1
|
Rizo-Roca D, Henderson JD, Zierath JR. Metabolomics in cardiometabolic diseases: Key biomarkers and therapeutic implications for insulin resistance and diabetes. J Intern Med 2025. [PMID: 40289598 DOI: 10.1111/joim.20090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Cardiometabolic diseases-including Type 2 diabetes and obesity-remain leading causes of global mortality. Recent advancements in metabolomics have facilitated the identification of metabolites that are integral to the development of insulin resistance, a characteristic feature of cardiometabolic disease. Key metabolites, such as branched-chain amino acids (BCAAs), ceramides, glycine, and glutamine, have emerged as valuable biomarkers for early diagnosis, risk stratification, and potential therapeutic targets. Elevated BCAAs and ceramides are strongly associated with insulin resistance and Type 2 diabetes, whereas glycine exhibits an inverse relationship with insulin resistance, making it a promising therapeutic target. Metabolites involved in energy stress, including ketone bodies, lactate, and nicotinamide adenine dinucleotide (NAD⁺), regulate insulin sensitivity and metabolic health, with ketogenic diets and NAD⁺ precursor supplementation showing potential benefits. Additionally, the novel biomarker N-lactoyl-phenylalanine further underscores the complexity of metabolic regulation and its therapeutic potential. This review underscores the potential of metabolite-based diagnostics and precision medicine, which could enhance efforts in the prevention, diagnosis, and treatment of cardiometabolic diseases, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- David Rizo-Roca
- Department of Physiology and Pharmacology, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - John D Henderson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Xiao M, Zhou N, Tian Z, Sun C. Endogenous metabolites in metabolic diseases: pathophysiological roles and therapeutic implications. J Nutr 2025:S0022-3166(25)00227-5. [PMID: 40250565 DOI: 10.1016/j.tjnut.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025] Open
Abstract
Breakthroughs in metabolomics technology have revealed the direct regulatory role of metabolites in physiology and disease. Recent data have highlighted the bioactive metabolites involved in the etiology and prevention, and treatment of metabolic diseases such as obesity, nonalcoholic fatty liver disease (NAFLD), type 2 diabetes mellitus (T2DM), and atherosclerosis. Numerous studies reveal that endogenous metabolites biosynthesized by host organisms or gut microflora regulate metabolic responses and disorders. Lipids, amino acids, and bile acids (BAs), as endogenous metabolic modulators, regulate energy metabolism, insulin sensitivity, and immune response through multiple pathways, such as insulin signaling cascade, chemical modifications, and metabolite-macromolecule interactions. Furthermore, the gut microbial metabolites short-chain fatty acids (SCFAs), as signaling regulators have a variety of beneficial impacts in regulating energy metabolic homeostasis. In this review, we will summarize information about the roles of bioactive metabolites in the pathogenesis of many metabolic diseases. Furthermore, we discuss the potential value of metabolites in the promising preventive and therapeutic perspectives of human metabolic diseases.
Collapse
Affiliation(s)
- Mengjie Xiao
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, P. R. China 150081; Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, 157 Baojian Road, Harbin, P. R. China 150081
| | - Ning Zhou
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, P. R. China 150081; Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, 157 Baojian Road, Harbin, P. R. China 150081
| | - Zhen Tian
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, P. R. China 150081; Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, 157 Baojian Road, Harbin, P. R. China 150081.
| | - Changhao Sun
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, P. R. China 150081; Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, 157 Baojian Road, Harbin, P. R. China 150081.
| |
Collapse
|
3
|
Nguyen NTK, Huang SY, Fan HY, Tung TH, Huynh QTV, Yang C, Chen YC. Lipidomics reveals ceramide biomarkers for detecting central precocious puberty in girls. Obes Res Clin Pract 2024; 18:269-279. [PMID: 39127601 DOI: 10.1016/j.orcp.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Pubertal timing is modulated by complex interactions between the pituitary and gonadal sex steroid hormones. Evidence indicates that sphingolipids are involved in the biosynthesis of steroid hormones at multiple levels. METHOD This study recruited adolescent female patients from pubertal and pediatric endocrine clinics in Northern and Southern Taiwan from the Taiwan Puberty Longitudinal Study. A total of 112 plasma samples (22 healthy control, 29 peripheral precocious puberty (PPP), and 61 CPP samples) were collected. We extracted lipids from the plasma samples using the modified Folch method. The un-targeted ultrahigh-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was employed for the lipid analysis. RESULTS We identified sphingolipid-linked metabolites, including Cer(18:0/15:0), Cer(18:1/16:0), and Cer(18:1/26:0) as candidate biomarkers for distinguishing girls with CPP from the control group by using an excellent discrimination model (AUC = 0.964). Moreover, Cer(18:0/22:0) and Cer(d18:0/18:1) were identified as potential biomarkers of PPP, with an AUC value of 0.938. Furthermore, CerP(18:1/18:0) was identified as the sole candidate biomarker capable of differentiating CPP from PPP. CONCLUSIONS The biomarkers identified in this study can facilitate the accurate detection of CPP in girls, provide insights into lipid-linked pathophysiology, and present a novel method of monitoring the progression of this disorder.
Collapse
Affiliation(s)
- Ngan Thi Kim Nguyen
- Undergraduate and Graduate Programs of Nutrition Science, College of Life Science, National Taiwan Normal University, Taipei, Taiwan; School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Hsien-Yu Fan
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan; Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Te-Hsuan Tung
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Quynh Thi Vu Huynh
- Department of Pediatrics, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh city, Vietnam; Department of Nephrology and Endocrinology, Children's Hospital 2, Ho Chi Minh city, Vietnam
| | - Chen Yang
- Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yang Ching Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
4
|
Chang CH, Wu HC, Hsieh YR, Lai WD, Tung TH, Huang JJ, Kao WY, Huang SY. Modulatory effect of n-3 polyunsaturated fatty acids on depressive-like behaviors in rats with chronic sleep deprivation: potential involvement of melatonin receptor pathway and brain lipidome. Food Funct 2023. [PMID: 37334912 DOI: 10.1039/d3fo01452e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Clinical evidence suggests that a bidirectional relationship is present between sleep loss and psychiatric disorders. Both melatonin receptor agonist ramelteon (RMT) and n-3 polyunsaturated fatty acids (n-3 PUFAs) exhibit antidepressant effects, while their underlying molecular mechanisms might be different. Thus, the present study aims to investigate the add-on effects and possible mechanisms of how RMT and different n-3 PUFAs modulate the melatonin receptor pathway as well as brain lipidome to ameliorate the neuropsychiatric behaviors displayed in rats under chronic sleep deprivation. Thirty-one 6-week-old male Wistar rats were divided into five groups: control (C), sleep deprivation (S), sleep deprivation treated with RMT (SR), sleep deprivation treated with RMT and eicosapentaenoic acid (C20:5n-3, EPA) (SRE), and sleep deprivation treated with RMT and docosahexaenoic acid (C22:6n-3, DHA) (SRD) groups. The results reveal that RMT plus EPA alleviated depressive-like behavior when the rats were subjected to the forced swimming test, whereas RMT plus DHA alleviated anxiety-like behavior when the rats were subjected to the elevated plus maze test. The results of a western blot analysis further revealed that compared with the rats in the S group, those in the SRE and SRD groups exhibited a significantly increased expression of MT2 in the prefrontal cortex, with greater benefits observed in the SRE group. In addition, decreased BDNF and TrkB expression levels were upregulated only in the SRE group. Lipidomic analysis further revealed possible involvement of aberrant lipid metabolism and neuropsychiatric behaviors. RMT plus EPA demonstrated promise as having the effects of reversing the levels of the potential biomarkers of depressive-like behaviors. RMT plus EPA or DHA could ameliorate depressive- and anxiety-like behaviors in sleep-deprived rats through the alteration of the lipidome and MT2 receptor pathway in the brain, whereas EPA and DHA exerted a differential effect.
Collapse
Affiliation(s)
- Chia-Hsuan Chang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan.
- Diet and Nutrition Department, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
| | - Hua-Chien Wu
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yin-Ru Hsieh
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan.
| | - Wen-De Lai
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan.
| | - Te-Hsuan Tung
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan.
| | - Jun-Jie Huang
- Diet and Nutrition Department, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
| | - Wei-Yu Kao
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan.
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
5
|
Zhang X, Ritonja JA, Zhou N, Chen BE, Li X. Omega-3 Polyunsaturated Fatty Acids Intake and Blood Pressure: A Dose-Response Meta-Analysis of Randomized Controlled Trials. J Am Heart Assoc 2022; 11:e025071. [PMID: 35647665 PMCID: PMC9238708 DOI: 10.1161/jaha.121.025071] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/24/2022] [Indexed: 02/06/2023]
Abstract
Background Current evidence might support the use of omega-3 fatty acids (preferably docosahexaenoic acid and eicosapentaenoic acid) for lowering blood pressure (BP), but the strength and shape of the dose-response relationship remains unclear. Methods and Results This study included randomized controlled trials published before May 7, 2021, that involved participants aged ≥18 years, and examined an association between omega-3 fatty acids (docosahexaenoic acid, eicosapentaenoic acid, or both) and BP. A random-effects 1-stage cubic spline regression model was used to predict the average dose-response association between daily omega-3 fatty acid intake and changes in BP. We also conducted stratified analyses to examine differences by prespecified subgroups. Seventy-one trials were included, involving 4973 individuals with a combined docosahexaenoic acid+eicosapentaenoic acid dose of 2.8 g/d (interquartile range, 1.3 g/d to 3.6 g/d). A nonlinear association was found overall or in most subgroups, depicted as J-shaped dose-response curves. The optimal intake in both systolic BP and diastolic BP reductions (mm Hg) were obtained by moderate doses between 2 g/d (systolic BP, -2.61 [95% CI, -3.57 to -1.65]; diastolic BP, -1.64 [95% CI, -2.29 to -0.99]) and 3 g/d (systolic BP, -2.61 [95% CI, -3.52 to -1.69]; diastolic BP, -1.80 [95% CI, -2.38 to -1.23]). Subgroup studies revealed stronger and approximately linear dose-response relations among hypertensive, hyperlipidemic, and older populations. Conclusions This dose-response meta-analysis demonstrates that the optimal combined intake of omega-3 fatty acids for BP lowering is likely between 2 g/d and 3 g/d. Doses of omega-3 fatty acid intake above the recommended 3 g/d may be associated with additional benefits in lowering BP among groups at high risk for cardiovascular diseases.
Collapse
Affiliation(s)
- Xin Zhang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese MedicinesMacau University of Science and TechnologyTaipaMacauChina
| | - Jennifer A. Ritonja
- Department of Public Health Sciences and Canadian Cancer Trials GroupQueen's UniversityKingstonOntarioCanada
| | - Na Zhou
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese MedicinesMacau University of Science and TechnologyTaipaMacauChina
| | - Bingshu E. Chen
- Department of Public Health Sciences and Canadian Cancer Trials GroupQueen's UniversityKingstonOntarioCanada
| | - Xinzhi Li
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese MedicinesMacau University of Science and TechnologyTaipaMacauChina
| |
Collapse
|
6
|
Wang S, Wang W, Mao H, Zhu M, Xu Z, Wang J, Zhang X, Li B, Xiang X, Wang Z. Lipidomics Reveals That Rice or Flour as a Single Source of Carbohydrates Cause Adverse Health Effects in Rats. Front Nutr 2022; 9:887757. [PMID: 35673359 PMCID: PMC9167423 DOI: 10.3389/fnut.2022.887757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
The type of diet is very important for the maintenance of health and nutrition. How the sole source of carbohydrates from rice- or flour-based diet affect blood sugar has not been elucidated for a long time. In order to explore the effects of these diets, sixty SD rats were randomly divided into three groups: control group (C group, AIN-93, standard diet), rice diet group (R group), and flour diet group (F group). All the rats were fed for 7 weeks in total by the assigned diets for 4 weeks (stage 1, S1) and all by the AIN-93 diet for 3 weeks (stage 2, S2). The body weights of all the rats were monitored and serum samples were taken for testing blood glucose, biochemical indicators and untargeted lipidome. It was found that both rice and flour-based diets caused weight gain, but the flour diet had a significant increase in blood sugar and low-density lipoprotein (LDL), while a significant decrease in albumin (ALB) and triglycerides (TG). Twenty-three and 148 lipids were changed by lipidomics in the rice diet group and flour diet group, respectively, and two lipids showed the same changes in the two groups, all belonging to TGs, namely TG (16:0/16:0/16:1) and TG (16:0/16:1/18:2), which showed that a single diet source had a significant effect on the health of rats. Fortunately, we can recover this effect through the subsequent standard diet, allowing the rats to return to normal blood sugar, weight and biochemical indicators. A model can predict the diet types through the logistic regression method. Finally, we proposed that a single diet increased blood sugar and weight through a decrease in TGs, and blood sugar and weight returned to normal after a standard diet. Taken together, the short-term negative effects caused by a single diet can be recovered by a standard diet and further proves the importance of diet types.
Collapse
Affiliation(s)
- Siyu Wang
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Diseases Control and Prevention, Beijing, China
| | - Wenjun Wang
- Beijing Junfeix Technology Co., Ltd., Beijing, China
| | - Hongmei Mao
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Diseases Control and Prevention, Beijing, China
| | - Mingyu Zhu
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Diseases Control and Prevention, Beijing, China
| | - Zihan Xu
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Diseases Control and Prevention, Beijing, China
| | - Jun Wang
- Shenzhen Polytechnic, School of Food and Drug, Shenzhen, China
| | - Xuesong Zhang
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Diseases Control and Prevention, Beijing, China
| | - Baolong Li
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Diseases Control and Prevention, Beijing, China
| | - Xuesong Xiang
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Diseases Control and Prevention, Beijing, China
- *Correspondence: Xuesong Xiang
| | - Zhu Wang
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Diseases Control and Prevention, Beijing, China
- Zhu Wang
| |
Collapse
|
7
|
Jones B, Sands C, Alexiadou K, Minnion J, Tharakan G, Behary P, Ahmed AR, Purkayastha S, Lewis MR, Bloom S, Li JV, Tan TM. The Metabolomic Effects of Tripeptide Gut Hormone Infusion Compared to Roux-en-Y Gastric Bypass and Caloric Restriction. J Clin Endocrinol Metab 2022; 107:e767-e782. [PMID: 34460933 PMCID: PMC8764224 DOI: 10.1210/clinem/dgab608] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Indexed: 12/23/2022]
Abstract
CONTEXT The gut-derived peptide hormones glucagon-like peptide-1 (GLP-1), oxyntomodulin (OXM), and peptide YY (PYY) are regulators of energy intake and glucose homeostasis and are thought to contribute to the glucose-lowering effects of bariatric surgery. OBJECTIVE To establish the metabolomic effects of a combined infusion of GLP-1, OXM, and PYY (tripeptide GOP) in comparison to a placebo infusion, Roux-en-Y gastric bypass (RYGB) surgery, and a very low-calorie diet (VLCD). DESIGN AND SETTING Subanalysis of a single-blind, randomized, placebo-controlled study of GOP infusion (ClinicalTrials.gov NCT01945840), including VLCD and RYGB comparator groups. PATIENTS AND INTERVENTIONS Twenty-five obese patients with type 2 diabetes or prediabetes were randomly allocated to receive a 4-week subcutaneous infusion of GOP (n = 14) or 0.9% saline control (n = 11). An additional 22 patients followed a VLCD, and 21 underwent RYGB surgery. MAIN OUTCOME MEASURES Plasma and urine samples collected at baseline and 4 weeks into each intervention were subjected to cross-platform metabolomic analysis, followed by unsupervised and supervised modeling approaches to identify similarities and differences between the effects of each intervention. RESULTS Aside from glucose, very few metabolites were affected by GOP, contrasting with major metabolomic changes seen with VLCD and RYGB. CONCLUSIONS Treatment with GOP provides a powerful glucose-lowering effect but does not replicate the broader metabolomic changes seen with VLCD and RYGB. The contribution of these metabolomic changes to the clinical benefits of RYGB remains to be elucidated.
Collapse
MESH Headings
- Adult
- Aged
- Blood Glucose/analysis
- Caloric Restriction/methods
- Caloric Restriction/statistics & numerical data
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/therapy
- Diabetes Mellitus, Type 2/urine
- Drug Therapy, Combination/methods
- Female
- Gastric Bypass/methods
- Gastric Bypass/statistics & numerical data
- Gastrointestinal Hormones/administration & dosage
- Glucagon-Like Peptide 1/administration & dosage
- Humans
- Infusions, Subcutaneous
- Male
- Metabolomics/statistics & numerical data
- Middle Aged
- Obesity, Morbid/blood
- Obesity, Morbid/metabolism
- Obesity, Morbid/therapy
- Obesity, Morbid/urine
- Oxyntomodulin/administration & dosage
- Peptide YY/administration & dosage
- Single-Blind Method
- Treatment Outcome
- Weight Loss
- Young Adult
Collapse
Affiliation(s)
- Ben Jones
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Caroline Sands
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Kleopatra Alexiadou
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - James Minnion
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - George Tharakan
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Preeshila Behary
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Ahmed R Ahmed
- Department of Surgery and Cancer, Imperial College Healthcare NHS Trust, London, UK
| | - Sanjay Purkayastha
- Department of Surgery and Cancer, Imperial College Healthcare NHS Trust, London, UK
| | - Matthew R Lewis
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Stephen Bloom
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Jia V Li
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Tricia M Tan
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Correspondence: Tricia M. Tan, MB, ChB, BSc, PhD, FRCP, FRCPath, 6th Floor, Commonwealth Building, Hammersmith Campus, Imperial College London, London W12 0HS, UK.
| |
Collapse
|
8
|
Yin R, Wang X, Li K, Yu K, Yang L. Lipidomic profiling reveals distinct differences in plasma lipid composition in overweight or obese adolescent students. BMC Endocr Disord 2021; 21:201. [PMID: 34641844 PMCID: PMC8513241 DOI: 10.1186/s12902-021-00859-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/31/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The relationship between dyslipidemia and obesity has been widely reported, but the global lipid profiles associated with the development of obesity still need to be clarified. An investigation into the association between the lipidomic plasma profile and adolescent obesity may provide new insights into the development of obesity. METHODS Mass spectrometry coupled with liquid chromatography was applied to detect the global lipidome in the fasting plasma from 90 Chinese adolescents, including 34 obese adolescents, 26 overweight adolescents, and 30 adolescents with a normal body mass index (BMI). All participants underwent anthropometric measurements by using InBody. Clinical biochemical indicators were measured by Cobas Elecsys. RESULTS Both qualitative and quantitative analyses revealed a gradual change in plasma lipid features among obese students, exhibiting characteristics close to overweight students, but differing significantly from normal students. Compared with normal and overweight students, levels of triglyceride (TG), 18-hydroxycortisol, isohumulinone A, and 11-dihydro-12-norneoquassin were up-regulated in the obese group, while phosphatidylcholine (PC), phosphatidylethanolamine (PE), lysoPC (LPC), lysoPE (LPE), and phosphatidylinositol (PI) were significantly down-regulated in the obese group. Then, we conducted Venn diagrams and selected 8 significant metabolites from the 3 paired comparisons. Most of the selected features were significantly correlated with the anthropometric measurements. CONCLUSIONS This study demonstrated evidence for a relationship between the eight significant metabolites with obese adolescents. These lipid features may provide a basis for evaluating risk and monitoring the development of obesity.
Collapse
Affiliation(s)
- Ruili Yin
- Beijing Key Laboratory of Diabetes Prevention and Research, Center for Endocrine Metabolic and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China
| | - Xiaojing Wang
- Beijing Key Laboratory of Diabetes Prevention and Research, Center for Endocrine Metabolic and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China
| | - Kun Li
- Beijing Key Laboratory of Diabetes Prevention and Research, Center for Endocrine Metabolic and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China
| | - Ke Yu
- Beijing Key Laboratory of Diabetes Prevention and Research, Center for Endocrine Metabolic and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China.
| | - Longyan Yang
- Beijing Key Laboratory of Diabetes Prevention and Research, Center for Endocrine Metabolic and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
9
|
Daidj NBB, Lamri-Senhadji M. Hepatoprotective and Anti-Obesity Properties of Sardine By-Product Oil in Rats Fed a High-Fat Diet. Prev Nutr Food Sci 2021; 26:285-295. [PMID: 34737989 PMCID: PMC8531423 DOI: 10.3746/pnf.2021.26.3.285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/13/2021] [Accepted: 06/24/2021] [Indexed: 12/19/2022] Open
Abstract
Excess lipid intake can trigger liver lipid accumulation and oxidative responses, which can lead to metabolic disturbances and contribute to hepatic steatosis and obesity and increase the risk of cardiovascular disease. Production of fish oil rich in omega-3 is a good opportunity for valorizing fish by-products in the therapeutic field. In this study, we explored the effects of oil from Sardina pilchardus by-products on cardiometabolic and oxidative disorders caused by toxic effects of excess lipids in obese rats. Three groups of obese rats received either 20% sardine by-product oil (SBy-Ob-HS; experimental group), 20% fillet oil (SF-Ob-HS; positive control group), or a high-fat diet (Ob-HS). Normal weight rats received a standard diet (normal). There was a significant decrease in serum total cholesterol (TC), triacylglycerols (TG), and insulin concentrations in the SBy-Ob-HS group compared with the SF-Ob-HS group. Compared with the Ob-HS group, TC and TG, glycemia, glycosylated hemoglobin, and insulinemia were decreased in the SBy-Ob-HS (more notably) and SF-Ob-HS groups. Furthermore, hepatic lipids, low density lipoprotein-cholesterol (C), the non-esterified cholesterol/phos-pholipids ratio, serum transaminases activities and lipid peroxidation were lower and serum high density lipoproteins-C were higher in the SBy-Ob-HS and SF-Ob-HS groups compared with the Ob-HS group. Serum isoprostane concentrations were reduced in the SBy-Ob-HS (more notably) and SF-Ob-HS groups compared with the Ob-HS and normal groups. The activities of antioxidant enzymes in tissues were enhanced, particularly in the by-product oil group. The oil extracted from by-products demonstrate anti-obesity properties (hypolipemiant, hepatoprotective, antiatherogenic, antidiabetic, and antioxidant) that may be beneficial for the management of obesity and its complications, such as hepatic steatosis.
Collapse
Affiliation(s)
- Nabila Boukhari Benahmed Daidj
- Laboratory of Clinical and Metabolic Nutrition, Faculty of Nature and Life Sciences, Oran 31100, Algeria.,Higher School of Biological Sciences of Oran (ESSBO), University Oran 1 Ahmed Ben Bella, Oran 31100, Algeria
| | - Myriem Lamri-Senhadji
- Laboratory of Clinical and Metabolic Nutrition, Faculty of Nature and Life Sciences, Oran 31100, Algeria
| |
Collapse
|
10
|
A New Zealand green-lipped mussel oil-enriched high-fat diet exhibits beneficial effects on body weight and metabolism in mice. Br J Nutr 2021; 125:972-982. [PMID: 32594917 DOI: 10.1017/s0007114520002342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
To induce diet-induced obesity (DIO) in rodents, diets high in saturated fat and/or carbohydrates are commonly used. In the laboratory, standardised diets evolved over time without paying particular attention to the effect of fat composition on metabolic alterations. In the present study, customised high-fat diets (HFD) enriched with a combination of lard and different concentrations of New Zealand green-lipped mussel (Perna canaliculus) oil or MSC Hoki (Macruronus novaezelandiae, blue grenadier) liver oil, important sources of n-3 PUFA, in comparison with a solely lard-based diet, were fed to lean and DIO male C57BL/6 mice and their effects on metabolic parameters were monitored. Intriguingly, an isoenergetic HFD containing 63 % of total fat in the form of mussel oil and only 28 % in the form of lard attenuated HFD-induced body weight gain after 1 and 4 weeks, respectively. Consistently, changing a lard-enriched HFD to the mussel oil diet reduced body weight markedly even after mice had been exposed to the former diet for 10 months. The weight-reducing effect of the diet was not caused by altered energy intake or expenditure, but was associated with reduced visceral fat mass. Collectively, these data suggest a novel weight-reducing potential of green-lipped mussel oil.
Collapse
|