1
|
Famurewa AC, Akhigbe RE, George MY, Adekunle YA, Oyedokun PA, Akhigbe TM, Fatokun AA. Mechanisms of ferroptotic and non-ferroptotic organ toxicity of chemotherapy: protective and therapeutic effects of ginger, 6-gingerol and zingerone in preclinical studies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4747-4778. [PMID: 39636404 PMCID: PMC11985630 DOI: 10.1007/s00210-024-03623-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Chemotherapy (CT) is one of the flagship options for the treatment of cancers worldwide. It involves the use of cytotoxic anticancer agents to kill or inhibit the proliferation of cancer cells. However, despite its clinical efficacy, CT triggers side effect toxicities in several organs, which may impact cancer patient's quality of life and treatment outcomes. While the side effect toxicity is consistent with non-ferroptotic mechanisms involving oxidative stress, inflammation, mitochondrial impairment and other aberrant signalling leading to apoptosis and necroptosis, recent studies show that ferroptosis, a non-apoptotic, iron-dependent cell death pathway, is also involved in the pathophysiology of CT organ toxicity. CT provokes organ ferroptosis via system Xc-/GPX-4/GSH/SLC7A11 axis depletion, ferritinophagy, iron overload, lipid peroxidation and upregulation of ferritin-related proteins. Cisplatin (CP) and doxorubicin (DOX) are common CT drugs indicated to induce ferroptosis in vitro and in vivo. Studies have explored natural preventive and therapeutic strategies using ginger rhizome and its major bioactive compounds, 6-gingerol (6G) and zingerone (ZG), to combat mechanisms of CT side effect toxicity. Ginger extract, 6G and ZG mitigate non-ferroptotic oxidative inflammation, apoptosis and mitochondrial dysfunction mechanisms of CT side effect toxicity, but their effects on CT-induced ferroptosis remain unclear. Systematic investigations are, therefore, needed to unfold the roles of ginger, 6G and ZG on ferroptosis involved in CT side effect toxicity, as they are potential natural agents for the prevention of CT toxicity. This review reveals the ferroptotic and non-ferroptotic toxicity mechanisms of CT and the protective mechanisms of ginger, 6G and ZG against CT-induced, ferroptotic and non-ferroptotic organ toxicities.
Collapse
Affiliation(s)
- Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University Ndufu-Alike, Ikwo, Nigeria.
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK.
| | - Roland E Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Yemi A Adekunle
- Department of Pharmaceutical and Medicinal Chemistry, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Precious A Oyedokun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - Tunmise M Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Breeding and Genetics Unit, Department of Agronomy, Osun State University, Osogbo, Osun State, Nigeria
| | - Amos A Fatokun
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| |
Collapse
|
2
|
Ababzadeh S, Davoodi Asl F, Fazaeli H, Sheykhhasan M, Naserpour L, Farsani ME, Sheikholeslami A. Effects of Exosomes from Menstrual Blood-derived Stem Cells and Ginger on Endometriotic Stem Cells. Curr Med Sci 2024; 44:1293-1302. [PMID: 39565506 DOI: 10.1007/s11596-024-2939-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/28/2024] [Indexed: 11/21/2024]
Abstract
OBJECTIVE Menstrual blood-derived stem cells from endometriosis patients (E-MenSCs) have different gene expression patterns than those from healthy nonendometriotic females (NE-MenSCs). Exosomes extracted from mesenchymal stem cells and plants are considered for the treatment of various diseases. This study aimed to compare the effects of exosomes derived from NE-MenSCs (C-exos) and those from the roots of ginger (P-exos) on E-MenSCs. METHODS E-MenSCs at the third passage were used, and after evaluating the effective dosage with MTT, C-exos (200 µg/mL) or P-exos (100 µg/mL) were added to treat them. Following a 72-h incubation, the cells were analyzed with annexin V/PI test to evaluate the apoptosis rate. Also, genes related to inflammation (IL-6, IL-8, IL-1β, NF-κB, COX2), cell cycle (Cyclin D1), the steroid pathway (ESR1), migration and invasion (MMP-2, MMP-9, VEGF), and the apoptosis pathway (BAX, BCL2) were detected by real-time PCR. RESULTS Apoptosis was increased in both the P- and C-exos groups. The expression levels of IL-6 and IL-1β were significantly lower in the P-exos group than in the E-MenSCs group. The expression levels of IL-8, NF-κB, COX-2, and MMP-9 were significantly decreased in both the P-exos group and the C-exos group. The expression level of VEGF was significantly lower in the P-exos group than in the E-MenSCs group. The BAX/BCL2 ratio was much lower in the P-exos group than in the E-MenSCs group. CONCLUSION In this study, we established the feasibility of using a novel natural nontoxic material to target endometriotic mesenchymal stem cells to modify their gene expression and function toward healthy cells. Both C-exos and P-exos showed positive effects on the gene expression and function of endometriotic cells. Considering that plant exosomes are easier to access and less expensive, they can be considered for clinical use in improving the symptoms of endometriosis patients.
Collapse
Affiliation(s)
- Shima Ababzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, 3736175513, Iran
- Cellular and Molecular Research Center, Qom University of Medical Science, Qom, 3736175513, Iran
| | - Faezeh Davoodi Asl
- Department of Cell Biology and Regenerative Medicine, Academic Center for Education, Culture and Research, Qom Branch, Qom, 3713189934, Iran
| | - Hoda Fazaeli
- Department of Cell Biology and Regenerative Medicine, Academic Center for Education, Culture and Research, Qom Branch, Qom, 3713189934, Iran
| | - Mohsen Sheykhhasan
- Department of Cell Biology and Regenerative Medicine, Academic Center for Education, Culture and Research, Qom Branch, Qom, 3713189934, Iran
| | - Leila Naserpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, 3736175513, Iran
- Department of Reproductive Biology, Academic Center for Education, Culture and Research, Qom Branch, Qom, 3713189934, Iran
| | - Mohsen Eslami Farsani
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, 3736175513, Iran
| | - Azar Sheikholeslami
- Department of Cell Biology and Regenerative Medicine, Academic Center for Education, Culture and Research, Qom Branch, Qom, 3713189934, Iran.
| |
Collapse
|
3
|
Abouelezz HM, El-Kashef DH, Abdеlaziz RR, Nader MA. Tiron enhances the anti-cancer activity of doxorubicin in DMBA-induced breast cancer: Role of Notch signaling/apoptosis/autophagy/oxidative stress. Food Chem Toxicol 2024; 193:114968. [PMID: 39214269 DOI: 10.1016/j.fct.2024.114968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/06/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Existing work intended to investigate the outcomes of the localized mitochondrial antioxidant tiron (TR) alone or in combination with doxorubicin (DOX) in 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary carcinogenesis in rats and the mechanistic pathways behind these effects. Also, to examine the preventive role of TR against DOX-related cardiotoxicity. 64 female Sprague-Dawley rats were randomly assigned into 8 groups: CTRL, DOX, TR, DMBA, DMBA + DOX, DMBA + TR100, DMBA + TR200, and DMBA + DOX + TR200. Rats received TR (100 and 200 mg/kg), DOX (2mg/kg), and DMBA (7.5 mg/kg) for four consecutive weeks. TR alone or combined with DOX not only inhibited oxidative status-related parameters and Notch pathway proteins but also attenuated proliferation markers, and enhanced apoptosis, and autophagy-related genes. Consistently, the histopathological analysis showed better scores in mammary tissues isolated from groups treated with TR only or combined with DOX. Additionally, TR dramatically decreased relative heart weight, myocardial injury biomarkers, and heart oxidative stress parameters while maintaining the myocardial histological integrity. Here we provided evidence that TR acts via modulating Notch signaling/apoptosis/autophagy/oxidative stress to elicit anti-tumor activity and combination with DOX revealed a higher efficacy as a novel anticancer strategy. Moreover, TR could be a potential cardio-protective candidate during DOX-chemotherapy, possibly via its antioxidant activity.
Collapse
Affiliation(s)
- Hadeer M Abouelezz
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Dalia H El-Kashef
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Rania R Abdеlaziz
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Manar A Nader
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Alqahtani J, Mosalam EM, Abo Mansour HE, Elberri AI, Ibrahim HA, Mahgoub S, Hussein IA, Hawwal MF, Al Hmoudi M, Moglad E, Ahmed R, Mokhtar FA, Elekhnawy E, Negm WA. Anticancer Effect of Cycas media: Molecular Basis Through Modulation of PI3K/AKT/mTOR Signaling Pathway. Molecules 2024; 29:5013. [PMID: 39519654 PMCID: PMC11547819 DOI: 10.3390/molecules29215013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Many researchers are focusing on screening the biological activities of plants owing to their safety and possible pharmacological actions. Consequently, we aimed to explore the antiproliferative and cytotoxic properties of Cycas media methanolic extract on HepG2 cell lines. Moreover, we also explore the antitumor action against the experimentally induced solid Ehrlich carcinoma (SEC) model and investigate the possible involved molecular mechanisms. Also, the antibacterial action of the extract was elucidated. Different concentrations of the extract were incubated with HepG2 to determine cytotoxicity, followed by cell cycle analysis. The in vivo experiment was accomplished by grouping the animals into four different groups (n = 10); normal control, SEC, C. media 100, and C. media 200. The extract was administered at 100 and 200 mg/kg. Tumor volume, tumor inhibition rate, toxicity profile, and antioxidant biomarkers were determined. Moreover, the PI3K/AKT/mTOR signaling pathway was investigated as a possible underlying antitumor mechanism. The tumor control group showed a remarkable upregulation for PI3K, p-AKT, and p-mTOR, along with downregulation for the antioxidant SOD and GPX4, as well as decreased levels of GSH and MDA. C. media extract reversed these parameters to a significant level and the higher dose showed a superior antitumor effect. C. media extract showed antiproliferative effects against HepG2 cells, along with a suppressive action on the PI3K/AKT/mTOR pathway and an antioxidant effect. Additionally, C. media had antibacterial consequences against S. aureus isolates with minimum inhibitory concentrations from 32 to 128 µg/mL. It also caused a noteworthy growth delay as well as a notable reduction in the membrane integrity of S. aureus isolates. These beneficial outcomes suggest C. media to have potential antitumor and antibacterial activities.
Collapse
Affiliation(s)
- Jawaher Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Esraa M. Mosalam
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, Shebin El-Kom 32511, Egypt;
- Department of Pharm D, Faculty of Pharmacy, Jadara University, Irbid 21110, Jordan
| | - Hend E. Abo Mansour
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, Shebin El-Kom 32511, Egypt;
- Biochemistry Department, Faculty of Pharmacy, Menoufia National University, Birket El-Sab 32651, Egypt
| | - Aya Ibrahim Elberri
- Genetic Engineering and Molecular Biology Division, Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Hanaa A. Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Sebaey Mahgoub
- Food Analysis Laboratory, Ministry of Health, Zagazig 44511, Egypt;
| | - Ismail A. Hussein
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt;
| | - Mohammed F. Hawwal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Maryam Al Hmoudi
- Fujairah Research Centre, Sakamkam Road, Fujairah 00000, United Arab Emirates
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| | - Rehab Ahmed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 47713, Saudi Arabia;
| | - Fatma Alzahraa Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida 44813, Egypt;
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
5
|
Negm WA, Elekhnawy E, Mahgoub S, Ibrahim HA, Ibrahim Elberri A, Abo Mansour HE, Mosalam EM, Moglad E, Alzahraa Mokhtar F. Dioon rzedowskii: An antioxidant, antibacterial and anticancer plant extract with multi-faceted effects on cell growth and molecular signaling. Int Immunopharmacol 2024; 132:111957. [PMID: 38554441 DOI: 10.1016/j.intimp.2024.111957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
This study investigated the antioxidant, anticancer, antibacterial properties of Dioon rzedowskii extract, which had not been previously explored. We aimed to determine the extract's effect on liver and breast cancer cell lines and on solid Ehrlich carcinoma (SEC) mouse model to investigate the underlying molecular mechanisms. Three female albino mice groups were established: a tumor control group, a group treated with 100 mg/kg of the extract (D100), and a group treated with 200 mg/kg of the extract (D200) for 16 days after tumor development. Results showed that the D. rzedowskii extract inhibited cell growth in both MCF-7 and HepG2 cells in a concentration-dependent manner. This was achieved by suppressing the cell proliferation and inducing apoptosis. The extract also improved liver, heart, and kidney functions compared to the tumor control. Furthermore, oral administration of the extract reduced tumor volume and alleviated oxidative stress in tumor tissue. The anticancer effects were associated with overexpression of p53 and Bax and downregulation of cyclin D1 expression, which was attributed to decreased phosphorylated MAPK kinases. Additionally, D. rzedowskii exhibited antibacterial activity against K. pneumoniae isolated from cancer patients. The extract inhibited bacterial growth and reduced the membrane integrity. The study suggests that D. rzedowskii has promising potential as an adjunctive therapy for cancer treatment. Further investigations are needed to explore its combined anticancer efficacy. These results emphasize the value of natural products in developing compounds with potential anticancer activity and support a paradigm shift in cancer management to improve patients' quality of life.
Collapse
Affiliation(s)
- Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Sebaey Mahgoub
- Food Analysis Laboratory, Ministry of Health, Zagazig, Egypt
| | - Hanaa A Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Aya Ibrahim Elberri
- Genetic Engineering and Molecular Biology Division, Department of Zoology, Faculty of Science, Menoufia University, 32511 Shebin El-Kom, Menoufia, Egypt.
| | - Hend E Abo Mansour
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, 32511 Shebin EL-Kom, Menoufia, Egypt.
| | - Esraa M Mosalam
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, 32511 Shebin EL-Kom, Menoufia, Egypt; Department of Pharmacy, Faculty of Pharmacy, Jadara University, Irbid, Jordan.
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, P.O. Box 173, Alkharj 11942, Saudi Arabia.
| | - Fatma Alzahraa Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida 44813, Sharkia, Egypt; Fujairah Research Centre, Sakamkam Road, Fujairah, United Arab Emirates
| |
Collapse
|
6
|
Shaukat MN, Nazir A, Fallico B. Ginger Bioactives: A Comprehensive Review of Health Benefits and Potential Food Applications. Antioxidants (Basel) 2023; 12:2015. [PMID: 38001868 PMCID: PMC10669910 DOI: 10.3390/antiox12112015] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Ginger is an herbaceous and flowering plant renowned for its rhizome, which is widely employed as both a spice and an herb. Since ancient times, ginger has been consumed in folk medicine and traditional cuisines for its favorable health effects. Different in vitro and in vivo studies have disclosed the advantageous physiological aspects of ginger, primarily due to its antioxidant, anti-inflammatory, antimicrobial, and anti-carcinogenic properties. These health-promoting features are linked to the variety of bioactive compounds that are present in ginger. Following the advancement in consumer awareness and the industrial demand for organic antioxidants and functional ingredients, the application of ginger and its derivatives has been broadly investigated in a wide range of food products. The prominent features transmitted by ginger into different food areas are antioxidant and nutraceutical values (bakery); flavor, acceptability, and techno-functional characteristics (dairy); hedonic and antimicrobial properties (beverages); oxidative stability, tenderization, and sensorial attributes (meat); and shelf life and sensorial properties (film, coating, and packaging). This review is focused on providing a comprehensive overview of the tendencies in the application of ginger and its derivatives in the food industry and concurrently briefly discusses the beneficial aspects and processing of ginger.
Collapse
Affiliation(s)
- Muhammad Nouman Shaukat
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia 100, 95123 Catania, Italy;
| | - Akmal Nazir
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Biagio Fallico
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia 100, 95123 Catania, Italy;
| |
Collapse
|
7
|
Abo Mansour HE, Elberri AI, Ghoneim MES, Samman WA, Alhaddad AA, Abdallah MS, El-Berri EI, Salem MA, Mosalam EM. The Potential Neuroprotective Effect of Thymoquinone on Scopolamine-Induced In Vivo Alzheimer's Disease-like Condition: Mechanistic Insights. Molecules 2023; 28:6566. [PMID: 37764343 PMCID: PMC10534545 DOI: 10.3390/molecules28186566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a common neurodegenerative disorder without effective treatment. Thymoquinone (TQ) has demonstrated potential in exhibiting anti-inflammatory, anti-cancer, and antioxidant characteristics. Despite TQ's neuroprotection effect, there is a scarcity of information regarding its application in AD research, and its molecular trajectories remain ambiguous. Thus, the objective of the current investigation was to examine the potential beneficial effects and underlying mechanisms of TQ in scopolamine (SCOP)-induced neuronal injury to mimic AD in vivo model. METHODS Thirty mice were divided into normal, SCOP, and TQ groups. The Y-maze and pole climbing tests were performed to measure memory and motor performance. Afterwards, histopathological and immunohistochemical examinations were carried out. Furthermore, peroxisome proliferator-activated receptor gamma (PPAR-γ) signaling pathway-related proteins and genes were detected with an emphasis on the role of miR-9. RESULTS TQ has the potential to ameliorate cognitive deficits observed in SCOP-induced AD-like model, as evidenced by the improvement in behavioral outcomes, histopathological changes, modulation of the expression pattern of PPAR-γ downstream targets with a significant decrease in the deposition of amyloid beta (Aβ). CONCLUSIONS TQ provided meaningful multilevel neuroprotection through its anti-inflammatory and its PPAR-γ agonist activity. Consequently, TQ may possess a potential beneficial role against AD development.
Collapse
Affiliation(s)
- Hend E. Abo Mansour
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, Shibin El-Kom 32511, Egypt;
| | - Aya Ibrahim Elberri
- Genetic Engineering and Molecular Biology Division, Department of Zoology, Faculty of Science, Menoufia University, Shibin El-Kom 32511, Egypt;
| | - Mai El-Sayed Ghoneim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City (USC), Sadat City 32897, Egypt;
| | - Waad A. Samman
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Medina 42353, Saudi Arabia; (W.A.S.); (A.A.A.)
| | - Aisha A. Alhaddad
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Medina 42353, Saudi Arabia; (W.A.S.); (A.A.A.)
| | - Mahmoud S. Abdallah
- Clinical Pharmacy Department, Faculty of Pharmacy, University of Sadat City (USC), Sadat City 32897, Egypt;
| | - Eman I. El-Berri
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Mohamed A. Salem
- Department of Pharmacognosy, Faculty of Pharmacy, Menoufia University, Shibin El-Kom 32511, Egypt;
| | - Esraa M. Mosalam
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, Shibin El-Kom 32511, Egypt;
| |
Collapse
|
8
|
Crichton M, Marshall S, Marx W, Isenring E, Lohning A. Therapeutic health effects of ginger (Zingiber officinale): updated narrative review exploring the mechanisms of action. Nutr Rev 2023; 81:1213-1224. [PMID: 36688554 DOI: 10.1093/nutrit/nuac115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Ginger (Zingiber officinale) has been investigated for its potentially therapeutic effect on a range of chronic conditions and symptoms in humans. However, a simplified and easily understandable examination of the mechanisms behind these effects is lacking and, in turn, hinders interpretation and translation to practice, and contributes to overall clinical heterogeneity confounding the results. Therefore, drawing on data from nonhuman trials, the objective for this narrative review was to comprehensively describe the current knowledge on the proposed mechanisms of action of ginger on conferring therapeutic health effects in humans. Mechanistic studies support the findings from human clinical trials that ginger may assist in improving symptoms and biomarkers of pain, metabolic chronic disease, and gastrointestinal conditions. Bioactive ginger compounds reduce inflammation, which contributes to pain; promote vasodilation, which lowers blood pressure; obstruct cholesterol production, which regulates blood lipid profile; translocate glucose transporter type 4 molecules to plasma membranes to assist in glycemic control; stimulate fatty acid breakdown to aid weight management; and inhibit serotonin, muscarinic, and histaminergic receptor activation to reduce nausea and vomiting. Additional human trials are required to confirm the antimicrobial, neuroprotective, antineoplastic, and liver- and kidney-protecting effects of ginger. Interpretation of the mechanisms of action will help clinicians and researchers better understand how and for whom ginger may render therapeutic effects and highlight priority areas for future research.
Collapse
Affiliation(s)
- Megan Crichton
- Faculty of Health Science & Medicine, Bond University Nutrition and Dietetics Research Group, Bond University, Robina, Queensland, Australia
- Cancer and Palliative Care Outcomes Centre, Centre for Healthcare Transformation, School of Nursing, Faculty of Health, Kelvin Grove, Queensland, Australia
| | - Skye Marshall
- Faculty of Health Science & Medicine, Bond University Nutrition and Dietetics Research Group, Bond University, Robina, Queensland, Australia
- Department of Science, Nutrition Research Australia, Sydney, New South Wales, Australia
| | - Wolfgang Marx
- Faculty of Health Science & Medicine, Bond University Nutrition and Dietetics Research Group, Bond University, Robina, Queensland, Australia
- Impact (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, Deakin University, Geelong, Australia
| | - Elizabeth Isenring
- Faculty of Health Science & Medicine, Bond University Nutrition and Dietetics Research Group, Bond University, Robina, Queensland, Australia
| | - Anna Lohning
- Faculty of Health Science & Medicine, Bond University Nutrition and Dietetics Research Group, Bond University, Robina, Queensland, Australia
| |
Collapse
|
9
|
Zhou M, Li T, Zeng C, Pan DB, Li HB, Yu Y. Two new diterpenoids from the rhizomes of Zingiber officinale. Nat Prod Res 2023; 37:2255-2262. [PMID: 35184622 DOI: 10.1080/14786419.2022.2038595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/30/2021] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Two undescribed labdane diterpenoids (5S,8S,9R,10S,11E)-8,17-epoxy-13,14-dinorlabd-11-en-13-one (1) and (5S,9R,10S,12E)-17-hydroxy-labd-7,12-dien-15(16)-olide (2), together with seven known sesquiterpenoids (3-9) and two known monoterpenoids (10-11) were isolated from the dried rhizome of Zingiber officinale. Their structures were elucidated by detailed spectroscopic data (IR, UV, HR-ESI-MS, 1D and 2D NMR), X-ray crystallographic and ECD analysis. Moreover, all the 11 compounds were tested for α-glucosidase inhibitory effects and 9 was found to exhibit stronger inhibitory effects at IC50 = 4.8 μM against a positive control acarbose with IC50 = 414.6 μM.
Collapse
Affiliation(s)
- Mi Zhou
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou, China
| | - Ting Li
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou, China
| | - Chen Zeng
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou, China
| | - Da-Bo Pan
- Department of Medical Technology, Qiandongnan Vocational & Technical College for Nationalities, Kaili, Guizhou, P.R. China
| | - Hai-Bo Li
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Kanion Pharmaceutical Co. Ltd., Lianyungang, China
| | - Yang Yu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Abouelezz HM, El-Kashef DH, Abdеlaziz RR, Nader MA. Tenofovir alone or combined with doxorubicin abrogates DMBA-induced mammary cell carcinoma: An insight into its modulatory impact on oxidative/Notch/apoptotic signaling. Life Sci 2023:121798. [PMID: 37236603 DOI: 10.1016/j.lfs.2023.121798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
AIMS Breast cancer incidence keeps on growing and emerging as one of the major global challenges, therefore, the introduction of new approaches is of great demand. Drug repurposing is crucial to faster and cheaper discovery of anti-cancer drugs. The antiviral tenofovir disproxil fumarate (TF) was reported to decrease hepatocellular carcinoma risk by interfering with cell cycle and proliferation. This study aimed to scrutinize the role of TF alone or combined with doxorubicin (DOX) in 7,12-dimethylbenz (a) anthracene (DMBA)-induced breast carcinoma rat model. MATERIALS AND METHODS Breast carcinoma was induced by DMBA (7.5 mg/kg, twice/week, SC into mammary gland) for 4 successive weeks. TF (25 and 50 mg/kg/day) was given orally and DOX (2 mg/kg) was injected once/week by tail vein starting from day 1. KEY FINDINGS The anti-cancerous effect of TF was mediated by suppression of oxidative stress markers and Notch signaling proteins (Notch1, JAG1, and HES1), attenuation of tumor proliferation markers (cyclin-D1 and Ki67), and boosting of apoptosis (P53 and Caspase3) and autophagy biomarkers (Beclin1 and LC3). In parallel, histopathological assessment displayed that mammary glands from animals treated with TF alone or combined with DOX showed better histopathological scores. Interestingly, TF and DOX co-treatment markedly decreased myocardial injury markers (AST, LDH, and CK-MB), restored the balance between GSH and ROS, prohibited lipid peroxidation, and preserved microscopic myocardial architecture. SIGNIFICANCE TF elicited antitumor activity via multiple molecular mechanisms. Moreover, combining TF with DOX might be a potential novel strategy to enhance DOX-anticancer activity and decrease its cardiac side effects.
Collapse
Affiliation(s)
- Hadeer M Abouelezz
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Dalia H El-Kashef
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Rania R Abdеlaziz
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Manar A Nader
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
11
|
Zidan A, El Saadany AA, El Maghraby GM, Abdin AA, Hedya SE. Potential cardioprotective and anticancer effects of carvedilol either free or as loaded nanoparticles with or without doxorubicin in solid Ehrlich carcinoma-bearing mice. Toxicol Appl Pharmacol 2023; 465:116448. [PMID: 36921847 DOI: 10.1016/j.taap.2023.116448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
AIM The aim of this study was to investigate the potential cardioprotective and anti-cancer effects of carvedilol (CAR) either free or as loaded nano-formulated with or without doxorubicin (DOX) in solid Ehrlich carcinoma (SEC)-bearing mice. It focused on assessment of cardiac damage, drug resistance, apoptosis, oxidative stress status, angiogenesis and proliferation. METHODS CAR was loaded into poly-D,L lactic-co-glycolic acid)PLGA(or Niosomes. SEC was induced in female albino mice as an experimental model of breast cancer. Seventy-two mice were randomly divided into 9 equal groups (Normal control, Untreated-SEC, SEC + DOX, SEC + CAR-free, SEC + CAR-PLGA, SEC + CAR-Niosomes, SEC + DOX + CAR-free, SEC + DOX + CAR-PLGA and SEC + DOX + CAR-Niosomes). Tumor volume and survival rate were recorded. On day 28 from tumor inoculation, mice were sacrificed, and blood samples were collected for determination of serum lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB). One part from tumor tissues was prepared for assessment of multidrug resistance protein-1 (MDR-1), caspase-3, reduced glutathione (GSH) and malondialdehyde (MDA), while the other part was processed for histopathological examination and immunohistochemical expression of vascular endothelial growth factor (VEGF) and Ki-67. RESULTS There was non-significant difference between CAR-free, CAR-PLGA and CAR-Niosomes as anticancer either alone or when combined with DOX. However, CAR-free demonstrated potential cardioprotective effects against cardiac damage mediated by cancer or DOX that have been enhanced using CAR-PLGA or CAR-Niosomes, but that of Niosomes outperformed them both. CONCLUSION CAR could be used as an adjuvant therapy with DOX, especially when nanoformualted with PLGA and even better with Niosomes, without compromising its cytotoxicity against cancer cells and preventing its cardiotoxic impacts.
Collapse
Affiliation(s)
- Amr Zidan
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt.
| | - Amira A El Saadany
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt
| | - Gamal M El Maghraby
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Egypt
| | - Amany A Abdin
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt
| | - Sabeha E Hedya
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt
| |
Collapse
|
12
|
Kirdeeva Y, Fedorova O, Daks A, Barlev N, Shuvalov O. How Should the Worldwide Knowledge of Traditional Cancer Healing Be Integrated with Herbs and Mushrooms into Modern Molecular Pharmacology? Pharmaceuticals (Basel) 2022; 15:868. [PMID: 35890166 PMCID: PMC9320176 DOI: 10.3390/ph15070868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Traditional herbal medicine (THM) is a "core" from which modern medicine has evolved over time. Besides this, one third of people worldwide have no access to modern medicine and rely only on traditional medicine. To date, drugs of plant origin, or their derivates (paclitaxel, vinblastine, vincristine, vinorelbine, etoposide, camptothecin, topotecan, irinotecan, and omacetaxine), are very important in the therapy of malignancies and they are included in most chemotherapeutic regimes. To date, 391,000 plant and 14,000 mushroom species exist. Their medical and biochemical capabilities have not been studied in detail. In this review, we systematized the information about plants and mushrooms, as well as their active compounds with antitumor properties. Plants and mushrooms are divided based on the regions where they are used in ethnomedicine to treat malignancies. The majority of their active compounds with antineoplastic properties and mechanisms of action are described. Furthermore, on the basis of the available information, we divided them into two priority groups for research and for their potential of use in antitumor therapy. As there are many prerequisites and some examples how THM helps and strengthens modern medicine, finally, we discuss the positive points of THM and the management required to transform and integrate THM into the modern medicine practice.
Collapse
Affiliation(s)
- Yulia Kirdeeva
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Nikolai Barlev
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
- Orekhovich Institute of Biomedical Chemistry, 119435 Moscow, Russia
| | - Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
- Orekhovich Institute of Biomedical Chemistry, 119435 Moscow, Russia
| |
Collapse
|
13
|
Ozkur M, Benlier N, Takan I, Vasileiou C, Georgakilas AG, Pavlopoulou A, Cetin Z, Saygili EI. Ginger for Healthy Ageing: A Systematic Review on Current Evidence of Its Antioxidant, Anti-Inflammatory, and Anticancer Properties. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4748447. [PMID: 35585878 PMCID: PMC9110206 DOI: 10.1155/2022/4748447] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/11/2022] [Indexed: 12/24/2022]
Abstract
The world's population is ageing at an accelerated pace. Ageing is a natural, physiological but highly complex and multifactorial process that all species in the Tree of Life experience over time. Physical and mental disabilities, and age-related diseases, would increase along with the increasing life expectancy. Ginger (Zingiber officinale) is a plant that belongs to the Zingiberaceae family, native to Southeast Asia. For hundreds of years, ginger has been consumed in various ways by the natives of Asian countries, both as culinary and medicinal herb for the treatment of many diseases. Mounting evidence suggests that ginger can promote healthy ageing, reduce morbidity, and prolong healthy lifespan. Ginger, a well-known natural product, has been demonstrated to possess antioxidant, anti-inflammatory, anticancer, and antimicrobial properties, as well as an outstanding antiviral activity due to a high concentration of antiviral compounds. In this review, the current evidence on the potential role of ginger and its active compounds in the prevention of ageing is discussed.
Collapse
Affiliation(s)
- Mehtap Ozkur
- Department of Medical Pharmacology, Faculty of Medicine, SANKO University, Gaziantep, Turkey
| | - Necla Benlier
- Department of Medical Pharmacology, Faculty of Medicine, SANKO University, Gaziantep, Turkey
| | - Işıl Takan
- Izmir Biomedicine and Genome Center, Balcova, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, Izmir 35220, Turkey
| | - Christina Vasileiou
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 157 80 Athens, Greece
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 157 80 Athens, Greece
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center, Balcova, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, Izmir 35220, Turkey
| | - Zafer Cetin
- Department of Medical Biology, School of Medicine, SANKO University, Gaziantep, Turkey
- Department of Biological and Biomedical Sciences, Graduate Education Institute, SANKO University, Gaziantep, Turkey
| | - Eyup Ilker Saygili
- Department of Medical Biochemistry, School of Medicine, SANKO University, Gaziantep, Turkey
- Department of Molecular Medicine, Graduate Education Institute, SANKO University, Gaziantep, Turkey
| |
Collapse
|
14
|
Tang M, Dong X, Xiao L, Tan Z, Luo X, Yang L, Li W, Shi F, Li Y, Zhao L, Liu N, Du Q, Xie L, Hu J, Weng X, Fan J, Zhou J, Gao Q, Wu W, Zhang X, Liao W, Bode AM, Cao Y. CPT1A-mediated fatty acid oxidation promotes cell proliferation via nucleoside metabolism in nasopharyngeal carcinoma. Cell Death Dis 2022; 13:331. [PMID: 35411000 PMCID: PMC9001659 DOI: 10.1038/s41419-022-04730-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/05/2022] [Accepted: 03/16/2022] [Indexed: 12/24/2022]
Abstract
As the first rate-limiting enzyme in fatty acid oxidation (FAO), CPT1 plays a significant role in metabolic adaptation in cancer pathogenesis. FAO provides an alternative energy supply for cancer cells and is required for cancer cell survival. Given the high proliferation rate of cancer cells, nucleotide synthesis gains prominence in rapidly proliferating cells. In the present study, we found that CPT1A is a determining factor for the abnormal activation of FAO in nasopharyngeal carcinoma (NPC) cells. CPT1A is highly expressed in NPC cells and biopsies. CPT1A dramatically affects the malignant phenotypes in NPC, including proliferation, anchorage-independent growth, and tumor formation ability in nude mice. Moreover, an increased level of CPT1A promotes core metabolic pathways to generate ATP, inducing equivalents and the main precursors for nucleotide biosynthesis. Knockdown of CPT1A markedly lowers the fraction of 13C-palmitate-derived carbons into pyrimidine. Periodic activation of CPT1A increases the content of nucleoside metabolic intermediates promoting cell cycle progression in NPC cells. Targeting CPT1A-mediated FAO hinders the cell cycle G1/S transition. Our work verified that CPT1A links FAO to cell cycle progression in NPC cellular proliferation, which supplements additional experimental evidence for developing a therapeutic mechanism based on manipulating lipid metabolism.
Collapse
Affiliation(s)
- Min Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
- Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China
| | - Xin Dong
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
- Department of Laboratory, National Cancer Center / National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Lanbo Xiao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Zheqiong Tan
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
- Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China
| | - Lifang Yang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
- Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China
| | - Wei Li
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Yueshuo Li
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Lin Zhao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Na Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Qianqian Du
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Longlong Xie
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Jianmin Hu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Xinxian Weng
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Jia Fan
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Zhongshan Hospital, Shanghai Medical School, Fudan University, 200000, Shanghai, China
| | - Jian Zhou
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Zhongshan Hospital, Shanghai Medical School, Fudan University, 200000, Shanghai, China
| | - Qiang Gao
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Zhongshan Hospital, Shanghai Medical School, Fudan University, 200000, Shanghai, China
| | - Weizhong Wu
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Zhongshan Hospital, Shanghai Medical School, Fudan University, 200000, Shanghai, China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 410078, Changsha, China
| | - Weihua Liao
- Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China
- Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.
- Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China.
- Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China.
- Research Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics Hunan Province, 410078, Changsha, China.
- National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, 410078, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410078, Changsha, China.
| |
Collapse
|
15
|
El-Salam MA, Samy G, Bastos J, Metwaly H. Novel antitumor activity of the combined treatment of galloylquinic acids from Copaifera lucens and doxorubicin in solid Ehrlich carcinoma-bearing mice via the modulation of the Notch signaling pathway. Life Sci 2022; 299:120497. [PMID: 35339508 DOI: 10.1016/j.lfs.2022.120497] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/11/2022] [Accepted: 03/19/2022] [Indexed: 02/07/2023]
Abstract
AIMS This study aims to investigate the potential synergistic effect of the combined treatment of galloylquinic acids compounds from Copaifera lucens with doxorubicin via the modulation of the Notch pathway in Ehrlich carcinoma-bearing mice model. MAIN METHODS The solid tumor model was induced in mice by s.c. injection of Ehrlich cancerous cells in the right hind limb. Sixty mice were allocated into five different groups which included treated groups with galloylquinic acids compounds, doxorubicin and their combination. Normal and tumor control groups were also used. Different biological samples were collected to measure the levels of Notch1, Hes1, Jagged1, TNF-α, IL-6, and VEGF. Histopathological and immunohistochemical examinations of tumor tissues using specific anti-NF-kβ and anti-cyclin D1 antibodies were also performed. KEY FINDINGS Our results showed that the combined treatment of galloylquinic acids compounds with doxorubicin significantly inhibited Notch1, Hes1, Jagged1, TNF-α, IL-6, VEGF, NF-kβ, and cyclin D1 activities. SIGNIFICANCE Galloylquinic acids compounds exhibited promising synergistic chemotherapeutic and oncostatic effects and promoted the chemosensitivity of doxorubicin, mainly by inhibiting the Notch signaling pathway and its downstream effectors. These compounds may be considered in cancer therapy exhibiting improved efficacy and reduced side effects of chemotherapeutic agents.
Collapse
Affiliation(s)
- Mohamed Abd El-Salam
- Department of Pharmacognosy, Faculty of Pharmacy, Delta University for Science and Technology, 11152, Egypt; Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Department of Medicine, Harvard Medical School, Boston, 02115, MA, USA; Department of Medicine, VA Boston Healthcare System, Boston, MA 02132, USA.
| | - Ghada Samy
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, 11152, Egypt
| | - Jairo Bastos
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-900 Ribeirão Preto, São Paulo, Brazil
| | - Heba Metwaly
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Alexandria University, 21500 Alexandria, Egypt.
| |
Collapse
|
16
|
Role of Herbal Teas in Regulating Cellular Homeostasis and Autophagy and Their Implications in Regulating Overall Health. Nutrients 2021; 13:nu13072162. [PMID: 34201882 PMCID: PMC8308238 DOI: 10.3390/nu13072162] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 02/06/2023] Open
Abstract
Tea is one of the most popular and widely consumed beverages worldwide, and possesses numerous potential health benefits. Herbal teas are well-known to contain an abundance of polyphenol antioxidants and other ingredients, thereby implicating protection and treatment against various ailments, and maintaining overall health in humans, although their mechanisms of action have not yet been fully identified. Autophagy is a conserved mechanism present in organisms that maintains basal cellular homeostasis and is essential in mediating the pathogenesis of several diseases, including cancer, type II diabetes, obesity, and Alzheimer’s disease. The increasing prevalence of these diseases, which could be attributed to the imbalance in the level of autophagy, presents a considerable challenge in the healthcare industry. Natural medicine stands as an effective, safe, and economical alternative in balancing autophagy and maintaining homeostasis. Tea is a part of the diet for many people, and it could mediate autophagy as well. Here, we aim to provide an updated overview of popular herbal teas’ health-promoting and disease healing properties and in-depth information on their relation to autophagy and its related signaling molecules. The present review sheds more light on the significance of herbal teas in regulating autophagy, thereby improving overall health.
Collapse
|
17
|
Zadorozhna M, Mangieri D. Mechanisms of Chemopreventive and Therapeutic Proprieties of Ginger Extracts in Cancer. Int J Mol Sci 2021; 22:6599. [PMID: 34202966 PMCID: PMC8234951 DOI: 10.3390/ijms22126599] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Ginger (Zingiber officinale Roscoe, family: Zingiberaceae), originating in South-East Asia, is one of the most used spices and condiments for foods and beverages. It is also used in traditional medicine for many human disorders including fever, gastrointestinal complications, arthritis, rheumatism, hypertension, and various infectious diseases due to its anti-inflammatory, antioxidant, antimicrobial, and antiemetic properties. Intriguingly, many recent studies evidenced the potent chemopreventive characteristics of ginger extracts against different types of cancer. The aim of this work is to review the literature related to the use of ginger extracts as a chemotherapeutic agent and to structure the cellular and molecular mechanisms through which ginger acts in different cancer types. Data summarized from experiments (in vitro or in vivo) and clinical studies, evidenced in this review, show that ginger derivatives perpetrate its anti-tumor action through important mediators, involved in crucial cell processes, such as cell cycle arrest, induction of cancer cell death, misbalance of redox homeostasis, inhibition of cell proliferation, angiogenesis, migration, and dissemination of cancer cells.
Collapse
Affiliation(s)
| | - Domenica Mangieri
- Department of Medical and Surgical Sciences, University of Foggia, Via Pinto 1, 71122 Foggia, Italy;
| |
Collapse
|
18
|
Najafi Dorcheh S, Rahgozar S, Talei D. 6-Shogaol induces apoptosis in acute lymphoblastic leukaemia cells by targeting p53 signalling pathway and generation of reactive oxygen species. J Cell Mol Med 2021; 25:6148-6160. [PMID: 33939282 PMCID: PMC8406487 DOI: 10.1111/jcmm.16528] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/22/2022] Open
Abstract
Combination therapies, using medicinal herbs, are broadly recommended to attenuate the chemotherapy adverse effects. Based on our previous findings considering the anti-leukaemic effects of ginger extract on acute lymphoblastic leukaemia (ALL) cells, the present study was aimed to investigate the anti-cancer role of this pharmaceutical plant on ALL mice models. Moreover, we worked towards identifying the most anti-leukaemic derivative of ginger and the mechanism through which it may exert its cytotoxic impact. In vivo experiments were performed using five groups of six C57BL/6 nude mice, and the anti-leukaemic activity of ginger extract alone or in combination with methotrexate (MTX) was examined. Results showed increased survival rate and reduced damages in mice brain and liver tissues. Subsequently, MTT assay demonstrated synergistic growth inhibitory effect of 6-shogaol (6Sh) and MTX on ALL cell lines and patients primary cells. Eventually, the molecular anti-neoplastic mechanism of 6Sh was evaluated using Bioinformatics. Flow cytometry illustrated 6Sh-mediated apoptosis in Nalm-6 cells confirmed by Western blotting and RT-PCR assays. Further analyses exhibited the generation of reactive oxygen species (ROS) through 6Sh. The current study revealed the in vivo novel anti-leukaemic role of ginger extract, promoted by MTX. Moreover, 6-shogaol was introduced as the major player of ginger cytotoxicity through inducing p53 activity and ROS generation.
Collapse
Affiliation(s)
| | | | - Daryush Talei
- Medicinal Plants Research CenterShahed UniversityTehranIran
| |
Collapse
|
19
|
Filho JMDM, Neto JN, Gomes LMRDS, Ramos ISF, Oliveira SSR, Melo GCF, Silva LA, Moura ECR, Leal PDC. Zingiber officinale Roscoe (Ginger) as a Complementary Option for Clinical Treatment of Endometriosis: An Experimental Study in Rats. J Med Food 2021; 24:342-347. [PMID: 32833559 DOI: 10.1089/jmf.2019.0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Endometriosis was induced (autotransplant) in Wistar rats. After 21 days, the rats were randomly divided into two groups (16 female rats each). Control group was forced-fed 0.9% sodium chloride solution, and the ginger group was forced-fed 0.5 mg/100 g of Zingiber officinale Roscoe fresh extract, both by gavage, for 14 days, in addition to their normal diet. After that, an anesthetic dose (ketamine/xylazine) was administered until euthanasia. Peritoneal lavage fluid was collected to evaluate tumor necrosis factor (TNF)-α and interleukin (IL)-6, and autotransplant was measured and excised to evaluate histology. The final mean volumes were larger in the control group (120.92 mm3 ± 78.91) than in the ginger group (40.50 mm3 ± 19.57) (P = .01). The endometriosis foci increased in the control group from 45.10 mm3 ± 29.96 at 21 days postimplantation to 120.92 mm3 ± 78.91 on the day of euthanasia (P = .02). In the ginger group, a slight increase was observed from 38.43 mm3 ± 19.96 to 40.50 mm3 ± 19.57, without statistical difference (P = .83). In addition, a greater increase in growth of the endometriosis foci was found when compared with the control (75.81 mm3 ± 58.95) and ginger groups (2.07 mm3 ± 18.87) (P = .004). No difference was found in TNF-α (P = .51) and in IL-6 (P = .12). The degree of lesion atrophy was higher in the ginger group (1 ± 0.92) than in the control group (2.25 ± 1.16) (P = .03). The ginger extract reduced and atrophied autotransplanted endometriosis foci, but did not reduce IL-6 and TNF-α in the peritoneal lavage fluid.
Collapse
Affiliation(s)
| | - João Nogueira Neto
- Department of Medicine I, Federal University of Maranhão, São Luis, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Mahomoodally MF, Aumeeruddy MZ, Rengasamy KRR, Roshan S, Hammad S, Pandohee J, Hu X, Zengin G. Ginger and its active compounds in cancer therapy: From folk uses to nano-therapeutic applications. Semin Cancer Biol 2021; 69:140-149. [PMID: 31412298 DOI: 10.1016/j.semcancer.2019.08.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/26/2019] [Accepted: 08/09/2019] [Indexed: 12/28/2022]
Abstract
Ginger is a spice that is renowned for its characteristic aromatic fragrance and pungent taste, with documented healing properties. Field studies conducted in several Asian and African countries revealed that ginger is used traditionally in the management of cancer. The scientific community has probed into the biological validation of its extracts and isolated compounds including the gingerols, shogaols, zingiberene, and zingerone, through in-vitro and in-vivo studies. Nonetheless, an updated compilation of these data together with a deep mechanistic approach is yet to be provided. Accordingly, this review highlights the mechanisms and therapeutics of ginger and its bioactive compounds focused on a cancer context and these evidence are based on the (i) cytotoxic effect against cancer cell lines, (ii) enzyme inhibitory action, (iii) combination therapy with chemotherapeutic and phenolic compounds, (iv) possible links to the microbiome and (v) the use of nano-formulations of ginger bioactive compounds as a more effective drug delivery strategy in cancer therapy.
Collapse
Affiliation(s)
- M F Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| | - M Z Aumeeruddy
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| | - Kannan R R Rengasamy
- Bionanotechnology Research Group, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - S Roshan
- Deccan School of Pharmacy, Darussalam, Aghapura, Hyderabad, 500001, Telangana, India
| | - S Hammad
- School of Pharmacy, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Lahore, Pakistan
| | - J Pandohee
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius; Centre for Integrative Metabolomics and Computational Biology, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Xuebo Hu
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - G Zengin
- Department of Biology, Faculty of Science, Selcuk University, Turkey
| |
Collapse
|
21
|
Abo Mansour HE, El-Batsh MM, Badawy NS, Mehanna ET, Mesbah NM, Abo-Elmatty DM. Ginger Extract Loaded into Chitosan Nanoparticles Enhances Cytotoxicity and Reduces Cardiotoxicity of Doxorubicin in Hepatocellular Carcinoma in Mice. Nutr Cancer 2020; 73:2347-2362. [PMID: 32972241 DOI: 10.1080/01635581.2020.1823436] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/27/2020] [Accepted: 09/05/2020] [Indexed: 02/08/2023]
Abstract
This study aimed to investigate the impact of ginger extract (GE) loaded into chitosan nanoparticles (CNPs) in enhancing cytotoxicity and reducing cardiotoxicity of doxorubicin (DXN) in hepatocellular carcinoma (HCC) induced mice. DXN and GE were loaded into CNPs and cytotoxicity of loaded and unloaded drugs against HepG2 cells was evaluated. HCC was induced in male albino mice by injection of diethylnitrosamine (DINA). Mice were divided into eight groups (n = 15): (1) normal control, (2) DINA, (3) CNPs, (4) free DXN, (5) CNPs DXN, (6) free GE, (7) CNPs GE, and (8) CNPs DXN + CNPs GE. Both GE and DXN loaded into CNPs showed a greater decline in cell viability of HepG2 cells than the unloaded forms. GE CNPs displayed pronounced anticancer activity In Vivo through apoptosis, greater down-regulation of multidrug resistance 1, enhancement of anti-oxidant activity and depletion of vascular endothelial growth factor content in liver tissues. GE CNPs in combination with DXN CNPs showed nearly normal hepatic lobule architecture and the greatest increase in apoptotic cell count. Co-treatment group had decreased cardiac malondialdehyde, tumor necrosis factor-α and serum activity of creatine kinase and lactate dehydrogenase. Combination of GE CNPs and DXN CNPs might be a potentially effective therapeutic approach for HCC.
Collapse
Affiliation(s)
- Hend E Abo Mansour
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University, Shebeen El-Kom, Egypt
| | - Maha M El-Batsh
- Department of Clinical Pharmacology, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| | - Nadia S Badawy
- Department of Histology and Cell Biology, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| | - Eman T Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Noha M Mesbah
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Dina M Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
22
|
Malami I, Jagaba NM, Abubakar IB, Muhammad A, Alhassan AM, Waziri PM, Yakubu Yahaya IZ, Mshelia HE, Mathias SN. Integration of medicinal plants into the traditional system of medicine for the treatment of cancer in Sokoto State, Nigeria. Heliyon 2020; 6:e04830. [PMID: 32939417 PMCID: PMC7479351 DOI: 10.1016/j.heliyon.2020.e04830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 02/04/2020] [Accepted: 08/27/2020] [Indexed: 01/28/2023] Open
Abstract
This study was designed to explore and record various medicinal plants integrated into the traditional system of medicine for the treatment of cancer. The traditional system of medicine is a routine practiced among the indigenous ethnic groups of Sokoto state. A semi-structured questionnaire was designed and used for data collection around the selected Local Government Areas. A substantial number of plant species were identified, recorded, and collected for preservation. Data collected for each specie was analysed to assess its frequent use among the medicinal plants. A total of 67 species belonging to 31 families have been identified and recorded. Out of the 473 frequency of citation (FC), Acacia nilotica was the most frequently cited specie (32 FC, 64% FC, 0.6 RFC), followed by Guiera senegalensis (27 FC, 54% FC, 0.5 RFC), Erythrina sigmoidea (17 FC, 34% FC, 0.3 RFC), and subsequently Combretum camporum (15 FC, 30% FC, 0.3 RFC). The most common parts of the plants used include the barks (55.2%), the roots (53.2%), and the leaves (41.8%). Additionally, decoction (74.6%), powdered form (49.3%), and maceration (46.3%) are the most frequently used mode of preparation. The historical knowledge of a traditional system of medicine practiced by the native traditional healers of Sokoto for the treatment of cancer has been documented. The present study further provides a baseline for future pharmacological investigations into the beneficial effects of such medicinal plants for the treatment of cancer.
Collapse
Affiliation(s)
- Ibrahim Malami
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training (CAMRET), Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
- Corresponding author.
| | - Nasiru Muhammad Jagaba
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Ibrahim Babangida Abubakar
- Department of Biochemistry, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero, PMB 1144, Kebbi State, Nigeria
| | - Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University Zaria, 810271, Nigeria
| | - Alhassan Muhammad Alhassan
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Peter Maitama Waziri
- Department of Biochemistry, Kaduna State University, Main Campus, PMB 2336, Kaduna, Nigeria
| | - Ibrahim Zakiyya Yakubu Yahaya
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Halilu Emmanuel Mshelia
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Sylvester Nefy Mathias
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| |
Collapse
|
23
|
Elsherbiny NM, El-Sherbiny M, Zaitone SA. Diallyl trisulfide potentiates chemotherapeutic efficacy of doxorubicin in experimentally induced mammary carcinoma: Role of Notch signaling. Pathol Res Pract 2020; 216:153139. [PMID: 32853959 DOI: 10.1016/j.prp.2020.153139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/19/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023]
Abstract
The prevalence of breast cancer is remarkably increasing worldwide. Therefore, introduction of new approaches along with improvement of the existing ones in cancer treatment field is of great demand. The present study was designated to investigate the anti-proliferative role of Diallyl trisulfide (DATS) alone or in combination with Doxorubicin (Doxo) in Ehrlich solid carcinoma (ESC)-bearing mice. ESC was induced in female albino mice as an experimental model for breast cancer. The anti-tumorigenic effect of DATS was mediated by suppression of Notch signaling proteins (Notch 1, JAG 1 and HES 1), attenuation of tumor inflammation (NFκB, TNF-α, IL-6, IL-1β) and proliferation (cyclin D1, Ki67) and enhancement of apoptosis (caspase 3, p53). DATS and Doxo mono-treatments displayed opposing effect regarding expression of Notch signaling proteins and cyclin D1 gene expression. However, DATS and Doxo co-treatment markedly decreased tumor volume and weight, increased animals' survival rate, and attenuated Doxo-induced tumor inflammation. In parallel, microscopic investigation displayed that ESC tumor tissues from animals treated with DATS and/or DOX showed shrinkage of tumor lesions and wider zones of apoptosis. In conclusion, DATS acts via multiple molecular targets to elicit anti-proliferative activity. Combination of DATS with Doxo -which exhibit different mechanisms of action- might be a potential novel strategy to augment Doxo-antitumor effect.
Collapse
Affiliation(s)
- Nehal M Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Mohamed El-Sherbiny
- Department of Anatomy, Mansoura Faculty of Medicine, Mansoura University, Egypt; Almaarefa University, College of Medicine, Riyadh, Saudi Arabia
| | - Sawsan A Zaitone
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
24
|
Thymoquinone and pentoxifylline enhance the chemotherapeutic effect of cisplatin by targeting Notch signaling pathway in mice. Life Sci 2020; 244:117299. [PMID: 31953157 DOI: 10.1016/j.lfs.2020.117299] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/30/2019] [Accepted: 01/12/2020] [Indexed: 02/08/2023]
Abstract
AIMS Notch signaling is highly implicated in several cancers and chemoresistance. Therefore, Notch-targeted therapies might be beneficial in enhancing chemotherapeutic effect and cancer regression. This study aimed to investigate implication of Notch in development and progression of solid Ehrlich carcinoma (SEC) and enhancement of anticancer effect of cisplatin (CIS) by addition of thymoquinone (TQ) and pentoxifylline (PTX) through modulation of Notch. MAIN METHODS SEC was induced in mice as model for mammary carcinoma by s.c. injection of 1 × 106 Ehrlich cells into back of the mice. On 12th day, solid tumor was developed and mice were divided into seven groups; tumor control, early CIS (ECIS), ECIS + ETQ, ECIS + ETQ + EPTX, late CIS (LCIS), LCIS + LTQ, and LCIS + LTQ + LPTX. Early treatment was started on 12th day, whereas late treatment was begun on 19th day from tumor inoculation. At the endpoint, samples were collected for detection of Notch1, Hes1, Jagged1, β-catenin, TNF-α, IL-6, IFN-γ, IL-2, VEGF, apoptosis, CD4, and CD8. KEY FINDINGS Adding PTX and TQ to CIS significantly reduced Notch1, Hes1, Jagged1, β-catenin, TNF-α, IL-6, IFN-γ, and VEGF with increment in IL-2, CD4, CD8, and apoptotic cells. Moreover, early treated groups showed remarkable attenuation in tumor growth and the relevant parameters compared to their counterpart later groups. SIGNIFICANCE Addition of PTX with TQ to CIS showed a synergistic chemotherapeutic action and induced better oncostatic effect mainly through Notch suppression. Consequently, shutting Notch could be of great interest in promoting chemosensetivity and cancer control.
Collapse
|
25
|
Mao QQ, Xu XY, Cao SY, Gan RY, Corke H, Beta T, Li HB. Bioactive Compounds and Bioactivities of Ginger ( Zingiber officinale Roscoe). Foods 2019; 8:E185. [PMID: 31151279 PMCID: PMC6616534 DOI: 10.3390/foods8060185] [Citation(s) in RCA: 465] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023] Open
Abstract
Ginger (Zingiber officinale Roscoe) is a common and widely used spice. It is rich in various chemical constituents, including phenolic compounds, terpenes, polysaccharides, lipids, organic acids, and raw fibers. The health benefits of ginger are mainly attributed to its phenolic compounds, such as gingerols and shogaols. Accumulated investigations have demonstrated that ginger possesses multiple biological activities, including antioxidant, anti-inflammatory, antimicrobial, anticancer, neuroprotective, cardiovascular protective, respiratory protective, antiobesity, antidiabetic, antinausea, and antiemetic activities. In this review, we summarize current knowledge about the bioactive compounds and bioactivities of ginger, and the mechanisms of action are also discussed. We hope that this updated review paper will attract more attention to ginger and its further applications, including its potential to be developed into functional foods or nutraceuticals for the prevention and management of chronic diseases.
Collapse
Affiliation(s)
- Qian-Qian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Shi-Yu Cao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Harold Corke
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Trust Beta
- Department of Food & Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
26
|
Zhao D, Gu MY, Xu JL, Zhang LJ, Ryu SY, Yang HO. Anti-neuroinflammatory Effects of 12-Dehydrogingerdione in LPS-Activated Microglia through Inhibiting Akt/IKK/NF-κB Pathway and Activating Nrf-2/HO-1 Pathway. Biomol Ther (Seoul) 2019; 27:92-100. [PMID: 30404129 PMCID: PMC6319549 DOI: 10.4062/biomolther.2018.104] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/24/2018] [Accepted: 08/31/2018] [Indexed: 12/15/2022] Open
Abstract
Ginger, one of worldwide consumed dietary spice, is not only famous as food supplements, but also believed to exert a variety of remarkable pharmacological activity as herbal remedies. In this study, a ginger constituent, 12-dehydrogingerdione (DHGD) was proven that has comparable anti-inflammatory activity with positive control 6-shogaol in inhibiting LPS-induced interleukin (IL)-6, tumor necrosis factor (TNF)-α, prostaglandin (PG) E2, nitric oxide (NO), inducible NO synthase (iNOS) and cyclooxygenase (COX)-2, without interfering with COX-1 in cultured microglial cells. Subsequent mechanistic studies indicate that 12-DHGD may inhibit neuro-inflammation through suppressing the LPS-activated Akt/IKK/NF-κB pathway. Furthermore, 12-DHGD markedly promoted the activation of NF-E2-related factor (Nrf)-2 and heme oxygenase (HO)-1, and we demonstrated that the involvement of HO-1 on the production of pro-inflammatory mediators such as NO and TNF-α by using a HO-1 inhibitor, Zinc protoporphyrin (Znpp). These results indicate that 12-DHGD may protect against neuro-inflammation by inhibiting Akt/IKK/IκB/NF-κB pathway and promoting Nrf-2/HO-1 pathway.
Collapse
Affiliation(s)
- Dong Zhao
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 25457, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Ming-Yao Gu
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 25457, Republic of Korea
| | - Jiu Liang Xu
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 25457, Republic of Korea
| | - Li Jun Zhang
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 25457, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Shi Yong Ryu
- Research Center for Medicinal Chemistry, Korea Research Institute of Chemical Technology, Daejeon 34113, Republic of Korea
| | - Hyun Ok Yang
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 25457, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
27
|
Saleh A, ElFayoumi HM, Youns M, Barakat W. Rutin and orlistat produce antitumor effects via antioxidant and apoptotic actions. Naunyn Schmiedebergs Arch Pharmacol 2018; 392:165-175. [PMID: 30465055 DOI: 10.1007/s00210-018-1579-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 11/05/2018] [Indexed: 12/17/2022]
Abstract
Cancer is a broad term used to describe a large number of diseases characterized by uncontrolled cell proliferation that leads to tumor production. Cancer is associated with mutations in genes controlling proliferation and apoptosis, oxidative stress, fatty acid synthase (FAS) expression, and other mechanisms. Currently, most antineoplastic drugs have severe adverse effects and new effective and safe drugs are needed. This study aims to investigate the possible anticancer activity of rutin and orlistat which are both safely used clinically in humans against two breast cancer models (in vivo EAC and in vitro MCF7) and the pancreatic cancer cell line (PANC-1). Our results have shown that both rutin and orlistat exerted an in vivo anticancer activity as evidenced by the decrease in tumor volume, CEA level, cholesterol content, FAS, and the exerted antioxidant action (reduced MDA level and increased GSH content) and through histopathological examination. In addition, both were cytotoxic to MCF-7 and Panc-1 cell lines by promoting apoptosis. In conclusion, the anticancer activity of rutin and orlistat makes them promising candidates for cancer treatment alone or in combination with other anticancer drugs specially that they are used clinically with an acceptable safety profile.
Collapse
Affiliation(s)
- Amira Saleh
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Hassan M ElFayoumi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.,Department of Pharmacology & Toxicology, Faculty of Pharmacy, Sinai University, Ismailia, Egypt
| | - Mahmoud Youns
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Helwan, Egypt.,Department of Biochemistry, Oman Pharmacy Institute, Ministry of Health, Muscat, Oman
| | - Waleed Barakat
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt. .,Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tabuk University, Tabuk, Kingdom of Saudi Arabia.
| |
Collapse
|
28
|
Anticancer activity of salicin and fenofibrate. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:1061-1071. [PMID: 28733879 DOI: 10.1007/s00210-017-1407-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022]
|