1
|
Zhang L, Xie F, Zhang F, Lu B. The potential roles of exosomes in pathological cardiomyocyte hypertrophy mechanisms and therapy: A review. Medicine (Baltimore) 2024; 103:e37994. [PMID: 38669371 PMCID: PMC11049793 DOI: 10.1097/md.0000000000037994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Pathological cardiac hypertrophy, characterized by the enlargement of cardiac muscle cells, leads to serious cardiac conditions and stands as a major global health issue. Exosomes, comprising small lipid bilayer vesicles, are produced by various cell types and found in numerous bodily fluids. They play a pivotal role in intercellular communication by transferring bioactive cargos to recipient cells or activating signaling pathways in target cells. Exosomes from cardiomyocytes, endothelial cells, fibroblasts, and stem cells are key in regulating processes like cardiac hypertrophy, cardiomyocyte survival, apoptosis, fibrosis, and angiogenesis within the context of cardiovascular diseases. This review delves into exosomes' roles in pathological cardiac hypertrophy, first elucidating their impact on cell communication and signaling pathways. It then advances to discuss how exosomes affect key hypertrophic processes, including metabolism, fibrosis, oxidative stress, and angiogenesis. The review culminates by evaluating the potential of exosomes as biomarkers and their significance in targeted therapeutic strategies, thus emphasizing their critical role in the pathophysiology and management of cardiac hypertrophy.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Xie
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fengmei Zhang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Beiyao Lu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
He X, Cantrell AC, Williams QA, Gu W, Chen Y, Chen JX, Zeng H. p53 Acetylation Exerts Critical Roles in Pressure Overload-Induced Coronary Microvascular Dysfunction and Heart Failure in Mice. Arterioscler Thromb Vasc Biol 2024; 44:826-842. [PMID: 38328937 PMCID: PMC10978286 DOI: 10.1161/atvbaha.123.319601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/25/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Coronary microvascular dysfunction (CMD) has been shown to contribute to cardiac hypertrophy and heart failure (HF) with preserved ejection fraction. At this point, there are no proven treatments for CMD. METHODS We have shown that histone acetylation may play a critical role in the regulation of CMD. By using a mouse model that replaces lysine with arginine at residues K98, K117, K161, and K162R of p53 (p534KR), preventing acetylation at these sites, we test the hypothesis that acetylation-deficient p534KR could improve CMD and prevent the progression of hypertensive cardiac hypertrophy and HF. Wild-type and p534KR mice were subjected to pressure overload by transverse aortic constriction to induce cardiac hypertrophy and HF. RESULTS Echocardiography measurements revealed improved cardiac function together with a reduction of apoptosis and fibrosis in p534KR mice. Importantly, myocardial capillary density and coronary flow reserve were significantly improved in p534KR mice. Moreover, p534KR upregulated the expression of cardiac glycolytic enzymes and Gluts (glucose transporters), as well as the level of fructose-2,6-biphosphate; increased PFK-1 (phosphofructokinase 1) activity; and attenuated cardiac hypertrophy. These changes were accompanied by increased expression of HIF-1α (hypoxia-inducible factor-1α) and proangiogenic growth factors. Additionally, the levels of SERCA-2 were significantly upregulated in sham p534KR mice, as well as in p534KR mice after transverse aortic constriction. In vitro, p534KR significantly improved endothelial cell glycolytic function and mitochondrial respiration and enhanced endothelial cell proliferation and angiogenesis. Similarly, acetylation-deficient p534KR significantly improved coronary flow reserve and rescued cardiac dysfunction in SIRT3 (sirtuin 3) knockout mice. CONCLUSIONS Our data reveal the importance of p53 acetylation in coronary microvascular function, cardiac function, and remodeling and may provide a promising approach to improve hypertension-induced CMD and to prevent the transition of cardiac hypertrophy to HF.
Collapse
Affiliation(s)
- Xiaochen He
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Aubrey C Cantrell
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Quinesha A Williams
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Wei Gu
- Department of Pathology & Cell Biology, Columbia University, Institute for Cancer Genetics, New York, NY 10032, USA
| | - Yingjie Chen
- Department of Physiology & Biophysics, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Jian-Xiong Chen
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Heng Zeng
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| |
Collapse
|
3
|
Li B, Xuan H, Yin Y, Wu S, Du L. The N 6-methyladenosine modification in pathologic angiogenesis. Life Sci 2024; 339:122417. [PMID: 38244915 DOI: 10.1016/j.lfs.2024.122417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/22/2024]
Abstract
The vascular system is a vital circulatory network in the human body that plays a critical role in almost all physiological processes. The production of blood vessels in the body is a significant area of interest for researchers seeking to improve their understanding of vascular function and maintain normal vascular operation. However, an excessive or insufficient vascular regeneration process may lead to the development of various ailments such as cancer, eye diseases, and ischemic diseases. Recent preclinical and clinical studies have revealed new molecular targets and principles that may enhance the therapeutic effect of anti-angiogenic strategies. A thorough comprehension of the mechanism responsible for the abnormal vascular growth in disease processes can enable researchers to better target and effectively suppress or treat the disease. N6-methyladenosine (m6A), a common RNA methylation modification method, has emerged as a crucial regulator of various diseases by modulating vascular development. In this review, we will cover how m6A regulates various vascular-related diseases, such as cancer, ocular diseases, neurological diseases, ischemic diseases, emphasizing the mechanism of m6A methylation regulators on angiogenesis during pathological process.
Collapse
Affiliation(s)
- Bin Li
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hanqin Xuan
- Department of Pathology, the First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Yuye Yin
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shusheng Wu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu, China.
| | - Longfei Du
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
4
|
Oknińska M, Zajda K, Zambrowska Z, Grzanka M, Paterek A, Mackiewicz U, Szczylik C, Kurzyna M, Piekiełko-Witkowska A, Torbicki A, Kieda C, Mączewski M. Role of Oxygen Starvation in Right Ventricular Decompensation and Failure in Pulmonary Arterial Hypertension. JACC. HEART FAILURE 2024; 12:235-247. [PMID: 37140511 DOI: 10.1016/j.jchf.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/22/2023] [Accepted: 03/16/2023] [Indexed: 05/05/2023]
Abstract
Right ventricular (RV) function and eventually failure determine outcome in patients with pulmonary arterial hypertension (PAH). Initially, RV responds to an increased load caused by PAH with adaptive hypertrophy; however, eventually RV failure ensues. Unfortunately, it is unclear what causes the transition from compensated RV hypertrophy to decompensated RV failure. Moreover, at present, there are no therapies for RV failure; those for left ventricular (LV) failure are ineffective, and no therapies specifically targeting RV are available. Thus there is a clear need for understanding the biology of RV failure and differences in physiology and pathophysiology between RV and LV that can ultimately lead to development of such therapies. In this paper, we discuss RV adaptation and maladaptation in PAH, with a particular focus of oxygen delivery and hypoxia as the principal drivers of RV hypertrophy and failure, and attempt to pinpoint potential sites for therapy.
Collapse
Affiliation(s)
- Marta Oknińska
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Karolina Zajda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Medical Institute, Warsaw, Poland
| | - Zuzanna Zambrowska
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Małgorzata Grzanka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Aleksandra Paterek
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Urszula Mackiewicz
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Cezary Szczylik
- Department of Oncology at ECZ-Otwock, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Marcin Kurzyna
- Department of Pulmonary Circulation, Thromboembolic Diseases and Cardiology at ECZ-Otwock, ERN-LUNG Member, Centre of Postgraduate Medical Education, Warsaw, Poland
| | | | - Adam Torbicki
- Department of Pulmonary Circulation, Thromboembolic Diseases and Cardiology at ECZ-Otwock, ERN-LUNG Member, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Medical Institute, Warsaw, Poland; Centre for Molecular Biophysics, UPR, CNRS 4301, Orléans CEDEX 2, France; Department of Molecular and Translational Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Michał Mączewski
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland.
| |
Collapse
|
5
|
Yang X, Cheng K, Wang LY, Jiang JG. The role of endothelial cell in cardiac hypertrophy: Focusing on angiogenesis and intercellular crosstalk. Biomed Pharmacother 2023; 163:114799. [PMID: 37121147 DOI: 10.1016/j.biopha.2023.114799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023] Open
Abstract
Cardiac hypertrophy is characterized by cardiac structural remodeling, fibrosis, microvascular rarefaction, and chronic inflammation. The heart is structurally organized by different cell types, including cardiomyocytes, fibroblasts, endothelial cells, and immune cells. These cells highly interact with each other by a number of paracrine or autocrine factors. Cell-cell communication is indispensable for cardiac development, but also plays a vital role in regulating cardiac response to damage. Although cardiomyocytes and fibroblasts are deemed as key regulators of hypertrophic stimulation, other cells, including endothelial cells, also exert important effects on cardiac hypertrophy. More particularly, endothelial cells are the most abundant cells in the heart, which make up the basic structure of blood vessels and are widespread around other cells in the heart, implicating the great and inbuilt advantage of intercellular crosstalk. Cardiac microvascular plexuses are essential for transport of liquids, nutrients, molecules and cells within the heart. Meanwhile, endothelial cell-mediated paracrine signals have multiple positive or negative influences on cardiac hypertrophy. However, a comprehensive discussion of these influences and consequences is required. This review aims to summarize the basic function of endothelial cells in angiogenesis, with an emphasis on angiogenic molecules under hypertrophic conditions. The secondary objective of the research is to fully discuss the key molecules involved in the intercellular crosstalk and the endothelial cell-mediated protective or detrimental effects on other cardiac cells. This review provides a more comprehensive understanding of the overall role of endothelial cells in cardiac hypertrophy and guides the therapeutic approaches and drug development of cardiac hypertrophy.
Collapse
Affiliation(s)
- Xing Yang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430000, China
| | - Kun Cheng
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Lu-Yun Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430000, China.
| | - Jian-Gang Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430000, China.
| |
Collapse
|
6
|
He X, Cantrell AC, Williams QA, Gu W, Chen Y, Chen JX, Zeng H. P53 Acetylation Exerts Critical Roles In Pressure Overload Induced Coronary Microvascular Dysfunction and Heart Failure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527691. [PMID: 36798200 PMCID: PMC9934706 DOI: 10.1101/2023.02.08.527691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Coronary microvascular dysfunction (CMD) has been shown to contribute to cardiac hypertrophy and heart failure with preserved ejection fraction. At this point, there are no proven treatments for CMD. We have shown that histone acetylation may play a critical role in the regulation of CMD. By using a mouse model that replaces lysine with arginine at residues K98/117/161/162R of p53 (p534KR), preventing acetylation at these sites, we test the hypothesis that acetylation-deficient p534KR could improve coronary microvascular dysfunction and prevent the progression of hypertensive cardiac hypertrophy and heart failure. Wild-type (WT) and p534KR mice were subjected to pressure overload (PO) by transverse aortic constriction to induce cardiac hypertrophy and heart failure (HF). Echocardiography measurements revealed improved cardiac function together with reduction of apoptosis and fibrosis in p534KR mice. Importantly, myocardial capillary density and coronary flow reserve (CFR) were significantly improved in p534KR mice. Moreover, p534KR upregulated the expression of cardiac glycolytic enzymes and glucose transporters, as well as the level of fructose-2,6-biphosphate; increased PFK-1 activity; and attenuated cardiac hypertrophy. These changes were accompanied by increased expression of HIF-1α and proangiogenic growth factors. Additionally, the levels of SERCA-2 were significantly upregulated in sham p534KR mice as well as in p534KR mice after TAC. In vitro, p534KR significantly improved endothelial cell (EC) glycolytic function and mitochondrial respiration, and enhanced EC proliferation and angiogenesis. Similarly, acetylation-deficient p534KR significantly improved CFR and rescued cardiac dysfunction in SIRT3 KO mice. Our data reveal the importance of p53 acetylation in coronary microvascular function, cardiac function, and remodeling, and may provide a promising approach to improve hypertension-induced coronary microvascular dysfunction (CMD) and to prevent the transition of cardiac hypertrophy to heart failure.
Collapse
Affiliation(s)
- Xiaochen He
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Aubrey C Cantrell
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Quinesha A Williams
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Wei Gu
- Department of Pathology & Cell Biology, Columbia University, Institute for Cancer Genetics, New York, NY 10032, USA
| | - Yingjie Chen
- Department of Physiology & Biophysics, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Jian-Xiong Chen
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Heng Zeng
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| |
Collapse
|
7
|
Caturano A, Vetrano E, Galiero R, Salvatore T, Docimo G, Epifani R, Alfano M, Sardu C, Marfella R, Rinaldi L, Sasso FC. Cardiac Hypertrophy: From Pathophysiological Mechanisms to Heart Failure Development. Rev Cardiovasc Med 2022; 23:165. [PMID: 39077592 PMCID: PMC11273913 DOI: 10.31083/j.rcm2305165] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 07/31/2024] Open
Abstract
Cardiac hypertrophy develops in response to increased workload to reduce ventricular wall stress and maintain function and efficiency. Pathological hypertrophy can be adaptive at the beginning. However, if the stimulus persists, it may progress to ventricular chamber dilatation, contractile dysfunction, and heart failure, resulting in poorer outcome and increased social burden. The main pathophysiological mechanisms of pathological hypertrophy are cell death, fibrosis, mitochondrial dysfunction, dysregulation of Ca 2 + -handling proteins, metabolic changes, fetal gene expression reactivation, impaired protein and mitochondrial quality control, altered sarcomere structure, and inadequate angiogenesis. Diabetic cardiomyopathy is a condition in which cardiac pathological hypertrophy mainly develop due to insulin resistance and subsequent hyperglycaemia, associated with altered fatty acid metabolism, altered calcium homeostasis and inflammation. In this review, we summarize the underlying molecular mechanisms of pathological hypertrophy development and progression, which can be applied in the development of future novel therapeutic strategies in both reversal and prevention.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Teresa Salvatore
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Giovanni Docimo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Raffaella Epifani
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Maria Alfano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| |
Collapse
|
8
|
Balogh V, MacAskill MG, Hadoke PWF, Gray GA, Tavares AAS. Positron Emission Tomography Techniques to Measure Active Inflammation, Fibrosis and Angiogenesis: Potential for Non-invasive Imaging of Hypertensive Heart Failure. Front Cardiovasc Med 2021; 8:719031. [PMID: 34485416 PMCID: PMC8416043 DOI: 10.3389/fcvm.2021.719031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
Heart failure, which is responsible for a high number of deaths worldwide, can develop due to chronic hypertension. Heart failure can involve and progress through several different pathways, including: fibrosis, inflammation, and angiogenesis. Early and specific detection of changes in the myocardium during the transition to heart failure can be made via the use of molecular imaging techniques, including positron emission tomography (PET). Traditional cardiovascular PET techniques, such as myocardial perfusion imaging and sympathetic innervation imaging, have been established at the clinical level but are often lacking in pathway and target specificity that is important for assessment of heart failure. Therefore, there is a need to identify new PET imaging markers of inflammation, fibrosis and angiogenesis that could aid diagnosis, staging and treatment of hypertensive heart failure. This review will provide an overview of key mechanisms underlying hypertensive heart failure and will present the latest developments in PET probes for detection of cardiovascular inflammation, fibrosis and angiogenesis. Currently, selective PET probes for detection of angiogenesis remain elusive but promising PET probes for specific targeting of inflammation and fibrosis are rapidly progressing into clinical use.
Collapse
Affiliation(s)
- Viktoria Balogh
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Mark G. MacAskill
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Patrick W. F. Hadoke
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Gillian A. Gray
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Adriana A. S. Tavares
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Zhao Y, Hu J, Sun X, Yang K, Yang L, Kong L, Zhang B, Li F, Li C, Shi B, Hu K, Sun A, Ge J. Loss of m6A demethylase ALKBH5 promotes post-ischemic angiogenesis via post-transcriptional stabilization of WNT5A. Clin Transl Med 2021; 11:e402. [PMID: 34047466 PMCID: PMC8087997 DOI: 10.1002/ctm2.402] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/11/2021] [Accepted: 04/18/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Post-ischemic angiogenesis is critical for blood flow recovery and ischemic tissue repair. N6-methyladenosine (m6A) plays essential roles in numerous biological processes. However, the impact and connected mechanism of m6A on post-ischemic angiogenesis are not fully understood. METHODS AlkB homolog 5 (ALKBH5) was screened out among several methyltransferases and demethylases involved in dynamic m6A regulation. Cardiac microvascular endothelial cells (CMECs) angiogenesis and WNT family member 5A (WNT5A) stability were analyzed upon ALKBH5 overexpression with adenovirus or knockdown with small interfering RNAs in vitro. The blood flow recovery, capillary, and small artery densities were evaluated in adeno-associated virus (AAV)-ALKBH5 overexpression or ALKBH5 knockout (KO) mice in a hind-limb ischemia model. The same experiments were conducted to explore the translational value of transient silencing of ALKBH5 with adenovirus. RESULTS ALKBH5 was significantly upregulated in hypoxic CMECs and led to a global decrease of m6A level. ALKBH5 overexpression further reduced m6A level in normoxic and hypoxic CMECs, impaired proliferation, migration, and tube formation only in hypoxic CMECs. Conversely, ALKBH5 knockdown preserved m6A levels and promoted angiogenic phenotypes in hypoxic but not in normoxic CMECs. Mechanistically, ALKBH5 regulated WNT5A expression through post-transcriptional mRNA modulation in an m6A-dependent manner, which decreased its stability and subsequently impeded angiogenesis in hypoxic CMECs. Furthermore, ALKBH5 overexpression hindered blood flow recovery and reduced CD31 and alpha-smooth muscle actin expression in hind-limb ischemia mice. As expected, ALKBH5-KO mice exhibited improved blood flow recovery, increased capillary, and small artery densities after hind-limb ischemia, and similar beneficial effects were observed in mice with transient adenoviral ALKBH5 gene silencing. CONCLUSION We demonstrate that ALKBH5 is a negative regulator of post-ischemic angiogenesis via post-transcriptional modulation and destabilization of WNT5A mRNA in an m6A-dependent manner. Targeting ALKBH5 may be a potential therapeutic option for ischemic diseases, including peripheral artery disease.
Collapse
Affiliation(s)
- Yongchao Zhao
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular DiseasesShanghaiChina
- Institute of Biomedical SciencesFudan UniversityShanghaiChina
- NHC Key Laboratory of Viral Heart DiseasesShanghaiChina
- Key Laboratory of Viral Heart DiseasesChinese Academy of Medical SciencesShanghaiChina
- Department of CardiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Jingjing Hu
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular DiseasesShanghaiChina
- Institute of Biomedical SciencesFudan UniversityShanghaiChina
- NHC Key Laboratory of Viral Heart DiseasesShanghaiChina
- Key Laboratory of Viral Heart DiseasesChinese Academy of Medical SciencesShanghaiChina
| | - Xiaolei Sun
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular DiseasesShanghaiChina
- Institute of Biomedical SciencesFudan UniversityShanghaiChina
- NHC Key Laboratory of Viral Heart DiseasesShanghaiChina
- Key Laboratory of Viral Heart DiseasesChinese Academy of Medical SciencesShanghaiChina
| | - Kun Yang
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular DiseasesShanghaiChina
- Institute of Biomedical SciencesFudan UniversityShanghaiChina
- NHC Key Laboratory of Viral Heart DiseasesShanghaiChina
- Key Laboratory of Viral Heart DiseasesChinese Academy of Medical SciencesShanghaiChina
| | - Lebing Yang
- Department of CardiologyWenzhou Medicial UniversityWenzhouChina
| | - Lingqiu Kong
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular DiseasesShanghaiChina
- Institute of Biomedical SciencesFudan UniversityShanghaiChina
- NHC Key Laboratory of Viral Heart DiseasesShanghaiChina
- Key Laboratory of Viral Heart DiseasesChinese Academy of Medical SciencesShanghaiChina
| | - Beijian Zhang
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular DiseasesShanghaiChina
- Institute of Biomedical SciencesFudan UniversityShanghaiChina
- NHC Key Laboratory of Viral Heart DiseasesShanghaiChina
- Key Laboratory of Viral Heart DiseasesChinese Academy of Medical SciencesShanghaiChina
| | - Fuhai Li
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular DiseasesShanghaiChina
- Institute of Biomedical SciencesFudan UniversityShanghaiChina
| | - Chaofu Li
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular DiseasesShanghaiChina
- Institute of Biomedical SciencesFudan UniversityShanghaiChina
| | - Bei Shi
- Department of CardiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Kai Hu
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular DiseasesShanghaiChina
- Institute of Biomedical SciencesFudan UniversityShanghaiChina
| | - Aijun Sun
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular DiseasesShanghaiChina
- Institute of Biomedical SciencesFudan UniversityShanghaiChina
- NHC Key Laboratory of Viral Heart DiseasesShanghaiChina
- Key Laboratory of Viral Heart DiseasesChinese Academy of Medical SciencesShanghaiChina
| | - Junbo Ge
- Department of CardiologyZhongshan HospitalFudan UniversityShanghai Institute of Cardiovascular DiseasesShanghaiChina
- Institute of Biomedical SciencesFudan UniversityShanghaiChina
- NHC Key Laboratory of Viral Heart DiseasesShanghaiChina
- Key Laboratory of Viral Heart DiseasesChinese Academy of Medical SciencesShanghaiChina
- Department of CardiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| |
Collapse
|
10
|
VEGF Contributes to Mesenchymal Stem Cell-Mediated Reversion of Nor1-Dependent Hypertrophy in iPS Cell-Derived Cardiomyocytes. Stem Cells Int 2021; 2021:8888575. [PMID: 33927770 PMCID: PMC8053052 DOI: 10.1155/2021/8888575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 03/02/2021] [Accepted: 03/24/2021] [Indexed: 01/19/2023] Open
Abstract
Myocardial hypertrophy is present in many heart diseases, representing a strong predictor of adverse cardiovascular outcomes. Regarding therapeutic intervention, mesenchymal stem cells (MSCs) have been suggested to significantly reduce cardiac hypertrophy and progression to heart failure. Preconditioning of MSCs was previously demonstrated to highly improve their paracrine activity resulting in modulation of immune responses and the progression of diseases. Here, we studied the effects of bone marrow-derived preconditioned MSCs on hypertrophied induced pluripotent stem cell-derived cardiomyocytes (iPS-CM) and also sought to identify MSC-derived antihypertrophic molecules. Phenylephrine (PE) was used to induce hypertrophy in murine iPS-CM, and markers of hypertrophy were identified by microarray analysis. Murine MSCs were treated with IFN-γ and IL-1β to enhance their paracrine activity, and transcriptional profiling was performed by microarray analysis. Hypertrophied iPS-CM were subsequently cocultured with preconditioned MSCs or MSC-conditioned medium (CM), respectively. Effects on hypertrophied iPS-CM were studied by cell area quantification, real-time PCR, and western blot. In some experiments, cells were incubated with fractions of MSC-CM obtained by ultrafiltration or by MSC-CM supplemented with inhibitory antibodies. Intracellular and extracellular levels of vascular endothelial growth factor (VEGF) were evaluated by western blot and ELISA. PE-induced hypertrophy in iPS-CM was associated with an upregulation of neuron-derived orphan receptor (Nor1) expression, activation of Akt, and inhibition of both strongly prevented hypertrophy induction in iPS-CM. VEGF secreted by preconditioned MSCs provoked hypertrophy regression in iPS-CM, and a negative correlation between Nor1 expression and hypertrophic growth could be evidenced. Our results demonstrate that Nor1 expression strongly supports hypertrophy in iPS-CM. Moreover, the secretome of preconditioned MSCs triggered regression of hypertrophy in iPS-CM in a VEGF-dependent manner. We suggest that the delivery of the MSC-derived secretome may represent a therapeutic strategy to limit cardiac hypertrophy. However, additional in vivo studies are needed to prove this hypothesis.
Collapse
|
11
|
Dobbin SJ, Petrie MC, Myles RC, Touyz RM, Lang NN. Cardiotoxic effects of angiogenesis inhibitors. Clin Sci (Lond) 2021; 135:71-100. [PMID: 33404052 PMCID: PMC7812690 DOI: 10.1042/cs20200305] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
The development of new therapies for cancer has led to dramatic improvements in survivorship. Angiogenesis inhibitors represent one such advancement, revolutionising treatment for a wide range of malignancies. However, these drugs are associated with cardiovascular toxicities which can impact optimal cancer treatment in the short-term and may lead to increased morbidity and mortality in the longer term. Vascular endothelial growth factor inhibitors (VEGFIs) are associated with hypertension, left ventricular systolic dysfunction (LVSD) and heart failure as well as arterial and venous thromboembolism, QTc interval prolongation and arrhythmia. The mechanisms behind the development of VEGFI-associated LVSD and heart failure likely involve the combination of a number of myocardial insults. These include direct myocardial effects, as well as secondary toxicity via coronary or peripheral vascular damage. Cardiac toxicity may result from the 'on-target' effects of VEGF inhibition or 'off-target' effects resulting from inhibition of other tyrosine kinases. Similar mechanisms may be involved in the development of VEGFI-associated right ventricular (RV) dysfunction. Some VEGFIs can be associated with QTc interval prolongation and an increased risk of ventricular and atrial arrhythmia. Further pre-clinical and clinical studies and trials are needed to better understand the impact of VEGFI on the cardiovascular system. Once mechanisms are elucidated, therapies can be investigated in clinical trials and surveillance strategies for identifying VEGFI-associated cardiovascular complications can be developed.
Collapse
Affiliation(s)
- Stephen J.H. Dobbin
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, United Kingdom, G12 8TA
| | - Mark C. Petrie
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, United Kingdom, G12 8TA
| | - Rachel C. Myles
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, United Kingdom, G12 8TA
| | - Rhian M. Touyz
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, United Kingdom, G12 8TA
| | - Ninian N. Lang
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, United Kingdom, G12 8TA
| |
Collapse
|
12
|
Li N, Rignault-Clerc S, Bielmann C, Bon-Mathier AC, Déglise T, Carboni A, Ducrest M, Rosenblatt-Velin N. Increasing heart vascularisation after myocardial infarction using brain natriuretic peptide stimulation of endothelial and WT1 + epicardial cells. eLife 2020; 9:61050. [PMID: 33245046 PMCID: PMC7695454 DOI: 10.7554/elife.61050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Brain natriuretic peptide (BNP) treatment increases heart function and decreases heart dilation after myocardial infarction (MI). Here, we investigated whether part of the cardioprotective effect of BNP in infarcted hearts related to improved neovascularisation. Infarcted mice were treated with saline or BNP for 10 days. BNP treatment increased vascularisation and the number of endothelial cells in all areas of infarcted hearts. Endothelial cell lineage tracing showed that BNP directly stimulated the proliferation of resident endothelial cells via NPR-A binding and p38 MAP kinase activation. BNP also stimulated the proliferation of WT1+ epicardium-derived cells but only in the hypoxic area of infarcted hearts. Our results demonstrated that these immature cells have a natural capacity to differentiate into endothelial cells in infarcted hearts. BNP treatment increased their proliferation but not their differentiation capacity. We identified new roles for BNP that hold potential for new therapeutic strategies to improve recovery and clinical outcome after MI.
Collapse
Affiliation(s)
- Na Li
- Division of Angiology, Heart and Vessel Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Stephanie Rignault-Clerc
- Division of Angiology, Heart and Vessel Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Christelle Bielmann
- Division of Angiology, Heart and Vessel Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Anne-Charlotte Bon-Mathier
- Division of Angiology, Heart and Vessel Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Tamara Déglise
- Division of Angiology, Heart and Vessel Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Alexia Carboni
- Division of Angiology, Heart and Vessel Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Mégane Ducrest
- Division of Angiology, Heart and Vessel Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Nathalie Rosenblatt-Velin
- Division of Angiology, Heart and Vessel Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
Sadek MS, Cachorro E, El-Armouche A, Kämmerer S. Therapeutic Implications for PDE2 and cGMP/cAMP Mediated Crosstalk in Cardiovascular Diseases. Int J Mol Sci 2020; 21:E7462. [PMID: 33050419 PMCID: PMC7590001 DOI: 10.3390/ijms21207462] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Phosphodiesterases (PDEs) are the principal superfamily of enzymes responsible for degrading the secondary messengers 3',5'-cyclic nucleotides cAMP and cGMP. Their refined subcellular localization and substrate specificity contribute to finely regulate cAMP/cGMP gradients in various cellular microdomains. Redistribution of multiple signal compartmentalization components is often perceived under pathological conditions. Thereby PDEs have long been pursued as therapeutic targets in diverse disease conditions including neurological, metabolic, cancer and autoimmune disorders in addition to numerous cardiovascular diseases (CVDs). PDE2 is a unique member of the broad family of PDEs. In addition to its capability to hydrolyze both cAMP and cGMP, PDE2 is the sole isoform that may be allosterically activated by cGMP increasing its cAMP hydrolyzing activity. Within the cardiovascular system, PDE2 serves as an integral regulator for the crosstalk between cAMP/cGMP pathways and thereby may couple chronically adverse augmented cAMP signaling with cardioprotective cGMP signaling. This review provides a comprehensive overview of PDE2 regulatory functions in multiple cellular components within the cardiovascular system and also within various subcellular microdomains. Implications for PDE2- mediated crosstalk mechanisms in diverse cardiovascular pathologies are discussed highlighting the prospective use of PDE2 as a potential therapeutic target in cardiovascular disorders.
Collapse
Affiliation(s)
| | | | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (M.S.S.); (E.C.)
| | - Susanne Kämmerer
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (M.S.S.); (E.C.)
| |
Collapse
|
14
|
Hemanthakumar KA, Kivelä R. Angiogenesis and angiocrines regulating heart growth. VASCULAR BIOLOGY 2020; 2:R93-R104. [PMID: 32935078 PMCID: PMC7487598 DOI: 10.1530/vb-20-0006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022]
Abstract
Endothelial cells (ECs) line the inner surface of all blood and lymphatic vessels throughout the body, making endothelium one of the largest tissues. In addition to its transport function, endothelium is now appreciated as a dynamic organ actively participating in angiogenesis, permeability and vascular tone regulation, as well as in the development and regeneration of tissues. The identification of endothelial-derived secreted factors, angiocrines, has revealed non-angiogenic mechanisms of endothelial cells in both physiological and pathological tissue remodeling. In the heart, ECs play a variety of important roles during cardiac development as well as in growth, homeostasis and regeneration of the adult heart. To date, several angiocrines affecting cardiomyocyte growth in response to physiological or pathological stimuli have been identified. In this review, we discuss the effects of angiogenesis and EC-mediated signaling in the regulation of cardiac hypertrophy. Identification of the molecular and metabolic signals from ECs during physiological and pathological cardiac growth could provide novel therapeutic targets to treat heart failure, as endothelium is emerging as one of the potential target organs in cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Karthik Amudhala Hemanthakumar
- Stem cells and Metabolism Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Wihuri Research Institute, Helsinki, Finland
| | - Riikka Kivelä
- Stem cells and Metabolism Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Wihuri Research Institute, Helsinki, Finland
| |
Collapse
|
15
|
Chen Q, Zhang D, Bi Y, Zhang W, Zhang Y, Meng Q, Li Y, Bian H. The protective effects of liguzinediol on congestive heart failure induced by myocardial infarction and its relative mechanism. Chin Med 2020; 15:63. [PMID: 32549908 PMCID: PMC7296683 DOI: 10.1186/s13020-020-00345-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background Heart failure (HF) is one of the most common causes of cardiovascular diseases in the world. Currently, the drugs used to treat HF in the clinic may cause serious side effects. Liguzinediol, 2, 5-dimethyl-3, 6-dimethyl-pyrazine, is a compound synthesized after the structural modification of ligustrazine (one active ingredient of Szechwan Lovage Rhizome). We aimed to observe the effects of liguzinediol on preventing HF and explore the related mechanisms. Methods The ligation of left anterior descending coronary artery was operated to established the myocardial infarction (MI) model in Sprague–Dawley rats. Cardiac functions were recorded by echocardiography and hemodynamics. The changes in the Renin–Angiotensin–Aldosterone System (RAAS), inflammation, and oxidative stress were detected by radioimmunoassay and Elisa kits. Western blot and real-time PCR were applied to determine the expressions of the TGF-β1/Smads pathway. Results Firstly, liguzinediol enhanced the systolic and diastolic functions of the heart in MI rats. Liguzinediol improved ventricular remodeling by reducing myocardial cell necrosis, as well as reducing collagen deposition and myocardial fibrosis. Then, liguzinediol suppressed the activation of RAAS, inhibited the synthesis of pro-inflammation factors, and reduced oxidative stress. In the end, liguzinediol also down-regulated the expressions of the TGF-β1/Smads pathway. Conclusions Liguzinediol could alleviate HF caused by MI in rats, and the protective effect was associated with the regulation of the TGF-β1/Smads pathway.![]()
Collapse
Affiliation(s)
- Qi Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Avenue, Qixia District, Nanjing, 210023 Jiangsu China
| | - Dini Zhang
- Key Laboratory on Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042 China
| | - Yunhui Bi
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Avenue, Qixia District, Nanjing, 210023 Jiangsu China
| | - Weiwei Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Avenue, Qixia District, Nanjing, 210023 Jiangsu China
| | - Yuhan Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Avenue, Qixia District, Nanjing, 210023 Jiangsu China
| | - Qinghai Meng
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Avenue, Qixia District, Nanjing, 210023 Jiangsu China
| | - Yu Li
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Xianlin Avenue, Qixia District, Nanjing, 210023 Jiangsu China
| | - Huimin Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Avenue, Qixia District, Nanjing, 210023 Jiangsu China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| |
Collapse
|
16
|
Suvakov S, Bonner E, Nikolic V, Jerotic D, Simic TP, Garovic VD, Lopez-Campos G, McClements L. Overlapping pathogenic signalling pathways and biomarkers in preeclampsia and cardiovascular disease. Pregnancy Hypertens 2020; 20:131-136. [PMID: 32299060 DOI: 10.1016/j.preghy.2020.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 03/19/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Preeclampsia is a cardiovascular pregnancy complication that occurs in 5-10% of pregnancies and it can lead to a number of pregnancy complications including maternal and foetal death. Long-term, preeclampsia is associated with up to 8-fold increased risk of cardiovascular disease (CVD) for both mothers and their offspring. The lack of mechanistic data in relation to the causes or consequences of preeclampsia has prevented the development of effective therapeutic and monitoring strategies. STUDY DESIGN This study investigates common underlying mechanisms of preeclampsia and CVD, specifically hypertension and heart failure with preserved ejection fraction (HFpEF), using "in silico" approach of publicly available datasets. Integrated techniques were designed to mine data repositories and identify relevant biomarkers associated with these three conditions. MAIN OUTCOMES MEASURES The knowledge base tools were employed that enabled the analysis of these biomarkers to discover potential molecular and biological links between these three conditions. RESULTS Our bioinformatics "in silico" analyses of the publically available datasets identified 76 common biomarkers between preeclampsia, hypertension and HFpEF. These biomarkers were representative of 29 pathways commonly enriched across the three conditions which were largely related to inflammation, metabolism, angiogenesis, remodelling, haemostasis, apoptosis and the renin-angiotensin-aldosterone (RAAS) system. CONCLUSIONS This bioinformatics approach uses the wealth of scientific data available in public repositories to gain a deeper understanding of the overlapping pathogenic mechanisms of associated diseases, which could be explored as biomarkers or targets to prevent long-term cardiovascular complications such as hypertension and HFpEF following preeclampsia.
Collapse
Affiliation(s)
- Sonja Suvakov
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA; Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Emma Bonner
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, UK
| | - Valentina Nikolic
- Department of Pharmacology and Toxicology, Medical Faculty, University of Nis, Nis, Serbia
| | - Djurdja Jerotic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tatjana P Simic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Vesna D Garovic
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Guillermo Lopez-Campos
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, UK
| | - Lana McClements
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, UK; School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia.
| |
Collapse
|
17
|
Oldfield CJ, Duhamel TA, Dhalla NS. Mechanisms for the transition from physiological to pathological cardiac hypertrophy. Can J Physiol Pharmacol 2020; 98:74-84. [DOI: 10.1139/cjpp-2019-0566] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The heart is capable of responding to stressful situations by increasing muscle mass, which is broadly defined as cardiac hypertrophy. This phenomenon minimizes ventricular wall stress for the heart undergoing a greater than normal workload. At initial stages, cardiac hypertrophy is associated with normal or enhanced cardiac function and is considered to be adaptive or physiological; however, at later stages, if the stimulus is not removed, it is associated with contractile dysfunction and is termed as pathological cardiac hypertrophy. It is during physiological cardiac hypertrophy where the function of subcellular organelles, including the sarcolemma, sarcoplasmic reticulum, mitochondria, and myofibrils, may be upregulated, while pathological cardiac hypertrophy is associated with downregulation of these subcellular activities. The transition of physiological cardiac hypertrophy to pathological cardiac hypertrophy may be due to the reduction in blood supply to hypertrophied myocardium as a consequence of reduced capillary density. Oxidative stress, inflammatory processes, Ca2+-handling abnormalities, and apoptosis in cardiomyocytes are suggested to play a critical role in the depression of contractile function during the development of pathological hypertrophy.
Collapse
Affiliation(s)
- Christopher J. Oldfield
- Faculty of Kinesiology & Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Todd A. Duhamel
- Faculty of Kinesiology & Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
18
|
Gogiraju R, Bochenek ML, Schäfer K. Angiogenic Endothelial Cell Signaling in Cardiac Hypertrophy and Heart Failure. Front Cardiovasc Med 2019; 6:20. [PMID: 30895179 PMCID: PMC6415587 DOI: 10.3389/fcvm.2019.00020] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/14/2019] [Indexed: 12/30/2022] Open
Abstract
Endothelial cells are, by number, one of the most abundant cell types in the heart and active players in cardiac physiology and pathology. Coronary angiogenesis plays a vital role in maintaining cardiac vascularization and perfusion during physiological and pathological hypertrophy. On the other hand, a reduction in cardiac capillary density with subsequent tissue hypoxia, cell death and interstitial fibrosis contributes to the development of contractile dysfunction and heart failure, as suggested by clinical as well as experimental evidence. Although the molecular causes underlying the inadequate (with respect to the increased oxygen and energy demands of the hypertrophied cardiomyocyte) cardiac vascularization developing during pathological hypertrophy are incompletely understood. Research efforts over the past years have discovered interesting mediators and potential candidates involved in this process. In this review article, we will focus on the vascular changes occurring during cardiac hypertrophy and the transition toward heart failure both in human disease and preclinical models. We will summarize recent findings in transgenic mice and experimental models of cardiac hypertrophy on factors expressed and released from cardiomyocytes, pericytes and inflammatory cells involved in the paracrine (dys)regulation of cardiac angiogenesis. Moreover, we will discuss major signaling events of critical angiogenic ligands in endothelial cells and their possible disturbance by hypoxia or oxidative stress. In this regard, we will particularly highlight findings on negative regulators of angiogenesis, including protein tyrosine phosphatase-1B and tumor suppressor p53, and how they link signaling involved in cell growth and metabolic control to cardiac angiogenesis. Besides endothelial cell death, phenotypic conversion and acquisition of myofibroblast-like characteristics may also contribute to the development of cardiac fibrosis, the structural correlate of cardiac dysfunction. Factors secreted by (dysfunctional) endothelial cells and their effects on cardiomyocytes including hypertrophy, contractility and fibrosis, close the vicious circle of reciprocal cell-cell interactions within the heart during pathological hypertrophy remodeling.
Collapse
Affiliation(s)
- Rajinikanth Gogiraju
- Center for Cardiology, Cardiology I, Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.,Center for Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Partner Site RheinMain (Mainz), Mainz, Germany
| | - Magdalena L Bochenek
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.,Center for Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Partner Site RheinMain (Mainz), Mainz, Germany
| | - Katrin Schäfer
- Center for Cardiology, Cardiology I, Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.,Center for Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Partner Site RheinMain (Mainz), Mainz, Germany
| |
Collapse
|
19
|
Melly L, Cerino G, Frobert A, Cook S, Giraud MN, Carrel T, Tevaearai Stahel HT, Eckstein F, Rondelet B, Marsano A, Banfi A. Myocardial infarction stabilization by cell-based expression of controlled Vascular Endothelial Growth Factor levels. J Cell Mol Med 2018; 22:2580-2591. [PMID: 29478261 PMCID: PMC5908097 DOI: 10.1111/jcmm.13511] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/23/2017] [Indexed: 01/24/2023] Open
Abstract
Vascular Endothelial Growth Factor (VEGF) can induce normal or aberrant angiogenesis depending on the amount secreted in the microenvironment around each cell. Towards a possible clinical translation, we developed a Fluorescence Activated Cell Sorting (FACS)-based technique to rapidly purify transduced progenitors that homogeneously express a desired specific VEGF level from heterogeneous primary populations. Here, we sought to induce safe and functional angiogenesis in ischaemic myocardium by cell-based expression of controlled VEGF levels. Human adipose stromal cells (ASC) were transduced with retroviral vectors and FACS purified to generate two populations producing similar total VEGF doses, but with different distributions: one with cells homogeneously producing a specific VEGF level (SPEC), and one with cells heterogeneously producing widespread VEGF levels (ALL), but with an average similar to that of the SPEC population. A total of 70 nude rats underwent myocardial infarction by coronary artery ligation and 2 weeks later VEGF-expressing or control cells, or saline were injected at the infarction border. Four weeks later, ventricular ejection fraction was significantly worsened with all treatments except for SPEC cells. Further, only SPEC cells significantly increased the density of homogeneously normal and mature microvascular networks. This was accompanied by a positive remodelling effect, with significantly reduced fibrosis in the infarcted area. We conclude that controlled homogeneous VEGF delivery by FACS-purified transduced ASC is a promising strategy to achieve safe and functional angiogenesis in myocardial ischaemia.
Collapse
Affiliation(s)
- Ludovic Melly
- Cell and Gene Therapy, Departments of Biomedicine and Surgery, University and University Hospital Basel, Basel, Switzerland.,Cardiac Surgery and Engineering, Departments of Biomedicine and Surgery, University and University Hospital Basel, Basel, Switzerland.,Department of Cardiac Vascular and Thoracic Surgery, CHU UCL Namur, Yvoir, Belgium
| | - Giulia Cerino
- Cardiac Surgery and Engineering, Departments of Biomedicine and Surgery, University and University Hospital Basel, Basel, Switzerland
| | - Aurélien Frobert
- Department of Cardiology, University of Fribourg, Fribourg, Switzerland
| | - Stéphane Cook
- Department of Cardiology, University of Fribourg, Fribourg, Switzerland
| | | | - Thierry Carrel
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Hendrik T Tevaearai Stahel
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Friedrich Eckstein
- Cardiac Surgery and Engineering, Departments of Biomedicine and Surgery, University and University Hospital Basel, Basel, Switzerland
| | - Benoît Rondelet
- Department of Cardiac Vascular and Thoracic Surgery, CHU UCL Namur, Yvoir, Belgium
| | - Anna Marsano
- Cardiac Surgery and Engineering, Departments of Biomedicine and Surgery, University and University Hospital Basel, Basel, Switzerland
| | - Andrea Banfi
- Cell and Gene Therapy, Departments of Biomedicine and Surgery, University and University Hospital Basel, Basel, Switzerland
| |
Collapse
|
20
|
Barroso MC, Boehme P, Kramer F, Mondritzki T, Koehler T, Gülker JE, Karoff M, Dinh W. Endostatin a Potential Biomarker for Heart Failure with Preserved Ejection Fraction. Arq Bras Cardiol 2017; 109:448-456. [PMID: 28977054 PMCID: PMC5729781 DOI: 10.5935/abc.20170144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/24/2017] [Indexed: 12/26/2022] Open
Abstract
Background Endostatin is a circulating endogenous angiogenesis inhibitor preventing
neovascularization. Previous studies demonstrated the prognostic value of
Endostatin among patients with heart failure with reduced ejection fraction
(HFrEF). However, the role of Endostatin among patients with heart failure
with preserved ejection fraction (HFpEF) remains unclear. Objective This study aimed to investigate the association between serum Endostatin
levels, natriuretic peptide levels and the severity of left ventricular
diastolic dysfunction and the diagnosis of HFpEF. Methods Endostatin serum concentrations were measured in 301 patients comprising 77
HFpEF patients, 169 patients with asymptomatic left ventricular diastolic
dysfunction (ALVDD), and 55 controls with normal cardiac function. Results Endostatin serum levels were significantly elevated in patients with HFpEF
(median/interquartile range 179.0 [159-220]) and ALVDD (163.8 [145.4-191.3])
compared to controls (149.1 [130.6-176.9]), p < 0.001 and p = 0.004,
respectively) and significant correlated with N-terminal pro B-type
natriuretic peptide (NT-proBNP). Conclusions This hypothesis-generating pilot study gives first evidence that Endostatin
correlates with the severity of diastolic dysfunction and may become a novel
biomarker for HFpEF. We hypothesize a rise in Endostatin levels may reflect
inhibition of adaptive angiogenesis and adverse cardiac remodeling.
Collapse
Affiliation(s)
- Michael Coll Barroso
- Klinik Königsfeld der Deutschen Rentenversicherung Westfalen in Ennepetal (NRW) - University Hospital
| | | | - Frank Kramer
- Bayer AG - Drug Discovery - Experimental Medicine
| | - Thomas Mondritzki
- Bayer AG - Drug Discovery - Therapeutic Research Groups Cardiovascular III
| | - Till Koehler
- Department of Cardiology - HELIOS Clinic Wuppertal - University Hospital Witten/Herdecke
| | | | - Martin Karoff
- Klinik Königsfeld der Deutschen Rentenversicherung Westfalen in Ennepetal (NRW) - University Hospital
| | | |
Collapse
|
21
|
Grueter C, Gruber PJ. Invited Commentary. Ann Thorac Surg 2017; 104:939-941. [PMID: 28838506 DOI: 10.1016/j.athoracsur.2017.03.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/04/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Chad Grueter
- Department of Medicine, University of Iowa, Iowa City, Iowa
| | - Peter J Gruber
- Departments of Surgery, Stem Cell Biology, and Regenerative Medicine, University of Southern California, 1441 Eastlake Ave, Rm 8302, Los Angeles, CA 90033.
| |
Collapse
|
22
|
Illigens BMW, Casar Berazaluce A, Poutias D, Gasser R, Del Nido PJ, Friehs I. Vascular Endothelial Growth Factor Prevents Endothelial-to-Mesenchymal Transition in Hypertrophy. Ann Thorac Surg 2017; 104:932-939. [PMID: 28483153 DOI: 10.1016/j.athoracsur.2017.01.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND In hypertrophy, progressive loss of function caused by impaired diastolic compliance correlates with advancing cardiac fibrosis. Endothelial cells contribute to this process through endothelial-to-mesenchymal transition (EndMT) resulting from inductive signals such as transforming growth factor (TGF-β). Vascular endothelial growth factor (VEGF) has proven effective in preserving systolic function and delaying the onset of failure. In this study, we hypothesize that VEGF inhibits EndMT and prevents cardiac fibrosis, thereby preserving diastolic function. METHODS The descending aorta was banded in newborn rabbits. At 4 and 6 weeks, hypertrophied animals were treated with intrapericardial VEGF protein and compared with controls (n = 7 per group). Weekly transthoracic echocardiography measured peak systolic stress. At 7 weeks, diastolic stiffness was determined through pressure-volume curves, fibrosis by Masson trichrome stain and hydroxyproline assay, EndMT by immunohistochemistry, and activation of TGF-β and SMAD2/3 by quantitative real-time polymerase chain reaction. RESULTS Peak systolic stress was preserved during the entire observation period, and diastolic compliance was maintained in treated animals (hypertrophied: 20 ± 1 vs treated: 11 ± 3 and controls: 12 ± 2; p < 0.05). Collagen was significantly higher in the hypertrophied group by Masson trichrome (hypertrophied: 3.1 ± 0.9 vs treated: 1.8 ± 0.6) and by hydroxyproline assay (hypertrophied: 2.8 ± 0.6 vs treated: 1.4 ± 0.4; p < 0.05). Fluorescent immunostaining showed active EndMT in the hypertrophied group but significantly less in treated hearts, which was directly associated with a significant increase in TGF-β/SMAD-2 messenger RNA expression. CONCLUSIONS EndMT contributes to cardiac fibrosis in hypertrophied hearts. VEGF treatment inhibits EndMT and prevents the deposition of collagen that leads to myocardial stiffness through TGF-β/SMAD-dependent activation. This presents a therapeutic opportunity to prevent diastolic failure and preserve cardiac function in pressure-loaded hearts.
Collapse
Affiliation(s)
- Ben M-W Illigens
- Department of Cardiac Surgery, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts
| | - Alejandra Casar Berazaluce
- Department of Cardiac Surgery, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts
| | - Dimitrios Poutias
- Department of Cardiac Surgery, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts
| | - Robert Gasser
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Pedro J Del Nido
- Department of Cardiac Surgery, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts
| | - Ingeborg Friehs
- Department of Cardiac Surgery, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
23
|
Gogiraju R, Schroeter MR, Bochenek ML, Hubert A, Münzel T, Hasenfuss G, Schäfer K. Endothelial deletion of protein tyrosine phosphatase-1B protects against pressure overload-induced heart failure in mice. Cardiovasc Res 2016; 111:204-16. [PMID: 27207947 DOI: 10.1093/cvr/cvw101] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/27/2016] [Indexed: 12/25/2022] Open
Abstract
AIMS Cardiac angiogenesis is an important determinant of heart failure. We examined the hypothesis that protein tyrosine phosphatase (PTP)-1B, a negative regulator of vascular endothelial growth factor (VEGF) receptor-2 activation, is causally involved in the cardiac microvasculature rarefaction during hypertrophy and that deletion of PTP1B in endothelial cells prevents the development of heart failure. METHODS AND RESULTS Cardiac hypertrophy was induced by transverse aortic constriction (TAC) in mice with endothelial-specific deletion of PTP1B (End.PTP1B-KO) and controls (End.PTP1B-WT). Survival up to 20 weeks after TAC was significantly improved in mice lacking endothelial PTP1B. Serial echocardiography revealed a better systolic pump function, less pronounced cardiac hypertrophy, and left ventricular dilation compared with End.PTP1B-WT controls. Histologically, banded hearts from End.PTP1B-KO mice exhibited increased numbers of PCNA-positive, proliferating endothelial cells resulting in preserved cardiac capillary density and improved perfusion as well as reduced hypoxia, apoptotic cell death, and fibrosis. Increased relative VEGFR2 and ERK1/2 phosphorylation and greater eNOS expression were present in the hearts of End.PTP1B-KO mice. The absence of PTP1B in endothelial cells also promoted neovascularization following peripheral ischaemia, and bone marrow transplantation excluded a major contribution of Tie2-positive haematopoietic cells to the improved angiogenesis in End.PTP1B-KO mice. Increased expression of caveolin-1 as well as reduced NADPH oxidase-4 expression, ROS generation and TGFβ signalling were observed and may have mediated the cardioprotective effects of endothelial PTP1B deletion. CONCLUSIONS Endothelial PTP1B deletion improves cardiac VEGF signalling and angiogenesis and protects against chronic afterload-induced heart failure. PTP1B may represent a useful target to preserve cardiac function during hypertrophy.
Collapse
Affiliation(s)
- Rajinikanth Gogiraju
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Marco R Schroeter
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Magdalena L Bochenek
- Center for Cardiology, Department of Cardiology I, University Medical Center Mainz, Mainz, Germany Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Astrid Hubert
- Center for Cardiology, Department of Cardiology I, University Medical Center Mainz, Mainz, Germany
| | - Thomas Münzel
- Center for Cardiology, Department of Cardiology I, University Medical Center Mainz, Mainz, Germany
| | - Gerd Hasenfuss
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Katrin Schäfer
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany Center for Cardiology, Department of Cardiology I, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
24
|
Han Y, Wang X, Wang B, Jiang G. The progress of angiogenic factors in the development of leukemias. Intractable Rare Dis Res 2016; 5:6-16. [PMID: 26989643 PMCID: PMC4761589 DOI: 10.5582/irdr.2015.01048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Angiogenic factors have been demonstrated to play important roles in modulating angiogenesis of solid tumors. Recently, accumulating studies extensively indicated that some angiogenic factors widely exist in malignant cells of hematologic malignancy, which regulated the expression of a number of genes that were involved in abnormal proliferation, differentiation and apoptosis of these cells. With deep research of angiogenic factors, its expression, function and regulatory mechanism were gradually elucidated, and some of them were related to the development and prognosis of leukemia, or provide more possible strategies for treatment of patients with leukemia. Herein, we summarize the progress in study of some important angiogenic factors and hematological malignancies.
Collapse
Affiliation(s)
- Yang Han
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- School of Medicine and Life Sciences, Ji'nan University, Ji'nan, Shandong, China
| | - Xidi Wang
- Laboratory Department, People's Hospital of Zhangqiu City, Zhangqiu, Shandong, China
| | - Bingping Wang
- Department of Hematology, Shengli Oilfield Central Hospital, Dongying, China
| | - Guosheng Jiang
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- Address correspondence to: Dr. Guosheng Jiang, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, NO.18877 of Jingshi Road, Ji'nan, Shandong, China. E-mail:
| |
Collapse
|
25
|
Hammadah M, Georgiopoulou VV, Kalogeropoulos AP, Weber M, Wang X, Samara MA, Wu Y, Butler J, Tang WHW. Elevated Soluble Fms-Like Tyrosine Kinase-1 and Placental-Like Growth Factor Levels Are Associated With Development and Mortality Risk in Heart Failure. Circ Heart Fail 2015; 9:e002115. [PMID: 26699385 DOI: 10.1161/circheartfailure.115.002115] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 11/18/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Vascular endothelial dysfunction may play an important role in the progression of heart failure (HF). We hypothesize that elevated levels of vascular markers, placental-like growth factor, and soluble Fms-like tyrosine kinase-1 (sFlt-1) are associated with adverse outcomes in patients with HF. We also assessed possible triggers of sFlt-1 elevation in animal HF models. METHODS AND RESULTS We measured plasma placental-like growth factor and sFlt-1 in 791 HF patients undergoing elective coronary angiogram. Median (interquartile range) placental-like growth factor and sFlt-1 levels were 24 (20-29) and 382 (277-953) pg/mL, respectively. After 5 years of follow-up, and after using receiver operator characteristic curves to determine optimal cutoffs, high levels of sFlt-1 (≥ 280 pg/mL; adjusted hazard ratio, 1.47; 95% confidence interval, 1.03-2.09; P=0.035) but not placental-like growth factor (≥ 25 pg/mL; adjusted hazard ratio, 1.26; 95% confidence interval, 0.94-1.71, P=0.12) were associated with adverse cardiovascular outcomes. In addition, significant elevation of sFlt-1 levels was observed in left anterior descending artery ligation and transverse aortic constriction HF mouse models after 4 and 8 weeks of follow-up, suggesting vascular stress and ischemia as triggers for sFlt-1 elevation in HF. CONCLUSIONS Circulating sFlt-1 is generated as a result of myocardial injury and subsequent HF development. Elevated levels of sFlt-1 are associated with adverse outcomes in stable patients with HF.
Collapse
Affiliation(s)
- Muhammad Hammadah
- From the Department of Cardiovascular Medicine, Heart and Vascular Institute (M.H., W.H.W.T.), Department of Cellular and Molecular Medicine, Lerner Research Institute (M.W., X.W., W.H.W.T.), Cleveland Clinic, OH; Department of Cardiology, Emory University, Atlanta, GA (M.H., V.V.G., A.P.K.); Department of Cardiology, Minneapolis Heart Institute, MN (M.A.S); Department of Mathematics, Cleveland State University, OH (Y.W.); Cardiovascular Division, Stony Brook University, NY (J.B.)
| | - Vasiliki V Georgiopoulou
- From the Department of Cardiovascular Medicine, Heart and Vascular Institute (M.H., W.H.W.T.), Department of Cellular and Molecular Medicine, Lerner Research Institute (M.W., X.W., W.H.W.T.), Cleveland Clinic, OH; Department of Cardiology, Emory University, Atlanta, GA (M.H., V.V.G., A.P.K.); Department of Cardiology, Minneapolis Heart Institute, MN (M.A.S); Department of Mathematics, Cleveland State University, OH (Y.W.); Cardiovascular Division, Stony Brook University, NY (J.B.)
| | - Andreas P Kalogeropoulos
- From the Department of Cardiovascular Medicine, Heart and Vascular Institute (M.H., W.H.W.T.), Department of Cellular and Molecular Medicine, Lerner Research Institute (M.W., X.W., W.H.W.T.), Cleveland Clinic, OH; Department of Cardiology, Emory University, Atlanta, GA (M.H., V.V.G., A.P.K.); Department of Cardiology, Minneapolis Heart Institute, MN (M.A.S); Department of Mathematics, Cleveland State University, OH (Y.W.); Cardiovascular Division, Stony Brook University, NY (J.B.)
| | - Malory Weber
- From the Department of Cardiovascular Medicine, Heart and Vascular Institute (M.H., W.H.W.T.), Department of Cellular and Molecular Medicine, Lerner Research Institute (M.W., X.W., W.H.W.T.), Cleveland Clinic, OH; Department of Cardiology, Emory University, Atlanta, GA (M.H., V.V.G., A.P.K.); Department of Cardiology, Minneapolis Heart Institute, MN (M.A.S); Department of Mathematics, Cleveland State University, OH (Y.W.); Cardiovascular Division, Stony Brook University, NY (J.B.)
| | - Xi Wang
- From the Department of Cardiovascular Medicine, Heart and Vascular Institute (M.H., W.H.W.T.), Department of Cellular and Molecular Medicine, Lerner Research Institute (M.W., X.W., W.H.W.T.), Cleveland Clinic, OH; Department of Cardiology, Emory University, Atlanta, GA (M.H., V.V.G., A.P.K.); Department of Cardiology, Minneapolis Heart Institute, MN (M.A.S); Department of Mathematics, Cleveland State University, OH (Y.W.); Cardiovascular Division, Stony Brook University, NY (J.B.)
| | - Michael A Samara
- From the Department of Cardiovascular Medicine, Heart and Vascular Institute (M.H., W.H.W.T.), Department of Cellular and Molecular Medicine, Lerner Research Institute (M.W., X.W., W.H.W.T.), Cleveland Clinic, OH; Department of Cardiology, Emory University, Atlanta, GA (M.H., V.V.G., A.P.K.); Department of Cardiology, Minneapolis Heart Institute, MN (M.A.S); Department of Mathematics, Cleveland State University, OH (Y.W.); Cardiovascular Division, Stony Brook University, NY (J.B.)
| | - Yuping Wu
- From the Department of Cardiovascular Medicine, Heart and Vascular Institute (M.H., W.H.W.T.), Department of Cellular and Molecular Medicine, Lerner Research Institute (M.W., X.W., W.H.W.T.), Cleveland Clinic, OH; Department of Cardiology, Emory University, Atlanta, GA (M.H., V.V.G., A.P.K.); Department of Cardiology, Minneapolis Heart Institute, MN (M.A.S); Department of Mathematics, Cleveland State University, OH (Y.W.); Cardiovascular Division, Stony Brook University, NY (J.B.)
| | - Javed Butler
- From the Department of Cardiovascular Medicine, Heart and Vascular Institute (M.H., W.H.W.T.), Department of Cellular and Molecular Medicine, Lerner Research Institute (M.W., X.W., W.H.W.T.), Cleveland Clinic, OH; Department of Cardiology, Emory University, Atlanta, GA (M.H., V.V.G., A.P.K.); Department of Cardiology, Minneapolis Heart Institute, MN (M.A.S); Department of Mathematics, Cleveland State University, OH (Y.W.); Cardiovascular Division, Stony Brook University, NY (J.B.)
| | - W H Wilson Tang
- From the Department of Cardiovascular Medicine, Heart and Vascular Institute (M.H., W.H.W.T.), Department of Cellular and Molecular Medicine, Lerner Research Institute (M.W., X.W., W.H.W.T.), Cleveland Clinic, OH; Department of Cardiology, Emory University, Atlanta, GA (M.H., V.V.G., A.P.K.); Department of Cardiology, Minneapolis Heart Institute, MN (M.A.S); Department of Mathematics, Cleveland State University, OH (Y.W.); Cardiovascular Division, Stony Brook University, NY (J.B.).
| |
Collapse
|
26
|
Eschricht S, Jarr KU, Kuhn C, Lehmann L, Kreusser M, Katus HA, Frey N, Chorianopoulos E. Heat-shock-protein 90 protects from downregulation of HIF-1α in calcineurin-induced myocardial hypertrophy. J Mol Cell Cardiol 2015; 85:117-26. [PMID: 26031702 DOI: 10.1016/j.yjmcc.2015.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/18/2015] [Accepted: 05/25/2015] [Indexed: 10/23/2022]
Abstract
AIM OF THE STUDY Capillary/myocyte mismatch is a hallmark of maladaptive myocardial hypertrophy, but the exact mechanisms of this phenomenon remain unknown. We therefore aimed to evaluate the role of calcineurin A in the regulation of hypoxia-inducible factor-1 alpha (HIF-1 alpha) in a calcineurin overexpressing mouse model of myocardial hypertrophy. METHODS AND RESULTS Mice overexpressing calcineurin A (CnATg) showed persistent upregulation of HIF-1 alpha protein without evidence of a reduction in capillary density despite progressive myocardial hypertrophy. Likewise, overexpression of calcineurin A in isolated cardiomyocytes induced upregulation of HIF-1 alpha protein. In contrast, NFAT-overexpression had no such effect, implying that NFAT-independent mechanisms were responsible for increased HIF-1 alpha levels. In addition, inhibition of HSP90 via the HSP90-inhibitor 17-AAG or siRNA abolished calcineurin A-induced upregulation of HIF-1 alpha. Consequently, upregulation of HIF-1 alpha target genes like VEGF-A, BNIP-3 or PGK-1 was also inhibited by either 17-AAG or siRNA directed against HSP90. Finally, when CnATg mice were treated with 17-AAG, they demonstrated reduced left ventricular function and capillary density. CONCLUSIONS We describe here for the first time that overexpression of the phosphatase calcineurin A prevents the development of a capillary/myocyte mismatch despite progressive myocardial hypertrophy. This effect was mediated by HSP-90 induced stabilization of HIF-1 alpha. Further work is needed to understand this unexpected cardioprotective effect of calcineurin A.
Collapse
Affiliation(s)
- Sabine Eschricht
- Dept. of Cardiology, Angiology and Pulmology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Kai-Uwe Jarr
- Dept. of Cardiology, Angiology and Pulmology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Christian Kuhn
- Dept. of Cardiology and Angiology, University of Kiel, Schittenhelmstr. 12, 24105 Kiel, Germany
| | - Lorenz Lehmann
- Dept. of Cardiology, Angiology and Pulmology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Michael Kreusser
- Dept. of Cardiology, Angiology and Pulmology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Hugo A Katus
- Dept. of Cardiology, Angiology and Pulmology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Norbert Frey
- Dept. of Cardiology and Angiology, University of Kiel, Schittenhelmstr. 12, 24105 Kiel, Germany.
| | - Emmanuel Chorianopoulos
- Dept. of Cardiology, Angiology and Pulmology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| |
Collapse
|
27
|
Quttainah M, Al-Hejailan R, Saleh S, Parhar R, Conca W, Bulwer B, Moorjani N, Catarino P, Elsayed R, Shoukri M, AlJufan M, AlShahid M, Ouban A, Al-Halees Z, Westaby S, Collison K, Al-Mohanna F. Progression of matrixin and cardiokine expression patterns in an ovine model of heart failure and recovery. Int J Cardiol 2015; 186:77-89. [DOI: 10.1016/j.ijcard.2015.03.156] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 03/09/2015] [Accepted: 03/15/2015] [Indexed: 01/31/2023]
|
28
|
Givvimani S, Pushpakumar SB, Metreveli N, Veeranki S, Kundu S, Tyagi SC. Role of mitochondrial fission and fusion in cardiomyocyte contractility. Int J Cardiol 2015; 187:325-33. [PMID: 25841124 DOI: 10.1016/j.ijcard.2015.03.352] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/12/2015] [Accepted: 03/22/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Mitochondria constitute 30% of cell volume and are engaged in two dynamic processes called fission and fusion, regulated by Drp-1 (dynamin related protein) and mitofusin 2 (Mfn2). Previously, we showed that Drp-1 inhibition attenuates cardiovascular dysfunction following pressure overload in aortic banding model and myocardial infarction. As dynamic organelles, mitochondria are capable of changing their morphology in response to stress. However, whether such changes can alter their function and in turn cellular function is unknown. Further, a direct role of fission and fusion in cardiomyocyte contractility has not yet been studied. In this study, we hypothesize that disrupted fission and fusion balance by increased Drp-1 and decreased Mfn2 expression in cardiomyocytes affects their contractility through alterations in the calcium and potassium concentrations. METHODS To verify this, we used freshly isolated ventricular myocytes from wild type mouse and transfected them with either siRNA to Drp-1 or Mfn2. Myocyte contractility studies were performed by IonOptix using a myopacer. Intracellular calcium and potassium measurements were done using flow cytometry. Immunocytochemistry (ICC) was done to evaluate live cell mitochondria and its membrane potential. Protein expression was done by western blot and immunocytochemistry. RESULTS We found that silencing mitochondrial fission increased the myocyte contractility, while fusion inhibition decreased contractility with simultaneous changes in calcium and potassium. Also, we observed that increase in fission prompted decrease in Serca-2a and increase in cytochrome c leakage leading to mitophagy. CONCLUSION Our results suggested that regulating mitochondrial fission and fusion have direct effects on overall cardiomyocyte contractility and thus function.
Collapse
Affiliation(s)
- S Givvimani
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY 40202, United States.
| | - S B Pushpakumar
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY 40202, United States
| | - N Metreveli
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY 40202, United States
| | - S Veeranki
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY 40202, United States
| | - S Kundu
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY 40202, United States
| | - S C Tyagi
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY 40202, United States
| |
Collapse
|
29
|
Gogiraju R, Xu X, Bochenek ML, Steinbrecher JH, Lehnart SE, Wenzel P, Kessel M, Zeisberg EM, Dobbelstein M, Schäfer K. Endothelial p53 deletion improves angiogenesis and prevents cardiac fibrosis and heart failure induced by pressure overload in mice. J Am Heart Assoc 2015; 4:jah3850. [PMID: 25713289 PMCID: PMC4345879 DOI: 10.1161/jaha.115.001770] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Cardiac dysfunction developing in response to chronic pressure overload is associated with apoptotic cell death and myocardial vessel rarefaction. We examined whether deletion of tumor suppressor p53 in endothelial cells may prevent the transition from cardiac hypertrophy to heart failure. Methods and Results Mice with endothelial‐specific deletion of p53 (End.p53‐KO) were generated by crossing p53fl/fl mice with mice expressing Cre recombinase under control of an inducible Tie2 promoter. Cardiac hypertrophy was induced by transverse aortic constriction. Serial echocardiography measurements revealed improved cardiac function in End.p53‐KO mice that also exhibited better survival. Cardiac hypertrophy was associated with increased p53 levels in End.p53‐WT controls, whereas banded hearts of End.p53‐KO mice exhibited lower numbers of apoptotic endothelial and non‐endothelial cells and altered mRNA levels of genes regulating cell cycle progression (p21), apoptosis (Puma), or proliferation (Pcna). A higher cardiac capillary density and improved myocardial perfusion was observed, and pharmacological inhibition or genetic deletion of p53 also promoted endothelial sprouting in vitro and new vessel formation following hindlimb ischemia in vivo. Hearts of End.p53‐KO mice exhibited markedly less fibrosis compared with End.p53‐WT controls, and lower mRNA levels of p53‐regulated genes involved in extracellular matrix production and turnover (eg, Bmp‐7, Ctgf, or Pai‐1), or of transcription factors involved in controlling mesenchymal differentiation were observed. Conclusions Our analyses reveal that accumulation of p53 in endothelial cells contributes to blood vessel rarefaction and fibrosis during chronic cardiac pressure overload and suggest that endothelial cells may be a therapeutic target for preserving cardiac function during hypertrophy.
Collapse
Affiliation(s)
- Rajinikanth Gogiraju
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (R.G., X.X., J.H.S., S.E.L., E.M.Z., K.S.)
| | - Xingbo Xu
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (R.G., X.X., J.H.S., S.E.L., E.M.Z., K.S.)
| | - Magdalena L Bochenek
- Division of Cardiology, Department of Medicine 2, University Medical Center Mainz, Germany (M.L.B., P.W., K.S.) Center for Thrombosis and Hemostasis, University Medical Center Mainz, Germany (M.L.B., P.W.)
| | - Julia H Steinbrecher
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (R.G., X.X., J.H.S., S.E.L., E.M.Z., K.S.)
| | - Stephan E Lehnart
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (R.G., X.X., J.H.S., S.E.L., E.M.Z., K.S.) German Center for Cardiovascular Research (DZHK), University of Maryland Baltimore, MD (S.E.L., E.M.Z., K.S.) Center for Biomedical Engineering and Technology, University of Maryland Baltimore, MD (S.E.L.)
| | - Philip Wenzel
- Division of Cardiology, Department of Medicine 2, University Medical Center Mainz, Germany (M.L.B., P.W., K.S.) Center for Thrombosis and Hemostasis, University Medical Center Mainz, Germany (M.L.B., P.W.)
| | - Michael Kessel
- Department of Developmental Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany (M.K.)
| | - Elisabeth M Zeisberg
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (R.G., X.X., J.H.S., S.E.L., E.M.Z., K.S.) German Center for Cardiovascular Research (DZHK), University of Maryland Baltimore, MD (S.E.L., E.M.Z., K.S.)
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, University Medical Center Göttingen, Germany (M.D.)
| | - Katrin Schäfer
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (R.G., X.X., J.H.S., S.E.L., E.M.Z., K.S.) Division of Cardiology, Department of Medicine 2, University Medical Center Mainz, Germany (M.L.B., P.W., K.S.) German Center for Cardiovascular Research (DZHK), University of Maryland Baltimore, MD (S.E.L., E.M.Z., K.S.)
| |
Collapse
|
30
|
Tham YK, Bernardo BC, Ooi JYY, Weeks KL, McMullen JR. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol 2015; 89:1401-38. [DOI: 10.1007/s00204-015-1477-x] [Citation(s) in RCA: 497] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/09/2015] [Indexed: 12/18/2022]
|
31
|
Yoshida T, Friehs I, Mummidi S, del Nido PJ, Addulnour-Nakhoul S, Delafontaine P, Valente AJ, Chandrasekar B. Pressure overload induces IL-18 and IL-18R expression, but markedly suppresses IL-18BP expression in a rabbit model. IL-18 potentiates TNF-α-induced cardiomyocyte death. J Mol Cell Cardiol 2014; 75:141-51. [PMID: 25108227 PMCID: PMC4157969 DOI: 10.1016/j.yjmcc.2014.07.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 10/24/2022]
Abstract
Recurrent or sustained inflammation plays a causal role in the development and progression of left ventricular hypertrophy (LVH) and its transition to failure. Interleukin (IL)-18 is a potent pro-hypertrophic inflammatory cytokine. We report that induction of pressure overload in the rabbit, by constriction of the descending thoracic aorta induces compensatory hypertrophy at 4weeks (mass/volume ratio: 1.7±0.11) and ventricular dilatation indicative of heart failure at 6weeks (mass/volume ratio: 0.7±0.04). In concordance with this, fractional shortening was preserved at 4weeks, but markedly attenuated at 6weeks. We cloned rabbit IL-18, IL-18Rα, IL-18Rβ, and IL-18 binding protein (IL-18BP) cDNA, and show that pressure overload, while enhancing IL-18 and IL-18R expression in hypertrophied and failing hearts, markedly attenuated the level of expression of the endogenous IL-18 antagonist IL-18BP. Cyclical mechanical stretch (10% cyclic equibiaxial stretch, 1Hz) induced hypertrophy of primary rabbit cardiomyocytes in vitro and enhanced ANP, IL-18, and IL-18Rα expression. Further, treatment with rhIL-18 induced its own expression and that of IL-18Rα via AP-1 activation, and induced cardiomyocyte hypertrophy in part via PI3K/Akt/GATA4 signaling. In contrast, IL-18 potentiated TNF-α-induced cardiomyocyte death, and by itself induced cardiac endothelial cell death. These results demonstrate that pressure overload is associated with enhanced IL-18 and its receptor expression in hypertrophied and failingrabbit hearts. Since IL-18BP expression is markedly inhibited, our results indicate a positive amplification in IL-18 proinflammatory signaling during pressure overload, and suggest IL-18 as a potential therapeutic target in pathological hypertrophy and cardiac failure.
Collapse
Affiliation(s)
- Tadashi Yoshida
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ingeborg Friehs
- Department of Cardiac Surgery, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Srinivas Mummidi
- South Texas Veterans Health Care System and Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Pedro J del Nido
- Department of Cardiac Surgery, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Solange Addulnour-Nakhoul
- Department of Medicine-Gastroenterology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Research Service, Southeast Louisiana Veterans Health Care System, New Orleans, LA 70161, USA
| | - Patrice Delafontaine
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Anthony J Valente
- Department of Cardiac Surgery, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Bysani Chandrasekar
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA; Research Service, Southeast Louisiana Veterans Health Care System, New Orleans, LA 70161, USA.
| |
Collapse
|
32
|
Lee SP, Kim HK, Kim YJ, Oh S, Sohn DW. Association of myocardial angiogenesis with structural and functional ventricular remodeling in aortic stenosis patients with normal ejection fraction. J Cardiovasc Ultrasound 2014; 22:72-9. [PMID: 25031797 PMCID: PMC4096668 DOI: 10.4250/jcu.2014.22.2.72] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Although rarefaction of myocardial angiogenesis has been shown to be associated with left ventricular (LV) systolic dysfunction in animal models of ventricular hypertrophy, this relationship has not been investigated in depth nor validated in humans. We aimed to analyze the relationship of myocardial angiogenesis with various functional and structural ventricular remodeling parameters in moderate to severe aortic stenosis (AS) patients with normal LV ejection fraction (LVEF). METHODS A total of 38 moderate or severe AS patients with LVEF > 50% were enrolled for the current study and all patients underwent LV endomyocardial biopsy at the septum during aortic valve replacement. The biopsy specimens were stained for platelet endothelial cell adhesion molecule-1 (CD31) to analyze the density of blood vessels in the myocardium. RESULTS The degree of myocardial angiogenesis tended to increase with worse myocardial systolic function, LV filling pressure and progressed ventricular hypertrophy (Spearman's ρ = -0.388, p = 0.016 for LVEF; Spearman's ρ = 0.442, p = 0.007 for E/e'; Spearman's ρ = 0.424, p = 0.008 for LV mass index). The degree of myocardial angiogenesis was also significantly associated with the degree of aortic valve stenosis (Spearman's ρ = -0.368, p = 0.023). There was significant difference in the degree of myocardial angiogenesis according to the LV geometry (p = 0.016 for mean difference between different LV geometry groups by analysis of variance). Significant predictors of myocardial blood vessel density were LV mass index (β = 0.398, p = 0.010) and LVEF (β = -0.313, p = 0.028). CONCLUSION There is a close relationship between myocardial angiogenesis and LV remodeling in moderate to severe AS patients with normal LVEF, with angiogenesis increasing with LV hypertrophy. Further studies to demonstrate the mechanism underlying this phenomenon is warranted.
Collapse
Affiliation(s)
- Seung-Pyo Lee
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hyung-Kwan Kim
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Yong-Jin Kim
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Seil Oh
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Dae-Won Sohn
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
33
|
Givvimani S, Pushpakumar S, Veeranki S, Tyagi SC. Dysregulation of Mfn2 and Drp-1 proteins in heart failure. Can J Physiol Pharmacol 2014; 92:583-91. [PMID: 24905188 DOI: 10.1139/cjpp-2014-0060] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Therapeutic approaches for cardiac regenerative mechanisms have been explored over the past decade to target various cardiovascular diseases (CVD). Structural and functional aberrations of mitochondria have been observed in CVD. The significance of mitochondrial maturation and function in cardiomyocytes is distinguished by their attribution to embryonic stem cell differentiation into adult cardiomyocytes. An abnormal fission process has been implicated in heart failure, and treatment with mitochondrial division inhibitor 1 (Mdivi-1), a specific inhibitor of dynamin related protein-1 (Drp-1), has been shown to improve cardiac function. We recently observed that the ratio of mitofusin 2 (Mfn2; a fusion protein) and Drp-1 (a fission protein) was decreased during heart failure, suggesting increased mitophagy. Treatment with Mdivi-1 improved cardiac function by normalizing this ratio. Aberrant mitophagy and enhanced oxidative stress in the mitochondria contribute to abnormal activation of MMP-9, leading to degradation of the important gap junction protein connexin-43 (Cx-43) in the ventricular myocardium. Reduced Cx-43 levels were associated with increased fibrosis and ventricular dysfunction in heart failure. Treatment with Mdivi-1 restored MMP-9 and Cx-43 expression towards normal. In this review, we discuss mitochondrial dynamics, its relation to MMP-9 and Cx-43, and the therapeutic role of fission inhibition in heart failure.
Collapse
Affiliation(s)
- Srikanth Givvimani
- Department of Physiology & Biophysics, School of Medicine, University of Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
34
|
Gouya G, Siller-Matula JM, Fritzer-Szekeres M, Neuhold S, Storka A, Neuhofer LM, Clodi M, Hülsmann M, Pacher R, Wolzt M. Association of endostatin with mortality in patients with chronic heart failure. Eur J Clin Invest 2014; 44:125-35. [PMID: 24188329 DOI: 10.1111/eci.12197] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 10/30/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND Experimental data imply that in decompensated heart failure (HF), the anti-angiogenic factor endostatin is increased. This study aimed to investigate whether the angiogenesis inhibitor endostatin is related to the risk of all-cause mortality in a prospective cohort study of chronic HF patients. METHODS In this prospective observational cohort study, endostatin serum concentrations were determined in patients with chronic HF. Mortality data were recorded during a median follow-up of 31 months. RESULTS One fifty one patients were included. The overall mortality rate was 20%. Baseline endostatin concentrations > 245 ng/mL were associated with higher risk of all-cause mortality [HR 8·7 (95% CI 2·5-30·0); P = 0·001] in the multivariate analysis as compared to endostatin concentrations ≤ 245 ng/mL. When both endostatin and NT-proBNP were above the calculated cut-off of 245 ng/mL and 2386 pg/mL, respectively, the prognostic utility of both biomarkers increased [HR 40·8 (95% CI 4·7-354·6); P = 0·001] compared with values lower than the cut-offs. CONCLUSIONS Serum endostatin concentrations are independently associated with all-cause mortality. Furthermore, combination of endostatin and NT-proBNP discriminates patients at high risk.
Collapse
Affiliation(s)
- Ghazaleh Gouya
- Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lacchini R, Luizon MR, Gasparini S, Ferreira-Sae MC, Schreiber R, Nadruz W, Tanus-Santos JE. Effect of genetic polymorphisms of vascular endothelial growth factor on left ventricular hypertrophy in patients with systemic hypertension. Am J Cardiol 2014; 113:491-6. [PMID: 24321896 DOI: 10.1016/j.amjcard.2013.10.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 10/26/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a cytokine involved in angiogenesis and upregulated during adaptive heart hypertrophy. Downregulation of VEGF seems to trigger the transition from adaptive to dilated cardiac hypertrophy. We investigated for the first time whether 3 clinically relevant polymorphisms in the VEGFA gene are associated with altered echocardiographic parameters in hypertensive patients. We determined genotypes for 3 polymorphisms in VEGFA promoter in 179 hypertensive patients and 169 healthy controls: g.-2578C>A (rs699947), g.-1154G>A (rs1570360), and g.-634G>C (rs2010963). Although the variant genotypes of the g.-634G>C (GC + CC) were associated with reduced left ventricular mass index (p = 0.030), the variant genotypes for the g.-1154G>A (GA + AA) were associated with reduced ejection fraction (p = 0.008). In addition, we found that VEGFA haplotypes were associated with altered ejection fraction (p = 0.024). The AAG haplotype was associated with reduced ejection fraction (p = 0.006), whereas the AGG haplotype was associated with increased ejection fraction (p = 0.010). Our results suggest that VEGF polymorphisms affect cardiac remodeling. Genotypes for VEGFA polymorphisms can be useful to help to identify hypertensive patients at greater intrinsic risk for heart failure.
Collapse
|
36
|
Mishra PK, Givvimani S, Chavali V, Tyagi SC. Cardiac matrix: a clue for future therapy. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2271-6. [PMID: 24055000 DOI: 10.1016/j.bbadis.2013.09.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 12/30/2022]
Abstract
Cardiac muscle is unique because it contracts ceaselessly throughout the life and is highly resistant to fatigue. The marvelous nature of the cardiac muscle is attributed to its matrix that maintains structural and functional integrity and provides ambient micro-environment required for mechanical, cellular and molecular activities in the heart. Cardiac matrix dictates the endothelium myocyte (EM) coupling and contractility of cardiomyocytes. The matrix metalloproteinases (MMPs) and their tissue inhibitor of metalloproteinases (TIMPs) regulate matrix degradation that determines cardiac fibrosis and myocardial performance. We have shown that MMP-9 regulates differential expression of micro RNAs (miRNAs), calcium cycling and contractility of cardiomyocytes. The differential expression of miRNAs is associated with angiogenesis, hypertrophy and fibrosis in the heart. MMP-9, which is involved in the degradation of cardiac matrix and induction of fibrosis, is also implicated in inhibition of survival and differentiation of cardiac stem cells (CSC). Cardiac matrix is distinct because it renders mechanical properties and provides a framework essential for differentiation of cardiac progenitor cells (CPC) into specific lineage. Cardiac matrix regulates myocyte contractility by EM coupling and calcium transients and also directs miRNAs required for precise regulation of continuous and synchronized beating of cardiomyocytes that is indispensible for survival. Alteration in the matrix homeostasis due to induction of MMPs, altered expression of specific miRNAs or impaired signaling for contractility of cardiomyocytes leads to catastrophic effects. This review describes the mechanisms by which cardiac matrix regulates myocardial performance and suggests future directions for the development of treatment strategies in cardiovascular diseases.
Collapse
Affiliation(s)
- Paras Kumar Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | |
Collapse
|
37
|
Abstract
BACKGROUND Risk factors for diastolic dysfunction in hypertrophic cardiomyopathy (HCM) are poorly understood. We investigated the association of variants in hypoxia-response genes with phenotype severity in pediatric HCM. METHODS A total of 80 unrelated patients <21 y and 14 related members from eight families with HCM were genotyped for six variants associated with vascular endothelial growth factor A (VEGFA) downregulation, or hypoxia-inducible factor A (HIF1A) upregulation. Associations between risk genotypes and left-ventricular (LV) hypertrophy, LV dysfunction, and freedom from myectomy were assessed. Tissue expression was measured in myocardial samples from 17 patients with HCM and 20 patients without HCM. RESULTS Age at enrollment was 9 ± 5 y (follow-up, 3.1 ± 3.6 y). Risk allele frequency was 67% VEGFA and 92% HIF1A. Risk genotypes were associated with younger age at diagnosis (P < 0.001), septal hypertrophy (P < 0.01), prolonged E-wave deceleration time (EWDT) (P < 0.0001) and isovolumic relaxation time (IVRT) (P < 0.0001), and lower freedom from myectomy (P < 0.05). These associations were seen in sporadic and familial HCM independent of the disease-causing mutation. Risk genotypes were associated with higher myocardial HIF1A and transforming growth factor B1 (TGFB1) expression and increased endothelial-fibroblast transformation (P < 0.05). CONCLUSION HIF1A-upregulation and/or VEGFA-downregulation genotypes were associated with more severe septal hypertrophy and diastolic dysfunction and may provide genetic markers to improve risk prediction in HCM.
Collapse
|
38
|
Souders CA, Borg TK, Banerjee I, Baudino TA. Pressure overload induces early morphological changes in the heart. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1226-35. [PMID: 22954422 DOI: 10.1016/j.ajpath.2012.06.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 06/08/2012] [Accepted: 06/20/2012] [Indexed: 12/19/2022]
Abstract
Cardiac hypertrophy, whether pathological or physiological, induces a variety of additional morphological and physiological changes in the heart, including altered contractility and hemodynamics. Events exacerbating these changes are documented during later stages of hypertrophy (usually termed pathological hypertrophy). Few studies document the morphological and physiological changes during early physiological hypertrophy. We define acute cardiac remodeling events in response to transverse aortic constriction (TAC), including temporal changes in hypertrophy, collagen deposition, capillary density, and the cell populations responsible for these changes. Cardiac hypertrophy induced by TAC in mice was detected 2 days after surgery (as measured by heart weight, myocyte width, and wall thickness) and peaked by day 7. Picrosirius staining revealed increased collagen deposition 7 days after TAC; immunostaining and flow cytometry indicated a concurrent increase in fibroblasts. The findings correlated with angiogenesis in TAC hearts; a decrease in capillary density was observed at day 2, with recovery to sham-surgery levels by day 7. Increased pericyte levels, which were observed 2 days after TAC, may mediate this angiogenic transition. Gene expression suggests a coordinated response in growth, extracellular matrix, and angiogenic factors to mediate the observed morphological changes. Our data demonstrate that morphological changes in response to cardiovascular injury occur rapidly, and the present findings allow correlation of specific events that facilitate these changes.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Aorta, Thoracic/surgery
- Cardiomegaly/pathology
- Cardiomegaly/physiopathology
- Cell Proliferation
- Collagen/metabolism
- Constriction, Pathologic
- Disease Models, Animal
- Extracellular Matrix/metabolism
- Fluorescent Antibody Technique
- Gene Expression Regulation
- Male
- Mice
- Mice, Inbred C57BL
- Myocardium/pathology
- Myocardium/ultrastructure
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Staining and Labeling
- Ventricular Remodeling
Collapse
Affiliation(s)
- Colby A Souders
- Department of Medicine, Cardiovascular Research Institute, Texas A&M Health Science Center, Temple, Texas 76504, USA
| | | | | | | |
Collapse
|
39
|
Shamloo BK, Chhabra P, Freedman AN, Potosky A, Malin J, Weiss Smith S. Novel adverse events of bevacizumab in the US FDA adverse event reporting system database: a disproportionality analysis. Drug Saf 2012; 35:507-18. [PMID: 22612854 DOI: 10.2165/11597600-000000000-00000] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Bevacizumab is the first in its class, vascular endothelial growth factor (VEGF) inhibitor that was initially approved by the US FDA in 2004 for the treatment of metastatic colon cancer and other solid tumors. Preapproval clinical trials, particularly for oncology drugs, are limited in their ability to detect certain adverse effects and, therefore, the FDA and pharmaceutical sponsors collect and monitor reports of adverse events (AEs) following approval. OBJECTIVE The purpose of this study was to screen the FDA's Adverse Event Reporting System (AERS) database for novel AEs that may be attributed to bevacizumab. METHODS The FDA AERS database was used to identify all AE reports for bevacizumab from February 2004 to September 2009. Disproportionality analysis was conducted for bevacizumab against all other drugs in the background by setting statistical significance at proportional reporting ratio (PRR) ≥2, observed case count ≥3 and chi-square ≥4. Subsequent clinical evaluation was performed to determine the clinical relevance of the findings and to group related events. RESULTS A total of 523 Preferred Terms (PTs) were disproportionally reported; following clinical review 63 (12%) were found to be both unlabelled and of clinical importance. These PTs were grouped into 15 clinical disorder groups. Among the clinical disorders, electrolyte abnormalities had the greatest number of reports (n = 426) followed by cardiovascular events (n = 421), gastrointestinal events (n = 345), nervous system disorders (n = 106) and pneumonitis (n = 96). On sensitivity analysis, a number of clinically important unlabelled disorders, such as necrotizing fasciitis, vessel wall disorders, arrhythmia and conduction disorder and autoimmune thrombocytopenia still met the statistical significance criteria. CONCLUSIONS During the study period, out of 12 010 AE reports mentioning bevacizumab, it was listed as the suspect drug in 94.2% of the reports. Our disproportionality analysis identified many events that are already recognized as AEs of bevacizumab, but it also identified a number of clinically important unlabelled terms, which if confirmed in future studies would have potential implications for use of bevacizumab in clinical practice.
Collapse
Affiliation(s)
- Behrooz K Shamloo
- University of Nevada School of Medicine-Nevada Cancer Institute, Las Vegas, NV, USA
| | | | | | | | | | | |
Collapse
|
40
|
Nikolova A, Ablasser K, Wyler von Ballmoos MC, Poutias D, Kaza E, McGowan FX, Moses MA, Del Nido PJ, Friehs I. Endogenous angiogenesis inhibitors prevent adaptive capillary growth in left ventricular pressure overload hypertrophy. Ann Thorac Surg 2012; 94:1509-17. [PMID: 22795062 DOI: 10.1016/j.athoracsur.2012.05.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND In left ventricular (LV) pressure-overload hypertrophy, lack of adaptive capillary growth contributes to progression to failure. Remodeling of the hypertrophied myocardium requires proteolysis of the extracellular matrix (ECM) carried out by matrix metalloproteinases (MMPs). MMPs, specifically MMP-9, are known to cleave ECM components to generate angiogenesis inhibitors (angiostatin, endostatin, tumstatin). We hypothesize that MMP-9 releases antiangiogenic factors during compensated and decompensated hypertrophy, which results in lack of adaptive capillary growth. METHODS Newborn rabbits underwent aortic banding. Myocardial tissue from age-matched and banded animals at compensated (4 weeks) and decompensated hypertrophy (7 weeks), as identified by serial echocardiography, was analyzed by immunoblotting for angiostatin, endostatin, and tumstatin. MMP-9 activity was determined by zymography. A cell-permeable, potent, selective MMP-9 inhibitor was administered intrapericardially to animals with hypertrophied hearts and tissue was analyzed. RESULTS MMP-9 is activated in hypertrophied myocardium versus in control hearts (22 ± 2 versus 16 ± 1; p = 0.04), which results in significantly increased levels of angiostatin (115 ± 10 versus 86 ± 7; p = 0.02), endostatin (33 ± 1 versus 28 ± 1; p = 0.006), and tumstatin (35 ± 6 versus 17 ± 4; p = 0.04). Zymography confirms inhibition of MMP-9 (hypertrophy + MMP-9 inhibitor, 14 ± 0.6 versus hypertrophy + vehicle, 17 ± 1; p = 0.01) and angiostatin, endostatin, and tumstatin are down-regulated, accompanied by up-regulation of capillary density (hypertrophy + MMP-9 inhibitor, 2.99 ± 0.07 versus hypertrophy + vehicle, 2.7 ± 0.05; p = 0.002). CONCLUSIONS Up-regulation of angiogenesis inhibitors prevents adaptive capillary growth in pressure-overload hypertrophied myocardium. Therapeutic interventions aimed at inhibition of angiogenesis inhibitors are useful in maintaining capillary density and thereby preventing heart failure.
Collapse
Affiliation(s)
- Andriana Nikolova
- Department of Cardiac Surgery, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Givvimani S, Munjal C, Tyagi N, Sen U, Metreveli N, Tyagi SC. Mitochondrial division/mitophagy inhibitor (Mdivi) ameliorates pressure overload induced heart failure. PLoS One 2012; 7:e32388. [PMID: 22479323 PMCID: PMC3313999 DOI: 10.1371/journal.pone.0032388] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 01/28/2012] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND We have previously reported the role of anti-angiogenic factors in inducing the transition from compensatory cardiac hypertrophy to heart failure and the significance of MMP-9 and TIMP-3 in promoting this process during pressure overload hemodynamic stress. Several studies reported the evidence of cardiac autophagy, involving removal of cellular organelles like mitochondria (mitophagy), peroxisomes etc., in the pathogenesis of heart failure. However, little is known regarding the therapeutic role of mitochondrial division inhibitor (Mdivi) in the pressure overload induced heart failure. We hypothesize that treatment with mitochondrial division inhibitor (Mdivi) inhibits abnormal mitophagy in a pressure overload heart and thus ameliorates heart failure condition. MATERIALS AND METHODS To verify this, ascending aortic banding was done in wild type mice to create pressure overload induced heart failure and then treated with Mdivi and compared with vehicle treated controls. RESULTS Expression of MMP-2, vascular endothelial growth factor, CD31, was increased, while expression of anti angiogenic factors like endostatin and angiostatin along with MMP-9, TIMP-3 was reduced in Mdivi treated AB 8 weeks mice compared to vehicle treated controls. Expression of mitophagy markers like LC3 and p62 was decreased in Mdivi treated mice compared to controls. Cardiac functional status assessed by echocardiography showed improvement and there is also a decrease in the deposition of fibrosis in Mdivi treated mice compared to controls. CONCLUSION Above results suggest that Mdivi inhibits the abnormal cardiac mitophagy response during sustained pressure overload stress and propose the novel therapeutic role of Mdivi in ameliorating heart failure.
Collapse
Affiliation(s)
- Srikanth Givvimani
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | | | | | | | | | | |
Collapse
|
42
|
Souders CA, Bowers SLK, Banerjee I, Fuseler JW, Demieville JL, Baudino TA. c-Myc is required for proper coronary vascular formation via cell- and gene-specific signaling. Arterioscler Thromb Vasc Biol 2012; 32:1308-19. [PMID: 22402364 DOI: 10.1161/atvbaha.111.244590] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Although significant research has detailed angiogenesis during development and cancer, little is known about cardiac angiogenesis, yet it is critical for survival following pathological insult. The transcription factor c-Myc is a target of anticancer therapies because of its mitogenic and proangiogenic induction. In the current study, we investigate its role in cardiac angiogenesis in a cell-dependent and gene-specific context. METHODS AND RESULTS Angiogenesis assays using c-Myc-deficient cardiac endothelial cells and fibroblasts demonstrate that c-Myc is essential to vessel formation, and fibroblast-mediated vessel formation is dependent on c-Myc expression in fibroblasts. Gene analyses revealed that c-Myc-mediated gene expression is unique in cardiac angiogenesis and varies in a cell-dependent manner. In vitro 3-dimensional cultures demonstrated c-Myc's role in the expression of secreted angiogenic factors, while also providing evidence for c-Myc-mediated cell-cell interactions. Additional in vivo vascular analyses support c-Myc's critical role in capillary formation and vessel patterning during development and also in response to a pathological stimulus where its expression in myocytes is required for angiogenic remodeling. CONCLUSIONS These data demonstrate that proper c-Myc expression in cardiac fibroblasts and myocytes is essential to cardiac angiogenesis. These results have the potential for novel therapeutic applications involving the angiogenic response during cardiac remodeling.
Collapse
Affiliation(s)
- Colby A Souders
- Department of Medicine, Division of Molecular Cardiology, Cardiovascular Research Institute, Texas A&M Health Science Center, Temple, TX 76504, USA
| | | | | | | | | | | |
Collapse
|
43
|
Gu Y, Wang X, Wang X, Yuan M, Wu G, Hu J, Tang Y, Huang C. Artemisinin Attenuates Post-Infarct Myocardial Remodeling by Down-Regulating the NF-κB Pathway. TOHOKU J EXP MED 2012; 227:161-70. [DOI: 10.1620/tjem.227.161] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yongwei Gu
- Department of Cardiology, Renmin Hospital of Wuhan University
- Cardiovascular Research Institute of Wuhan University
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University
- Cardiovascular Research Institute of Wuhan University
| | - Xin Wang
- Department of Cardiology, Renmin Hospital of Wuhan University
- Cardiovascular Research Institute of Wuhan University
| | - Mingjie Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University
- Cardiovascular Research Institute of Wuhan University
| | - Gang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University
- Cardiovascular Research Institute of Wuhan University
| | - Juan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University
- Cardiovascular Research Institute of Wuhan University
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University
- Cardiovascular Research Institute of Wuhan University
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University
- Cardiovascular Research Institute of Wuhan University
| |
Collapse
|
44
|
|
45
|
Kaza E, Ablasser K, Poutias D, Griffiths ER, Saad FA, Hofstaetter JG, del Nido PJ, Friehs I. Up-regulation of soluble vascular endothelial growth factor receptor-1 prevents angiogenesis in hypertrophied myocardium. Cardiovasc Res 2011; 89:410-8. [PMID: 20935166 PMCID: PMC3020134 DOI: 10.1093/cvr/cvq321] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 09/14/2010] [Accepted: 09/30/2010] [Indexed: 01/13/2023] Open
Abstract
AIMS Inadequate capillary growth in pressure-overload hypertrophy impairs myocardial perfusion and substrate delivery, contributing to progression to failure. Capillary growth is tightly regulated by angiogenesis growth factors like vascular endothelial growth factor (VEGF) and endogenous inhibitors such as the splice variant of VEGF receptor-1, sVEGFR-1. We hypothesized that inadequate expression of VEGF and up-regulation of VEGFR-1 and its soluble splice variant, sVEGFR-1, restrict capillary growth in pressure-overload hypertrophy. METHODS AND RESULTS Neonatal New Zealand White rabbits underwent aortic banding. mRNA (qRT-PCR) and protein levels (immunoblotting) were determined in hypertrophied and control myocardium (7/group) for total VEGF, VEGFR-1, sVEGFR-1, VEGFR-2, and phospho-VEGFR-1 and -R-2. Free VEGF was determined by enzyme-linked immunoassay (ELISA) in hypertrophied myocardium, controls, and hypertrophied hearts following inhibition of sVEGFR-1 with placental growth factor (PlGF). VEGFR-1 and sVEGFR-1 mRNA (seven-fold up-regulation, P = 0.001) and protein levels were significantly up-regulated in hypertrophied hearts vs. controls (VEGFR-1: 44 ± 8 vs. 23 ± 1, P = 0.031; sVEGFR-1: 71 ± 13 vs. 31 ± 3, P = 0.016). There was no change in VEGF and VEGFR-2 mRNA or protein levels in hypertrophied compared with controls hearts. A significant decline in free, unbound VEGF was found in hypertrophied myocardium which was reversed following inhibition of sVEGFR-1 with PlGF, which was accompanied by phosphorylation of VEGFR-1 and VEGFR-2. CONCLUSION Up-regulation of the soluble VEGFR-1 in pressure-loaded myocardium prevents capillary growth by trapping VEGF. Inhibition of sVEGFR-1 released sufficient VEGF to induce angiogenesis and preserved contractile function. These data suggest sVEGFR-1 as possible therapeutic targets to prevent heart failure.
Collapse
Affiliation(s)
- Elisabeth Kaza
- Department of Cardiac Surgery, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Klemens Ablasser
- Department of Cardiac Surgery, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Dimitrios Poutias
- Department of Cardiac Surgery, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Eric R. Griffiths
- Department of Cardiac Surgery, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Fawzy A. Saad
- Department of Orthopedic Surgery, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | - Jochen G. Hofstaetter
- Department of Orthopedic Surgery, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | - Pedro J. del Nido
- Department of Cardiac Surgery, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Ingeborg Friehs
- Department of Cardiac Surgery, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
46
|
Givvimani S, Munjal C, Gargoum R, Sen U, Tyagi N, Vacek JC, Tyagi SC. Hydrogen sulfide mitigates transition from compensatory hypertrophy to heart failure. J Appl Physiol (1985) 2011; 110:1093-100. [PMID: 21233344 DOI: 10.1152/japplphysiol.01064.2010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We reported previously that although there is disruption of coordinated cardiac hypertrophy and angiogenesis in transition to heart failure, matrix metalloproteinase (MMP)-9 induced antiangiogenic factors play a vital role in this process. Previous studies have shown the cardioprotective role of hydrogen sulfide (H₂S) in various cardiac diseases, but its role during transition from compensatory hypertrophy to heart failure is yet to be unveiled. We hypothesize that H₂S induces MMP-2 activation and inhibits MMP-9 activation, thus promoting angiogenesis, and mitigates transition from compensatory cardiac hypertrophy to heart failure. To verify this, aortic banding (AB) was created to mimic pressure overload in wild-type (WT) mice, which were treated with sodium hydrosulfide (NaHS, H₂S donor) in drinking water and compared with untreated control mice. Mice were studied at 3 and 8 wk. In the NaHS-treated AB 8 wk group, the expression of MMP-2, CD31, and VEGF was increased while the expression of MMP-9, endostatin, angiostatin, and tissue inhibitor of matrix metalloproteinase (TIMP)-3 was decreased compared with untreated control mice. There was significant reduction in fibrosis in NaHS-treated groups. Echocardiograph and pressure-volume data revealed improvement of cardiac function in NaHS-treated groups over untreated controls. These results show that H₂S by inducing MMP-2 promotes VEGF synthesis and angiogenesis while it suppresses MMP-9 and TIMP-3 levels, inhibits antiangiogenic factors, reduces intracardiac fibrosis, and mitigates transition from compensatory hypertrophy to heart failure.
Collapse
Affiliation(s)
- Srikanth Givvimani
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, Kentucky, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Givvimani S, Tyagi N, Sen U, Mishra PK, Qipshidze N, Munjal C, Vacek JC, Abe OA, Tyagi SC. MMP-2/TIMP-2/TIMP-4 versus MMP-9/TIMP-3 in transition from compensatory hypertrophy and angiogenesis to decompensatory heart failure. Arch Physiol Biochem 2010; 116:63-72. [PMID: 20230216 PMCID: PMC2879167 DOI: 10.3109/13813451003652997] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although matrix metalloproteinase (MMPs) and tissue inhibitor of metalloproteinase (TIMPs) play a vital role in tumour angiogenesis and TIMP-3 caused apoptosis, their role in cardiac angiogenesis is unknown. Interestingly, a disruption of co-ordinated cardiac hypertrophy and angiogenesis contributed to the transition to heart failure, however, the proteolytic and anti-angiogenic mechanisms of transition from compensatory hypertrophy to decompensatory heart failure were unclear. We hypothesized that after an aortic stenosis MMP-2 released angiogenic factors during compensatory hypertrophy and MMP-9/TIMP-3 released anti-angiogenic factors causing decompensatory heart failure. To verify this hypothesis, wild type (WT) mice were studied 3 and 8 weeks after aortic stenosis, created by banding the ascending aorta in WT and MMP-9-/- (MMP-9KO) mice. Cardiac function (echo, PV loops) was decreased at 8 weeks after stenosis. The levels of MMP-2 (western blot) increased at 3 weeks and returned to control level at 8 weeks, MMP-9 increased only at 8 weeks. TIMP-2 and -4 decreased at 3 and even more at 8 weeks. The angiogenic VEGF increased at 3 weeks and decreased at 8 weeks, the anti-angiogenic endostatin and angiostatin increased only at 8 weeks. CD-31 positive endothelial cells were more intensely labelled at 3 weeks than in sham operated or in 8 weeks banded mice. Vascularization, as estimated by x-ray angiography, was increased at 3 weeks and decreased at 8 weeks post-banding. Although the vast majority of studies were performed on control WT mice only, interestingly, MMP9-KO mice seemed to have increased vascular density 8 weeks after banding. These results suggested that there was increase in MMP-2, decrease in TIMP-2 and -4, increase in angiogenic factors and vascularization in compensatory hearts. However, in decompensatory hearts there was increase in MMP-9, TIMP-3, endostatin, angiostatin and vascular rarefaction.
Collapse
Affiliation(s)
- Srikanth Givvimani
- Department of Physiology and Biophysics, University of Louisville School of Medicine, 500 South Preston Street, Louisville, KY 40202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Banerjee I, Fuseler JW, Souders CA, Bowers SL, Baudino TA. The role of interleukin-6 in the formation of the coronary vasculature. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2009; 15:415-421. [PMID: 19709461 PMCID: PMC2854414 DOI: 10.1017/s1431927609990353] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The formation and the patterning of the coronary vasculature are critical to the development and pathology of the heart. Alterations in cytokine signaling and biomechanical load can alter the vascular distribution of the vessels within the heart. Changes in the physical patterning of the vasculature can have significant impacts on the relationships of the pressure-flow network and distribution of critical growth and survival factors to the tissue. Interleukin-6 (IL-6) is a pleiotropic cytokine that regulates several biological processes, including vasculogenesis. Using both immunohistological and cardioangiographic analyses, we tested the hypothesis that IL-6-loss will result in decreased vessel density, along with changes in vascular distribution. Moreover, given the impact of vascular patterning on pressure-flow and distribution mechanics, we utilized non-Euclidean geometrical fractal analysis to quantify the changes in patterning resulting from IL-6-loss. Our analyses revealed that IL-6-loss results in a decreased capillary density and increase in intercapillary distances, but does not alter vessel size or diameter. We also observed that the IL-6-/- coronary vasculature had a marked increase in fractal dimension (D value), indicating that IL-6-loss alters vascular patterning. Characterization of IL-6-loss on coronary vasculature may lend insight into the role of IL-6 in the formation and patterning of the vascular bed.
Collapse
|
49
|
Cardiac dysfunction in an animal model of neonatal asphyxia is associated with increased degradation of MLC1 by MMP-2. Basic Res Cardiol 2009; 104:669-79. [PMID: 19452190 DOI: 10.1007/s00395-009-0035-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 04/15/2009] [Accepted: 05/06/2009] [Indexed: 10/20/2022]
Abstract
The purpose of this study was to determine if decreased heart function after hypoxia followed by reoxygenation (H-R) is associated with increased degradation of cardiac myosin light chain 1 (MLC1) by matrix metalloproteinase-2 (MMP-2), and to investigate the effects of the increased level of peroxynitrite in the hearts of H-R animals on MLC1 degradation by MMP-2. Total of 12 newborn piglets were acutely instrumented to monitor cardiac function as assessed by stroke volume. Anesthetized piglets were block randomized to the normoxic group (n = 6), which received ventilation with room air for 6 h, or to the H-R group (n = 6), which received ventilation with 10-15% oxygen for 2 h, followed by reoxygenation with 100% oxygen for 1 h and then with 21% oxygen for 3 h. Hearts were removed and snap frozen for subsequent biochemical analyses. At the end of the 2-h hypoxia period, cardiac output, mean arterial pressure and stroke volume were significantly decreased in the H-R group. After 1 h of 100% oxygen, these parameters had increased slightly, but remained significantly lower than the normoxic controls throughout the reoxygenation period. Compared to normoxic animals, cardiac MLC1 levels were decreased and MMP-2 activity was increased in H-R animals. MMP-2 was co-localized with MLC1, and the amount of MLC1 associated with MMP-2 was higher in the hearts of H-R animals. In normoxic animals, cardiac MLC1 level was negatively, and cardiac MMP-2 activity was positively, strongly correlated with stroke volume index. This relationship was not seen in the H-R group. However, in both the normoxic group and the H-R group, the activity of cardiac MMP-2 was negatively correlated with the level of cardiac MLC1. There was a more than twofold increase in the level of nitrates, a marker for peroxynitrite formation, in the hearts of H-R animals. Mass spectrometric analyses detected peroxynitrite-induced nitration and S-nitrosylation of MLC1 protein in the hearts of H-R animals. These peroxynitrite-induced modifications of MLC1 were localized directly adjacent to the site at which MMP-2 cleaves MLC1. Peroxynitrite, formed during cardiac reoxygenation following a period of hypoxia, modifies the structure of cardiac MLC1 by nitrating and nitrosylating amino acids adjacent to the site where MMP-2 cleaves MLC1. This facilitates the degradation of MLC1 by MMP-2 and may contribute to cardiac dysfunction induced by H-R and other forms of oxidative stress. The high correlation between MMP-2 activity and MLC1 level in control animals suggests that MMP-2 may play an important role in regulating MLC1 turnover under normal physiological conditions. Determining the optimal parameters for controlled reoxygenation after hypoxia, together with pharmacological treatment with MMP-2 inhibitors and/or inhibitors of nitration/nitrosylation of MLC1, could reduce heart injury during the resuscitation of asphyxiated newborns and improve their long-term prognosis by reducing MLC1 degradation. Since the degradation of MLC1 by MMP-2 appears to be a common feature of oxidative stress, these pharmacological interventions may be useful in reducing tissue damage in other oxidative stress-related disorders as well.
Collapse
|
50
|
Time course and mechanisms of left ventricular systolic and diastolic dysfunction in monocrotaline-induced pulmonary hypertension. Basic Res Cardiol 2009; 104:535-45. [PMID: 19288153 DOI: 10.1007/s00395-009-0017-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 01/27/2009] [Accepted: 02/24/2009] [Indexed: 10/21/2022]
Abstract
Although pulmonary hypertension (PH) selectively overloads the right ventricle (RV), neuroendocrine activation and intrinsic myocardial dysfunction have been described in the left ventricle (LV). In order to establish the timing of LV dysfunction development in PH and to clarify underlying molecular changes, Wistar rats were studied 4 and 6 weeks after subcutaneous injection of monocrotaline (MCT) 60 mg/kg (MCT-4, n = 11; MCT-6, n = 11) or vehicle (Ctrl-4, n = 11; Ctrl-6, n = 11). Acute single beat stepwise increases of systolic pressure were performed from baseline to isovolumetric (LVPiso). This hemodynamic stress was used to detect early changes in LV performance. Neurohumoral activation was evaluated by measuring angiotensin-converting enzyme (ACE) and endothelin-1 (ET-1) LV mRNA levels. Cardiomyocyte apoptosis was evaluated by TUNEL assay. Extracellular matrix composition was evaluated by tenascin-C mRNA levels and interstitial collagen content. Myosin heavy chain (MHC) composition of the LV was studied by protein quantification. MCT treatment increased RV pressures and RV/LV weight ratio, without changing LV end-diastolic pressures or dimensions. Baseline LV dysfunction were present only in MCT-6 rats. Afterload elevations prolonged tau and upward-shifted end-diastolic pressure dimension relations in MCT-4 and even more in MCT-6. MHC-isoform switch, ACE upregulation and cardiomyocyte apoptosis were present in both MCT groups. Rats with severe PH develop LV dysfunction associated with ET-1 and tenascin-C overexpression. Diastolic dysfunction, however, could be elicited at earlier stages in response to hemodynamic stress, when only LV molecular changes, such as MHC isoform switch, ACE upregulation, and myocardial apoptosis were present.
Collapse
|