1
|
Shen T, Cao C, Zhu R, Chen J, Wang F, Wang Y. Identification of a TonB-Dependent Siderophore Receptor as a Novel Anti-Biofilm Target and Virtual Screening for Its Inhibitor in Pseudomonas fluorescens PF08. Foods 2025; 14:531. [PMID: 39942124 PMCID: PMC11816823 DOI: 10.3390/foods14030531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Pseudomonas fluorescens is a vital food spoilage bacterium that commonly spoils foods in the biofilm state. Uncovering the targets responsible for biofilm formation and disrupting their function is a promising way to control bacterial biofilms and food spoilage. In this work, using the combination of qRT-PCR and construction of the gene deletion strain, Δtdsr, TonB-dependent siderophore receptor D7M10_RS23410 was, for the first time, proven to play an essential part in the biofilm development of P. fluorescens. By utilizing structure-based virtual screening technology, a natural compound, adenosine monophosphate (AMP), with the highest binding activity to D7M10_RS23410, was obtained as an effective biofilm inhibitor. AMP significantly decreased the cell autoaggregation and biofilm biomass at sub-MIC concentrations (2.5, 1.25, and 0.625 mg/mL), mainly through inhibiting the generation of extracellular polymeric substances (EPS) in the biofilm matrix and promoting the cell motility. Furthermore, AMP was found to form hydrogen bonds with specific amino acid residues and stretched the protein structure of D7M10_RS23410, and this structural alteration undoubtedly interfered with the functionality of the D7M10_RS23410 protein.
Collapse
Affiliation(s)
- Taizhi Shen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Changrong Cao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Ruiyu Zhu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jian Chen
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Feifei Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yanbo Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
2
|
Fu J, Wang Y, Qiao W, Di S, Huang Y, Zhao J, Jing M, Chen L. Research progress on factors affecting the human milk metabolome. Food Res Int 2024; 197:115236. [PMID: 39593319 DOI: 10.1016/j.foodres.2024.115236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/24/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
Human milk is the gold standard for infant nutrition and contains macronutrients, micronutrients, and various bioactive substances. The human milk composition and metabolite profiles are complex and dynamic, complicating its specific analysis. Metabolomics, a recently emerging technology, has been used to identify human milk metabolites classes. Applying metabolomics to study the factors affecting human milk metabolites can provide significant insights into the relationship between infant nutrition, health, and development and better meet the nutritional needs of infants during growth. Here, we systematically review the current status of human milk metabolomic research, and related methods, offering an in-depth analysis of the influencing factors and results of human milk metabolomics from a metabolic perspective to provide novel ideas to further advance human milk metabolomics.
Collapse
Affiliation(s)
- Jieyu Fu
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yaling Wang
- National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Shujuan Di
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yibo Huang
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Mengna Jing
- National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Lijun Chen
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China.
| |
Collapse
|
3
|
Wang S, Song L, Fan R, Chen Q, You M, Cai M, Wu Y, Li Y, Xu M. Targeting Aging and Longevity with Exogenous Nucleotides (TALENTs): Rationale, Design, and Baseline Characteristics from a Randomized Controlled Trial in Older Adults. Nutrients 2024; 16:1343. [PMID: 38732590 PMCID: PMC11085046 DOI: 10.3390/nu16091343] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Nucleotides (NTs), important biomolecules involved in numerous cellular processes, have been proposed as potential candidates for anti-aging interventions. However, whether nucleotides can act as an anti-aging supplement in older adults remains unclear. TALENTs is a randomized, double-blinded, placebo-controlled trial that evaluates the efficacy and safety of NTs as an anti-aging supplement in older adults by exploring the effects of NTs on multiple dimensions of aging in a rigorous scientific setting. Eligible community-dwelling adults aged 60-70 years were randomly assigned equally to two groups: nucleotides intervention group and placebo control group. Comprehensive geriatric health assessments were performed at baseline, 2-months, and 4-months of the intervention. Biological specimens were collected and stored for age-related biomarker testing and multi-omics sequencing. The primary outcome was the change from baseline to 4 months on leukocyte telomere length and DNA methylation age. The secondary aims were the changes in possible mechanisms underlying aging processes (immunity, inflammatory profile, oxidative stress, gene stability, endocrine, metabolism, and cardiovascular function). Other outcomes were changes in physical function, body composition and geriatric health assessment (including sleep quality, cognitive function, fatigue, frailty, and psychology). In the RCT, 301 participants were assessed for eligibility and 122 were enrolled. Participants averaged 65.65 years of age, and were predominately female (67.21%). All baseline characteristics were well-balanced between groups, as expected due to randomization. The majority of participants were pre-frailty and had at least one chronic condition. The mean scores for physical activity, psychological, fatigue and quality of life were within the normal range. However, nearly half of the participants still had room for improvement in cognitive level and sleep quality. This TALENTs trial will represent one of the most comprehensive experimental clinical trials in which supplements are administered to elderly participants. The findings of this study will contribute to our understanding of the anti-aging effects of NTs and provide insights into their potential applications in geriatric healthcare.
Collapse
Affiliation(s)
- Shuyue Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (S.W.); (L.S.); (R.F.); (Q.C.); (M.Y.); (M.C.); (Y.W.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Lixia Song
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (S.W.); (L.S.); (R.F.); (Q.C.); (M.Y.); (M.C.); (Y.W.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Rui Fan
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (S.W.); (L.S.); (R.F.); (Q.C.); (M.Y.); (M.C.); (Y.W.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Qianqian Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (S.W.); (L.S.); (R.F.); (Q.C.); (M.Y.); (M.C.); (Y.W.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Mei You
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (S.W.); (L.S.); (R.F.); (Q.C.); (M.Y.); (M.C.); (Y.W.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Meng Cai
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (S.W.); (L.S.); (R.F.); (Q.C.); (M.Y.); (M.C.); (Y.W.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Yuxiao Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (S.W.); (L.S.); (R.F.); (Q.C.); (M.Y.); (M.C.); (Y.W.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (S.W.); (L.S.); (R.F.); (Q.C.); (M.Y.); (M.C.); (Y.W.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Meihong Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (S.W.); (L.S.); (R.F.); (Q.C.); (M.Y.); (M.C.); (Y.W.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| |
Collapse
|
4
|
Robertson RC, Edens TJ, Carr L, Mutasa K, Gough EK, Evans C, Geum HM, Baharmand I, Gill SK, Ntozini R, Smith LE, Chasekwa B, Majo FD, Tavengwa NV, Mutasa B, Francis F, Tome J, Stoltzfus RJ, Humphrey JH, Prendergast AJ, Manges AR. The gut microbiome and early-life growth in a population with high prevalence of stunting. Nat Commun 2023; 14:654. [PMID: 36788215 PMCID: PMC9929340 DOI: 10.1038/s41467-023-36135-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 01/12/2023] [Indexed: 02/16/2023] Open
Abstract
Stunting affects one-in-five children globally and is associated with greater infectious morbidity, mortality and neurodevelopmental deficits. Recent evidence suggests that the early-life gut microbiome affects child growth through immune, metabolic and endocrine pathways. Using whole metagenomic sequencing, we map the assembly of the gut microbiome in 335 children from rural Zimbabwe from 1-18 months of age who were enrolled in the Sanitation, Hygiene, Infant Nutrition Efficacy Trial (SHINE; NCT01824940), a randomized trial of improved water, sanitation and hygiene (WASH) and infant and young child feeding (IYCF). Here, we show that the early-life gut microbiome undergoes programmed assembly that is unresponsive to the randomized interventions intended to improve linear growth. However, maternal HIV infection is associated with over-diversification and over-maturity of the early-life gut microbiome in their uninfected children, in addition to reduced abundance of Bifidobacterium species. Using machine learning models (XGBoost), we show that taxonomic microbiome features are poorly predictive of child growth, however functional metagenomic features, particularly B-vitamin and nucleotide biosynthesis pathways, moderately predict both attained linear and ponderal growth and growth velocity. New approaches targeting the gut microbiome in early childhood may complement efforts to combat child undernutrition.
Collapse
Affiliation(s)
- Ruairi C Robertson
- Blizard Institute, Queen Mary University of London, London, UK
- Microenvironment & Immunity Unit, INSERM U1224, Institut Pasteur, 75015, Paris, France
| | | | - Lynnea Carr
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Kuda Mutasa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Ethan K Gough
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ceri Evans
- Blizard Institute, Queen Mary University of London, London, UK
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Hyun Min Geum
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Iman Baharmand
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Sandeep K Gill
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Robert Ntozini
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Laura E Smith
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Department of Public and Ecosystem Health, Cornell University, Ithaca, NY, USA
| | - Bernard Chasekwa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Florence D Majo
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Naume V Tavengwa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Batsirai Mutasa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Freddy Francis
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Joice Tome
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | | | - Jean H Humphrey
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Andrew J Prendergast
- Blizard Institute, Queen Mary University of London, London, UK
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Amee R Manges
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada.
- British Columbia Centre for Disease Control, Vancouver, BC, Canada.
| |
Collapse
|
5
|
Abstract
Preterm infants are at higher risk of mortality and morbidity compared with those born at term. Nutrition-related morbidities include poor growth, immune deficiency, nutritional deficiencies, and adverse long-term neurodevelopment. In addition to macronutrients, many nutritional supplements have been used to enhance growth and development, and decrease infections. Nutrients can enhance preterm infants' immune status, optimize the microbiome, improve growth and development, and influence the risk of necrotizing enterocolitis, sepsis, and other outcomes.
Collapse
Affiliation(s)
- Mohan Pammi
- Section of Neonatology, Department of Pediatrics Baylor College of Medicine & Texas Children's Hospital Houston, TX 77030, USA.
| | - Ravi M. Patel
- Department of Pediatrics, Emory University, Atlanta, Georgia
| |
Collapse
|
6
|
Ren Q, Li K, Sun H, Zheng C, Zhou Y, Lyu Y, Ye W, Shi H, Zhang W, Xu Y, Jiang S. The Association of Formula Protein Content and Growth in Early Infancy: A Systematic Review and Meta-Analysis. Nutrients 2022; 14:2255. [PMID: 35684055 PMCID: PMC9183142 DOI: 10.3390/nu14112255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 01/27/2023] Open
Abstract
This systematic review aimed to examine differences in growth outcomes between breastfed infants and infants fed with formula with different protein/energy ratios during the first six months of life. We conducted a systematic review in the PubMed, Web of Science, and Springer databases. Twenty clinical trials qualified for inclusion. We extracted data about the growth outcomes of infants who were exclusive breastfed or exclusively infant formula fed in the first six months and used a meta-analysis to pool the finding data. We categorized study formulas into four groups according to their protein content: <1.8, 1.8−2.0, 2.1−2.2, and >2.2 g/100 kcal. In the first month of life, growth was not different between formula- and breastfed infants. During 2−3 months of life, growth was faster in infants who consumed formulas with protein contents higher than 2.0 g/100 kcal. After 3 months, formula-fed infants grew faster than breastfed infants. Our meta-analysis indicated that the growth outcomes of infants fed with infant formula with a relatively low protein/energy ratios, compared with that a relatively high protein/energy ratio, were close to those of breastfed infants.
Collapse
Affiliation(s)
- Qiqi Ren
- Innovation Center, Nutrition and Metabolism Research Division, Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China; (Q.R.); (K.L.); (H.S.); (C.Z.); (W.Z.)
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing 100083, China; (Y.Z.); (Y.L.); (W.Y.); (H.S.)
| | - Kaifeng Li
- Innovation Center, Nutrition and Metabolism Research Division, Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China; (Q.R.); (K.L.); (H.S.); (C.Z.); (W.Z.)
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing 100083, China; (Y.Z.); (Y.L.); (W.Y.); (H.S.)
| | - Han Sun
- Innovation Center, Nutrition and Metabolism Research Division, Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China; (Q.R.); (K.L.); (H.S.); (C.Z.); (W.Z.)
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing 100083, China; (Y.Z.); (Y.L.); (W.Y.); (H.S.)
| | - Chengdong Zheng
- Innovation Center, Nutrition and Metabolism Research Division, Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China; (Q.R.); (K.L.); (H.S.); (C.Z.); (W.Z.)
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing 100083, China; (Y.Z.); (Y.L.); (W.Y.); (H.S.)
| | - Yalin Zhou
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing 100083, China; (Y.Z.); (Y.L.); (W.Y.); (H.S.)
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing 100083, China
| | - Ying Lyu
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing 100083, China; (Y.Z.); (Y.L.); (W.Y.); (H.S.)
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing 100083, China
| | - Wanyun Ye
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing 100083, China; (Y.Z.); (Y.L.); (W.Y.); (H.S.)
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing 100083, China
| | - Hanxu Shi
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing 100083, China; (Y.Z.); (Y.L.); (W.Y.); (H.S.)
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing 100083, China
| | - Wei Zhang
- Innovation Center, Nutrition and Metabolism Research Division, Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China; (Q.R.); (K.L.); (H.S.); (C.Z.); (W.Z.)
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing 100083, China; (Y.Z.); (Y.L.); (W.Y.); (H.S.)
| | - Yajun Xu
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing 100083, China; (Y.Z.); (Y.L.); (W.Y.); (H.S.)
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing 100083, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Xueyuan Road 38, Haidian, Beijing 100083, China
| | - Shilong Jiang
- Innovation Center, Nutrition and Metabolism Research Division, Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China; (Q.R.); (K.L.); (H.S.); (C.Z.); (W.Z.)
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing 100083, China; (Y.Z.); (Y.L.); (W.Y.); (H.S.)
| |
Collapse
|
7
|
Caba-Flores MD, Ramos-Ligonio A, Camacho-Morales A, Martínez-Valenzuela C, Viveros-Contreras R, Caba M. Breast Milk and the Importance of Chrononutrition. Front Nutr 2022; 9:867507. [PMID: 35634367 PMCID: PMC9133889 DOI: 10.3389/fnut.2022.867507] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
During pregnancy the human fetus receives timed cues from the circadian rhythms of temperature, metabolites, and hormones from the mother. This influence is interrupted after parturition, the infant does not secrete melatonin and their circadian rhythms are still immature. However, evolution provided the solution to this problem. The newborn can continue receiving the mother's timed cues through breastmilk. Colostrum, transitional, and mature human milk are extraordinary complex biofluids that besides nutrients, contain an array of other non-nutritive components. Upon birth the first milk, colostrum, is rich in bioactive, immunological factors, and in complex oligosaccharides which help the proper establishment of the microbiome in the gut, which is crucial for the infants' health. Hormones, such as glucocorticoids and melatonin, transfer from the mother's plasma to milk, and then the infant is exposed to circadian cues from their mother. Also, milk components of fat, proteins, amino acids, and endogenous cannabinoids, among others, have a markedly different concentration between day and night. In the present review, we give an overview of nutritive and non-nutritive components and their daily rhythms in human milk and explore their physiological importance for the infant. Finally, we highlight some interventions with a circadian approach that emphasize the importance of circadian rhythms in the newborn for their survival, proper growth, and development. It is estimated that ~600,000 deaths/year are due to suboptimal breastfeeding. It is advisable to increase the rate of exclusive breastfeeding, during the day and night, as was established by the evolution of our species.
Collapse
Affiliation(s)
| | - Angel Ramos-Ligonio
- LADISER Inmunología y Biología Molecular, Facultad de Ciencias Químicas, Universidad Veracruzana, Orizaba, Mexico
| | - Alberto Camacho-Morales
- Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | | | | | - Mario Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Mexico
- *Correspondence: Mario Caba
| |
Collapse
|
8
|
Hodgkinson A, Wall C, Wang W, Szeto IM, Ye W, Day L. Nucleotides: an updated review of their concentration in breast milk. Nutr Res 2022; 99:13-24. [DOI: 10.1016/j.nutres.2021.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 11/30/2022]
|
9
|
Chen Y, Luo L, Feng P, Xu B, Wei X. Effective and repeatable chromatographic separation of 5 nucleotides in infant formula milk powder by ion-pair high-performance liquid chromatography-ultraviolet. J Dairy Sci 2022; 105:2840-2848. [PMID: 35181132 DOI: 10.3168/jds.2021-21133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/27/2021] [Indexed: 11/19/2022]
Abstract
A robust method using HPLC-UV was developed to improve the accuracy and repeatability of a quantitative method to detect 5 nucleotides (cytidine-monophosphate, uridine monophosphate, adenosine monophosphate, guanine monophosphate, and inosine monophosphate) in infant formulas. The results showed that efficient separation could not be achieved without strict conditions. The proposed method displayed a strong linear relationship (R2 > 0.9999) of single nucleotide in infant formula milk powder in the range of 10 to 1,000 mg/kg, a steady recovery (80.0% ∼110.0%) with relative standard deviation from 0.5% to 3.5%, under strict conditions of hydrophilic C18 column with di-isopropyl at 62.5 ± 2.5°C (± standard deviation), 0.65 ± 0.1 mg/mL tetrabutylammonium bisulfate, and mobile phase of pH of 2.75 ± 0.02. By applying this method on a series of milk products in the Chinese market, we found a few of them exceeded the legal limits of nucleotides.
Collapse
Affiliation(s)
- Yuanjia Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Peiyan Feng
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Xiaoqun Wei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
10
|
Tang T, Guo D, Huang S. Preparation and chromatographic evaluation of the hydrophilic interaction chromatography stationary phase based on nucleosides or nucleotides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:419-425. [PMID: 33427266 DOI: 10.1039/d0ay02016h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, a series of novel hydrophilic interaction chromatography (HILIC) stationary phases were prepared by grafting nucleosides or nucleotides on the surface of silica gel. Firstly, the silica was modified with 3-glycidoxypropyltrimethoxysilane (GPTMS). And then nucleosides or nucleotides were bonded on the surface of GPTMS-modified silica through the epoxy-amine ring-opening reaction to provide four HILIC materials. These obtained stationary phases were successfully characterized by Fourier transform-infrared spectroscopy (FT-IR) and elemental analysis (EA), respectively. Effects of column temperature, water content of the mobile phase, pH and buffer concentration on the retention behavior of these HILIC materials and the corresponding separation mechanism were evaluated using various nucleosides and nucleobases, respectively. In addition, polar and hydrophilic compounds such as amino acids and water-soluble vitamins were successfully separated using the corresponding columns, showing application potential for the separation of bioactive substances.
Collapse
Affiliation(s)
- Tingfeng Tang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China.
| | | | | |
Collapse
|