1
|
Melo Ferreira D, Oliveira MBPP, Alves RC. A Comprehensive Review of the Antitumor Activity of Olive Compounds: The Case of Olive Oil, Pomace, and Leaf Extracts, Phenolic Alcohols, Secoiridoids, and Triterpenes. Antioxidants (Basel) 2025; 14:237. [PMID: 40002421 PMCID: PMC11852221 DOI: 10.3390/antiox14020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/24/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Olive oil is widely recognized for its cancer-prevention properties, and its by-products, such as pomace and leaves, offer an opportunity for compound extraction. This study comprehensively reviews the antitumor activities of olive extracts and compounds in both in vitro and in vivo studies. Key compounds, including hydroxytyrosol (HT), oleuropein (OL), oleocanthal (OC), and maslinic acid (MA), demonstrated significant antiproliferative, apoptotic, antimigratory, and anti-invasive effects, along with selective cytotoxicity, particularly against breast and colorectal cancer. HT, OC, and MA showed anti-angiogenic effects, while HT and OC showed antimetastatic effects. Moreover, HT, OL, and OC also presented synergistic effects when combined with anticancer drugs, improving their efficacy. Additionally, HT, OL, and MA exhibited protective effects against several side effects of chemotherapy. These compounds are able to modulate important signaling pathways such as the mammalian target of rapamycin, regulate oxidative stress through reactive oxygen species production, modulate angiogenic factors, and induce autophagy. Interestingly, the synergistic effects of the compounds within olive extracts appear to be stronger than their individual action. There is a need for dose optimization, further mechanistic studies to clarify the precise mechanisms of action, and future studies using olive pomace extracts with animal models.
Collapse
Affiliation(s)
| | | | - Rita Carneiro Alves
- REQUIMTE/LAQV (Rede de Química e Tecnologia/Laboratório Associado para a Química Verde), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Street of Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal (M.B.P.P.O.)
| |
Collapse
|
2
|
Porcel-Pastrana F, Montero-Hidalgo AJ, G-García ME, Gil-Duque I, Prats-Escribano A, Gahete MD, Sarmento-Cabral A, Luque RM, León-González AJ. Cellular and Molecular Evidence of the Synergistic Antitumour Effects of Hydroxytyrosol and Metformin in Prostate Cancer. Int J Mol Sci 2025; 26:1341. [PMID: 39941109 PMCID: PMC11818903 DOI: 10.3390/ijms26031341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Prostate cancer (PCa) is the tumour pathology with the second highest incidence among men worldwide. PCa is strongly influenced by obesity (OB), which increases its aggressiveness. Hence, some metabolic drugs like metformin have emerged as potential anti-tumour agents against several endocrine-related cancers. Likewise, a high adherence to the Mediterranean diet has been associated with lower rates of OB and a reduction in PCa aggressiveness since this diet contains phenolic bioactive compounds such as hydroxytyrosol (HT) that is mainly present in extra virgin olive oil. Thus, we decided to analyse the therapeutic potential of the combination of HT + metformin in different PCa cell models. Specifically, combinations of different doses of HT and metformin were evaluated by analysing the proliferation rate of LNCaP, 22Rv1, DU-145, and PC-3 cells using the SynergicFinder method. The results revealed a synergistic effect of HT + metformin in significantly reducing proliferation, especially in LNCaP cells. This anti-tumour effect of HT + metformin was also confirmed in migration and tumoursphere formation assays in LNCaP. The effects on the cell cycle and apoptosis were also assessed by flow-cytometry, and a cycle arrest in the G1 phase and an increase in late apoptosis were observed with the combination of HT + metformin. The phosphorylation levels of critical components of different oncogenic pathways were measured which revealed that the combination of HT + metformin significantly reduced the activity of multiple components of the MAPK, AKT, and TGF-β pathways. Overall, the combination of HT + metformin might represent a new therapeutic avenue for the management of PCa patients, an observation that certainly warrants further investigation through a well-designed clinical trial.
Collapse
Affiliation(s)
- Francisco Porcel-Pastrana
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Córdoba, Spain; (F.P.-P.); (A.J.M.-H.); (M.E.G.-G.); (I.G.-D.); (A.P.-E.); (M.D.G.); (A.S.-C.)
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14014 Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), 14004 Córdoba, Spain
| | - Antonio J. Montero-Hidalgo
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Córdoba, Spain; (F.P.-P.); (A.J.M.-H.); (M.E.G.-G.); (I.G.-D.); (A.P.-E.); (M.D.G.); (A.S.-C.)
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14014 Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), 14004 Córdoba, Spain
| | - Miguel E. G-García
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Córdoba, Spain; (F.P.-P.); (A.J.M.-H.); (M.E.G.-G.); (I.G.-D.); (A.P.-E.); (M.D.G.); (A.S.-C.)
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14014 Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), 14004 Córdoba, Spain
| | - Ignacio Gil-Duque
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Córdoba, Spain; (F.P.-P.); (A.J.M.-H.); (M.E.G.-G.); (I.G.-D.); (A.P.-E.); (M.D.G.); (A.S.-C.)
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14014 Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), 14004 Córdoba, Spain
| | - Antonio Prats-Escribano
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Córdoba, Spain; (F.P.-P.); (A.J.M.-H.); (M.E.G.-G.); (I.G.-D.); (A.P.-E.); (M.D.G.); (A.S.-C.)
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14014 Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), 14004 Córdoba, Spain
| | - Manuel D. Gahete
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Córdoba, Spain; (F.P.-P.); (A.J.M.-H.); (M.E.G.-G.); (I.G.-D.); (A.P.-E.); (M.D.G.); (A.S.-C.)
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14014 Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), 14004 Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28019 Madrid, Spain
| | - André Sarmento-Cabral
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Córdoba, Spain; (F.P.-P.); (A.J.M.-H.); (M.E.G.-G.); (I.G.-D.); (A.P.-E.); (M.D.G.); (A.S.-C.)
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14014 Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), 14004 Córdoba, Spain
| | - Raúl M. Luque
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Córdoba, Spain; (F.P.-P.); (A.J.M.-H.); (M.E.G.-G.); (I.G.-D.); (A.P.-E.); (M.D.G.); (A.S.-C.)
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14014 Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), 14004 Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28019 Madrid, Spain
| | - Antonio J. León-González
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Córdoba, Spain; (F.P.-P.); (A.J.M.-H.); (M.E.G.-G.); (I.G.-D.); (A.P.-E.); (M.D.G.); (A.S.-C.)
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14014 Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), 14004 Córdoba, Spain
- Department of Pharmacology, School of Pharmacy, University of Seville, 41012 Seville, Spain
| |
Collapse
|
3
|
Calahorra J, Blaya-Cánovas JL, Castellini-Pérez O, Aparicio-Puerta E, Cives-Losada C, Marin JJG, Rementeria M, Cara FE, López-Tejada A, Griñán-Lisón C, Aulicino F, Berger I, Marchal JA, Delgado-Almenta V, Granados-Principal S. Unlocking the effective alliance of β-lapachone and hydroxytyrosol against triple-negative breast cancer cells. Biomed Pharmacother 2024; 174:116439. [PMID: 38518601 DOI: 10.1016/j.biopha.2024.116439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is characterised by its aggressiveness and resistance to chemotherapy, demanding the development of effective strategies against its unique characteristics. Derived from lapacho tree bark, β-lapachone (β-LP) selectively targets cancer cells with elevated levels of the detoxifying enzyme NQO1. Hydroxytyrosol (HT) is a phenolic compound derived from olive trees with important anticancer properties that include the inhibition of cancer stem cells (CSCs) and metastatic features in TNBC, as well as relevant antioxidant activities by mechanisms such as the induction of NQO1. We aimed to study whether these compounds could have synergistic anticancer activity in TNBC cells and the possible role of NQO1. For this pourpose, we assessed the impact of β-LP (0.5 or 1.5 μM) and HT (50 and 100 μM) on five TNBC cell lines. We demonstrated that the combination of β-LP and HT exhibits anti-proliferative, pro-apoptotic, and cell cycle arrest effects in several TNBC cells, including docetaxel-resistant TNBC cells. Additionally, it effectively inhibits the self-renewal and clonogenicity of CSCs, modifying their aggressive phenotype. However, the notable impact of the β-LP-HT combination does not appear to be solely associated with the levels of the NQO1 protein and ROS. RNA-Seq analysis revealed that the combination's anticancer activity is linked to a strong induction of endoplasmic reticulum stress and apoptosis through the unfolded protein response. In conclusion, in this study, we demonstrated how the combination of β-LP and HT could offer an affordable, safe, and effective approach against TNBC.
Collapse
Affiliation(s)
- Jesús Calahorra
- UGC de Oncología Médica, Hospital Universitario de Jaén, Jaén 23007, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Granada 18100, Spain; GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain.
| | - José L Blaya-Cánovas
- UGC de Oncología Médica, Hospital Universitario de Jaén, Jaén 23007, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Granada 18100, Spain; GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain
| | - Olivia Castellini-Pérez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain
| | - Ernesto Aparicio-Puerta
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, Saarbrücken 66123, Germany
| | - Candela Cives-Losada
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca 37007, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid 28029, Spain
| | - Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca 37007, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid 28029, Spain
| | - Markel Rementeria
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain
| | - Francisca E Cara
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Granada 18100, Spain
| | - Araceli López-Tejada
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Granada 18100, Spain; GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain; Department of Biochemistry and Molecular Biology 2, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada 18071, Spain
| | - Carmen Griñán-Lisón
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Granada 18100, Spain; GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain; Department of Biochemistry and Molecular Biology 2, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada 18071, Spain
| | - Francesco Aulicino
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK
| | - Imre Berger
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK; Max Planck Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Juan A Marchal
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Granada 18100, Spain
| | - Violeta Delgado-Almenta
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain
| | - Sergio Granados-Principal
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Granada 18100, Spain; GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain; Department of Biochemistry and Molecular Biology 2, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada 18071, Spain.
| |
Collapse
|
4
|
Gervasi F, Pojero F. Use of Oleuropein and Hydroxytyrosol for Cancer Prevention and Treatment: Considerations about How Bioavailability and Metabolism Impact Their Adoption in Clinical Routine. Biomedicines 2024; 12:502. [PMID: 38540115 PMCID: PMC10968586 DOI: 10.3390/biomedicines12030502] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 11/11/2024] Open
Abstract
The fact that the Mediterranean diet could represent a source of natural compounds with cancer-preventive and therapeutic activity has been the object of great interest, especially with regard to the mechanisms of action of polyphenols found in olive oil and olive leaves. Secoiridoid oleuropein (OLE) and its derivative hydroxytyrosol (3,4-dihydroxyphenylethanol, HT) have demonstrated anti-proliferative properties against a variety of tumors and hematological malignancies both in vivo and in vitro, with measurable effects on cellular redox status, metabolism, and transcriptional activity. With this review, we aim to summarize the most up-to-date information on the potential use of OLE and HT for cancer treatment, making important considerations about OLE and HT bioavailability, OLE- and HT-mediated effects on drug metabolism, and OLE and HT dual activity as both pro- and antioxidants, likely hampering their use in clinical routine. Also, we focus on the details available on the effects of nutritionally relevant concentrations of OLE and HT on cell viability, redox homeostasis, and inflammation in order to evaluate if both compounds could be considered cancer-preventive agents or new potential chemotherapy drugs whenever their only source is represented by diet.
Collapse
Affiliation(s)
- Francesco Gervasi
- Specialistic Oncology Laboratory Unit, ARNAS Hospitals Civico Di Cristina e Benfratelli, 90127 Palermo, Italy;
| | - Fanny Pojero
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| |
Collapse
|
5
|
Yılmaz G, Özdemir F. Novel Anti-tumor Strategy for Breast Cancer: Synergistic Role of Oleuropein with Paclitaxel Therapeutic in MCF-7 Cells. Anticancer Agents Med Chem 2024; 24:224-234. [PMID: 38629155 PMCID: PMC10909830 DOI: 10.2174/0118715206284107231120063630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 04/19/2024]
Abstract
BACKGROUND The side effects of conventional therapeutics pose a problem for cancer treatment. Recently, combination treatments with natural compounds have attracted attention regarding limiting the side effects of treatment. Oleuropein is a natural polyphenol in olives that has antioxidant and anticancer effects. OBJECTIVES This study aimed to investigate the oxidative stress effect of a combination of Paclitaxel, a chemotherapeutic agent, and Oleuropein in the MCF-7 cell line. METHODS The xCELLigence RTCA method was used to determine the cytotoxic effects of Oleuropein and Paclitaxel in the MCF-7 cell line. The Total Oxidant and Total Antioxidant Status were analyzed using a kit. The Oxidative Stress Index was calculated by measuring Total Oxidant and Total Antioxidant states. The levels of superoxide dismutase, reduced glutathione and malondialdehyde, which are oxidative stress markers, were also measured by ELISA assay kit. RESULTS As a result of the measurement, IC50 doses of Oleuropein and Paclitaxel were determined as 230 μM and 7.5 μM, respectively. Different percentages of combination ratios were generated from the obtained IC50 values. The effect of oxidative stress was investigated at the combination rates of 10%, 20%, 30%, and 40% which were determined to be synergistic. In terms of the combined use of Oleuropein and Paclitaxel on oxidative stress, antioxidant defense increased, and Oxidative Stress Index levels decreased. CONCLUSION These findings demonstrate that the doses administered to the Oleuropein+Paclitaxel combination group were lower than those administered to groups using one agent alone (e.g. Paclitaxel), the results of which reduce the possibility of administering toxic doses.
Collapse
Affiliation(s)
- Gamze Yılmaz
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Filiz Özdemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
6
|
Rivas-Garcia L, Navarro-Hortal MD, Romero-Marquez JM, Llopis J, Forbes-Hernández TY, Xiao J, Quiles JL, Sanchez-Gonzalez C. Valorization of Olea europaea and olive oil processing by-products/wastes. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 107:193-212. [PMID: 37898540 DOI: 10.1016/bs.afnr.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Olive (Olea europaea) is a native species from the Mediterranean region and widely cultivated for its edible fruit, known as olives. Olives are a rich source of monounsaturated fatty acids, vitamin E, and polyphenols, and have been shown to have various health benefits. They are commonly used for cooking and are also employed in cosmetics and the pharmaceutical industry. The extract obtained from olive fruits and several subproducts of the olive industry has demonstrated several biological activities mainly associated with their antioxidant and inflammatory properties. Thus, olives, olive-derived products, and subproducts of the olive industry have gained popularity in recent years due to their potential health benefits and their use in traditional medicine. The present chapter summarizes the main applications of Olea europaea and olive oil processing by-products as therapeutic agents against cancer, cardiovascular diseases, and antimicrobial agents.
Collapse
Affiliation(s)
- Lorenzo Rivas-Garcia
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, Armilla, Granada, Spain; Sport and Health Research Centre, University of Granada, Armilla, Granada, Spain.
| | - Maria D Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, Armilla, Granada, Spain
| | - Jose M Romero-Marquez
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, Armilla, Granada, Spain
| | - Juan Llopis
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, Armilla, Granada, Spain; Sport and Health Research Centre, University of Granada, Armilla, Granada, Spain
| | - Tamara Y Forbes-Hernández
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, Armilla, Granada, Spain
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense E, Spain
| | - Jose L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, Armilla, Granada, Spain; Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Cristina Sanchez-Gonzalez
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, Armilla, Granada, Spain; Sport and Health Research Centre, University of Granada, Armilla, Granada, Spain
| |
Collapse
|
7
|
Calahorra J, Araujo-Abad S, Granadino-Roldán JM, Naranjo Á, Martínez-Lara E, Siles E. Tyrosol: Repercussion of the Lack of a Hydroxyl-Group in the Response of MCF-7 Cells to Hypoxia. J Med Food 2023. [PMID: 37379464 DOI: 10.1089/jmf.2022.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023] Open
Abstract
In solid tumors, such as breast cancer, hypoxic microenvironment worsens patient prognoses. We have previously reported in MCF-7 breast cancer cells that, under hypoxic conditions, hydroxytyrosol (HT) downregulates the level of reactive oxygen species, reduces the expression of hypoxia inducible factor-1α (HIF-1α), and, at high concentrations, can bind to the aryl hydrocarbon receptor (AhR). With this background, the present study investigated whether the most abundant extra virgin olive oil (EVOO) phenolic compound tyrosol (TYR), with a chemical structure similar to HT but with only one hydroxyl group, exerts comparable effects. Our results revealed that, although TYR did not show any antioxidant activity in hypoxic MCF-7 cells, it inhibited the PI3K/Akt/mTOR/S6 kinase (S6K) pathway and reduced the expression of HIF-1α and some of its target genes. Besides, TYR showed a lower binding affinity with the cytosolic transcription factor AhR, and even reduced its transcriptional activity. Some of these results are positive to control tumor progression in a hypoxic environment; however, they are observed at doses unachievable with diet intake or nutraceutical presentations. Considering that EVOO phenols can have synergistic effects, a mixture of low doses of TYR and other phenols could be useful to achieve these beneficial effects.
Collapse
Affiliation(s)
- Jesús Calahorra
- Departamento de Biología Experimental, Universidad de Jaén, Jaén, Spain
| | | | | | - Ángela Naranjo
- Departamento de Biología Experimental, Universidad de Jaén, Jaén, Spain
| | | | - Eva Siles
- Departamento de Biología Experimental, Universidad de Jaén, Jaén, Spain
| |
Collapse
|
8
|
Abdelshaheed MM, El Subbagh HI, Tantawy MA, Attia RT, Youssef KM, Fawzy IM. Discovery of new pyridine heterocyclic hybrids; design, synthesis, dynamic simulations, and in vitro and in vivo breast cancer biological assays. RSC Adv 2023; 13:15689-15703. [PMID: 37235111 PMCID: PMC10206482 DOI: 10.1039/d3ra02875e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Pyridine is a nitrogen bearing heterocyclic scaffold that shows a wide range of biological activities. The pyridine nucleus has become an interesting target for medicinal chemistry researchers worldwide. Several pyridine derivatives exhibited good anticancer effects against diverse cell lines. Therefore, to explore new anticancer pyridine entities, novel pyridine derivatives were designed and synthesized and evaluated for their anticancer abilities in vitro and in vivo. All of the target compounds were evaluated against three different human cancer cell lines (Huh-7, A549 and MCF-7) via MTT assay. Most of the compounds exhibited significant cytotoxic activities. Compounds 3a, 3b, 5a and 5b showed superior antiproliferative activities to Taxol. Where, compound 3b showed IC50 values of 6.54, 15.54 and 6.13 μM compared to Taxol (6.68, 38.05, 12.32 μM) against Huh-7, A549 and MCF-7, respectively. Also, tubulin polymerization assay was carried out. The most potent compounds 3a, 3b, 5a and 5b could significantly inhibit tubulin polymerization with IC50 values of 15.6, 4.03, 6.06 and 12.61 μM, respectively. Compound 3b exhibited the highest tubulin polymerization inhibitory effect with an IC50 value of 4.03 μM compared to combretastatin (A-4) (1.64 μM). Molecular modeling studies of the designed compounds confirmed that most of the compounds made the essential binding interactions compared to the reference compound which assisted in the prediction of the structure requirements for the detected anticancer activity. Finally, in vivo studies showed that compound 3b could significantly inhibit breast cancer.
Collapse
Affiliation(s)
- Menna M Abdelshaheed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University in Egypt New Damietta Egypt
| | - Hussein I El Subbagh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University P.O. Box 35516 Mansoura Egypt
| | - Mohamed A Tantawy
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre Dokki Giza Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre Dokki Cairo Egypt
- Department of Orthopaedics and Rehabilitation, CORTS, Penn State University, College of Medicine 500 University Drive Hershey PA 17033-0850 USA
| | - Reem T Attia
- Department of Pharmacology and Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt 11835 Cairo Egypt
| | - Khairia M Youssef
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt 11835 Cairo Egypt +201006064161
| | - Iten M Fawzy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt 11835 Cairo Egypt +201006064161
| |
Collapse
|
9
|
Han H, Zhong R, Zhang S, Wang M, Wen X, Yi B, Zhao Y, Chen L, Zhang H. Hydroxytyrosol attenuates diquat-induced oxidative stress by activating Nrf2 pathway and modulating colonic microbiota in mice. J Nutr Biochem 2023; 113:109256. [PMID: 36572071 DOI: 10.1016/j.jnutbio.2022.109256] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/16/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
This study was conducted to investigate the antioxidant effects of hydroxytyrosol (HT) administration in diquat (DQ)-challenged mice. The results showed that HT treatment markedly alleviated DQ-induced oxidative stress, which was indicated by the enhanced total antioxidant capacity (T-AOC), increased activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase and decreased malondialdehyde (MDA) concentration in serum. Additionally, HT increased the mRNA expression levels of NF-E2-related factor 2 (Nrf2) and its downstream genes, including NADPH quinone oxidoreductase 1 (NQO1) and catalase (CAT) in the small intestine of DQ-challenged mice. 16S rRNA gene sequencing results showed that HT treatment increased the relative abundance of Firmicutes and Lactobacillus and decreased the relative abundance of Bacteroidetes. Interestingly, Pearson correlation analysis showed that there were strong association between colonic Firmicutes, Lactobacillus, and Bacteroidetes and the activities of serum antioxidant enzymes. Meanwhile, HT significantly enhanced the colonic butyrate concentration in DQ-challenged mice. Additionally, HT treatment decreased the serum metabolites involving in glycerophospholipid metabolism, pentose, and glucuronate interconversions, which were associated with alleviated oxidative stress. These results indicate that oral administration of 100 mg/kg body weight HT alleviates oxidative stress in DQ-challenged mice, which may involve Nrf2 signaling pathways via modulation of colonic microbiota.
Collapse
Affiliation(s)
- Hui Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China; Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shunfen Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengyu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaobin Wen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bao Yi
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
10
|
Pakravan S, Hemmati-Dinarvand M, Moghaddasi M, Fathi J, Nowrouzi-Sohrabi P, Hormozi M. Hydroxytyrosol's effect on the expression of apoptosis and oxidative stress related genes in BE (2)-C neuroblastoma cell line. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
11
|
Foti P, Occhipinti PS, Russo N, Scilimati A, Miciaccia M, Caggia C, Perrone MG, Randazzo CL, Romeo FV. Olive Mill Wastewater Fermented with Microbial Pools as a New Potential Functional Beverage. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020646. [PMID: 36677704 PMCID: PMC9866608 DOI: 10.3390/molecules28020646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/01/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Olive mill wastewater (OMWW) represents a by-product but also a source of biologically active compounds, and their recycling is a relevant strategy to recover income and to reduce environmental impact. The objective of the present study was to obtain a new functional beverage with a health-promoting effect starting from OMWW. Fresh OMWW were pre-treated through filtration and/or microfiltration and subjected to fermentation using strains belonging to Lactiplantibacillus plantarum, Candida boidinii and Wickerhamomyces anomalus. During fermentation, phenolic content and hydroxytyrosol were monitored. Moreover, the biological assay of microfiltered fermented OMWW was detected versus tumor cell lines and as anti-inflammatory activity. The results showed that in microfiltered OMWW, fermentation was successfully conducted, with the lowest pH values reached after 21 days. In addition, in all fermented samples, an increase in phenol and organic acid contents was detected. Particularly, in samples fermented with L. plantarum and C. boidinii in single and combined cultures, the concentration of hydroxytyrosol reached values of 925.6, 902.5 and 903.5 mg/L, respectively. Moreover, biological assays highlighted that fermentation determines an increase in the antioxidant and anti-inflammatory activity of OMWW. Lastly, an increment in the active permeability on Caco-2 cell line was also revealed. In conclusion, results of the present study confirmed that the process applied here represents an effective strategy to achieve a new functional beverage.
Collapse
Affiliation(s)
- Paola Foti
- Department of Agriculture, Food and Environment (Di3 A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
| | - Paride S. Occhipinti
- Department of Agriculture, Food and Environment (Di3 A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
| | - Nunziatina Russo
- Department of Agriculture, Food and Environment (Di3 A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
- ProBioEtna srl, Spin-Off of University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
| | - Antonio Scilimati
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy
| | - Morena Miciaccia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy
| | - Cinzia Caggia
- Department of Agriculture, Food and Environment (Di3 A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
- ProBioEtna srl, Spin-Off of University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
- CERNUT (Interdepartmental Research Centre in Nutraceuticals and Health Products), University of Catania, Via le A. Doria 6, 95125 Catania, Italy
- Correspondence:
| | - Maria Grazia Perrone
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy
| | - Cinzia L. Randazzo
- Department of Agriculture, Food and Environment (Di3 A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
- ProBioEtna srl, Spin-Off of University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
- CERNUT (Interdepartmental Research Centre in Nutraceuticals and Health Products), University of Catania, Via le A. Doria 6, 95125 Catania, Italy
| | - Flora V. Romeo
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Centro di Ricerca Olivico-Tura, Frutticoltura e Agrumicoltura, Corso Savoia 190, 95024 Acireale, Italy
| |
Collapse
|
12
|
Sun R, Dai J, Ling M, Yu L, Yu Z, Tang L. Delivery of triptolide: a combination of traditional Chinese medicine and nanomedicine. J Nanobiotechnology 2022; 20:194. [PMID: 35443712 PMCID: PMC9020428 DOI: 10.1186/s12951-022-01389-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 03/20/2022] [Indexed: 12/11/2022] Open
Abstract
As a natural product with various biological activities, triptolide (TP) has been reported in anti-inflammatory, anti-tumor and anti-autoimmune studies. However, the narrow therapeutic window, poor water solubility, and fast metabolism limit its wide clinical application. To reduce its adverse effects and enhance its efficacy, research and design of targeted drug delivery systems (TDDS) based on nanomaterials is one of the most viable strategies at present. This review summarizes the reports and studies of TDDS combined with TP in recent years, including passive and active targeting of drug delivery systems, and specific delivery system strategies such as polymeric micelles, solid lipid nanoparticles, liposomes, and stimulus-responsive polymer nanoparticles. The reviewed literature presented herein indicates that TDDS is a multifunctional and efficient method for the delivery of TP. In addition, the advantages and disadvantages of TDDS are sorted out, aiming to provide reference for the combination of traditional Chinese medicine and advanced nano drug delivery systems (NDDS) in the future.
Collapse
Affiliation(s)
- Rui Sun
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Jingyue Dai
- Department of Radiology, Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Mingjian Ling
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Ling Yu
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Zhiqiang Yu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China.
| | - Longguang Tang
- The People's Hospital of Gaozhou, Maoming, 525200, China.
| |
Collapse
|
13
|
An Olive-Derived Extract 20% Rich in Hydroxytyrosol Prevents β-Amyloid Aggregation and Oxidative Stress, Two Features of Alzheimer Disease, via SKN-1/NRF2 and HSP-16.2 in Caenorhabditis elegans. Antioxidants (Basel) 2022; 11:antiox11040629. [PMID: 35453314 PMCID: PMC9025619 DOI: 10.3390/antiox11040629] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Olive milling produces olive oil and different by-products, all of them very rich in different bioactive compounds like the phenolic alcohol hydroxytyrosol. The aim of the present study was to investigate the effects of an olive fruit extract 20% rich in hydroxytyrosol on the molecular mechanisms associated with Alzheimer disease features like Aβ- and tau- induced toxicity, as well as on oxidative stress in Caenorhabditis elegans. Moreover, characterization of the extracts, regarding the profile and content of phenolics, as well as total antioxidant ability, was investigated. The study of lethality, growth, pharyngeal pumping, and longevity in vivo demonstrated the lack of toxicity of the extract. One hundred μg/mL of extract treatment revealed prevention of oxidative stress and a delay in Aβ-induced paralysis related with a lower presence of Aβ aggregates. Indeed, the extract showed the ability to avoid a certain degree of proteotoxicity associated with aggregation of the tau protein. According to RNAi tests, SKN-1/NRF2 transcription factor and the overexpression of HSP-16.2 were mechanistically associated in the observed effects.
Collapse
|
14
|
Moral R, Escrich E. Influence of Olive Oil and Its Components on Breast Cancer: Molecular Mechanisms. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020477. [PMID: 35056792 PMCID: PMC8780060 DOI: 10.3390/molecules27020477] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/31/2021] [Accepted: 01/08/2022] [Indexed: 02/06/2023]
Abstract
Breast cancer is the most frequent malignant neoplasia and a leading cause of mortality in women worldwide. The Mediterranean diet has been proposed as a healthy dietary pattern with protective effects in several chronic diseases, including breast cancer. This diet is characterized by the consumption of abundant plant foods and olive oil as the principal source of fat, which is considered one of the main components with potential antioxidant, anti-inflammatory and anticancer effects. Extra-virgin olive oil (EVOO) has several bioactive compounds, mainly including monounsaturated fatty acids, triterpenes and polyphenols, such as phenolic alcohols (e.g., hydroxytyrosol), secoiridoids (e.g., oleuropein and oleocanthal), lignans (e.g., pinoresinol) or flavonoids (e.g., luteolin). While epidemiological evidence is still limited, experimental in vivo and in vitro data have shown a protective effect of this oil and its compounds on mammary carcinogenesis. Such effects account through complex and multiple mechanisms, including changes in epigenetics, transcriptome and protein expression that modulate several signaling pathways. Molecular targets of EVOO compounds have a role in the acquisition of cancer hallmarks. Although further research is needed to elucidate their beneficial effects on human prevention and progression of the disease, evidence points to EVOO in the context of the Mediterranean diet as a heathy choice, while EVOO components may be promising adjuvants in anticancer strategies.
Collapse
|
15
|
Olive Tree Derivatives and Hydroxytyrosol: Their Potential Effects on Human Health and Its Use as Functional Ingredient in Meat. Foods 2021; 10:foods10112611. [PMID: 34828895 PMCID: PMC8618868 DOI: 10.3390/foods10112611] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 01/19/2023] Open
Abstract
Olive (Olea europaea) is one of the most extensive crops in the Mediterranean countries, and an important source of extra distinctive compounds that has been widely tested due to its known health benefits. Olive derivatives, such as extra virgin olive oil (EVOO) and olive leaves are rich in antioxidant compounds such as hydroxytyrosol (HXT) and oleuropein and oleic acid, as main monounsaturated fatty acid. Because of HXT molecular structure, its regular consumption reports important beneficial properties such as anti-inflammatory, antimicrobial, antioxidant, and anticancer. As a matter of fact, its antioxidant and antimicrobial effects made this compound a good preservative agent against meat deterioration and spoilage, capable of replacing some synthetic additives whose continued and regular consumption may negatively affect the human health. On the contrary side, this extract has an unpleasant odor and flavor, so a synthetic source of HXT could also be used to improve the sensory quality of the meat products. In this sense, this review exposes the health benefits provided by the consumption of EVOO and HXT, and the newest research about its application on meat, together new trends about its use as functional ingredient in meat and meat products.
Collapse
|
16
|
Paiva WS, Queiroz MF, Araujo Sabry D, Santiago ALCMA, Sassaki GL, Batista ACL, Rocha HAO. Preparation, Structural Characterization, and Property Investigation of Gallic Acid-Grafted Fungal Chitosan Conjugate. J Fungi (Basel) 2021; 7:812. [PMID: 34682234 PMCID: PMC8540519 DOI: 10.3390/jof7100812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is the cause of numerous diseases in humans; therefore, there has been a continuous search for novel antioxidant molecules. Fungal chitosan is an attractive molecule that has several applications (antifungal, antibacterial, anticancer and antiparasitic action) owing to its unique characteristics; however, it exhibits low antioxidant activity. The aim of this study was to obtain fungal chitosan (Chit-F) from the fungus Rhizopus arrhizus and synthesize its derivative, fungal chitosan-gallic acid (Chit-FGal), as a novel antioxidant chitosan derivative for biomedical use. A low molecular weight Chi-F (~3.0 kDa) with a degree of deacetylation of 86% was obtained from this fungus. Chit-FGal (3.0 kDa) was synthesized by an efficient free radical-mediated method using hydrogen peroxide (H2O2) and ascorbic acid. Both Chit-F and Chit-FGal showed similar copper chelating activities; however, Chit-FGal was more efficient as an antioxidant, exhibiting twice the total antioxidant capacity than Chi-F (p < 0.05). Furthermore, H2O2 (0.06 M) promoted a 50% decrease in the viabilities of the 3T3 fibroblast cells. However, this effect was abolished in the presence of Chit-FGal (0.05-0.25 mg/mL), indicating that Chit-FGal protected the cells from oxidative damage. These results suggest that Chit-FGal may be a promising agent to combat oxidative stress.
Collapse
Affiliation(s)
- Weslley Souza Paiva
- Postgraduate Programe in Biotechnology (RENORBIO), Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Moacir Fernandes Queiroz
- Biomedicine Departament, Medical Sciences College, Potiguar University (UNP), Natal 59056-000, RN, Brazil;
| | - Diego Araujo Sabry
- Laboratorio de Biotecnologia de Polímeros Naturais-BIOPOL, Departament of Biochemistry, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil;
| | | | - Guilherme Lanzi Sassaki
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil;
| | | | - Hugo Alexandre Oliveira Rocha
- Postgraduate Programe in Biotechnology (RENORBIO), Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Laboratorio de Biotecnologia de Polímeros Naturais-BIOPOL, Departament of Biochemistry, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil;
| |
Collapse
|
17
|
León-González AJ, Sáez-Martínez P, Jiménez-Vacas JM, Herrero-Aguayo V, Montero-Hidalgo AJ, Gómez-Gómez E, Madrona A, Castaño JP, Espartero JL, Gahete MD, Luque RM. Comparative Cytotoxic Activity of Hydroxytyrosol and Its Semisynthetic Lipophilic Derivatives in Prostate Cancer Cells. Antioxidants (Basel) 2021; 10:antiox10091348. [PMID: 34572980 PMCID: PMC8464900 DOI: 10.3390/antiox10091348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/21/2021] [Indexed: 12/30/2022] Open
Abstract
A high adherence to a Mediterranean diet has been related to numerous beneficial effects in human health, including a lower incidence and mortality of prostate cancer (PCa). Olive oil is an important source of phenolic bioactive compounds, mainly hydroxytyrosol (HT), of this diet. Because of the growing interest of this compound and its derivatives as a cancer chemopreventive agent, we aimed to compare the in vitro effect of HT isolated from olive mill wastewaters and five semisynthetic alkyl ether, ester, and nitro-derivatives against prostate cancer (PCa) cell lines. The effect in cell proliferation was determined in RWPE-1, LNCaP, 22Rv1, and PC-3 cells by resazurin assay, the effect in cell migration by wound healing assay, and tumorsphere and colony formation were evaluated. The changes in key signaling pathways involved in carcinogenesis were assessed by using a phosphorylation pathway profiling array and by Western blotting. Antiproliferative effects of HT and two lipophilic derivatives [hydroxytyrosyl acetate (HT-Ac)/ethyl hydroxytyrosyl ether (HT-Et)] were significantly higher in cancerous PC-3 and 22Rv1 cells than in non-malignant RWPE-1 cells. HT/HT-Ac/HT-Et significantly reduced migration capacity in RWPE-1 and PC-3 and prostatosphere size and colony formation in 22Rv1, whereas only HT-Ac and HT-Et reduced these functional parameters in PC-3. The cytotoxic effect in 22Rv1 cells was correlated with modifications in the phosphorylation pattern of key proteins, including ERK1/2 and AKT. Consistently, HT-Ac and HT-Et decreased p-AKT levels in PC-3. In sum, our results suggest that HT and its lipophilic derivatives could be considered as potential therapeutic tools in PCa.
Collapse
Affiliation(s)
- Antonio J. León-González
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (V.H.-A.); (A.J.M.-H.); (E.G.-G.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain
- Correspondence: (A.J.L.-G.); (R.M.L.); Tel.: +34-957213740 (R.M.L.)
| | - Prudencio Sáez-Martínez
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (V.H.-A.); (A.J.M.-H.); (E.G.-G.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Juan M. Jiménez-Vacas
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (V.H.-A.); (A.J.M.-H.); (E.G.-G.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Vicente Herrero-Aguayo
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (V.H.-A.); (A.J.M.-H.); (E.G.-G.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Antonio J. Montero-Hidalgo
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (V.H.-A.); (A.J.M.-H.); (E.G.-G.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Enrique Gómez-Gómez
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (V.H.-A.); (A.J.M.-H.); (E.G.-G.); (J.P.C.); (M.D.G.)
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Urology Service, HURS/IMIBIC, 14004 Cordoba, Spain
| | - Andrés Madrona
- Department of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain; (A.M.); (J.L.E.)
| | - Justo P. Castaño
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (V.H.-A.); (A.J.M.-H.); (E.G.-G.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - José L. Espartero
- Department of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain; (A.M.); (J.L.E.)
| | - Manuel D. Gahete
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (V.H.-A.); (A.J.M.-H.); (E.G.-G.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Raúl M. Luque
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (V.H.-A.); (A.J.M.-H.); (E.G.-G.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
- Correspondence: (A.J.L.-G.); (R.M.L.); Tel.: +34-957213740 (R.M.L.)
| |
Collapse
|
18
|
Garcia-Guasch M, Navarro L, Rivero V, Costa I, Escrich E, Moral R. A high extra-virgin olive oil diet induces changes in metabolic pathways of experimental mammary tumors. J Nutr Biochem 2021; 99:108833. [PMID: 34339818 DOI: 10.1016/j.jnutbio.2021.108833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 02/22/2021] [Accepted: 07/06/2021] [Indexed: 01/07/2023]
Abstract
Breast cancer is the most common malignancy in women worldwide, and environmental factors, especially diet, have a role in the etiology of this disease. This work aimed to investigate the influence of high fat diets (rich in corn oil or extra virgin olive oil -EVOO-) and the timing of dietary intervention (from weaning or after induction) on tumor metabolism in a 7,12-dimethylbenz[a]anthracene (DMBA)-induced breast cancer model in rat. The effects of lipids (oils and fatty acids) have also been investigated in MCF-7 cells. The results have confirmed different effects on tumor progression depending on the type of lipid. Molecular analysis at mRNA, protein and activity level of enzymes of the main metabolic pathways have also shown differences among groups. Thus, the animals fed with the EVOO-enriched diet developed tumors with less degree of clinical and morphological malignancy and showed modified glucose and mitochondrial metabolism when compared to the animals fed with the corn oil-enriched diet. Paradoxically, no clear influence on lipid metabolism by the high fat diets was observed. Considering previous studies on proliferation and apoptosis in the same samples, the results suggest that metabolic changes have a role in the molecular context that results in the modulation of different signaling pathways. Moreover, metabolic characteristics, without the context of other pathways, may not reflect tumor malignancy. The time of dietary intervention plays also a role, suggesting the importance of metabolic plasticity and the relation with mammary gland status when the tumor is induced.
Collapse
Affiliation(s)
- Maite Garcia-Guasch
- Department of Cell Biology, Physiology and Immunology, Physiology Unit, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain..
| | - Lourdes Navarro
- Department of Cell Biology, Physiology and Immunology, Physiology Unit, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain..
| | - Vanessa Rivero
- Department of Cell Biology, Physiology and Immunology, Physiology Unit, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain..
| | - Irmgard Costa
- Department of Pathology, Corporació Parc Taulí-UDIAT, 08208 Sabadell, Barcelona, Spain..
| | - Eduard Escrich
- Department of Cell Biology, Physiology and Immunology, Physiology Unit, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain..
| | - Raquel Moral
- Department of Cell Biology, Physiology and Immunology, Physiology Unit, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain..
| |
Collapse
|
19
|
Liu J, Liu Z, Wang L, He H, Mu H, Sun W, Zhou Y, Liu Y, Ma W, Zhang W, Fu M, Fan Y, Song X. Bioactivity-guided isolation of immunomodulatory compounds from the fruits of Ligustrum lucidum. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114079. [PMID: 33798661 DOI: 10.1016/j.jep.2021.114079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The fruits of Ligustrum lucidum (FLL) W.T. Aiton (Oleaceae) is included in the 2020 "Chinese Pharmacopoeia" and is widely used in traditional Chinese medicine as a tonic. In recent years, FLL has been reported to improve immune function, but the bioactive compounds and mechanisms of FLL remain poorly characterized. AIM OF THE STUDY To identify FFL compounds with strong immune activity and explore their molecular mechanisms. MATERIALS AND METHODS The phagocytic activity of RAW264.7 macrophages and proliferation activity of spleen lymphocytes were used to guide the isolation of bioactive compounds from FLL extracts. Lymphocyte subpopulations, Ca2+ concentrations, and surface molecule expression were analyzed using flow cytometry. Cytokine secretion was examined using ELISA. FITC-OVA uptake was observed using fluorescence microscopy. NF-κB activation was analyzed using western blotting. RESULTS The extraction and isolation produced ten compounds, namely oleuropeinic acid, nuezhenide, isonuezhenide, salidroside, isoligustrosidic acid, ligulucidumosides A, 8(E)-nuezhenide, hydroxytyrosol, oleuropein, and p-hydroxyphenethyl 7-β-D-glucosideelenolic acid ester were isolated and identified from FLL-Bu-30%. Immunoactivity experiments showed that hydroxytyrosol had the strongest macrophage phagocytotic and lymphocyte proliferation-promoting activities. Further studies showed that hydroxytyrosol could significantly enhance lymphocyte subsets CD3+, CD4+/CD8+, and CD3+CD4-CD8-, promote IL-4, IFN-γ, and TNF-α secretion, and increase intracellular Ca2+ concentrations. In addition, the results from RAW264.7 macrophages showed that hydroxytyrosol increased FITC-OVA uptake, induced TNF-α and IL-1β production, upregulated MHC-II, CD80, and CD86 expression, promoted cytoplasmic IκB-α degradation, and increased nuclear NF-κB p65 levels. CONCLUSION Our study provides substantial evidence regarding the mechanism of the immunomodulatory effects of compounds from FLL.
Collapse
Affiliation(s)
- Jia Liu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Zengyuan Liu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Lili Wang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Hao He
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Hailong Mu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Wenjing Sun
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Yu Zhou
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Yingqiu Liu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Wuren Ma
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Mingzhe Fu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China.
| | - Xiaoping Song
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China.
| |
Collapse
|
20
|
Griñan-Lison C, Blaya-Cánovas JL, López-Tejada A, Ávalos-Moreno M, Navarro-Ocón A, Cara FE, González-González A, Lorente JA, Marchal JA, Granados-Principal S. Antioxidants for the Treatment of Breast Cancer: Are We There Yet? Antioxidants (Basel) 2021; 10:205. [PMID: 33572626 PMCID: PMC7911462 DOI: 10.3390/antiox10020205] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most frequent cancer and the leading cause of cancer death in women. Oxidative stress and the generation of reactive oxygen species (ROS) have been related to cancer progression. Compared to their normal counterparts, tumor cells show higher ROS levels and tight regulation of REDOX homeostasis to maintain a low degree of oxidative stress. Traditionally antioxidants have been extensively investigated to counteract breast carcinogenesis and tumor progression as chemopreventive agents; however, there is growing evidence indicating their potential as adjuvants for the treatment of breast cancer. Aimed to elucidate whether antioxidants could be a reality in the management of breast cancer patients, this review focuses on the latest investigations regarding the ambivalent role of antioxidants in the development of breast cancer, with special attention to the results derived from clinical trials, as well as their potential use as plausible agents in combination therapy and their power to ameliorate the side effects attributed to standard therapeutics. Data retrieved herein suggest that antioxidants play an important role in breast cancer prevention and the improvement of therapeutic efficacy; nevertheless, appropriate patient stratification based on "redoxidomics" or tumor subtype is mandatory in order to define the dosage for future standardized and personalized treatments of patients.
Collapse
Affiliation(s)
- Carmen Griñan-Lison
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, 18100 Granada, Spain; (C.G.-L.); (J.A.M.)
- Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Jose L. Blaya-Cánovas
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Araceli López-Tejada
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Marta Ávalos-Moreno
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Alba Navarro-Ocón
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Francisca E. Cara
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Adrián González-González
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Jose A. Lorente
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
- Department of Legal Medicine, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Juan A. Marchal
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, 18100 Granada, Spain; (C.G.-L.); (J.A.M.)
- Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Sergio Granados-Principal
- Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18011 Granada, Spain
| |
Collapse
|
21
|
Emma MR, Augello G, Di Stefano V, Azzolina A, Giannitrapani L, Montalto G, Cervello M, Cusimano A. Potential Uses of Olive Oil Secoiridoids for the Prevention and Treatment of Cancer: A Narrative Review of Preclinical Studies. Int J Mol Sci 2021; 22:ijms22031234. [PMID: 33513799 PMCID: PMC7865905 DOI: 10.3390/ijms22031234] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 02/07/2023] Open
Abstract
The Mediterranean diet (MD) is a combination of foods mainly rich in antioxidants and anti-inflammatory nutrients that have been shown to have many health-enhancing effects. Extra-virgin olive oil (EVOO) is an important component of the MD. The importance of EVOO can be attributed to phenolic compounds, represented by phenolic alcohols, hydroxytyrosol, and tyrosol, and to secoiridoids, which include oleocanthal, oleacein, oleuropein, and ligstroside (along with the aglycone and glycosidic derivatives of the latter two). Each secoiridoid has been studied and characterized, and their effects on human health have been documented by several studies. Secoiridoids have antioxidant, anti-inflammatory, and anti-proliferative properties and, therefore, exhibit anti-cancer activity. This review summarizes the most recent findings regarding the pharmacological properties, molecular targets, and action mechanisms of secoiridoids, focusing attention on their preventive and anti-cancer activities. It provides a critical analysis of preclinical, in vitro and in vivo, studies of these natural bioactive compounds used as agents against various human cancers. The prospects for their possible use in human cancer prevention and treatment is also discussed.
Collapse
Affiliation(s)
- Maria Rita Emma
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (M.R.E.); (G.A.); (A.A.); (L.G.); (G.M.)
| | - Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (M.R.E.); (G.A.); (A.A.); (L.G.); (G.M.)
| | - Vita Di Stefano
- Department of Biological, Chemical, and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, 90133 Palermo, Italy;
| | - Antonina Azzolina
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (M.R.E.); (G.A.); (A.A.); (L.G.); (G.M.)
| | - Lydia Giannitrapani
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (M.R.E.); (G.A.); (A.A.); (L.G.); (G.M.)
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, 90133 Palermo, Italy
| | - Giuseppe Montalto
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (M.R.E.); (G.A.); (A.A.); (L.G.); (G.M.)
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, 90133 Palermo, Italy
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (M.R.E.); (G.A.); (A.A.); (L.G.); (G.M.)
- Correspondence: (M.C.); (A.C.); Tel.: +39-091-680-9534/511/555 (M.C.); +39-091-680-9589 (A.C.)
| | - Antonella Cusimano
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (M.R.E.); (G.A.); (A.A.); (L.G.); (G.M.)
- Correspondence: (M.C.); (A.C.); Tel.: +39-091-680-9534/511/555 (M.C.); +39-091-680-9589 (A.C.)
| |
Collapse
|
22
|
Calahorra J, Martínez-Lara E, Granadino-Roldán JM, Martí JM, Cañuelo A, Blanco S, Oliver FJ, Siles E. Crosstalk between hydroxytyrosol, a major olive oil phenol, and HIF-1 in MCF-7 breast cancer cells. Sci Rep 2020; 10:6361. [PMID: 32286485 PMCID: PMC7156391 DOI: 10.1038/s41598-020-63417-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Olive oil intake has been linked with a lower incidence of breast cancer. Hypoxic microenvironment in solid tumors, such as breast cancer, is known to play a crucial role in cancer progression and in the failure of anticancer treatments. HIF-1 is the foremost effector in hypoxic response, and given that hydroxytyrosol (HT) is one of the main bioactive compounds in olive oil, in this study we deepen into its modulatory role on HIF-1. Our results in MCF-7 breast cancer cells demonstrate that HT decreases HIF-1α protein, probably by downregulating oxidative stress and by inhibiting the PI3K/Akt/mTOR pathway. Strikingly, the expression of HIF-1 target genes does not show a parallel decrease. Particularly, adrenomedullin and vascular endothelial growth factor are up-regulated by high concentrations of HT even in HIF-1α silenced cells, pointing to HIF-1-independent mechanisms of regulation. In fact, we show, by in silico modelling and transcriptional analysis, that high doses of HT may act as an agonist of the aryl hydrocarbon receptor favoring the induction of these angiogenic genes. In conclusion, we suggest that the effect of HT in a hypoxic environment is largely affected by its concentration and involves both HIF-1 dependent and independent mechanisms.
Collapse
Affiliation(s)
- Jesús Calahorra
- Departamento de Biología Experimental, Universidad de Jaén, Campus Las Lagunillas s/n, Jaén, 23071, Spain
| | - Esther Martínez-Lara
- Departamento de Biología Experimental, Universidad de Jaén, Campus Las Lagunillas s/n, Jaén, 23071, Spain
| | - José M Granadino-Roldán
- Departamento de Química Física y Analítica, Universidad de Jaén, Campus Las Lagunillas s/n, Jaén, 23071, Spain
| | - Juan M Martí
- Instituto López Neyra de Parasitología y Biomedicina, IPBLN, CSIC PTS-Granada, Armilla, 18016, Spain
| | - Ana Cañuelo
- Departamento de Biología Experimental, Universidad de Jaén, Campus Las Lagunillas s/n, Jaén, 23071, Spain
| | - Santos Blanco
- Departamento de Biología Experimental, Universidad de Jaén, Campus Las Lagunillas s/n, Jaén, 23071, Spain
| | - F Javier Oliver
- Instituto López Neyra de Parasitología y Biomedicina, IPBLN, CSIC PTS-Granada, Armilla, 18016, Spain
| | - Eva Siles
- Departamento de Biología Experimental, Universidad de Jaén, Campus Las Lagunillas s/n, Jaén, 23071, Spain.
| |
Collapse
|
23
|
El Hilali H, El Hilali F, Porter SEG, Ghali SA, Meyls HM, Ouazzani N, Laziri F, Barber A. Olive oil varieties cultivated in Morocco reduce reactive oxygen species and cell viability of human cervical cancer cells. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2020. [DOI: 10.3233/mnm-190390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hajar El Hilali
- Department of Biology, Moulay Ismail University, Meknès, Morocco
| | - Fatiha El Hilali
- Department of Biology, Moulay Ismail University, Meknès, Morocco
| | - Sarah E. G. Porter
- Department of Chemistry and Physics, Longwood University, Farmville, VA, USA
| | - Sarah A. Ghali
- Department of Chemistry and Physics, Longwood University, Farmville, VA, USA
| | - Hannah M. Meyls
- Department of Chemistry and Physics, Longwood University, Farmville, VA, USA
| | | | - Fatiha Laziri
- Department of Biology, Moulay Ismail University, Meknès, Morocco
| | - Amorette Barber
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| |
Collapse
|
24
|
Rosemary Extract Inhibits Proliferation, Survival, Akt, and mTOR Signaling in Triple-Negative Breast Cancer Cells. Int J Mol Sci 2020; 21:ijms21030810. [PMID: 32012648 PMCID: PMC7037743 DOI: 10.3390/ijms21030810] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 02/08/2023] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women. Triple-negative (TN) breast cancer lacks expression of estrogen receptor (ER), progesterone receptor (PR) as well as the expression and/or gene amplification of human epidermal growth factor receptor 2 (HER2). TN breast cancer is aggressive and does not respond to hormone therapy, therefore new treatments are urgently needed. Plant-derived chemicals have contributed to the establishment of chemotherapy agents. In previous studies, rosemary extract (RE) has been found to reduce cell proliferation and increase apoptosis in some cancer cell lines. However, there are very few studies examining the effects of RE in TN breast cancer. In the present study, we examined the effects of RE on TN MDA-MB-231 breast cancer cell proliferation, survival/apoptosis, Akt, and mTOR signaling. RE inhibited MDA-MB-231 cell proliferation and survival in a dose-dependent manner. Furthermore, RE inhibited the phosphorylation/activation of Akt and mTOR and enhanced the cleavage of PARP, a marker of apoptosis. Our findings indicate that RE has potent anticancer properties against TN breast cancer and modulates key signaling molecules involved in cell proliferation and survival.
Collapse
|
25
|
Alsemeh AE, Samak MA, El-Fatah SSA. Therapeutic prospects of hydroxytyrosol on experimentally induced diabetic testicular damage: potential interplay with AMPK expression. Cell Tissue Res 2019; 380:173-189. [PMID: 31838605 DOI: 10.1007/s00441-019-03143-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 11/14/2019] [Indexed: 01/13/2023]
Abstract
Male reproductive dysfunction represents one of the overlooked consequences of diabetes that still deserve more scientific attention. We designed this study to explore the therapeutic potential of hydroxytyrosol (HT) on diabetic testicular damage and to investigate its relationship with adenosine monophosphate-activated protein kinase (AMPK) expression. In this context, 30 adult male Wistar rats were utilized and subdivided into control, diabetic and HT-treated diabetic groups. Testicular sections were prepared for histopathological examination and immunohistochemical detection of 8-hydroxy-2'-deoxyguanosine, Sertoli cell vimentin, myoid cell α-SMA, androgen receptors and caspase-3. We also assessed oxidative enzymatic and lipid peroxidation biochemical profiles, sperm count, morphology and motility. Real-time PCR of AMPK expression in tissue homogenate was performed. We observed that HT restored testicular histopathological structure and significantly reduced oxidative DNA damage and the apoptotic index. The HT-treated group also exhibited significantly higher Sertoli cell vimentin, myoid cell α-SMA and androgen receptor immune expression than the diabetic group. A rescue of the oxidative enzymatic activity, lipid peroxidation profiles, sperm count, morphology and motility to control levels was also evident in the HT-treated group. Significant upregulation of AMPK mRNA expression in the HT-treated group clarified the role of AMPK as an underlying molecular interface of the ameliorative effects of HT. We concluded that HT exhibited tangible antioxidant and antiapoptotic impacts on the testicular cytomorphological and immunohistochemical effects of experimentally induced diabetes. Furthermore, AMPK has an impactful role in the molecular machinery of these effects.
Collapse
Affiliation(s)
- Amira E Alsemeh
- Department of Anatomy and Embryology, Faculty of Medicine, Zagazig University, alzhor, Zagazig, 44519, Egypt.
| | - Mai A Samak
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samaa Salah Abd El-Fatah
- Department of Anatomy and Embryology, Faculty of Medicine, Zagazig University, alzhor, Zagazig, 44519, Egypt
| |
Collapse
|
26
|
Anticancer effects of olive oil polyphenols and their combinations with anticancer drugs. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2019; 69:461-482. [PMID: 31639094 DOI: 10.2478/acph-2019-0052] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/02/2019] [Indexed: 01/19/2023]
Abstract
Cancer presents one of the leading causes of death in the world. Current treatment includes the administration of one or more anticancer drugs, commonly known as chemotherapy. The biggest issue concerning the chemotherapeutics is their toxicity on normal cells and persisting side effects. One approach to the issue is chemoprevention and the other one is the discovery of more effective drugs or drug combinations, including combinations with polyphenols. Olive oil polyphenols (OOPs), especially hydroxytyrosol (HTyr), tyrosol (Tyr) and their derivatives oleuropein (Ole), oleacein and oleocanthal (Oc) express anticancer activity on different cancer models. Recent studies report that phenolic extract of virgin olive oil may be more effective than the individual phenolic compounds. Also, there is a growing body of evidence about the combined treatment of OOPs with various anticancer drugs, such as cisplatin, tamoxifen, doxorubicin and others. These novel approaches may present an advanced strategy in the prevention and treatment of cancer.
Collapse
|
27
|
Ramirez-Tortosa C, Sanchez A, Perez-Ramirez C, Quiles JL, Robles-Almazan M, Pulido-Moran M, Sanchez-Rovira P, Ramirez-Tortosa MC. Hydroxytyrosol Supplementation Modifies Plasma Levels of Tissue Inhibitor of Metallopeptidase 1 in Women with Breast Cancer. Antioxidants (Basel) 2019; 8:antiox8090393. [PMID: 31514476 PMCID: PMC6770404 DOI: 10.3390/antiox8090393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/04/2019] [Accepted: 09/08/2019] [Indexed: 12/17/2022] Open
Abstract
The etiology of breast cancer can be very different. Most antineoplastic drugs are not selective against tumor cells and also affect normal cells, leading to a wide variety of adverse reactions such as the production of free radicals by altering the redox state of the organisms. Therefore, the objective of this study was to elucidate if hydroxytyrosol (HT) (an antioxidant present in extra virgin olive oil) has a chemomodulatory effect when combined with the chemotherapeutic drugs epirubicin and cyclophosphamide followed by taxanes in breast cancer patients. Changes in plasma levels of matrix metalloproteinase 9 (MMP-9) and tissue inhibitor of metalloproteinases 1 (TIMP-1) throughout the chemotherapy treatment were studied. Both molecules are involved in cell proliferation, apoptosis, neoangiogenesis, and metastasis in breast cancer patients. Women with breast cancer were divided into two groups: a group of patients receiving a dietary supplement of HT and a control group of patients receiving placebo. The results showed that the plasma levels of TIMP-1 in the group of patients receiving HT were significantly lower than those levels found in the control group after the epirubicin-cyclophosphamide chemotherapy.
Collapse
Affiliation(s)
- Cesar Ramirez-Tortosa
- UGC de Anatomía Patológica Hospital San Cecilio de Granada, Avda. Conocimiento s/n, 18071 Granada, Spain.
| | - Ana Sanchez
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
| | - Cristina Perez-Ramirez
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Nutrition and Food Technology, Biomedical Center Research, Avda. Conocimiento s/n, 18071 Granada, Spain.
| | - Jose Luis Quiles
- Institute of Nutrition and Food Technology, Biomedical Center Research, Avda. Conocimiento s/n, 18071 Granada, Spain.
- Department of Physiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
| | | | - Mario Pulido-Moran
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Nutrition and Food Technology, Biomedical Center Research, Avda. Conocimiento s/n, 18071 Granada, Spain.
| | | | - MCarmen Ramirez-Tortosa
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Nutrition and Food Technology, Biomedical Center Research, Avda. Conocimiento s/n, 18071 Granada, Spain.
| |
Collapse
|
28
|
Celano M, Maggisano V, Lepore SM, Russo D, Bulotta S. Secoiridoids of olive and derivatives as potential coadjuvant drugs in cancer: A critical analysis of experimental studies. Pharmacol Res 2019; 142:77-86. [PMID: 30772463 DOI: 10.1016/j.phrs.2019.01.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
Abstract
Phenolic secoiridoids from olive, including oleocanthal, oleuropein and related derivatives, are bioactive natural products with documented anticancer activities, that have mainly been attributed to their antioxidant, anti-inflammatory and antiproliferative effects. This review summarizes the results of the preclinical studies on the natural secoiridoids of olive used as single agents or in combination with other chemotherapeutics against cancer cells. The molecular targets of their action are described. A critical analysis of the importance of the experimental studies in view of the possible use in humans is also discussed.
Collapse
Affiliation(s)
- Marilena Celano
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100, Catanzaro, Italy
| | - Valentina Maggisano
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100, Catanzaro, Italy
| | - Saverio Massimo Lepore
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100, Catanzaro, Italy
| | - Diego Russo
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100, Catanzaro, Italy
| | - Stefania Bulotta
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100, Catanzaro, Italy.
| |
Collapse
|
29
|
Cruz-Lozano M, González-González A, Marchal JA, Muñoz-Muela E, Molina MP, Cara FE, Brown AM, García-Rivas G, Hernández-Brenes C, Lorente JA, Sanchez-Rovira P, Chang JC, Granados-Principal S. Hydroxytyrosol inhibits cancer stem cells and the metastatic capacity of triple-negative breast cancer cell lines by the simultaneous targeting of epithelial-to-mesenchymal transition, Wnt/β-catenin and TGFβ signaling pathways. Eur J Nutr 2018; 58:3207-3219. [DOI: 10.1007/s00394-018-1864-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023]
|
30
|
Calahorra J, Martínez-Lara E, De Dios C, Siles E. Hypoxia modulates the antioxidant effect of hydroxytyrosol in MCF-7 breast cancer cells. PLoS One 2018; 13:e0203892. [PMID: 30235254 PMCID: PMC6147459 DOI: 10.1371/journal.pone.0203892] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/29/2018] [Indexed: 12/30/2022] Open
Abstract
Although cancer is multifactorial, a strong correlation between this pathology and increased oxidative stress has long been stablished. Hypoxia, inherent to solid tumors, increases reactive oxygen species and should be taken into account when analyzing the response of tumor cells to antioxidants. The Mediterranean diet has been related to a lower incidence of cancer, and particularly of breast cancer. Given that hydroxytyrosol (HT) is largely responsible for the antioxidant properties of olive oil, we have performed a comprehensive and comparative study of its effect on the oxidative stress response of the human breast cancer cell line MCF-7 in hypoxia and normoxia. Our results demonstrate that the antioxidant action of HT is particularly effective in a hypoxic environment. Moreover, we have observed that this polyphenol modulates the transcription and translation of members of the PGC-1α/ERRα and PGC-1α/Nrf2 pathways. However, while the transcriptional effects of HT are similar in normoxic and hypoxic conditions, its translational action is less prominent and partially attenuated in hypoxia, and therefore cannot completely explain the antioxidant effect of HT. Consequently, our results underscore that the hypoxic environment of tumor cells should be considered when analyzing the effect of bioactive compounds. Besides, this study also points to the importance of assessing the regulatory role of HT at both mRNA and protein level to get a complete picture of its effects.
Collapse
Affiliation(s)
- Jesús Calahorra
- Department of Experimental Biology, University of Jaén, Campus Las Lagunillas s/n, Jaén, Spain
| | - Esther Martínez-Lara
- Department of Experimental Biology, University of Jaén, Campus Las Lagunillas s/n, Jaén, Spain
| | - Cristina De Dios
- Department of Experimental Biology, University of Jaén, Campus Las Lagunillas s/n, Jaén, Spain
| | - Eva Siles
- Department of Experimental Biology, University of Jaén, Campus Las Lagunillas s/n, Jaén, Spain
| |
Collapse
|