1
|
Pampanella L, Petrocelli G, Forcellini F, Cruciani S, Ventura C, Abruzzo PM, Facchin F, Canaider S. Oxytocin, the Love Hormone, in Stem Cell Differentiation. Curr Issues Mol Biol 2024; 46:12012-12036. [PMID: 39590307 PMCID: PMC11592854 DOI: 10.3390/cimb46110713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Oxytocin (OXT) is a neurohypophysial nonapeptide that exerts its effects mainly through the oxytocin receptor (OXTR). Several studies have pointed out the role of OXT in the modulation of stem cell (SC) fate and properties. SCs are undifferentiated cells characterized by a remarkable ability to self-renew and differentiate into various cell types of the body. In this review, we focused on the role of OXT in SC differentiation. Specifically, we summarize and discuss the scientific research examining the effects of OXT on mesodermal SC-derived lineages, including cardiac, myogenic, adipogenic, osteogenic, and chondrogenic differentiation. The available studies related to the effects of OXT on SC differentiation provide little insights about the molecular mechanism mediated by the OXT-OXTR pathway. Further research is needed to fully elucidate these pathways to effectively modulate SC differentiation and develop potential therapeutic applications in regenerative medicine.
Collapse
Affiliation(s)
- Luca Pampanella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (F.F.); (C.V.); (S.C.)
| | - Giovannamaria Petrocelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (F.F.); (C.V.); (S.C.)
| | - Federica Forcellini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (F.F.); (C.V.); (S.C.)
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy;
| | - Carlo Ventura
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (F.F.); (C.V.); (S.C.)
- National Laboratory of Molecular Biology and Stem Cell Bioengineering, National Institute of Biostructures and Biosystems (NIBB), Via di Corticella 183, 40129 Bologna, Italy
| | - Provvidenza Maria Abruzzo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (F.F.); (C.V.); (S.C.)
| | - Federica Facchin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (F.F.); (C.V.); (S.C.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Silvia Canaider
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (F.F.); (C.V.); (S.C.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| |
Collapse
|
2
|
Ao X, Rong Y, Han M, Wang X, Xia Q, Shang F, Liu Y, Lv Q, Wang Z, Su R, Zhang Y, Wang R. Combined Genome-Wide Association Study and Haplotype Analysis Identifies Candidate Genes Affecting Growth Traits of Inner Mongolian Cashmere Goats. Vet Sci 2024; 11:428. [PMID: 39330807 PMCID: PMC11435611 DOI: 10.3390/vetsci11090428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
In this study, genome-wide association analysis was performed on the growth traits (body height, body length, chest circumference, chest depth, chest width, tube circumference, and body weight) of Inner Mongolian cashmere goats (Erlangshan type) based on resequencing data. The population genetic parameters were estimated, haplotypes were constructed for the significant sites, and association analysis was conducted between the haplotypes and phenotypes. A total of two hundred and eighty-four SNPs and eight candidate genes were identified by genome-wide association analysis, gene annotation, and enrichment analysis. The phenotypes of 16 haplotype combinations were significantly different by haplotype analysis. Combined with the above results, the TGFB2, BAG3, ZEB2, KCNJ12, MIF, MAP2K3, HACD3, and MEGF11 functional candidate genes and the haplotype combinations A2A2, C2C2, E2E2, F2F2, I2I2, J2J2, K2K2, N2N2, O2O2, P2P2, R1R1, T1T1, W1W1, X1X1, Y1Y1, and Z1Z1 affected the growth traits of the cashmere goats and could be used as molecular markers to improve the accuracy of early selection and the economic benefits of breeding.
Collapse
Affiliation(s)
- Xiaofang Ao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| | - Youjun Rong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| | - Mingxuan Han
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| | - Xinle Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| | - Qincheng Xia
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| | - Fangzheng Shang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| | - Yan Liu
- College of Vocational and Technical, Inner Mongolia Agricultural University, Baotou 014109, China
| | - Qi Lv
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| | - Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot 010018, China
- Key Laboratory of Goat and Sheep Genetics, Breeding and Reproduction in Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.A.)
| |
Collapse
|
3
|
Qiu K, Xu D, Wang L, Zhang X, Jiao N, Gong L, Yin J. Association Analysis of Single-Cell RNA Sequencing and Proteomics Reveals a Vital Role of Ca 2+ Signaling in the Determination of Skeletal Muscle Development Potential. Cells 2020; 9:E1045. [PMID: 32331484 PMCID: PMC7225978 DOI: 10.3390/cells9041045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/10/2020] [Accepted: 04/19/2020] [Indexed: 12/24/2022] Open
Abstract
This study is aimed at exploring the mechanism underlying the homeostasis between myogenesis and adipogenesis in skeletal muscle using a special porcine model with a distinct phenotype on muscle growth rate and intramuscular fat deposition. Differentiation potential of muscle-derived Myo-lineage cells of lean-type pigs was significantly enhanced relative to obese-type pigs, while that of their Adi-lineage cells was similar. Single-cell RNA sequencing revealed that lean-type pigs reserved a higher proportion of Myo-lineage cells in skeletal muscle relative to obese-type pigs. Besides, Myo-lineage cells of the lean-type pig settled closer to the original stage of muscle-derived progenitor cells. Proteomics analysis found that differentially expressed proteins between two sources of Myo-lineage cells are mainly involved in muscle development, cell proliferation and differentiation, ion homeostasis, apoptosis, and the MAPK signaling pathway. The regulation of intracellular ion homeostasis, Ca2+ in particular, significantly differed between two sources of Myo-lineage cells. Ca2+ concentration in both cytoplasm and endoplasmic reticulum was lower in Myo-lineage cells of lean-type pigs relative to obese-type pigs. In conclusion, a higher proportion and stronger differentiation capacity of Myo-lineage cells are the main causes for the higher capability of myogenic differentiation and lower intramuscular fat deposition. Relative low concentration of cellular Ca2+ is advantageous for Myo-lineage cells to keep a potent differentiation potential.
Collapse
Affiliation(s)
- Kai Qiu
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (K.Q.); (D.X.); (L.W.); (X.Z.); (N.J.); (L.G.)
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Doudou Xu
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (K.Q.); (D.X.); (L.W.); (X.Z.); (N.J.); (L.G.)
| | - Liqi Wang
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (K.Q.); (D.X.); (L.W.); (X.Z.); (N.J.); (L.G.)
| | - Xin Zhang
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (K.Q.); (D.X.); (L.W.); (X.Z.); (N.J.); (L.G.)
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ning Jiao
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (K.Q.); (D.X.); (L.W.); (X.Z.); (N.J.); (L.G.)
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lu Gong
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (K.Q.); (D.X.); (L.W.); (X.Z.); (N.J.); (L.G.)
| | - Jingdong Yin
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (K.Q.); (D.X.); (L.W.); (X.Z.); (N.J.); (L.G.)
| |
Collapse
|
4
|
Gasiūnienė M, Petkus G, Matuzevičius D, Navakauskas D, Navakauskienė R. Angiotensin II and TGF- β1 Induce Alterations in Human Amniotic Fluid-Derived Mesenchymal Stem Cells Leading to Cardiomyogenic Differentiation Initiation. Int J Stem Cells 2019; 12:251-264. [PMID: 31023001 PMCID: PMC6657950 DOI: 10.15283/ijsc18126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 12/17/2022] Open
Abstract
Background and Objectives Human amniotic fluid-derived mesenchymal stem cells (AF-MSCs) may be a valuable source for cardiovascular tissue engineering and cell therapy. The aim of this study is to verify angiotensin II and transforming growth factor-beta 1 (TGF-β1) as potential cardiomyogenic differentiation inducers of AF-MSCs. Methods and Results AF-MSCs were obtained from amniocentesis samples from second-trimester pregnant women, isolated and characterized by the expression of cell surface markers (CD44, CD90, CD105 positive; CD34 negative) and pluripotency genes (OCT4, SOX2, NANOG, REX1). Cardiomyogenic differentiation was induced using different concentrations of angiotensin II and TGF-β1. Successful initiation of differentiation was confirmed by alterations in cell morphology, upregulation of cardiac genes-markers NKX2-5, TBX5, GATA4, MYH6, TNNT2, DES and main cardiac ion channels genes (sodium, calcium, potassium) as determined by RT-qPCR. Western blot and immunofluorescence analysis revealed the increased expression of Connexin43, the main component of gap junctions, and Nkx2.5, the early cardiac transcription factor. Induced AF-MSCs switched their phenotype towards more energetic and started utilizing oxidative phosphorylation more than glycolysis for energy production as assessed using Agilent Seahorse XF analyzer. The immune analysis of chromatin-modifying enzymes DNMT1, HDAC1/2 and Polycomb repressive complex 1 and 2 (PRC1/2) proteins BMI1, EZH2 and SUZ12 as well as of modified histones H3 and H4 indicated global chromatin remodeling during the induced differentiation. Conclusions Angiotensin II and TGF-β1 are efficient cardiomyogenic inducers of human AF-MSCs; they initiate alterations at the gene and protein expression, metabolic and epigenetic levels in stem cells leading towards cardiomyocyte- like phenotype formation.
Collapse
Affiliation(s)
- Monika Gasiūnienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Gintautas Petkus
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Dalius Matuzevičius
- Electronic Systems Department, Electronics Faculty, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Dalius Navakauskas
- Electronic Systems Department, Electronics Faculty, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Rūta Navakauskienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
5
|
Muncie JM, Weaver VM. The Physical and Biochemical Properties of the Extracellular Matrix Regulate Cell Fate. Curr Top Dev Biol 2018; 130:1-37. [PMID: 29853174 DOI: 10.1016/bs.ctdb.2018.02.002] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The extracellular matrix is a complex network of hydrated macromolecular proteins and sugars that, in concert with bound soluble factors, comprise the acellular stromal microenvironment of tissues. Rather than merely providing structural information to cells, the extracellular matrix plays an instructive role in development and is critical for the maintenance of tissue homeostasis. In this chapter, we review the composition of the extracellular matrix and summarize data illustrating its importance in embryogenesis, tissue-specific development, and stem cell differentiation. We discuss how the biophysical and biochemical properties of the extracellular matrix ligate specific transmembrane receptors to activate intracellular signaling that alter cell shape and cytoskeletal dynamics to modulate cell growth and viability, and direct cell migration and cell fate. We present examples describing how the extracellular matrix functions as a highly complex physical and chemical entity that regulates tissue organization and cell behavior through a dynamic and reciprocal dialogue with the cellular constituents of the tissue. We suggest that the extracellular matrix not only transmits cellular and tissue-level force to shape development and tune cellular activities that are key for coordinated tissue behavior, but that it is itself remodeled such that it temporally evolves to maintain the integrated function of the tissue. Accordingly, we argue that perturbations in extracellular matrix composition and structure compromise key developmental events and tissue homeostasis, and promote disease.
Collapse
Affiliation(s)
- Jonathon M Muncie
- Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, CA, United States; Graduate Program in Bioengineering, University of California San Francisco and University of California Berkeley, San Francisco, CA, United States
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, CA, United States; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, The Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, United States.
| |
Collapse
|
6
|
Qiao S, Zhao Y, Geng S, Li Y, Hou X, Liu Y, Lin FH, Yao L, Tian W. A novel double-targeted nondrug delivery system for targeting cancer stem cells. Int J Nanomedicine 2016; 11:6667-6678. [PMID: 27994463 PMCID: PMC5154727 DOI: 10.2147/ijn.s116230] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Instead of killing cancer stem cells (CSCs), the conventional chemotherapy used for cancer treatment promotes the enrichment of CSCs, which are responsible for tumor growth, metastasis, and recurrence. However, most therapeutic agents are only able to kill a small proportion of CSCs by targeting one or two cell surface markers or dysregulated CSC pathways, which are usually shared with normal stem cells (NSCs). In this study, we developed a novel nondrug delivery system for the dual targeting of CSCs by conjugating hyaluronic acid (HA) and grafting the doublecortin-like kinase 1 (DCLK1) monoclonal antibody to the surface of poly(ethylene glycol) (PEG)–poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs), which can specifically target CD44 receptors and the DCLK1 surface marker – the latter was shown to possess the capacity to distinguish between CSCSs and NSCs. The size and morphology of these NPs were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). This was followed by studies of NP encapsulation efficiency and in vitro drug release properties. Then, the cytotoxicity of the NPs was tested via Cell Counting Kit-8 assay. Finally, the 4T1 CSCs were obtained from the alginate-based platform, which we developed as an in vitro tumor model. Tumor-bearing nude mice were used as in vivo models to systematically detect the ability of NPs to target CSCs. Our results showed that the DCLK1–HA–PEG–PLGA NPs exhibited a targeting effect toward CSCs both in vitro and in vivo. These findings have important implications for the rational design of drug delivery systems that target CSCs with high efficacy.
Collapse
Affiliation(s)
- Shupei Qiao
- School of Life Science and Technology, Harbin Institute of Technology
| | - Yufang Zhao
- School of Life Science and Technology, Harbin Institute of Technology
| | - Shuai Geng
- Department of Pharmacology, Harbin Medical University
| | - Yong Li
- School of Life Science and Technology, Harbin Institute of Technology
| | - Xiaolu Hou
- School of Life Science and Technology, Harbin Institute of Technology; Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Yi Liu
- School of Life Science and Technology, Harbin Institute of Technology
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Lifen Yao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Weiming Tian
- School of Life Science and Technology, Harbin Institute of Technology
| |
Collapse
|
7
|
Abstract
Soluble morphogen gradients have long been studied in the context of heart specification and patterning. However, recent data have begun to challenge the notion that long-standing in vivo observations are driven solely by these gradients alone. Evidence from multiple biological models, from stem cells to ex vivo biophysical assays, now supports a role for mechanical forces in not only modulating cell behavior but also inducing it de novo in a process termed mechanotransduction. Structural proteins that connect the cell to its niche, for example, integrins and cadherins, and that couple to other growth factor receptors, either directly or indirectly, seem to mediate these changes, although specific mechanistic details are still being elucidated. In this review, we summarize how the wingless (Wnt), transforming growth factor-β, and bone morphogenetic protein signaling pathways affect cardiomyogenesis and then highlight the interplay between each pathway and mechanical forces. In addition, we will outline the role of integrins and cadherins during cardiac development. For each, we will describe how the interplay could change multiple processes during cardiomyogenesis, including the specification of undifferentiated cells, the establishment of heart patterns to accomplish tube and chamber formation, or the maturation of myocytes in the fully formed heart.
Collapse
Affiliation(s)
- Cassandra L Happe
- From the Department of Bioengineering, University of California, San Diego, La Jolla; and Sanford Consortium for Regenerative Medicine, La Jolla, CA
| | - Adam J Engler
- From the Department of Bioengineering, University of California, San Diego, La Jolla; and Sanford Consortium for Regenerative Medicine, La Jolla, CA.
| |
Collapse
|
8
|
Abstract
Studies of body volume expansion have indicated that lesions of the anteroventral third ventricle and median eminence block the release of atrial natriuretic peptide (ANP) into the circulation. Detailed analysis of the lesions showed that activation of oxytocin (OT)-ergic neurons is responsible for ANP release, and it has become clear that activation of neuronal circuitry elicits OT secretion into the circulation, activating atrial OT receptors and ANP release from the heart. Subsequently, we have uncovered the entire functional OT system in the rat and the human heart. An abundance of OT has been observed in the early development of the fetal heart, and the capacity of OT to generate cardiomyocytes (CMs) has been demonstrated in various types of stem cells. OT treatment of mesenchymal stem cells stimulates paracrine factors beneficial for cardioprotection. Cardiovascular actions of OT include: i) lowering blood pressure, ii) negative inotropic and chronotropic effects, iii) parasympathetic neuromodulation, iv) vasodilatation, v) anti-inflammatory activity, vi) antioxidant activity, and vii) metabolic effects. OT actions are mediated by nitric oxide and ANP. The beneficial actions of OT may include the increase in glucose uptake by CMs and stem cells, reduction in CM hypertrophy, oxidative stress, and mitochondrial protection of several cell types. In experimentally induced myocardial infarction in rats, continuous in vivo OT delivery improves cardiac healing and cardiac work, reduces inflammation, and stimulates angiogenesis. Because OT plays anti-inflammatory and cardioprotective roles and improves vascular and metabolic functions, it demonstrates potential for therapeutic use in various pathologic conditions.
Collapse
Affiliation(s)
- J Gutkowska
- Laboratory of Cardiovascular Biochemistry, Department of Medicine, Faculty of Medicine, University of Montreal, CHUM Research Centre, Montreal, Quebec, Canada
| | - M Jankowski
- Laboratory of Cardiovascular Biochemistry, Department of Medicine, Faculty of Medicine, University of Montreal, CHUM Research Centre, Montreal, Quebec, Canada
| | - J Antunes-Rodrigues
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, Brasil
| |
Collapse
|
9
|
Nadworny AS, Guruju MR, Poor D, Doran RM, Sharma RV, Kotlikoff MI, Davisson RL. Nox2 and Nox4 influence neonatal c-kit(+) cardiac precursor cell status and differentiation. Am J Physiol Heart Circ Physiol 2013; 305:H829-42. [PMID: 23832701 DOI: 10.1152/ajpheart.00761.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Redox status has emerged as critical in modulating stemness and lineage commitment in several precursor cell types. However, a role for redox genes, specifically NADPH oxidases (Nox), in cardiac precursor cells (CPCs) has not been established. We tested whether CPCs marked by type III receptor tyrosine kinase c-kit (c-kit(+)) exhibit a unique NADPH oxidase signature that confers precursor status and whether alterations in this profile are functionally linked to changes in lineage specification. Dihydroethidium (DHE) microfluorography indicated reduced basal reactive oxygen species (ROS) formation within early postnatal c-kit(+) CPCs. Real-time quantitative PCR revealed downregulation of ROS generator Nox2 and its subunit p67(phox) in c-kit(+) CPCs under basal conditions but upregulation of Nox2 and Nox4 over the course of differentiation. Adenoviral silencing of Nox2 and Nox4 increased expression of CPC markers c-kit and Flk-1 and blunted smooth and cardiac muscle differentiation, respectively, while overexpression of Nox2 and Nox4 significantly reduced c-kit expression. These changes were accompanied by altered expression of transcription factors regulating cardiac lineage commitment, Gata6 and Gata4, and cytokine transforming growth factor (TGF)-β1. Similar to other precursor cell types, RT(2)Profiler PCR Arrays revealed that c-kit(+) CPCs also exhibit enhanced antioxidant capacity at the mRNA level. In conclusion, we report that c-kit(+) CPCs demonstrate reduced Nox2 expression and ROS levels and that increases in Nox2 and Nox4 influence their differentiation into mature cells. We speculate that ROS generators Nox2 and Nox4, along with the antioxidant genes identified by PCR Arrays, may be novel targets in CPCs that could prove useful in cell-based therapy of the heart.
Collapse
Affiliation(s)
- Alyson S Nadworny
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York; and
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Stem cell-based therapies for preventing and treating chronic end-organ dysfunction have captured the imagination of the lay public and spurred scientific and clinical development in multiple disciplines and disease states. The goal of this review is to build a framework around the different approaches being deployed to heal or treat end-organ dysfunction and discuss how within this framework future developments may occur. RECENT FINDINGS In this review, we divide the development of regenerative therapies into two broad categories. The first 'Stem Cells as the Student' focuses on the fact that we need to coax/teach the stem cells to differentiate in an efficient manner into the cells of interest, then using tissue engineering, we need to integrate them in an appropriate delivery system/matrix, and then generate a blood supply, sufficient to allow for their survival following engraftment. In the second category 'Stem Cells as the Teacher,' we learn from studies on stem cell biology, critical pathways that are dysregulated in tissue repair. By identifying these critical pathways, we can develop drug and biologics that can enhance tissue repair and end-organ function. SUMMARY Regenerative therapies have exciting potential to improve patient outcomes in a variety of acute and chronic disease states. There is significant excitement in general public, and the scientific and clinical communities. Early studies have been variably successful. As we move forward and understand the biology and engineering principles involved, significant advances with greater chances of success and efficacy will come.
Collapse
|
11
|
Kawaguchi N, Nakanishi T. Cardiomyocyte regeneration. Cells 2013; 2:67-82. [PMID: 24709645 PMCID: PMC3972659 DOI: 10.3390/cells2010067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 12/25/2012] [Accepted: 01/05/2013] [Indexed: 01/14/2023] Open
Abstract
The heart was initially believed to be a terminally differentiated organ; once the cardiomyocytes died, no recovery could be made to replace the dead cells. However, around a decade ago, the concept of cardiac stem cells (CSCs) in adult hearts was proposed. CSCs differentiate into cardiomyocytes, keeping the heart functioning. Studies have proved the existence of stem cells in the heart. These somatic stem cells have been studied for use in cardiac regeneration. Moreover, recently, induced pluripotent stem cells (iPSCs) were invented, and methodologies have now been developed to induce stable cardiomyocyte differentiation and purification of mature cardiomyocytes. A reprogramming method has also been applied to direct reprogramming using cardiac fibroblasts into cardiomyocytes. Here, we address cardiomyocyte differentiation of CSCs and iPSCs. Furthermore, we describe the potential of CSCs in regenerative biology and regenerative medicine.
Collapse
Affiliation(s)
- Nanako Kawaguchi
- Department of Pediatric Cardiology, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| | - Toshio Nakanishi
- Department of Pediatric Cardiology, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| |
Collapse
|
12
|
Nguemo F, Fleischmann BK, Gupta MK, Šarić T, Malan D, Liang H, Pfannkuche K, Bloch W, Schunkert H, Hescheler J, Reppel M. The L-type Ca2+ channels blocker nifedipine represses mesodermal fate determination in murine embryonic stem cells. PLoS One 2013; 8:e53407. [PMID: 23320083 PMCID: PMC3539992 DOI: 10.1371/journal.pone.0053407] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 11/28/2012] [Indexed: 01/20/2023] Open
Abstract
Dihydropyridines (DHP), which nifedipine is a member of, preferentially block Ca(2+) channels of different cell types. Moreover, influx of Ca(2+) through L-type Ca(2+) channels (LTCCs) activates Ca(2+) signaling pathways, which in turn contribute to numerous cellular processes. Although LTCCs are expressed in undifferentiated cells, very little is known about its contributions to the transcriptional regulation of mesodermal and cardiac genes. This study aimed to examine the contribution of LTCCs and the effect of nifedipine on the commitment of pluripotent stem cells toward the cardiac lineage in vitro. The murine embryonic stem (ES, cell line D3) and induced pluripotent stem (iPS, cell clone 09) cells were differentiated into enhanced green fluorescence protein (EGFP) expressing spontaneously beating cardiomyocytes (CMs). Early treatment of differentiating cells with 10 µM nifedipine led to a significant inhibition of the cardiac mesoderm formation and cardiac lineage commitment as revealed by gene regulation analysis. This was accompanied by the inhibition of spontaneously occurring Ca(2+) transient and reduction of LTCCs current density (I(CaL)) of differentiated CMs. In addition, nifedipine treatment instigated a pronounced delay of the spontaneous beating embryoid body (EB) and led to a poor surface localization of L-type Ca(2+) channel α(1C) (Ca(V)1.2) subunits. Contrary late incubation of pluripotent stem cells with nifedipine was without any impact on the differentiation process and did not affect the derived CMs function. Our data indicate that nifedipine blocks the determined path of pluripotent stem cells to cardiomyogenesis by inhibition of mesodermal commitment at early stages of differentiation, thus the proper upkeep Ca(2+) concentration and pathways are essentially required for cardiac gene expression, differentiation and function.
Collapse
Affiliation(s)
- Filomain Nguemo
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Bernd K. Fleischmann
- Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Manoj K. Gupta
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Tomo Šarić
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Daniela Malan
- Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Huamin Liang
- Department of Physiology, Huazhong University of Science and Technology, Tongji Medical College, Wuhan, China
| | - Kurt Pfannkuche
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, German Sport University, Cologne, Germany
| | | | - Jürgen Hescheler
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Michael Reppel
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
- Department of Cardiology, Medical University of Lübeck, Lübeck, Germany
| |
Collapse
|
13
|
Liu J, Zhang Z, Liu Y, Guo C, Gong Y, Yang S, Ma M, Li Z, Gao WQ, He Z. Generation, characterization, and potential therapeutic applications of cardiomyocytes from various stem cells. Stem Cells Dev 2012; 21:2095-110. [PMID: 22428725 DOI: 10.1089/scd.2012.0031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Heart failure is one of the leading causes of death worldwide. Myocardial cell transplantation emerges as a novel therapeutic strategy for heart failure, but this approach has been hampered by severe shortage of human cardiomyocytes. We have recently induced mouse embryonic stem cells to differentiate into embryoid bodies and eventually, cardiomyocytes. Here, we address recent advancements in cardiomyocyte differentiation from cardiac stem cells and pluripotent stem cells. We highlight the methodologies, using growth factors, endoderm-like cell cocultures, small molecules, and biomaterials, in directing the differentiation of pluripotent stem cells into cardiomyocytes. The characterization and identification of pluripotent stem cell-derived cardiomyocytes by morphological, phenotypic, and functional features are also discussed. Notably, increasing evidence demonstrates that cardiomyocytes may be generated from the stem cells of several tissues outside the cardiovascular system, including skeletal muscles, bone marrow, testes, placenta, amniotic fluid, and adipose tissues. We further address the potential applications of cardiomyocytes derived from various kinds of stem cells. The differentiation of stem cells into functional cardiomyocytes, especially from an extra-cardiac stem cell source, would circumvent the scarcity of heart donors and human cardiomyocytes, and, most importantly, it would offer an ideal and promising cardiomyocyte source for cell therapy and tissue engineering in treating heart failure.
Collapse
Affiliation(s)
- Jianfang Liu
- Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Cassino TR, Drowley L, Okada M, Beckman SA, Keller B, Tobita K, Leduc PR, Huard J. Mechanical loading of stem cells for improvement of transplantation outcome in a model of acute myocardial infarction: the role of loading history. Tissue Eng Part A 2012; 18:1101-8. [PMID: 22280442 DOI: 10.1089/ten.tea.2011.0285] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Stem cell therapy for tissue repair is a rapidly evolving field and the factors that dictate the physiological responsiveness of stem cells remain under intense investigation. In this study we hypothesized that the mechanical loading history of muscle-derived stem cells (MDSCs) would significantly impact MDSC survival, host tissue angiogenesis, and myocardial function after MDSC transplantation into acutely infarcted myocardium. Mice with acute myocardial infarction by permanent left coronary artery ligation were injected with either nonstimulated (NS) or mechanically stimulated (MS) MDSCs. Mechanical stimulation consisted of stretching the cells with equibiaxial stretch with a magnitude of 10% and frequency of 0.5 Hz. MS cell-transplanted hearts showed improved cardiac contractility, increased numbers of host CD31+ cells, and decreased fibrosis, in the peri-infarct region, compared to the hearts treated with NS MDSCs. MS MDSCs displayed higher vascular endothelial growth factor expression than NS cells in vitro. These findings highlight an important role for cyclic mechanical loading preconditioning of donor MDSCs in optimizing MDSC transplantation for myocardial repair.
Collapse
Affiliation(s)
- Theresa R Cassino
- Department of Orthopaedic Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Wnt signaling and cardiac differentiation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 111:153-74. [PMID: 22917230 DOI: 10.1016/b978-0-12-398459-3.00007-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Wnt family of secreted glycoproteins participates in a wide array of biological processes, including cellular differentiation, proliferation, survival, apoptosis, adhesion, angiogenesis, hypertrophy, and aging. The canonical Wnt signaling primarily utilizes β-catenin-mediated activation of transcription, while the noncanonical mechanisms involve a calcium-dependent protein kinase C-mediated Wnt/Ca(2+) pathway and a dishevelled-dependent c-Jun N-terminal kinase-mediated planar cell polarity pathway. Although both canonical and noncanonical Wnts have been implicated in cardiac specification, morphogenesis, and differentiation; the molecular events remain unclear and often depend on the cell type and biological context. In this regard, growing evidence indicates that Wnt11 is able to induce cardiogenesis not only during embryonic development but also in adult cells. The cardiogenic properties of Wnt11 may prove useful for preprogramming adult stem cells before myocardial transplantation. Further, elucidation of the molecular steps in Wnt11-induced cardiac differentiation will be necessary to enhance the outcomes of cardiac cell therapy.
Collapse
|
16
|
Zuba-Surma EK, Wojakowski W, Ratajczak MZ, Dawn B. Very small embryonic-like stem cells: biology and therapeutic potential for heart repair. Antioxid Redox Signal 2011; 15:1821-34. [PMID: 21194389 PMCID: PMC3159118 DOI: 10.1089/ars.2010.3817] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Very small embryonic-like stem cells (VSELs) represent a population of extremely small nonhematopoietic pluripotent cells that are negative for lineage markers and express Sca-1 in mice and CD133 in humans. Their embryonic-like characteristics include the expression of markers of pluripotency; the ability to give rise to cellular derivatives of all three germ-layers; and the ability to form embryoid-like bodies. Indeed, quiescent VSELs may represent the remnants of epiblast-derived cells in adult organs. After tissue injury, including acute myocardial infarction (MI), bone marrow-derived VSELs are mobilized into the peripheral blood and home to the damaged organ. Given the ability of VSELs to differentiate into cardiomyocytes and endothelial cells, and their ability to secrete various cardioprotective growth factors/cytokines, VSELs may serve as an ideal cellular source for cardiac repair. Consistently, transplantation of VSELs after an acute MI improves left ventricular (LV) structure and function, and these benefits remain stable during long-term follow-up. Although the mechanisms remain under investigation, effects of secreted factors, regeneration of cellular constituents, and stimulation of endogenous stem/progenitors may play combinatorial roles. The purpose of this review is to summarize the current evidence regarding the biologic features of VSELs, and to discuss their potential as cellular substrates for therapeutic cardiac repair.
Collapse
Affiliation(s)
- Ewa K Zuba-Surma
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | | | |
Collapse
|
17
|
Mohanty S, Bose S, Jain KG, Bhargava B, Airan B. TGFβ1 contributes to cardiomyogenic-like differentiation of human bone marrow mesenchymal stem cells. Int J Cardiol 2011; 163:93-9. [PMID: 21903280 DOI: 10.1016/j.ijcard.2011.08.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 05/11/2011] [Accepted: 08/03/2011] [Indexed: 01/14/2023]
Abstract
BACKGROUND The majority of the protocols for cardiomyocyte differentiation of MSC use 5-azacytidine as an inducer. As transforming growth factor β1 and 5-azacytidine share similar target signaling pathways, we examined whether transforming growth factor β1 can play a role in cardiac differentiation process in human mesenchymal stem cell of bone marrow origin. METHODS The differentiation protocol involving transforming growth factor β1 was compared with that of 5-azacytidine in these cells. The two differentiation regimes were compared using reverse transcriptase PCR, flow cytometry, and quantitative PCR. RESULTS We observed that in both cases, acquired morphological features were similar. Protein and gene expression assays also indicated similar cardiac marker expression profile in both the differentiation conditions. Furthermore, transforming growth factor β1 and 5-azacytidine allowed the acquisition of comparable levels of cardiac cell like molecular characteristic as attested by evaluation of myosin light chain-2v expression. CONCLUSION In conclusion, we demonstrate that transforming growth factor β1 can play a similar role in cardiac differentiation process of human bone marrow mesenchymal stem cells.
Collapse
Affiliation(s)
- Sujata Mohanty
- Stem Cell Facility, All India Institute of Medical Sciences, N. Delhi,
| | | | | | | | | |
Collapse
|
18
|
Zuba-Surma EK, Guo Y, Taher H, Sanganalmath SK, Hunt G, Vincent RJ, Kucia M, Abdel-Latif A, Tang XL, Ratajczak MZ, Dawn B, Bolli R. Transplantation of expanded bone marrow-derived very small embryonic-like stem cells (VSEL-SCs) improves left ventricular function and remodelling after myocardial infarction. J Cell Mol Med 2011; 15:1319-28. [PMID: 20629987 PMCID: PMC3064954 DOI: 10.1111/j.1582-4934.2010.01126.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 05/19/2010] [Indexed: 11/29/2022] Open
Abstract
Adult bone marrow-derived very small embryonic-like stem cells (VSEL-SCs) exhibit a Sca-1(+)/Lin(-)/CD45(-) phenotype and can differentiate into various cell types, including cardiomyocytes and endothelial cells. We have previously reported that transplantation of a small number (1 × 10(6)) of freshly isolated, non-expanded VSEL-SCs into infarcted mouse hearts resulted in improved left ventricular (LV) function and anatomy. Clinical translation, however, will require large numbers of cells. Because the frequency of VSEL-SCs in the marrow is very low, we examined whether VSEL-SCs can be expanded in culture without loss of therapeutic efficacy. Mice underwent a 30 min. coronary occlusion followed by reperfusion and, 48 hrs later, received an intramyocardial injection of vehicle (group I, n = 11), 1 × 10(5) enhanced green fluorescent protein (EGFP)-labelled expanded untreated VSEL-SCs (group II, n = 7), or 1 × 10(5) EGFP-labelled expanded VSEL-SCs pre-incubated in a cardiogenic medium (group III, n = 8). At 35 days after myocardial infarction (MI), mice treated with pre-incubated VSEL-SCs exhibited better global and regional LV systolic function and less LV hypertrophy compared with vehicle-treated controls. In contrast, transplantation of expanded but untreated VSEL-SCs did not produce appreciable reparative benefits. Scattered EGFP(+) cells expressing α-sarcomeric actin, platelet endothelial cell adhesion molecule (PECAM)-1, or von Willebrand factor were present in VSEL-SC-treated mice, but their numbers were very small. No tumour formation was observed. We conclude that VSEL-SCs expanded in culture retain the ability to alleviate LV dysfunction and remodelling after a reperfused MI provided that they are exposed to a combination of cardiomyogenic growth factors and cytokines prior to transplantation. Counter intuitively, the mechanism whereby such pre-incubation confers therapeutic efficacy does not involve differentiation into new cardiac cells. These results support the potential therapeutic utility of VSEL-SCs for cardiac repair.
Collapse
Affiliation(s)
- Ewa K Zuba-Surma
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityCrakow, Poland
| | - Yiru Guo
- Institute of Molecular Cardiology, University of LouisvilleLouisville, KY, USA
| | - Hisham Taher
- Institute of Molecular Cardiology, University of LouisvilleLouisville, KY, USA
| | - Santosh K Sanganalmath
- Division of Cardiovascular Diseases and Cardiovascular Research Institute, University of Kansas Medical Center and the University of Kansas HospitalKansas City, KS, USA
| | - Greg Hunt
- Institute of Molecular Cardiology, University of LouisvilleLouisville, KY, USA
| | - Robert J Vincent
- Division of Cardiovascular Diseases and Cardiovascular Research Institute, University of Kansas Medical Center and the University of Kansas HospitalKansas City, KS, USA
| | - Magda Kucia
- Stem Cell Institute, University of LouisvilleLouisville, KY, USA
| | - Ahmed Abdel-Latif
- Institute of Molecular Cardiology, University of LouisvilleLouisville, KY, USA
| | - Xian-Liang Tang
- Institute of Molecular Cardiology, University of LouisvilleLouisville, KY, USA
| | | | - Buddhadeb Dawn
- Division of Cardiovascular Diseases and Cardiovascular Research Institute, University of Kansas Medical Center and the University of Kansas HospitalKansas City, KS, USA
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of LouisvilleLouisville, KY, USA
| |
Collapse
|
19
|
In vitro epithelial-to-mesenchymal transformation in human adult epicardial cells is regulated by TGFβ-signaling and WT1. Basic Res Cardiol 2011; 106:829-47. [PMID: 21516490 PMCID: PMC3149675 DOI: 10.1007/s00395-011-0181-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 03/25/2011] [Accepted: 04/07/2011] [Indexed: 11/16/2022]
Abstract
Adult epicardial cells are required for endogenous cardiac repair. After myocardial injury, they are reactivated, undergo epithelial-to-mesenchymal transformation (EMT) and migrate into the injured myocardium where they generate various cell types, including coronary smooth muscle cells and cardiac interstitial fibroblasts, which contribute to cardiac repair. To understand what drives epicardial EMT, we used an in vitro model for human adult epicardial cells. These cells have an epithelium-like morphology and markedly express the cell surface marker vascular cell adhesion marker (VCAM-1). In culture, epicardial cells spontaneously undergo EMT after which the spindle-shaped cells now express endoglin. Both epicardial cells before and after EMT express the epicardial marker, Wilms tumor 1 (WT1). Adding transforming growth factor beta (TGFβ) induces loss of epithelial character and initiates the onset of mesenchymal differentiation in human adult epicardial cells. In this study, we show that TGFβ-induced EMT is dependent on type-1 TGFβ receptor activity and can be inhibited by soluble VCAM-1. We also show that epicardial-specific knockdown of Wilms tumor-1 (WT1) induces the process of EMT in human adult epicardial cells, through transcriptional regulation of platelet-derived growth factor receptor alpha (Pdgfrα), Snai1 and VCAM-1. These data provide new insights into the process of EMT in human adult epicardial cells, which might provide opportunities to develop new strategies for endogenous cell-based cardiac repair.
Collapse
|
20
|
Mayorga ME, Dong F, Sundararaman S, Huang Y, Jiang Y, Howe PH, Penn MS. Central Role for Disabled-2 in Mesenchymal Stem Cardiac Protein Expression and Functional Consequences After Engraftment in Acute Myocardial Infarction. Stem Cells Dev 2011; 20:681-93. [DOI: 10.1089/scd.2010.0151] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Maritza E. Mayorga
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Cleveland, Ohio
- Department of Skirball Laboratory for Cardiovascular Cellular Therapeutics, Cleveland Clinic, Cleveland, Ohio
| | - Feng Dong
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Cleveland, Ohio
- Department of Skirball Laboratory for Cardiovascular Cellular Therapeutics, Cleveland Clinic, Cleveland, Ohio
| | - Srividy Sundararaman
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Cleveland, Ohio
- Department of Skirball Laboratory for Cardiovascular Cellular Therapeutics, Cleveland Clinic, Cleveland, Ohio
| | - Yanming Huang
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Yong Jiang
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio
| | - Philip H. Howe
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio
| | - Marc S. Penn
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Cleveland, Ohio
- Department of Skirball Laboratory for Cardiovascular Cellular Therapeutics, Cleveland Clinic, Cleveland, Ohio
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
21
|
Xiang G, Yang Q, Wang B, Sekiya N, Mu X, Tang Y, Chen CW, Okada M, Cummins J, Gharaibeh B, Huard J. Lentivirus-mediated Wnt11 gene transfer enhances Cardiomyogenic differentiation of skeletal muscle-derived stem cells. Mol Ther 2011; 19:790-6. [PMID: 21304494 DOI: 10.1038/mt.2011.5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Wnt signaling plays a crucial role in regulating cell proliferation, differentiation and inducing cardiomyogenesis. Skeletal muscle-derived stem cells (MDSCs) have been shown to be multipotent; however, their potential to aid in the healing of the heart after myocardial infarction appears to be due to the paracrine effects they impart on the host environment. The goal of this study was to investigate whether Wnt11 could promote the differentiation of MDSCs into cardiomyocytes and enhance the repair of infarcted myocardium. MDSCs transduced with a lentivirus encoding for Wnt11 increased mRNA and protein expression of the early cardiac markers NK2 transcription factor related 5 (NKx2.5) and Connexin43 (Cx43) and also led to an increased expression of late-stage cardiac markers including: α, β-myosin heavy chain (MHC) and brain natriuretic protein (BNP) at the mRNA level, and MHC and Troponin I (TnI) at the protein level. We also observed that Wnt11 expression significantly enhanced c-jun N-terminal kinase activity in transduced MDSCs, and that some of the cells beat spontaneously but are not fully differentiated cardiomyocytes. Finally, lentivirus-Wnt11-transduced MDSCs showed greater survival and cardiac differentiation after being transplanted into acutely infarct-injured myocardium. These findings could one day lead to strategies that could be utilized in cardiomyoplasty treatments of myocardial infarction.
Collapse
Affiliation(s)
- Guosheng Xiang
- Stem Cell Research Center, Children's Hospital of Pittsburgh and Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kawaguchi N. Adult cardiac-derived stem cells: differentiation and survival regulators. VITAMINS AND HORMONES 2011; 87:111-25. [PMID: 22127240 DOI: 10.1016/b978-0-12-386015-6.00041-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
At present, heart failure is one of the most concerning diseases worldwide. To develop efficient treatments, it is necessary to gain a better understanding of the biological characteristics of stem cells in the heart. We recently established and characterized c-kit-positive cardiac stem cells obtained from adult rats. Moreover, we established left atrium-derived pluripotent cells that can differentiate either into skeletal/cardiac myocytes or adipocytes in a methylcellulose-based Methocult medium with almost 100% purity. Microarray and signaling pathway analyses showed that transforming growth factor (TGF)-β is a key molecule in the regulation of the differentiation switch. Indeed, TGF-β1 simultaneously inhibits adipogenesis and activates myogenesis in a dose-dependent manner. However, the effect of TGF-β varies with the developmental stage, dosage, and timing of the treatment.
Collapse
Affiliation(s)
- Nanako Kawaguchi
- Department of Patriotic Cardiology, Tokyo Women’s Medical University, Tokyo, Japan
| |
Collapse
|
23
|
Poulet C, Wettwer E, Christ T, Ravens U. Skeletal muscle stem cells propagated as myospheres display electrophysiological properties modulated by culture conditions. J Mol Cell Cardiol 2010; 50:357-66. [PMID: 20971120 DOI: 10.1016/j.yjmcc.2010.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 10/08/2010] [Accepted: 10/11/2010] [Indexed: 11/25/2022]
Abstract
In cardiac regenerative therapy, transplantation of stem cells to form new myocardium is limited by their inability to integrate into host myocardium and conduct cardiac electrical activity. It is now hypothesized that refining cell sorting could upgrade the therapeutic result. Here we characterized a subpopulation of skeletal muscle stem cells with respect to their electrophysiological properties. The aim of our study was to determine whether electrophysiological parameters are compatible with cardiac function and can be influenced by culture conditions. Low-adherent skeletal muscle stem cells were isolated from the hind legs of 12-20 week old mice. After 6 days of culture the cells were analysed using patch-clamp techniques and RT-PCR, and replated in different media for skeletal muscle or cardiac differentiation. The cells generated action potentials (APs) longer than skeletal muscle APs, expressed functional cardiac Na(+) channels (~46% of the total channel fraction), displayed fast activating and inactivating L-type Ca(2+) currents, possibly conducted through cardiac channels and did not show significant Cl(-) conductance. Moreover, a fraction of cells expressed muscarinic acetylcholine receptors. Conditioning the cells for skeletal muscle differentiation resulted in upregulation of skeletal muscle-specific Na(+) and Ca(2+) channel expression, shortening of AP duration and loss of functional cardiac Na(+) channels. Cardiomyogenic conditions however, promoted the participation of cardiac Na(+) channels (57% of the total channel fraction). Nevertheless the cells retained properties of myoblasts such as the expression of nicotinic acetylcholine receptors. We conclude that skeletal muscle stem cells display several electrophysiological properties similar to those of cardiomyocytes. Culture conditions modulated these properties but only partially succeeded in further driving the cells towards a cardiac phenotype. This article is part of a special issue entitled, "Cardiovascular Stem Cells Revisited".
Collapse
Affiliation(s)
- Claire Poulet
- Department of Pharmacology and Toxicology, Medical Faculty, University of Technology, Dresden, Germany
| | | | | | | |
Collapse
|
24
|
Madonna R, Rokosh G, De Caterina R, Bolli R. Hepatocyte growth factor/Met gene transfer in cardiac stem cells--potential for cardiac repair. Basic Res Cardiol 2010; 105:443-52. [PMID: 20393738 DOI: 10.1007/s00395-010-0102-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 03/24/2010] [Accepted: 03/31/2010] [Indexed: 01/17/2023]
Abstract
The adult heart has been recently recognized as a self-renewing organ that contains a pool of committed resident cardiac stem cells (CSCs) and cardiac progenitor cells (CPCs). These adult CSCs and CPCs can be induced by cytokines and growth factors to migrate, differentiate, and proliferate in situ and potentially replace lost cardiomyocytes. Ligand-receptor systems, such as the tyrosine kinase receptor mesenchymal-epithelial transition factor (Met) and its ligand hepatocyte growth factor (HGF), are potential candidates for boosting migration, engraftment and commitment of CSCs. Here, we discuss the possible application of HGF/Met gene therapy to enhance the ability of CSCs to promote myocardial regeneration.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY, USA.
| | | | | | | |
Collapse
|
25
|
Caffeine-induced Ca(2+) signaling as an index of cardiac progenitor cells differentiation. Basic Res Cardiol 2010; 105:737-49. [PMID: 20652277 DOI: 10.1007/s00395-010-0111-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 07/07/2010] [Accepted: 07/08/2010] [Indexed: 10/19/2022]
Abstract
Cardiac progenitor cells (CPCs), migrating from heart tissue, in culture aggregate to form cardiospheres (CSs) in which replication and cardiogenic differentiation occur. However, the frequency of functional differentiation in CSs and the role of cell clustering in supporting it remain to be established. The aim of our study is to quantify differentiation of a muscle-type Ca(2+) release mechanism in CS-derived cells, correlate it with cardiac differentiation markers and test its dependency on CS formation. CPCs migrating from murine cardiac explants were studied prior and after CSs formation (Pre-CS and Post-CS). Inducibility of RyR- and IP3-R-mediated Ca(2+) transients in individual cells was tested by exposure to caffeine and ATP, respectively; expression of cardiac and non-cardiac lineage markers was assessed. Caffeine responsiveness was negligible in Pre-CS cells and increased by 7.5 fold in Post-CS cells (3.6 vs. 26.9%; p < 0.05), and was closely correlated with activation of the cardiac TnI gene promoter. ATP-induced responses, frequent in Pre-CS (86%), were slightly increased in Post-CS cells (94%; p < 0.05). Expression of cardiac-specific Ca(2+)-handling proteins (Cav1.2, NCX1, RyR2, SERCA2a) was either limited to the Post-CS stage, or markedly enhanced. CS beating was infrequent, but its pharmacology was compatible with cardiac excitation-contraction coupling. Expression of non-cardiac lineage was low in general, and similar between Pre- and Post-CS cells. Culture conditions inhibiting CSs formation prevented the increase in caffeine responders. In conclusion, clustering in CSs leads to the induction of a muscle-specific functional response in about 30% of CPCs; this is accompanied by development of a cardiac-specific expression pattern.
Collapse
|
26
|
Shibuya M, Miura T, Fukagawa Y, Akashi S, Oda T, Kawamura S, Ikeda Y, Matsuzaki M. Tongue muscle-derived stem cells express connexin 43 and improve cardiac remodeling and survival after myocardial infarction in mice. Circ J 2010; 74:1219-26. [PMID: 20410616 DOI: 10.1253/circj.cj-10-0033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Cell transplantation therapy for heart failure is hindered by poor differentiation into cardiomyocytes and arrhythmias caused by the poor expression of connexin 43 (Cx43). A new stem cell source for cardiac regeneration is needed. METHODS AND RESULTS Tongue muscle-derived Sca-1(+) cells (TDSCs) were isolated from normal and green fluorescence protein (GFP)-transgenic mouse tongues using surface antigen Sca-1. Cardiomyogenic differentiation was confirmed by measuring the calcium transient and the expression of cardiac-specific genes. The formation of gap junctions was confirmed by the expression of Cx43 and the dye transfer method. The contraction of regenerated cells was demonstrated by the calcium transients. GFP mouse-derived TDSCs were transplanted into hearts in a model of acute myocardial infarction. Three months after transplantation, LV remodeling was attenuated and the survival rate was improved compared with the control group. CONCLUSIONS TDSCs form gap junctions and improve cardiac function and long-term survival after myocardial infarction.
Collapse
Affiliation(s)
- Masaki Shibuya
- Division of Cardiology, Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Roura S, Farré J, Hove-Madsen L, Prat-Vidal C, Soler-Botija C, Gálvez-Montón C, Vilalta M, Bayes-Genis A. Exposure to cardiomyogenic stimuli fails to transdifferentiate human umbilical cord blood-derived mesenchymal stem cells. Basic Res Cardiol 2010; 105:419-30. [DOI: 10.1007/s00395-009-0081-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 11/24/2009] [Accepted: 12/14/2009] [Indexed: 12/11/2022]
|
28
|
Jankowski M, Bissonauth V, Gao L, Gangal M, Wang D, Danalache B, Wang Y, Stoyanova E, Cloutier G, Blaise G, Gutkowska J. Anti-inflammatory effect of oxytocin in rat myocardial infarction. Basic Res Cardiol 2009; 105:205-18. [DOI: 10.1007/s00395-009-0076-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 11/26/2009] [Accepted: 12/01/2009] [Indexed: 01/29/2023]
|