Dominique Dardevet
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (D.R.); (D.D.); (I.S.-A.)
| | - Fabien Jourdan
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, 31300 Toulouse, France; (M.T.-F.); (N.P.); (A.A.); (C.C.); (L.D.); (F.J.)
| | - Isabelle Savary-Auzeloux
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (D.R.); (D.D.); (I.S.-A.)
| | - Sergio Polakof
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (D.R.); (D.D.); (I.S.-A.)
- Correspondence: ; Tel.: +33-(0)4-7362-4895; Fax: 33-(0)4-7362-4638
| |
Collapse
|
8
|
Mariotti F. Animal and Plant Protein Sources and Cardiometabolic Health. Adv Nutr 2019; 10:S351-S366. [PMID: 31728490 PMCID: PMC6855969 DOI: 10.1093/advances/nmy110] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/24/2018] [Accepted: 11/09/2018] [Indexed: 12/22/2022] Open
Abstract
The sources or types of protein in the diet have long been overlooked regarding their link to cardiometabolic health. The picture is complicated by the fact that animal and plant proteins are consumed along with other nutrients and substances which make up the "protein package" so plant and animal protein come with clear nutrient clusters. This review aimed at deciphering the relation between plant and animal protein and cardiometabolic health by examining different nutritional levels (such as amino acids, protein type, protein foods, protein patterns, and associated overall dietary and nutrient patterns) and varying levels of scientific evidence [basic science, randomized controlled trials (RCTs), observational data]. Plant protein in Western countries is a robust marker of nutrient adequacy of the diet, whereas the contribution of animal protein is highly heterogeneous. Yet recent data from large cohorts have confirmed that total and animal proteins are associated with the risk of cardiovascular disease and diabetes, even when fully adjusting for lifestyle and dietary or nutritional factors. Here again, there is marked variability depending on the type of animal protein. Protein from processed red meat and total red meat on the one hand, and from legumes, nuts, and seeds on the other, are often reported at the extremes of the risk range. RCTs using purified proteins have contributed little to the topic to date, inasmuch as the findings cannot readily be extrapolated to current or near-future diets, but RCTs studying whole protein foods have shown a beneficial effect of pulses. Despite the fact that many of the benefits of plant protein reported in observational or interventional studies may stem from the protein package that they convey and the nutrients that they displace, there are also important indications that protein per se may affect cardiometabolic health via the many amino acids that are present in typically contrasting levels in plant compared with animal proteins.
Collapse
Affiliation(s)
- François Mariotti
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, 75005, Paris, France
| |
Collapse
|
9
|
Poupin N, Tremblay-Franco M, Amiel A, Canlet C, Rémond D, Debrauwer L, Dardevet D, Thiele I, Aurich MK, Jourdan F, Savary-Auzeloux I, Polakof S. Arterio-venous metabolomics exploration reveals major changes across liver and intestine in the obese Yucatan minipig. Sci Rep 2019; 9:12527. [PMID: 31467335 PMCID: PMC6715693 DOI: 10.1038/s41598-019-48997-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/15/2019] [Indexed: 12/13/2022] Open
Abstract
Blood circulation mainly aims at distributing the nutrients required for tissue metabolism and collecting safely the by-products of all tissues to be further metabolized or eliminated. The simultaneous study of arterial (A) and venous (V) specific metabolites therefore has appeared to be a more relevant approach to understand and study the metabolism of a given organ. We propose to implement this approach by applying a metabolomics (NMR) strategy on paired AV blood across the intestine and liver on high fat/high sugar (HFHS)-fed minipigs. Our objective was to unravel kinetically and sequentially the metabolic adaptations to early obesity/insulin resistance onset specifically on these two tissues. After two months of HFHS feeding our study of AV ratios of the metabolome highlighted three major features. First, the hepatic metabolism switched from carbohydrate to lipid utilization. Second, the energy demand of the intestine increased, resulting in an enhanced uptake of glutamine, glutamate, and the recruitment of novel energy substrates (choline and creatine). Third, the uptake of methionine and threonine was considered to be driven by an increased intestine turnover to cope with the new high-density diet. Finally, the unique combination of experimental data and modelling predictions suggested that HFHS feeding was associated with changes in tryptophan metabolism and fatty acid β-oxidation, which may play an important role in lipid hepatic accumulation and insulin sensitivity.
Collapse
Affiliation(s)
- Nathalie Poupin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Marie Tremblay-Franco
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France.,Axiom platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Aurélien Amiel
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France.,Axiom platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Cécile Canlet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France.,Axiom platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Didier Rémond
- Université Clermont Auvergne, INRA, Unité de Nutrition Humaine, UMR1019, Clermont-Ferrand, France
| | - Laurent Debrauwer
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France.,Axiom platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Dominique Dardevet
- Université Clermont Auvergne, INRA, Unité de Nutrition Humaine, UMR1019, Clermont-Ferrand, France
| | - Ines Thiele
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, Esch-sur-Alzette, Luxembourg.,School of Medicine, National University of Ireland, University Road, Galway, Ireland.,Discipline of Microbiology, School of Natural Sciences, National University of Ireland, University Road, Galway, Ireland
| | - Maike K Aurich
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, Esch-sur-Alzette, Luxembourg
| | - Fabien Jourdan
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Isabelle Savary-Auzeloux
- Université Clermont Auvergne, INRA, Unité de Nutrition Humaine, UMR1019, Clermont-Ferrand, France
| | - Sergio Polakof
- Université Clermont Auvergne, INRA, Unité de Nutrition Humaine, UMR1019, Clermont-Ferrand, France.
| |
Collapse
|
10
|
Isabelle SA, Ahmed-Ben M, Benoit C, Dominique D, Jérémie D, Noureddine H, Carole M, Estelle PG, Didier R, Sergio P. Profound Changes in Net Energy and Nitrogen Metabolites Fluxes within the Splanchnic Area during Overfeeding of Yucatan Mini Pigs That Remain Euglycemic. Nutrients 2019; 11:nu11020434. [PMID: 30791497 PMCID: PMC6412845 DOI: 10.3390/nu11020434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 12/18/2022] Open
Abstract
A dysregulation of nutrient exchange between tissues (gut, liver, muscles, adipose) occurs during overnutrition and could induce obesity and metabolic diseases. We aimed to evaluate how, in overfed mini pigs, nutrients use and partition were regulated in the gut and liver. Net nutrients fluxes were assessed in the fed (PP) and post absorptive (PA) states at 1, 14 and 60 days of adaptation to overfeeding in five adult Yucatan female multicatheterized minipigs. Pigs PA glycaemia and PP-induced hyperglycemia remained unchanged over the experimental period, suggesting that the management of the excess of energy intake allowed the maintenance of glucose levels. This was associated with (1) an increased PA plasma insulin, (2) an increased gut lactate production (increased lactate net release +89%, 1 h PP, D1 vs. D60) probably from an increased glucose oxidation, (3) a shift in utilization of gluconeogenic precursor (lactate, propionate) in the liver, and (4) a reduced gut utilization of nitrogen moieties for energy purposes (glutamine), a nitrogen sparing effect at the whole body level (decreased plasma urea in PA (−24% D1 vs. D60) and PP states) and a specific increased level of AA involved in lipids handling and bile recycling in the gut lumen (taurine and glycine).
Collapse
Affiliation(s)
- Savary-Auzeloux Isabelle
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, F-63000 Clermont Ferrand, France.
| | - Mohamed Ahmed-Ben
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, F-63000 Clermont Ferrand, France.
| | - Cohade Benoit
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, F-63000 Clermont Ferrand, France.
| | - Dardevet Dominique
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, F-63000 Clermont Ferrand, France.
| | - David Jérémie
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, F-63000 Clermont Ferrand, France.
| | - Hafnaoui Noureddine
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, F-63000 Clermont Ferrand, France.
| | - Migné Carole
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, PFEM, Metabo-Hub Clermont, CRNH Auvergne, F-63000 Clermont Ferrand, France.
| | - Pujos-Guillot Estelle
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, PFEM, Metabo-Hub Clermont, CRNH Auvergne, F-63000 Clermont Ferrand, France.
| | - Rémond Didier
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, F-63000 Clermont Ferrand, France.
| | - Polakof Sergio
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, F-63000 Clermont Ferrand, France.
| |
Collapse
|
11
|
A mix of dietary fermentable fibers improves lipids handling by the liver of overfed minipigs. J Nutr Biochem 2018; 65:72-82. [PMID: 30654277 DOI: 10.1016/j.jnutbio.2018.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/17/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023]
Abstract
Obesity induced by overfeeding ultimately can lead to nonalcoholic fatty liver disease, whereas dietary fiber consumption is known to have a beneficial effect. We aimed to determine if a supplementation of a mix of fibers (inulin, resistant starch and pectin) could limit or alleviate overfeeding-induced metabolic perturbations. Twenty female minipigs were fed with a control diet (C) or an enriched fat/sucrose diet supplemented (O + F) or not (O) with fibers. Between 0 and 56 days of overfeeding, insulin (+88%), HOMA (+102%), cholesterol (+45%) and lactate (+63%) were increased, without any beneficial effect of fibers supplementation. However, fibers supplementation limited body weight gain (vs. O, -15% at D56) and the accumulation of hepatic lipids droplets induced by overfeeding. This could be explained by a decreased lipids transport potential (-50% FABP1 mRNA, O + F vs. O) inducing a down-regulation of regulatory elements of lipids metabolism / lipogenesis (-36% SREBP1c mRNA, O + F vs. O) but not to an increased oxidation (O + F not different from O and C for proteins and mRNA measured). Glucose metabolism was also differentially regulated by fibers supplementation, with an increased net hepatic release of glucose in the fasted state (diet × time effect, P<.05 at D56) that can be explained partially by a possible increased glycogen synthesis in the fed state (+82% GYS2 protein, O + F vs. O, P=.09). The direct role of short chain fatty acids on gluconeogenesis stimulation is questioned, with probably a short-term impact (D14) but no effect on a long-term (D56) basis.
Collapse
|
12
|
Zeng Y, David J, Rémond D, Dardevet D, Savary-Auzeloux I, Polakof S. Peripheral Blood Mononuclear Cell Metabolism Acutely Adapted to Postprandial Transition and Mainly Reflected Metabolic Adipose Tissue Adaptations to a High-Fat Diet in Minipigs. Nutrients 2018; 10:nu10111816. [PMID: 30469379 PMCID: PMC6267178 DOI: 10.3390/nu10111816] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/26/2018] [Accepted: 11/15/2018] [Indexed: 11/16/2022] Open
Abstract
Although peripheral blood mononuclear cells (PBMCs) are widely used as a valuable tool able to provide biomarkers of health and diseases, little is known about PBMC functional (biochemistry-based) metabolism, particularly following short-term nutritional challenges. In the present study, the metabolic capacity of minipig PBMCs to respond to nutritional challenges was explored at the biochemical and molecular levels. The changes observed in enzyme activities following a control test meal revealed that PBMC metabolism is highly reactive to the arrival of nutrients and hormones in the circulation. The consumption, for the first time, of a high fat⁻high sucrose (HFHS) meal delayed or sharply reduced most of the observed postprandial metabolic features. In a second experiment, minipigs were subjected to two-month HFHS feeding. The time-course follow-up of metabolic changes in PBMCs showed that most of the adaptations to the new diet took place during the first week. By comparing metabolic (biochemical and molecular) PMBC profiles to those of the liver, skeletal muscle, and adipose tissue, we concluded that although PBMCs conserved common features with all of them, their response to the HFHS diet was closely related to that of the adipose tissue. As a whole, our results show that PBMC metabolism, particularly during short-term (postprandial) challenges, could be used to evaluate the whole-body metabolic status of an individual. This could be particularly interesting for early diagnosis of metabolic disease installation, when fasting clinical analyses fail to diagnose the path towards the pathology.
Collapse
Affiliation(s)
- Yuchun Zeng
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.
| | - Jérémie David
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.
| | - Didier Rémond
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.
| | - Dominique Dardevet
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.
| | - Isabelle Savary-Auzeloux
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.
| | - Sergio Polakof
- INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
13
|
Lai CQ, Smith CE, Parnell LD, Lee YC, Corella D, Hopkins P, Hidalgo BA, Aslibekyan S, Province MA, Absher D, Arnett DK, Tucker KL, Ordovas JM. Epigenomics and metabolomics reveal the mechanism of the APOA2-saturated fat intake interaction affecting obesity. Am J Clin Nutr 2018; 108:188-200. [PMID: 29901700 PMCID: PMC6454512 DOI: 10.1093/ajcn/nqy081] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/28/2018] [Indexed: 12/13/2022] Open
Abstract
Background The putative functional variant -265T>C (rs5082) within the APOA2 promoter has shown consistent interactions with saturated fatty acid (SFA) intake to influence the risk of obesity. Objective The aim of this study was to implement an integrative approach to characterize the molecular basis of this interaction. Design We conducted an epigenome-wide scan on 80 participants carrying either the rs5082 CC or TT genotypes and consuming either a low-SFA (<22 g/d) or high-SFA diet (≥22 g/d), matched for age, sex, BMI, and diabetes status in the Boston Puerto Rican Health Study (BPRHS). We then validated the findings in selected participants in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) Study (n = 379) and the Framingham Heart Study (FHS) (n = 243). Transcription and metabolomics analyses were conducted to determine the relation between epigenetic status, APOA2 mRNA expression, and blood metabolites. Results In the BPRHS, we identified methylation site cg04436964 as exhibiting significant differences between CC and TT participants consuming a high-SFA diet, but not among those consuming low-SFA. Similar results were observed in the GOLDN Study and the FHS. Additionally, in the FHS, cg04436964 methylation was negatively correlated with APOA2 expression in the blood of participants consuming a high-SFA diet. Furthermore, when consuming a high-SFA diet, CC carriers had lower APOA2 expression than those with the TT genotype. Lastly, metabolomic analysis identified 4 pathways as overrepresented by metabolite differences between CC and TT genotypes with high-SFA intake, including tryptophan and branched-chain amino acid (BCAA) pathways. Interestingly, these pathways were linked to rs5082-specific cg04436964 methylation differences in high-SFA consumers. Conclusions The epigenetic status of the APOA2 regulatory region is associated with SFA intake and APOA2 -265T>C genotype, promoting an APOA2 expression difference between APOA2 genotypes on a high-SFA diet, and modulating BCAA and tryptophan metabolic pathways. These findings identify potential mechanisms by which this highly reproducible gene-diet interaction influences obesity risk, and contribute new insights to ongoing investigations of the relation between SFA and human health. This study was registered at clinicaltrials.gov as NCT03452787.
Collapse
Affiliation(s)
- Chao-Qiang Lai
- USDA Agricultural Research Service,Address correspondence to C-QL (e-mail )
| | - Caren E Smith
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | | | - Yu-Chi Lee
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Dolores Corella
- Department of Preventive Medicine, University of Valencia and CIBER Physiopathology of Obesity and Nutrition, Valencia, Spain
| | - Paul Hopkins
- Department of Cardiovascular Genetics, University of Utah, Salt Lake City, UT
| | - Bertha A Hidalgo
- Department of Epidemiology, School of Public Health, University of Alabama, Birmingham, AL
| | - Stella Aslibekyan
- Department of Epidemiology, School of Public Health, University of Alabama, Birmingham, AL
| | - Michael A Province
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Devin Absher
- Hudson Alpha Institute for Biotechnology, Huntsville, AL
| | - Donna K Arnett
- College of Public Health, University of Kentucky, Lexington, KY
| | - Katherine L Tucker
- Department of Biomedical & Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA
| | - Jose M Ordovas
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA,IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
14
|
Pujos-Guillot E, Brandolini-Bunlon M, Fouillet H, Joly C, Martin JF, Huneau JF, Dardevet D, Mariotti F. Metabolomics Reveals that the Type of Protein in a High-Fat Meal Modulates Postprandial Mitochondrial Overload and Incomplete Substrate Oxidation in Healthy Overweight Men. J Nutr 2018; 148:876-884. [PMID: 29878266 DOI: 10.1093/jn/nxy049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/20/2018] [Indexed: 01/30/2023] Open
Abstract
Background A meal rich in saturated fatty acids induces a postprandial metabolic challenge. The type of dietary protein may modulate postprandial metabolism. Objective We studied the effect of dietary protein type on postprandial changes in the metabolome after a high-fat meal. Methods In a 3-period, crossover, postprandial study, 10 healthy overweight men with an elevated waist circumference (>94 cm) ingested high-fat meals made up of cream fat (70% of energy), sucrose (15% energy), and protein (15% energy) from either casein (CAS), whey protein (WHE), or α-lactalbumin-enriched whey protein (LAC). Urine collected immediately before and 2, 4, and 6 h after the meal was analyzed for metabolomics, a secondary outcome of the clinical study. We used mixed-effect models, partial least-square regression, and pathway enrichment analysis. Results At 4 and 6 h after the meal, the postprandial metabolome was found to be fully discriminated according to protein type. We identified 17 metabolites that significantly explained the effect of protein type on postprandial metabolomic changes (protein-time interaction). Among this signature, acylcarnitines and other acylated metabolites related to fatty acid or amino acid oxidation were the main discriminant features. The difference in metabolic profiles was mainly explained by urinary acylcarnitines and some other acylated products (protein type, Ps < 0.0001), with a dramatically greater increase (100- to 1000-fold) after WHE, and to a lesser extent after LAC, as compared with CAS. Pathway enrichment analysis confirmed that the type of protein had modified fatty acid oxidation (P < 0.05). Conclusion Taken together, our results indicate that, in healthy overweight men, the type of protein in a high-fat meal interplays with fatty acid oxidation with a differential accumulation of incomplete oxidation products. A high-fat meal containing WHE, but not CAS, resulted in this outpacing of the tricarboxylic acid cycle. This study was registered at clinicaltrials.gov as NCT00931151.
Collapse
Affiliation(s)
- Estelle Pujos-Guillot
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, PFEM, MetaboHUB-Clermont, CRNH Auvergne, Clermont-Ferrand, France
| | - Marion Brandolini-Bunlon
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, PFEM, MetaboHUB-Clermont, CRNH Auvergne, Clermont-Ferrand, France
| | - Hélène Fouillet
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, 75005, Paris, France
| | - Charlotte Joly
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, PFEM, MetaboHUB-Clermont, CRNH Auvergne, Clermont-Ferrand, France
| | - Jean-François Martin
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, PFEM, MetaboHUB-Clermont, CRNH Auvergne, Clermont-Ferrand, France
| | | | - Dominique Dardevet
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - François Mariotti
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, 75005, Paris, France
| |
Collapse
|
15
|
Arias-Mutis OJ, Marrachelli VG, Ruiz-Saurí A, Alberola A, Morales JM, Such-Miquel L, Monleon D, Chorro FJ, Such L, Zarzoso M. Development and characterization of an experimental model of diet-induced metabolic syndrome in rabbit. PLoS One 2017; 12:e0178315. [PMID: 28542544 PMCID: PMC5441642 DOI: 10.1371/journal.pone.0178315] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/11/2017] [Indexed: 12/11/2022] Open
Abstract
Metabolic syndrome (MetS) has become one of the main concerns for public health because of its link to cardiovascular disease. Murine models have been used to study the effect of MetS on the cardiovascular system, but they have limitations for studying cardiac electrophysiology. In contrast, the rabbit cardiac electrophysiology is similar to human, but a detailed characterization of the different components of MetS in this animal is still needed. Our objective was to develop and characterize a diet-induced experimental model of MetS that allows the study of cardiovascular remodeling and arrhythmogenesis. Male NZW rabbits were assigned to control (n = 15) or MetS group (n = 16), fed during 28 weeks with high-fat, high-sucrose diet. We measured weight, morphological characteristics, blood pressure, glycaemia, standard plasma biochemistry and the metabolomic profile at weeks 14 and 28. Liver histological changes were evaluated using hematoxylin-eosin staining. A mixed model ANOVA or unpaired t-test were used for statistical analysis (P<0.05). Weight, abdominal contour, body mass index, systolic, diastolic and mean arterial pressure increased in the MetS group at weeks 14 and 28. Glucose, triglycerides, LDL, GOT-AST, GOT/GPT, bilirubin and bile acid increased, whereas HDL decreased in the MetS group at weeks 14 and 28. We found a 40% increase in hepatocyte area and lipid vacuoles infiltration in the liver from MetS rabbits. Metabolomic analysis revealed differences in metabolites related to fatty acids, energetic metabolism and microbiota, compounds linked with cardiovascular disease. Administration of high-fat and high-sucrose diet during 28 weeks induced obesity, glucose intolerance, hypertension, non-alcoholic hepatic steatosis and metabolic alterations, thus reproducing the main clinical manifestations of the metabolic syndrome in humans. This experimental model should provide a valuable tool for studies into the mechanisms of cardiovascular problems related to MetS, with special relevance in the study of cardiovascular remodeling, arrhythmias and SCD.
Collapse
Affiliation(s)
- Oscar Julián Arias-Mutis
- Health Research Institute (INCLIVA), Valencia, Spain
- Department of Physiology, Universitat de València, Valencia, Spain
| | - Vannina G. Marrachelli
- Health Research Institute (INCLIVA), Valencia, Spain
- Department of Physiology, Universitat de València, Valencia, Spain
| | | | - Antonio Alberola
- Department of Physiology, Universitat de València, Valencia, Spain
| | | | - Luis Such-Miquel
- Department of Physiotherapy, Universitat de València, Valencia, Spain
| | - Daniel Monleon
- Health Research Institute (INCLIVA), Valencia, Spain
- Department of Pathology, Universitat de València, Valencia, Spain
| | - Francisco J. Chorro
- Health Research Institute (INCLIVA), Valencia, Spain
- Department of Cardiology, Clinic Hospital of Valencia, Valencia, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Luis Such
- Department of Physiology, Universitat de València, Valencia, Spain
| | - Manuel Zarzoso
- Department of Physiotherapy, Universitat de València, Valencia, Spain
- * E-mail:
| |
Collapse
|