1
|
Taylor D, Germano J, Song Y, Hadj-Moussa H, Marek-Iannucci S, Dhanji R, Sin J, Czer LSC, Storey KB, Gottlieb RA. Hypothermia promotes mitochondrial elongation In cardiac cells via inhibition of Drp1. Cryobiology 2021; 102:42-55. [PMID: 34331901 DOI: 10.1016/j.cryobiol.2021.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022]
Abstract
Hypothermia is a valuable clinical tool in mitigating against the consequences of ischemia in surgery, stroke, cardiac arrest and organ preservation. Protection is afforded principally by a reduction of metabolism, manifesting as reduced rates of oxygen uptake, preservation of ATP levels, and a curtailing of ischemic calcium overload. The effects of non-ischemic hypothermic stress are relatively unknown. We sought to investigate the effects of clinically mild-to-severe hypothermia on mitochondrial morphology, oxygen consumption and protein expression in normoxic hearts and cardiac cells. Normoxic perfusion of rat hearts at 28-32 °C was associated with inhibition of mitochondrial fission, evidenced by a reduced abundance of the active phosphorylated form of the fission receptor Drp1 (pDrp1S616). Abundance of the same residue was reduced in H9c2 cells subjected to hypothermic culture (25-32 °C), in addition to a reduced abundance of the Drp1 receptor MFF. Hypothermia-treated H9c2 cardiomyocytes exhibited elongated mitochondria and depressed rates of mitochondrial-associated oxygen consumption, which persisted upon rewarming. Hypothermia also promoted a reduction in mRNA expression of the capsaicin receptor TRPV1 in H9c2 cells. When normothermic H9c2 cells were transfected with TRPV1 siRNA we observed reduced pDrp1S616 and MFF abundance, elongated mitochondria, and reduced rates of mitochondrial-associated oxygen consumption, mimicking the effects of hypothermic culture. In conclusion hypothermia promoted elongation of cardiac mitochondria via reduced pDrp1S616 abundance which was also associated with suppression of cellular oxygen consumption. Silencing of TRPV1 in H9c2 cardiomyocytes reproduced the morphological and respirometric phenotype of hypothermia. This report demonstrates a novel mechanism of cold-induced inhibition of mitochondrial fission.
Collapse
Affiliation(s)
- David Taylor
- Cedars-Sinai Smidt Heart Institute, Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Juliana Germano
- Cedars-Sinai Smidt Heart Institute, Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yang Song
- Cedars-Sinai Smidt Heart Institute, Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hanane Hadj-Moussa
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Stefanie Marek-Iannucci
- Cedars-Sinai Smidt Heart Institute, Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Raeesa Dhanji
- Cedars-Sinai Smidt Heart Institute, Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jon Sin
- Cedars-Sinai Smidt Heart Institute, Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lawrence S C Czer
- Cedars-Sinai Smidt Heart Institute, Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Roberta A Gottlieb
- Cedars-Sinai Smidt Heart Institute, Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
2
|
Yamada KP, Kariya T, Aikawa T, Ishikawa K. Effects of Therapeutic Hypothermia on Normal and Ischemic Heart. Front Cardiovasc Med 2021; 8:642843. [PMID: 33659283 PMCID: PMC7919696 DOI: 10.3389/fcvm.2021.642843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
Therapeutic hypothermia has been used for treating brain injury after out-of-hospital cardiac arrest. Its potential benefit on minimizing myocardial ischemic injury has been explored, but clinical evidence has yet to confirm positive results in preclinical studies. Importantly, therapeutic hypothermia for myocardial infarction is unique in that it can be initiated prior to reperfusion, in contrast to its application for brain injury in resuscitated cardiac arrest patients. Recent advance in cooling technology allows more rapid cooling of the heart than ever and new clinical trials are designed to examine the efficacy of rapid therapeutic hypothermia for myocardial infarction. In this review, we summarize current knowledge regarding the effect of hypothermia on normal and ischemic hearts and discuss issues to be solved in order to realize its clinical application for treating acute myocardial infarction.
Collapse
Affiliation(s)
- Kelly P Yamada
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Taro Kariya
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tadao Aikawa
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kiyotake Ishikawa
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
3
|
Zheng H, Su Y, Zhu C, Quan D, Skaro AI, McAlister V, Lacefield JC, Jiang J, Xue P, Wang Y, Zheng X. An Addition of U0126 Protecting Heart Grafts From Prolonged Cold Ischemia-Reperfusion Injury in Heart Transplantation: A New Preservation Strategy. Transplantation 2021; 105:308-317. [PMID: 32776778 DOI: 10.1097/tp.0000000000003402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is the major cause of primary graft dysfunction in organ transplantation. The mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) signaling pathway plays a crucial role in cell physiological and pathological processes including IRI. This study aims to investigate whether inhibition of ERK signaling with U0126 can prevent prolonged cold IRI in heart transplantation. METHODS Rat cardiac cell line H9c2 cells were treated with U0126 before exposure to hypothermic hypoxia/reoxygenation (H/R) conditions. The effect of U0126 on H9c2 cells in response to H/R stress was determined by measuring cell death, reactive oxygen species production, mitochondrial membrane potential, and ERK signaling activation. Mouse syngeneic heterotopic heart transplantation was conducted, where a donor heart was preserved in the University of Wisconsin (UW) solution supplemented with U0126 for 24 hours at 4°C before transplantation. Heart graft function, histopathologic changes, apoptosis, and fibrosis were measured to assess IRI. RESULTS Phosphorylated ERK was increased in both in vitro H/R-injured H9c2 cells and in vivo heart grafts with IRI. Pretreatment with U0126 inhibited ERK phosphorylation and prevented H9c2 cells from cell death, reactive oxygen species generation, and mitochondrial membrane potential loss in response to H/R. Preservation of donor hearts with U0126-supplemented solution improved graft function and reduced IRI by reductions in cell apoptosis/death, neutrophil infiltration, and fibrosis of the graft. CONCLUSIONS Addition of U0126 to UW solution reduces ERK signal activation and attenuates prolonged cold IRI in a heart transplantation model. ERK inhibition with U0126 may be a useful strategy to minimize IRI in organ transplantation.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- College of Life Science, Wuhan University, Wuhan, China
| | - Yale Su
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Cuilin Zhu
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Douglas Quan
- Department of Surgery, Western University, London, ON, Canada
- Department of Surgery, London Health Sciences Centre, London, ON, Canada
| | - Anton I Skaro
- Department of Surgery, Western University, London, ON, Canada
- Department of Surgery, London Health Sciences Centre, London, ON, Canada
| | - Vivian McAlister
- Department of Surgery, Western University, London, ON, Canada
- Department of Surgery, London Health Sciences Centre, London, ON, Canada
| | - James C Lacefield
- Department of Electrical and Computer Engineering, Western University, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
- Department of Oncology, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Jifu Jiang
- Department of Surgery, London Health Sciences Centre, London, ON, Canada
| | - Peng Xue
- College of Life Science, Wuhan University, Wuhan, China
| | - Yefu Wang
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Xiufen Zheng
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- Department of Surgery, Western University, London, ON, Canada
- Department of Surgery, London Health Sciences Centre, London, ON, Canada
- Department of Oncology, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
4
|
Cardioprotective effect of combination therapy by mild hypothermia and local or remote ischemic preconditioning in isolated rat hearts. Sci Rep 2021; 11:265. [PMID: 33431942 PMCID: PMC7801421 DOI: 10.1038/s41598-020-79449-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/30/2020] [Indexed: 01/14/2023] Open
Abstract
A multitargeted strategy to treat the consequences of ischemia and reperfusion (IR) injury in acute myocardial infarction may add cardioprotection beyond reperfusion therapy alone. We investigated the cardioprotective effect of mild hypothermia combined with local ischemic preconditioning (IPC) or remote ischemic conditioning (RIC) on IR injury in isolated rat hearts. Moreover, we aimed to define the optimum timing of initiating hypothermia and evaluate underlying cardioprotective mechanisms. Compared to infarct size in normothermic controls (56 ± 4%), mild hypothermia during the entire or final 20 min of the ischemic period reduced infarct size (34 ± 2%, p < 0.01; 35 ± 5%, p < 0.01, respectively), while no reduction was seen when hypothermia was initiated at reperfusion (51 ± 4%, p = 0.90). In all groups with effect of mild hypothermia, IPC further reduced infarct size. In contrast, we found no additive effect on infarct size between hypothermic controls (20 ± 3%) and the combination of mild hypothermia and RIC (33 ± 4%, p = 0.09). Differences in temporal lactate dehydrogenase release patterns suggested an anti-ischemic effect by mild hypothermia, while IPC and RIC preferentially targeted reperfusion injury. In conclusion, additive underlying mechanisms seem to provide an additive effect of mild hypothermia and IPC, whereas the more clinically applicable RIC does not add cardioprotection beyond mild hypothermia.
Collapse
|
5
|
Hsu CC, Huang CC, Chien LH, Lin MT, Chang CP, Lin HJ, Chio CC. Ischemia/reperfusion injured intestinal epithelial cells cause cortical neuron death by releasing exosomal microRNAs associated with apoptosis, necroptosis, and pyroptosis. Sci Rep 2020; 10:14409. [PMID: 32873851 PMCID: PMC7462997 DOI: 10.1038/s41598-020-71310-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/14/2020] [Indexed: 12/24/2022] Open
Abstract
To date, there is no good evidence that intestine epithelial cells (IEC) affected by ischemia/reperfusion (I/R) injury are able to cause cortical neuron injury directly. Additionally, it remains unclear whether the neuronal damage caused by I/R injured IEC can be affected by therapeutic hypothermia (TH, 32 °C). To address these questions, we performed an oxygen–glucose deprivation (OGD) affected IEC-6-primary cortical neuron coculture system under normothermia (37 °C) or TH (32 °C) conditions. It was found that OGD caused hyperpermeability in IEC-6 cell monolayers. OGD-preconditioned IEC-6 cells caused cortical neuronal death (e.g., decreased cell viability), synaptotoxicity, and neuronal apoptosis (evidenced by increased caspase-3 expression and the number of TUNEL-positive cells), necroptosis (evidenced by increased receptor-interacting serine/threonine-protein kinase-1 [RIPK1], RIPK3 and mixed lineage kinase domain-like pseudokinase [MLKL] expression), and pyroptosis (evidenced by an increase in caspase-1, gasdermin D [GSDMD], IL-1β, IL-18, the apoptosis-associated speck-like protein containing a caspase recruitment domain [ASC], and nucleotide oligomerization domain [NOD]-like receptor [NLRP]-1 expression). TH did not affect the intestinal epithelial hyperpermeability but did attenuate OGD-induced neuronal death and synaptotoxicity. We also performed quantitative real-time PCR to quantify the genes encoding 84 exosomal microRNAs in the medium of the control-IEC-6, the control-neuron, the OGD-IEC-6 at 37 °C, the OGD-IEC-6 at 32 °C, the neuron cocultured with OGD-IEC-6 at 37 °C, and the neurons cocultured with OGD-IEC-6 at 32 °C. We found that the control IEC-6 cell s or cortical neurons are able to secrete a basal level of exosomal miRNAs in their medium. OGD significantly up-regulated the basal level of each parameter for IEC-6 cells. As compared to those of the OGD-IEC-6 cells or the control neurons, the OGD-IEC-6 cocultured neurons had significantly higher levels of 19 exosomal miRNAs related to apoptosis, necroptosis, and/or pyroptosis events. Our results identify that I/R injured intestinal epithelium cells can induce cortical neuron death via releasing paracrine mediators such as exosomal miRNAs associated with apoptosis, necroptosis, and/or pyroptosis, which can be counteracted by TH.
Collapse
Affiliation(s)
- Chien-Chin Hsu
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, No. 1, Nan-Tai Street, Yungkang District, Tainan City, 710, Taiwan.,Department of Emergency Medicine, Chi Mei Medical Center, No. 901, Zhonghua Road, Yongkang District, Tainan City, 710, Taiwan
| | - Chien-Cheng Huang
- Department of Emergency Medicine, Chi Mei Medical Center, No. 901, Zhonghua Road, Yongkang District, Tainan City, 710, Taiwan.,Department of Senior Services, Southern Taiwan University of Science and Technology, No. 1, Nan-Tai Street, Yungkang District, Tainan City, 710, Taiwan.,Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City, 710, Taiwan.,Department of Geriatrics and Gerontology, Chi-Mei Medical Center, No. 901, Zhonghua Road, Yongkang District, Tainan City, 710, Taiwan.,Department of Occupational Medicine, Chi-Mei Medical Center, No. 901, Zhonghua Road, Yongkang District, Tainan City, 710, Taiwan
| | - Lan-Hsiang Chien
- Department of Medical Research, Chi Mei Medical Center, No. 901, Zhonghua Road, Yongkang District, Tainan City, 710, Taiwan
| | - Mao-Tsun Lin
- Department of Medical Research, Chi Mei Medical Center, No. 901, Zhonghua Road, Yongkang District, Tainan City, 710, Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, No. 901, Zhonghua Road, Yongkang District, Tainan City, 710, Taiwan.
| | - Hung-Jung Lin
- Department of Emergency Medicine, Chi Mei Medical Center, No. 901, Zhonghua Road, Yongkang District, Tainan City, 710, Taiwan. .,Department of Medicine, Taipei Medical University, No. 250 Wu-Hsing Street, Taipei City, 110, Taiwan.
| | - Chung-Ching Chio
- Division of Neurosurgery, Department of Surgery, Chi Mei Medical Center, No. 901, Zhonghua Road, Yongkang District, Tainan City, 710, Taiwan.
| |
Collapse
|
6
|
Abstract
Despite the increasing use and success of interventional coronary reperfusion strategies, morbidity and mortality from acute myocardial infarction are still substantial. Myocardial infarct size is a major determinant of prognosis in these patients. Therefore, cardioprotective strategies aim to reduce infarct size. However, a perplexing gap exists between the many preclinical studies reporting infarct size reduction with mechanical and pharmacological interventions and the poor translation into better clinical outcomes in patients. This Review revisits the pathophysiology of myocardial ischaemia-reperfusion injury, including the role of autophagy and forms of cell death such as necrosis, apoptosis, necroptosis and pyroptosis. Other cellular compartments in addition to cardiomyocytes are addressed, notably the coronary microcirculation. Preclinical and clinical research developments in mechanical and pharmacological approaches to induce cardioprotection, and their signal transduction pathways, are discussed. Additive cardioprotective interventions are advocated. For clinical translation into treatments for patients with acute myocardial infarction, who typically are of advanced age, have comorbidities and are receiving several medications, not only infarct size reduction but also attenuation of coronary microvascular obstruction, as well as longer-term targets including infarct repair and reverse remodelling, must be considered to improve patient outcomes. Future clinical trials must focus on patients who really need adjunct cardioprotection, that is, those with severe haemodynamic alterations.
Collapse
|
7
|
Li J, Sun D, Li Y. Novel Findings and Therapeutic Targets on Cardioprotection of Ischemia/ Reperfusion Injury in STEMI. Curr Pharm Des 2020; 25:3726-3739. [PMID: 31692431 DOI: 10.2174/1381612825666191105103417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022]
Abstract
Acute ST-segment elevation myocardial infarction (STEMI) remains a leading cause of morbidity and mortality around the world. A large number of STEMI patients after the infarction gradually develop heart failure due to the infarcted myocardium. Timely reperfusion is essential to salvage ischemic myocardium from the infarction, but the restoration of coronary blood flow in the infarct-related artery itself induces myocardial injury and cardiomyocyte death, known as ischemia/reperfusion injury (IRI). The factors contributing to IRI in STEMI are complex, and microvascular obstruction, inflammation, release of reactive oxygen species, myocardial stunning, and activation of myocardial cell death are involved. Therefore, additional cardioprotection is required to prevent the heart from IRI. Although many mechanical conditioning procedures and pharmacological agents have been identified as effective cardioprotective approaches in animal studies, their translation into the clinical practice has been relatively disappointing due to a variety of reasons. With new emerging data on cardioprotection in STEMI over the past few years, it is mandatory to reevaluate the effectiveness of "old" cardioprotective interventions and highlight the novel therapeutic targets and new treatment strategies of cardioprotection.
Collapse
Affiliation(s)
- Jianqiang Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Danghui Sun
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yue Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| |
Collapse
|
8
|
Murata I, Imanari M, Komiya M, Kobayashi J, Inoue Y, Kanamoto I. Icing treatment in rats with crush syndrome can improve survival through reduction of potassium concentration and mitochondrial function disorder effect. Exp Ther Med 2019; 19:777-785. [PMID: 31853328 DOI: 10.3892/etm.2019.8230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022] Open
Abstract
Crush syndrome (CS), a serious medical condition, which is characterized by damage to myocytes due to pressure and is associated with high mortality, even when patients receive fluid therapy. Icing therapy over the affected muscle has been reported to be effective in improving mitochondrial dysfunction and inflammation. These effects are thought to be secondary to improvements in the leakage of potassium and myoglobin from the damaged myocytes in the early stages of disease. However, their effects on the various symptoms of CS are unclear. It was hypothesized that treatment with icing will inhibit the influence of potassium by vasoconstriction, exert anti-inflammatory effects in the affected myocytes and improve mitochondrial function The CS model constructed by subjecting anesthetized rats to bilateral hindlimb compression with a rubber tourniquet for 5 h. The rats were then randomly divided into six groups: i) Sham; ii) CS without treatment (CS); iii) and iv) icing for 30 or 180 min over the entire hindlimb on CS rats (CI-30 and -180), respectively; and v) and vi) local icing for 30 or 180 min over the affected area on CS rats (CLI-30 and -180), respectively. Under continuous monitoring and recording of arterial blood pressures, blood and tissue samples were collected for biochemical analyses at designated time points prior to and following reperfusion. The survival rate, vital signs, and blood gas parameters in the CS group were lethal compared with the sham group. These were also improved in the CI-30 and CLI-30 groups compared with the CS group; however, they worsened in the CI-180 and CLI-180 groups due to hypothermia. The CI-30 and CLI-30 groups demonstrated tendencies of improvements compared with the CS group. Systemic inflammation and mitochondria dysfunction had improved in these groups compared with the CS group. We suggest icing therapy to temporarily prolong the viability after crush injury. Its effectiveness can be improved by combining it with other infusion therapies.
Collapse
Affiliation(s)
- Isamu Murata
- Laboratory of Drug Safety Management, Faculty of Pharmacy and Pharmaceutical Science, Josai University, Sakado, Saitama 350-0295, Japan
| | - Mayuki Imanari
- Laboratory of Drug Safety Management, Faculty of Pharmacy and Pharmaceutical Science, Josai University, Sakado, Saitama 350-0295, Japan
| | - Marise Komiya
- Laboratory of Drug Safety Management, Faculty of Pharmacy and Pharmaceutical Science, Josai University, Sakado, Saitama 350-0295, Japan
| | - Jun Kobayashi
- Division of Pathophysiology, Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical Science, Josai University, Sakado, Saitama 350-0295, Japan
| | - Yutaka Inoue
- Laboratory of Drug Safety Management, Faculty of Pharmacy and Pharmaceutical Science, Josai University, Sakado, Saitama 350-0295, Japan
| | - Ikuo Kanamoto
- Laboratory of Drug Safety Management, Faculty of Pharmacy and Pharmaceutical Science, Josai University, Sakado, Saitama 350-0295, Japan
| |
Collapse
|
9
|
Ndongson-Dongmo B, Lang GP, Mece O, Hechaichi N, Lajqi T, Hoyer D, Brodhun M, Heller R, Wetzker R, Franz M, Levy FO, Bauer R. Reduced ambient temperature exacerbates SIRS-induced cardiac autonomic dysregulation and myocardial dysfunction in mice. Basic Res Cardiol 2019; 114:26. [DOI: 10.1007/s00395-019-0734-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/12/2019] [Indexed: 12/13/2022]
|
10
|
Kohlhauer M, Pell VR, Burger N, Spiroski AM, Gruszczyk A, Mulvey JF, Mottahedin A, Costa ASH, Frezza C, Ghaleh B, Murphy MP, Tissier R, Krieg T. Protection against cardiac ischemia-reperfusion injury by hypothermia and by inhibition of succinate accumulation and oxidation is additive. Basic Res Cardiol 2019; 114:18. [PMID: 30877396 PMCID: PMC6420484 DOI: 10.1007/s00395-019-0727-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 03/12/2019] [Indexed: 01/23/2023]
Abstract
Hypothermia induced at the onset of ischemia is a potent experimental cardioprotective strategy for myocardial infarction. The aim of our study was to determine whether the beneficial effects of hypothermia may be due to decreasing mitochondria-mediated mechanisms of damage that contribute to the pathophysiology of ischemia/reperfusion injury. New Zealand male rabbits were submitted to 30 min of myocardial ischemia with hypothermia (32 °C) induced by total liquid ventilation (TLV). Hypothermia was applied during ischemia alone (TLV group), during ischemia and reperfusion (TLV-IR group) and normothermia (Control group). In all the cases, ischemia was performed by surgical ligation of the left anterior descending coronary artery and was followed by 3 h of reperfusion before assessment of infarct size. In a parallel study, male C57BL6/J mice underwent 30 min myocardial ischemia followed by reperfusion under either normothermia (37 °C) or conventionally induced hypothermia (32 °C). In both the models, the levels of the citric acid cycle intermediate succinate, mitochondrial complex I activity were assessed at various times. The benefit of hypothermia during ischemia on infarct size was compared to inhibition of succinate accumulation and oxidation by the complex II inhibitor malonate, applied as the pro-drug dimethyl malonate under either normothermic or hypothermic conditions. Hypothermia during ischemia was cardioprotective, even when followed by normothermic reperfusion. Hypothermia during ischemia only, or during both, ischemia and reperfusion, significantly reduced infarct size (2.8 ± 0.6%, 24.2 ± 3.0% and 49.6 ± 2.6% of the area at risk, for TLV-IR, TLV and Control groups, respectively). The significant reduction of infarct size by hypothermia was neither associated with a decrease in ischemic myocardial succinate accumulation, nor with a change in its rate of oxidation at reperfusion. Similarly, dimethyl malonate infusion and hypothermia during ischemia additively reduced infarct size (4.8 ± 2.2% of risk zone) as compared to either strategy alone. Hypothermic cardioprotection is neither dependent on the inhibition of succinate accumulation during ischemia, nor of its rapid oxidation at reperfusion. The additive effect of hypothermia and dimethyl malonate on infarct size shows that they are protective by distinct mechanisms and also suggests that combining these different therapeutic approaches could further protect against ischemia/reperfusion injury during acute myocardial infarction.
Collapse
Affiliation(s)
- M Kohlhauer
- U955, IMRB, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, Créteil, France
| | - V R Pell
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - N Burger
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - A M Spiroski
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - A Gruszczyk
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - J F Mulvey
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Amin Mottahedin
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.,Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK.,Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - A S H Costa
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - C Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - B Ghaleh
- U955, IMRB, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, Créteil, France
| | - M P Murphy
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.,Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - R Tissier
- U955, IMRB, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, Créteil, France.
| | - T Krieg
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
11
|
Abstract
Rapid admission and acute interventional treatment combined with modern antithrombotic pharmacologic therapy have improved outcomes in patients with ST elevation myocardial infarction. The next major target to further advance outcomes needs to address ischemia-reperfusion injury, which may contribute significantly to the final infarct size and hence mortality and postinfarction heart failure. Mechanical conditioning strategies including local and remote ischemic pre-, per-, and postconditioning have demonstrated consistent cardioprotective capacities in experimental models of acute ischemia-reperfusion injury. Their translation to the clinical scenario has been challenging. At present, the most promising mechanical protection strategy of the heart seems to be remote ischemic conditioning, which increases myocardial salvage beyond acute reperfusion therapy. An additional aspect that has gained recent focus is the potential of extended conditioning strategies to improve physical rehabilitation not only after an acute ischemia-reperfusion event such as acute myocardial infarction and cardiac surgery but also in patients with heart failure. Experimental and preliminary clinical evidence suggests that remote ischemic conditioning may modify cardiac remodeling and additionally enhance skeletal muscle strength therapy to prevent muscle waste, known as an inherent component of a postoperative period and in heart failure. Blood flow restriction exercise and enhanced external counterpulsation may represent cardioprotective corollaries. Combined with exercise, remote ischemic conditioning or, alternatively, blood flow restriction exercise may be of aid in optimizing physical rehabilitation in populations that are not able to perform exercise practice at intensity levels required to promote optimal outcomes.
Collapse
Affiliation(s)
- Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital , Aarhus , Denmark
| | | | | |
Collapse
|
12
|
Zhao Z, Kudej RK, Wen H, Fefelova N, Yan L, Vatner DE, Vatner SF, Xie LH. Antioxidant defense and protection against cardiac arrhythmias: lessons from a mammalian hibernator (the woodchuck). FASEB J 2018; 32:4229-4240. [PMID: 29490168 DOI: 10.1096/fj.201701516r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Hibernating animals show resistance to hypothermia-induced cardiac arrhythmias. However, it is not clear whether and how mammalian hibernators are resistant to ischemia-induced arrhythmias. The goal of this investigation was to determine the susceptibility of woodchucks ( Marmota monax) to arrhythmias and their mechanisms after coronary artery occlusion at the same room temperature in both winter, the time for hibernation, and summer, when they do not hibernate. By monitoring telemetric electrocardiograms, we found significantly higher arrhythmia scores, calculated as the severity of arrhythmias, with incidence of ventricular tachycardia, ventricular fibrillation, and thus sudden cardiac death (SCD) in woodchucks in summer than they had in winter. The level of catalase expression in woodchuck hearts was significantly higher, whereas the level of oxidized Ca2+/calmodulin-dependent protein kinase II (CaMKII) was lower in winter than it was in summer. Ventricular myocytes isolated from woodchucks in winter were more resistant to H2O2-induced early afterdepolarizations (EADs) compared with myocytes isolated from woodchucks in summer. The EADs were eliminated by inhibiting CaMKII (with KN-93), l-type Ca current (with nifedipine), or late Na+ current (with ranolazine). In woodchucks, in the summer, the arrhythmia score was significantly reduced by overexpression of catalase ( via adenoviral vectors) or the inhibition of CaMKII (with KN-93) in the heart. This study suggests that the heart of the mammalian hibernator is more resistant to ischemia-induced arrhythmias and SCD in winter. Increased antioxidative capacity and reduced CaMKII activity may confer resistance in woodchuck hearts against EADs and arrhythmias during winter. The profound protection conferred by catalase overexpression or CaMKII inhibition in this novel natural animal model may provide insights into clinical directions for therapy of arrhythmias.-Zhao, Z., Kudej, R. K., Wen, H., Fefelova, N., Yan, L., Vatner, D. E., Vatner, S. F., Xie, L.-H. Antioxidant defense and protection against cardiac arrhythmias: lessons from a mammalian hibernator (the woodchuck).
Collapse
Affiliation(s)
- Zhenghang Zhao
- Department of Pharmacology, School of Medicine, Xi'an Jiaotong University, Xi'an, China.,Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Raymond K Kudej
- Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark, New Jersey, USA.,Department of Clinical Sciences, Tufts University, North Grafton, Massachusetts, USA
| | - Hairuo Wen
- Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark, New Jersey, USA.,National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Key Laboratory of Beijing for Nonclinical Safety Evaluation Research of Drugs, Beijing, China
| | - Nadezhda Fefelova
- Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Lin Yan
- Department of Biochemistry and Molecular Biology, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Dorothy E Vatner
- Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Stephen F Vatner
- Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
13
|
Otterspoor L, Van 't Veer M, Van Nunen L, Brueren G, Tonino P, Wijnbergen I, Helmes H, Zimmermann F, Van Hagen E, Johnson N, Pijls N. Safety and feasibility of selective intracoronary hypothermia in acute myocardial infarction. EUROINTERVENTION 2017; 13:e1475-e1482. [DOI: 10.4244/eij-d-17-00240] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Kloner RA, Brown DA, Csete M, Dai W, Downey JM, Gottlieb RA, Hale SL, Shi J. New and revisited approaches to preserving the reperfused myocardium. Nat Rev Cardiol 2017; 14:679-693. [PMID: 28748958 PMCID: PMC5991096 DOI: 10.1038/nrcardio.2017.102] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Early coronary artery reperfusion improves outcomes for patients with ST-segment elevation myocardial infarction (STEMI), but morbidity and mortality after STEMI remain unacceptably high. The primary deficits seen in these patients include inadequate pump function, owing to rapid infarction of muscle in the first few hours of treatment, and adverse remodelling of the heart in the months that follow. Given that attempts to further reduce myocardial infarct size beyond early reperfusion in clinical trials have so far been disappointing, effective therapies are still needed to protect the reperfused myocardium. In this Review, we discuss several approaches to preserving the reperfused heart, such as therapies that target the mechanisms involved in mitochondrial bioenergetics, pyroptosis, and autophagy, as well as treatments that harness the cardioprotective properties of inhaled anaesthetic agents. We also discuss potential therapies focused on correcting the no-reflow phenomenon and its effect on healing and adverse left ventricular remodelling.
Collapse
Affiliation(s)
- Robert A Kloner
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
- Division of Cardiovascular Medicine and Department of Medicine, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, California 90033, USA
| | - David A Brown
- Department of Human Nutrition, Foods, and Exercise, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
- Virginia Tech Center for Drug Discovery, Virginia Tech, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
- Virginia Tech Metabolic Phenotyping Core, Virginia Tech, 1981 Kraft Drive, Blacksburg, Virginia 24060, USA
| | - Marie Csete
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
- Department of Anesthesiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90017, USA
| | - Wangde Dai
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
- Division of Cardiovascular Medicine and Department of Medicine, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, California 90033, USA
| | - James M Downey
- Department of Physiology and Cell Biology, University of South Alabama, 5851 USA Drive North, Mobile, Alabama 36688, USA
| | - Roberta A Gottlieb
- Department of Medicine, Barbra Streisand Women's Heart Center, Heart Institute of Cedars-Sinai, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, California 90048, USA
| | - Sharon L Hale
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
| | - Jianru Shi
- Cardiovascular Research Institute, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, California 91101, USA
- Division of Cardiovascular Medicine and Department of Medicine, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, California 90033, USA
| |
Collapse
|
15
|
Klawitter J, Seres T, Pennington A, Beatty JT, Klawitter J, Christians U. Ablation of Cyclophilin D Results in an Activation of FAK, Akt, and ERK Pathways in the Mouse Heart. J Cell Biochem 2017; 118:2933-2940. [PMID: 28230282 DOI: 10.1002/jcb.25947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/21/2017] [Indexed: 02/06/2023]
Abstract
Cyclophilin D (CypD) is a mitochondrial chaperone that regulates the mitochondrial permeability transition pore. Metabolically, deletion of Ppif (the gene encoding CypD) in mice is associated with elevated levels of mitochondrial matrix Ca2+ that leads to increased glucose as relative to fatty acid oxidation. Here, we characterized the adaptive mechanisms involved in the regulation of glucose metabolism including the regulation of Akt and ERK kinases that we evaluated by Western blot analysis of Ppif-/- in comparison to wild type (WT) mouse hearts. CypD loss led to adaptive mechanisms in the heart resulting in an upregulation of focal adhesion kinase (phosphorylated at Tyr925) and increased phosphorylation of Akt at S473. The increased activity of this pathway (pAktS473 increased to 170% and 145% in Ppif-/- versus WT males and females, respectively) could be responsible for the observed metabolic switch towards glycolysis. Furthermore, the phosphorylation of ERK1/2 proteins was elevated following CypD ablation. In addition, we observed differences in protein expression and activity in male versus female hearts that were independent of CypD expression. This included an upregulation of pAktS473 (to 273% and 269% in Ppif-/- and WT females as compared to their corresponding males, respectively). Furthermore, decreased levels of endothelial nitric oxide synthase (eNOS) inhibitor asymmetric dimethylarginine were accompanied by an upregulation of eNOS in female mice. The higher extent of kinases phosphorylation may be responsible for the reported lowered tolerance of CypD animals to stress. Moreover, the higher nitric oxide production could be responsible for the cardioprotective properties observed only in female hearts. J. Cell. Biochem. 118: 2933-2940, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jelena Klawitter
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Tamas Seres
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Alexander Pennington
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Jonathan-Thomas Beatty
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Jost Klawitter
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Uwe Christians
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
16
|
Liao Z, He H, Zeng G, Liu D, Tang L, Yin D, Chen D, He M. Delayed protection of Ferulic acid in isolated hearts and cardiomyocytes: Upregulation of heat-shock protein 70 via NO-ERK1/2 pathway. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
17
|
Jahandiez V, Cour M, Bochaton T, Abrial M, Loufouat J, Gharib A, Varennes A, Ovize M, Argaud L. Fast therapeutic hypothermia prevents post-cardiac arrest syndrome through cyclophilin D-mediated mitochondrial permeability transition inhibition. Basic Res Cardiol 2017; 112:35. [PMID: 28492973 DOI: 10.1007/s00395-017-0624-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/02/2017] [Indexed: 03/14/2023]
Abstract
The opening of the mitochondrial permeability transition pore (PTP), which is regulated by the matrix protein cyclophilin D (CypD), plays a key role in the pathophysiology of post-cardiac arrest (CA) syndrome. We hypothesized that therapeutic hypothermia could prevent post-CA syndrome through a CypD-mediated PTP inhibition in both heart and brain. In addition, we investigated whether specific pharmacological PTP inhibition would confer additive protection to cooling. Adult male New Zealand White rabbits underwent 15 min of CA followed by 120 min of reperfusion. Five groups (n = 10-15/group) were studied: control group (CA only), hypothermia group (HT, hypothermia at 32-34 °C induced by external cooling at reperfusion), NIM group (injection at reperfusion of 2.5 mg/kg NIM811, a specific CypD inhibitor), HT + NIM, and sham group. The following measurements were taken: hemodynamics, echocardiography, and cellular damage markers (including S100β protein and troponin Ic). Oxidative phosphorylation and PTP opening were assessed on mitochondria isolated from both brain and heart. Acetylation of CypD was measured by immunoprecipitation in both the cerebral cortex and myocardium. Hypothermia and NIM811 significantly prevented cardiovascular dysfunction, pupillary areflexia, and early tissue damage. Hypothermia and NIM811 preserved oxidative phosphorylation, limited PTP opening in both brain and heart mitochondria and prevented increase in CypD acetylation in brain. There were no additive beneficial effects in the combination of NIM811 and therapeutic hypothermia. In conclusion, therapeutic hypothermia limited post-CA syndrome by preventing mitochondrial permeability transition mainly through a CypD-dependent mechanism.
Collapse
Affiliation(s)
- Vincent Jahandiez
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Réanimation Médicale, 5 Place d'Arsonval, 69437, Lyon Cedex 03, France
- Université de Lyon, Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Est, 69373, Lyon, France
- INSERM UMR 1060, CarMeN, Equipe 5 "Cardioprotection", 69373, Lyon, France
| | - Martin Cour
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Réanimation Médicale, 5 Place d'Arsonval, 69437, Lyon Cedex 03, France
- Université de Lyon, Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Est, 69373, Lyon, France
- INSERM UMR 1060, CarMeN, Equipe 5 "Cardioprotection", 69373, Lyon, France
| | - Thomas Bochaton
- INSERM UMR 1060, CarMeN, Equipe 5 "Cardioprotection", 69373, Lyon, France
| | - Maryline Abrial
- INSERM UMR 1060, CarMeN, Equipe 5 "Cardioprotection", 69373, Lyon, France
| | - Joseph Loufouat
- INSERM UMR 1060, CarMeN, Equipe 5 "Cardioprotection", 69373, Lyon, France
| | - Abdallah Gharib
- INSERM UMR 1060, CarMeN, Equipe 5 "Cardioprotection", 69373, Lyon, France
| | - Annie Varennes
- Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Laboratoire de Biochimie, 69437, Lyon, France
| | - Michel Ovize
- INSERM UMR 1060, CarMeN, Equipe 5 "Cardioprotection", 69373, Lyon, France
| | - Laurent Argaud
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Réanimation Médicale, 5 Place d'Arsonval, 69437, Lyon Cedex 03, France.
- Université de Lyon, Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Est, 69373, Lyon, France.
- INSERM UMR 1060, CarMeN, Equipe 5 "Cardioprotection", 69373, Lyon, France.
| |
Collapse
|
18
|
Shi J, Dai W, Kloner RA. Therapeutic Hypothermia Reduces the Inflammatory Response Following Ischemia/Reperfusion Injury in Rat Hearts. Ther Hypothermia Temp Manag 2017; 7:162-170. [PMID: 28338422 DOI: 10.1089/ther.2016.0042] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Therapeutic hypothermia (TH) is known to protect against ischemia/reperfusion (I/R) injury. One mechanism of I/R injury includes secondary injury due to the inflammatory cascade. We hypothesized that TH reduces the inflammatory response following I/R injury. Rats were randomized to sham, normothermic, or hypothermic groups and subjected to 1 hour of coronary artery occlusion and 48 hours of reperfusion. Hypothermia was initiated, using the ThermoSuit® device, 2 minutes after the onset of coronary artery occlusion to a core temperature of 32°C, and then the rats were allowed to rewarm. After 48 hours, rats in the hypothermia group demonstrated a preserved left ventricular fractional shortening by echocardiography. TH decreased the inflammatory cytokines in the risk zone of the heart, which included monocyte chemoattractant protein-1, interleukin-6, tumor necrosis factor-α, and inducible nitric oxide synthase gene expression, and altered expression of the remodeling genes of matrix metalloproteinase and tissue inhibitor of metalloproteinase. Furthermore, rat inflammatory cytokines & receptors PCR array was performed and the data showed that 71 out of 84 genes were upregulated in the risk zone of normothermia hearts versus shams. The upregulation was largely reversed in the risk zone of hypothermia hearts compared to normothermia. TH preserves cardiac function, decreases excessive inflammatory gene expression, and regulates myocardial matrix remodeling related genes.
Collapse
Affiliation(s)
- Jianru Shi
- 1 Huntington Medical Research Institutes , Pasadena, California.,2 Division of Cardiovascular Medicine, Department of Medicine of the Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Wangde Dai
- 1 Huntington Medical Research Institutes , Pasadena, California.,2 Division of Cardiovascular Medicine, Department of Medicine of the Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Robert A Kloner
- 1 Huntington Medical Research Institutes , Pasadena, California.,2 Division of Cardiovascular Medicine, Department of Medicine of the Keck School of Medicine, University of Southern California , Los Angeles, California
| |
Collapse
|
19
|
ERK phosphorylation plays an important role in the protection afforded by hypothermia against renal ischemia-reperfusion injury. Surgery 2017; 161:444-452. [DOI: 10.1016/j.surg.2016.07.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/14/2016] [Accepted: 07/29/2016] [Indexed: 12/30/2022]
|
20
|
Kohlhauer M, Berdeaux A, Ghaleh B, Tissier R. Therapeutic hypothermia to protect the heart against acute myocardial infarction. Arch Cardiovasc Dis 2016; 109:716-722. [DOI: 10.1016/j.acvd.2016.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 10/20/2022]
|
21
|
Chavez LO, Leon M, Einav S, Varon J. Editor's Choice- Inside the cold heart: A review of therapeutic hypothermia cardioprotection. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2016; 6:130-141. [PMID: 26714973 DOI: 10.1177/2048872615624242] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Targeted temperature management has been originally used to reduce neurological injury and improve outcome in patients after out-of-hospital cardiac arrest. Myocardial infarction remains a major cause of death in the world and several investigators are studying the effect of mild therapeutic hypothermia during an acute cardiac ischemic injury. A search on MEDLINE, Scopus and EMBASE databases was conducted to obtain data regarding the cardioprotective properties of therapeutic hypothermia. Preclinical studies have shown that therapeutic hypothermia provides a cardioprotective effect in animals. The proposed pathways for the cardioprotective effects of therapeutic hypothermia include stabilization of mitochondrial permeability, production of nitric oxide, equilibration of reactive oxygen species, and calcium channels homeostasis. Clinical trials in humans have yielded controversial results. Current trials are therefore seeking to combine therapeutic hypothermia with other treatment modalities in order to improve the outcomes of patients with acute ischemic injury. This article provides a review of the hypothermia effects on the cardiovascular system, from the basic science of physiological changes in the human body and molecular mechanisms of cardioprotection to the bench of clinical trials with therapeutic hypothermia in patients with acute ischemic injury.
Collapse
Affiliation(s)
- Luis O Chavez
- 1 University General Hospital, Houston, USA.,2 Universidad Autonoma de Baja California, Facultad de Medicina y Psicología, Tijuana, Mexico
| | - Monica Leon
- 1 University General Hospital, Houston, USA.,3 Universidad Popular Autonoma del Estado de Puebla, Facultad de Medicina Puebla, Mexico
| | - Sharon Einav
- 4 Shaare Zedek Medical Center and Hadassah-Hebrew University Faculty of Medicine, Jerusalem, Israel
| | | |
Collapse
|
22
|
Zhang J, Xue X, Xu Y, Zhang Y, Li Z, Wang H. The transcriptome responses of cardiomyocyte exposed to hypothermia. Cryobiology 2016; 72:244-50. [DOI: 10.1016/j.cryobiol.2016.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/07/2016] [Accepted: 03/28/2016] [Indexed: 11/26/2022]
|
23
|
Abstract
Mild therapeutic hypothermia of 32-35°C improved neurologic outcomes in outside hospital cardiac arrest survivor. Furthermore, in experimental studies on infarcted model and pilot studies on conscious patients with acute myocardial infarction, therapeutic hypothermia successfully reduced infarct size and microvascular resistance. Therefore, mild therapeutic hypothermia has received an attention as a promising solution for reduction of infarction size after acute myocardial infarction which are not completely solved despite of optimal reperfusion therapy. Nevertheless, the results from randomized clinical trials failed to prove the cardioprotective effects of therapeutic hypothermia or showed beneficial effects only in limited subgroups. In this article, we reviewed rationale for therapeutic hypothermia and possible mechanisms from previous studies, effective methods for clinical application to the patients with acute myocardial infarction, lessons from current clinical trials and future directions.
Collapse
Affiliation(s)
- In Sook Kang
- Department of Internal Medicine, Green Hospital, Seoul, Korea
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ikeno Fumiaki
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
| | - Wook Bum Pyun
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Korea.
| |
Collapse
|
24
|
Huang CH, Tsai MS, Chiang CY, Su YJ, Wang TD, Chang WT, Chen HW, Chen WJ. Activation of mitochondrial STAT-3 and reduced mitochondria damage during hypothermia treatment for post-cardiac arrest myocardial dysfunction. Basic Res Cardiol 2015; 110:59. [DOI: 10.1007/s00395-015-0516-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 10/08/2015] [Indexed: 01/05/2023]
|
25
|
Herring MJ, Hale SL, Dai W, Oskui PM, Kloner RA. Hypothermia in the setting of experimental acute myocardial infarction: a comprehensive review. Ther Hypothermia Temp Manag 2015; 4:159-67. [PMID: 25271792 DOI: 10.1089/ther.2014.0016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A door-to-balloon time of less than 90 minutes is the gold standard for reperfusion therapy to treat acute myocardial infarction (MI). Because 30-day mortality remains ∼ 10%, new methods must be cultivated to limit myocardial injury. Therapeutic hypothermia has long been experimentally used to attenuate myocardial necrosis during MI with promising results, but the treatment has yet to gain popularity among most clinicians. Hypothermia, in the basic science setting, has been achieved using many techniques. In our review, we examine past and current methods of inducing hypothermia, benefits and setbacks of such methods, current and future clinical trials, and potential mechanisms.
Collapse
Affiliation(s)
- Michael J Herring
- 1 Heart Institute, Good Samaritan Hospital , Los Angeles, California
| | | | | | | | | |
Collapse
|
26
|
Dai W, Herring MJ, Hale SL, Kloner RA. Rapid Surface Cooling by ThermoSuit System Dramatically Reduces Scar Size, Prevents Post-Infarction Adverse Left Ventricular Remodeling, and Improves Cardiac Function in Rats. J Am Heart Assoc 2015; 4:JAHA.115.002265. [PMID: 26116692 PMCID: PMC4608095 DOI: 10.1161/jaha.115.002265] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The long-term effects of transient hypothermia by the non-invasive ThermoSuit apparatus on myocardial infarct (MI) scar size, left ventricular (LV) remodeling, and LV function were assessed in rat MI model. METHODS AND RESULTS Rats were randomized to normothermic or hypothermic groups (n=14 in each group) and subjected to 30 minutes coronary artery occlusion and 6 weeks of reperfusion. For hypothermia therapy, rats were placed into the ThermoSuit apparatus at 2 minutes after the onset of coronary artery occlusion, were taken out of the apparatus when the core body temperature reached 32°C (in ≈8 minutes), and were then allowed to rewarm. After 6 weeks of recovery, rats treated with hypothermia demonstrated markedly reduced scar size (expressed as % of left ventricular area: hypothermia, 6.5±1.1%; normothermia, 19.4±1.7%; P=1.3×10(-6)); and thicker anterior LV wall (hypothermia, 1.57±0.09 mm; normothermia, 1.07±0.05 mm; P=3.4×10(-5)); decreased postmortem left ventricular volume (hypothermia, 0.45±0.04 mL; normothermia, 0.6±0.03 mL; P=0.028); and better LV fractional shortening by echocardiography (hypothermia, 37.2±2.8%; normothermia, 18.9±2.3%; P=0.0002) and LV ejection fraction by LV contrast ventriculography (hypothermia, 66.8±2.3%; normothermia, 56.0±2.0%; P=0.0014). CONCLUSIONS Rapid, transient non-invasive surface cooling with the ThermoSuit apparatus in the acute phase of MI decreased scar size by 66.5%, attenuated adverse post-infarct left ventricular dilation and remodeling, and improved cardiac function in the chronic phase of experimental MI.
Collapse
Affiliation(s)
- Wangde Dai
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, Pasadena, CA (W.D., S.L.H., R.A.K.) Heart Institute of Good Samaritan Hospital, Los Angeles, CA (W.D., M.J.H., S.L.H., R.A.K.) Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, CA (W.D., R.A.K.)
| | - Michael J Herring
- Heart Institute of Good Samaritan Hospital, Los Angeles, CA (W.D., M.J.H., S.L.H., R.A.K.)
| | - Sharon L Hale
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, Pasadena, CA (W.D., S.L.H., R.A.K.) Heart Institute of Good Samaritan Hospital, Los Angeles, CA (W.D., M.J.H., S.L.H., R.A.K.)
| | - Robert A Kloner
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, Pasadena, CA (W.D., S.L.H., R.A.K.) Heart Institute of Good Samaritan Hospital, Los Angeles, CA (W.D., M.J.H., S.L.H., R.A.K.) Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, CA (W.D., R.A.K.)
| |
Collapse
|
27
|
Smith LE, White MY. The role of post-translational modifications in acute and chronic cardiovascular disease. Proteomics Clin Appl 2015; 8:506-21. [PMID: 24961403 DOI: 10.1002/prca.201400052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 05/27/2014] [Accepted: 06/17/2014] [Indexed: 12/22/2022]
Abstract
Cardiovascular disease (CVD) in one of the leading causes of mortality and morbidity worldwide, accounting for both primary diseases of the heart and vasculature and arising as a co-morbidity with numerous pathologies, including type 2 diabetes mellitus (T2DM). There has been significant emphasis on the role of the genome in CVD, aiding in the definition of 'at-risk' patients. The extent of disease penetrance however, can be influenced by environmental factors that are not detectable by investigating the genome alone. By targeting the transcriptome in response to CVD, the interplay between genome and environment is more apparent, however this implies the level of protein expression without reference to proteolytic turnover, or potentially more importantly, without defining the role of PTMs in the development of disease. Here, we discuss the role of both brief and irreversible PTMs in the setting of myocardial ischemia/reperfusion injury. Key proteins involved in calcium regulation have been observed as differentially modified by phosphorylation/O-GlcNAcylation or phosphorylation/redox modifications, with the level of interplay dependent on the physiological or pathophysiological state. The ability to modify crucial sites to produce the desired functional output is modulated by the presence of other PTMs as exemplified in the T2DM heart, where hyperglycemia results in aberrant O-GlcNAcylation and advanced glycation end products. By using the signalling events predicted to be critical to post-conditioning, an intervention with great promise for the cardioprotection of the ischemia/reperfusion injured heart, as an example, we discuss the level of PTMs and their interplay. The inability of post-conditioning to protect the diabetic heart may be regulated by aberrant PTMs influencing those sites necessary for protection.
Collapse
Affiliation(s)
- Lauren E Smith
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
28
|
Cuadrado-Berrocal I, Gómez-Gaviro MV, Benito Y, Barrio A, Bermejo J, Fernández-Santos ME, Sánchez PL, Desco M, Fernández-Avilés F, Fernández-Velasco M, Boscá L, de Las Heras B. A labdane diterpene exerts ex vivo and in vivo cardioprotection against post-ischemic injury: involvement of AKT-dependent mechanisms. Biochem Pharmacol 2015; 93:428-439. [PMID: 25557296 DOI: 10.1016/j.bcp.2014.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 02/07/2023]
Abstract
Therapeutic approaches to protect the heart from ischemia/reperfusion (I/R) injury are an area of intense research, as myocardial infarction is a major cause of mortality and morbidity. Diterpenes are bioactive natural products with great therapeutic potential. In the present study, we have investigated the in vivo cardioprotective effects of a labdane diterpene (DT1) against cardiac I/R injury and the molecular mechanisms involved. DT1 attenuates post-ischemic injury via an AKT-dependent activation of HIF-1α, survival pathways and inhibition of NF-κB signaling. Myocardial infarction (MI) was induced in Wistar rats occluding the left coronary artery (LCA) for 30min followed by 72h reperfusion. DT1 (5mg/kg) was intravenously administered at reperfusion. In addition, we investigated the mechanisms of cardioprotection in the Langendorff-perfused model. Cardioprotection was observed when DT1 was administered after myocardial injury. The molecular mechanisms involved the activation of the survival pathway PDK-1, AKT and AMPK, a reduced phosphorylation of PKD1/2 and sustained HIF-1α activity, leading to increased expression of anti-apoptotic proteins and decreased caspase-3 activation. Pharmacological inhibition of AKT following MI and prior to DT1 challenge significantly decreased the cardioprotection afforded by DT1 therapy at reperfusion. Cardiac function after MI was significantly improved after DT1-treatment, as evidenced by hemodynamic recovery and decreased myocardial infarct size. These findings demonstrate an efficient in vivo cardioprotection by diterpene DT1 against I/R when administered at reperfusion, opening new therapeutic strategies as adjunctive therapy for the pharmacological management of I/R injury.
Collapse
Affiliation(s)
- Irene Cuadrado-Berrocal
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - María V Gómez-Gaviro
- Servicio de Cardiología, Instituto de Investigación Sanitaria Gregorio Marañón, C/ Doctor Esquerdo 46, 28007 Madrid, Spain; Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Departamento de Bioingeniería e Ingeniería Aerospacial, Universidad Carlos III, Madrid, Spain
| | - Yolanda Benito
- Servicio de Cardiología, Instituto de Investigación Sanitaria Gregorio Marañón, C/ Doctor Esquerdo 46, 28007 Madrid, Spain
| | - Alicia Barrio
- Servicio de Cardiología, Instituto de Investigación Sanitaria Gregorio Marañón, C/ Doctor Esquerdo 46, 28007 Madrid, Spain
| | - Javier Bermejo
- Servicio de Cardiología, Instituto de Investigación Sanitaria Gregorio Marañón, C/ Doctor Esquerdo 46, 28007 Madrid, Spain
| | - María Eugenia Fernández-Santos
- Servicio de Cardiología, Instituto de Investigación Sanitaria Gregorio Marañón, C/ Doctor Esquerdo 46, 28007 Madrid, Spain
| | - Pedro L Sánchez
- Servicio de Cardiología, Instituto de Investigación Sanitaria Gregorio Marañón, C/ Doctor Esquerdo 46, 28007 Madrid, Spain
| | - Manuel Desco
- Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Departamento de Bioingeniería e Ingeniería Aerospacial, Universidad Carlos III, Madrid, Spain
| | - Francisco Fernández-Avilés
- Servicio de Cardiología, Instituto de Investigación Sanitaria Gregorio Marañón, C/ Doctor Esquerdo 46, 28007 Madrid, Spain
| | - María Fernández-Velasco
- Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; Instituto de Investigación Hospital Universitario La PAZ, IDIPAZ, Paseo de la Castellana, 28029 Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; Instituto de Investigación Hospital Universitario La PAZ, IDIPAZ, Paseo de la Castellana, 28029 Madrid, Spain.
| | - Beatriz de Las Heras
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
29
|
Yan L, Kudej RK, Vatner DE, Vatner SF. Myocardial ischemic protection in natural mammalian hibernation. Basic Res Cardiol 2015; 110:9. [PMID: 25613166 DOI: 10.1007/s00395-015-0462-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/08/2014] [Accepted: 01/07/2015] [Indexed: 12/31/2022]
Abstract
Hibernating myocardium is an important clinical syndrome protecting the heart with chronic myocardial ischemia, named for its assumed resemblance to hibernating mammals in winter. However, the effects of myocardial ischemic protection have never been studied in true mammalian hibernation, which is a unique strategy for surviving extreme winter environmental stress. The goal of this investigation was to test the hypothesis that ischemic stress may also be protected in woodchucks as they hibernate in winter. Myocardial infarction was induced by coronary occlusion followed by reperfusion in naturally hibernating woodchucks in winter with and without hibernation and in summer, when not hibernating. The ischemic area at risk was similar among groups. Myocardial infarction was significantly less in woodchucks in winter, whether hibernating or not, compared with summer, and was similar to that resulting after ischemic preconditioning. Whereas several genes were up or downregulated in both hibernating woodchuck and with ischemic preconditioning, one mechanism was unique to hibernation, i.e., activation of cAMP-response element binding protein (CREB). When CREB was upregulated in summer, it induced protection similar to that observed in the woodchuck heart in winter. The cardioprotection in hibernation was also mediated by endothelial nitric oxide synthase, rather than inducible nitric oxide synthase. Thus, the hibernating woodchuck heart is a novel model to study cardioprotection for two major reasons: (1) powerful cardioprotection occurs naturally in winter months in the absence of any preconditioning stimuli, and (2) it resembles ischemic preconditioning, but with novel mechanisms, making this model potentially useful for clinical translation.
Collapse
Affiliation(s)
- Lin Yan
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA
| | | | | | | |
Collapse
|
30
|
Cour M, Jahandiez V, Loufouat J, Ovize M, Argaud L. Minor Changes in Core Temperature Prior to Cardiac Arrest Influence Outcomes: An Experimental Study. J Cardiovasc Pharmacol Ther 2014; 20:407-13. [PMID: 25540058 DOI: 10.1177/1074248414562911] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/15/2014] [Indexed: 02/05/2023]
Abstract
AIM To investigate whether slight variations in core temperature prior to cardiac arrest (CA) influence short-term outcomes and mitochondrial functions. METHODS AND MATERIALS Three groups of New Zealand White rabbits (n = 12/group) were submitted to 15 minutes of CA at 38°C (T-38 group), 39°C (T-39), or 40°C (T 40) and 120 minutes of reperfusion. A Sham-operated group (n = 6) underwent only surgery. Restoration of spontaneous circulation (ROSC), survival, hemodynamics, and pupillary reactivity were recorded. Animals surviving to the end of the observation period were euthanized to assess fresh brain and heart mitochondrial functions (permeability transition and oxidative phosphorylation). Markers of brain and heart damages were also measured. RESULTS The duration of asphyxia required to induce CA was significantly lower in the T-40 group when compared to the T-38 group (P < .05). The rate of ROSC was >80% in all groups (P = nonsignificant [ns]). Survival significantly differed among the T-38, T-39, and T-40 groups: 10 (83%) of 12, 7 (58%) of 12, and 4 (33%) of 12, respectively (log-rank test, P = .027). At the end of the protocol, none of the animals in the T-40 group had pupillary reflexes compared to 8 (67%) of 12 in the T-38 group (P < .05). Troponin and protein S100B were significantly higher in the T-40 versus T-38 group (P < .05). Cardiac arrest significantly impaired both inner mitochondrial membrane integrity and oxidative phosphorylation in all groups. Brain mitochondria disorders were significantly more severe in the T-40 group compared to the T-38 group (P < .05). CONCLUSION Small changes in body temperature prior to asphyxial CA significantly influence brain mitochondrial functions and short-term outcomes in rabbits.
Collapse
Affiliation(s)
- Martin Cour
- Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Service de Réanimation Médicale, Lyon, France Faculté de médecine Lyon-Est, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France INSERM UMR 1060, CarMeN, Lyon, France
| | - Vincent Jahandiez
- Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Service de Réanimation Médicale, Lyon, France Faculté de médecine Lyon-Est, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France INSERM UMR 1060, CarMeN, Lyon, France
| | | | - Michel Ovize
- INSERM UMR 1060, CarMeN, Lyon, France Hospices Civils de Lyon, Groupement Hospitalier Est, Explorations Fonctionnelles Cardiovasculaires & Centre d'Investigations Cliniques de Lyon, Lyon, France
| | - Laurent Argaud
- Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Service de Réanimation Médicale, Lyon, France Faculté de médecine Lyon-Est, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France INSERM UMR 1060, CarMeN, Lyon, France
| |
Collapse
|
31
|
Cardio-protective signalling by glyceryl trinitrate and cariporide in a model of donor heart preservation. Heart Lung Circ 2014; 24:306-18. [PMID: 25459486 DOI: 10.1016/j.hlc.2014.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/30/2014] [Accepted: 10/05/2014] [Indexed: 01/22/2023]
Abstract
BACKGROUND Storage of donor hearts in cardioplegic solutions supplemented with agents that mimic the ischaemic preconditioning response enhanced their post-reperfusion function. The present study examines the minimisation of cell death and activation of pro-survival signalling directed towards maintenance of mitochondrial homeostasis in hearts arrested and stored in two such agents, glyceryl-trinitrate, a nitric oxide donor and cariporide, (a sodium-hydrogen exchange inhibitor). METHODS After baseline functional measurement, isolated working rat hearts were arrested and stored for 6h at 4°C in either Celsior(®), Celsior(®) containing 0.1mg/ml glyceryl-trinitrate, 10μM cariporide or both agents. After reperfusion, function was remeasured. Hearts were then processed for immunoblotting or histology. RESULTS Necrotic and apoptotic markers present in the Celsior(®) group post-reperfusion were abolished by glyceryl-trinitrate, cariporide or both. Increased phosphorylation of ERK and Bcl2, after reperfusion in groups stored in glyceryl-trinitrate, cariporide or both along with increased phospho-STAT3 levels in the glyceryl-trinitrate/cariporide group correlated with functional recovery. Inhibition of STAT3 phosphorylation blocked recovery. No phospho-Akt increase was seen in any treatment. CONCLUSIONS Activation of signalling pathways that favour mitophagy activation (ERK and Bcl2 phosphorylation) and maintenance of mitochondrial transition pore closure after reperfusion (STAT3 and ERK phosphorylation) were crucial for functional recovery of the donor heart.
Collapse
|
32
|
Wang Y, Zhang A, Lu S, Pan X, Jia D, Yu W, Jiang Y, Li X, Wang X, Zhang J, Hou L, Sun Y. Adenosine 5'-monophosphate-induced hypothermia inhibits the activation of ERK1/2, JNK, p38 and NF-κB in endotoxemic rats. Int Immunopharmacol 2014; 23:205-10. [PMID: 25218163 DOI: 10.1016/j.intimp.2014.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 11/29/2022]
Abstract
Many studies have shown that LPS mainly activates four signal transduction pathways to induce inflammation, namely the p38, ERK1/2, JNK and IKK/NF-κB pathways. Studies have demonstrated that 5'-AMP-induced hypothermia (AIH) exhibits high anti-inflammatory capabilities. In this study, we explore that how AIH inhibits the inflammatory response. Wistar rats were divided into five groups: a control group, an LPS group, a 5'-AMP pre-treatment group, a 5'-AMP post-treatment group and a 5'-AMP group. For each group, plasma and lung were collected from the rats at 6h and 12h after LPS injection. ELISA assays were used to detect plasma levels of CD14, CRP and MCP-1. Inflammatory pathway activation and TLR4 expression were assayed separately by Western blot analysis and immunohistochemistry. Our results showed that rats treated with AIH either before or after an LPS-challenge had a significant decrease in plasma levels of CD14, CRP and TLR4 compared with rats that received LPS only. Western blot analysis showed that AIH inhibited the activation of extracellular signal-regulated kinases (ERK) 1/2, p38, c-Jun N-terminal kinase (JNK) and NF-κB in inflammatory rats. Our study concluded that AIH attenuated LPS-induced inflammation mainly by inhibiting activation on the ERK1/2, p38, JNK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Yunlong Wang
- Gout Laboratory, The Affiliated Hospital of Medical College Qingdao University, Shandong Provincial Key Laboratory of Metabolic Diseases, 16 Jiangsu Road, Qingdao, China
| | - Aihua Zhang
- Department of Biochemistry, Medical College, Qingdao University, Qingdao, Shandong, China
| | - Shulai Lu
- Stomatological Department, Qingdao Municipal Hospital, Qingdao, China
| | - Xinting Pan
- ICU, The Affiliated Hospital of Medical College, 16 Jiangsu Road, Qingdao, China
| | - Dongmei Jia
- Pathology Department, Qingdao Municipal Hospital, Qingdao, China
| | - Wenjuan Yu
- Pathology Department, The Affiliated Hospital of Medical College Qingdao University, China
| | - Yanxia Jiang
- Pathology Department, The Affiliated Hospital of Medical College Qingdao University, China
| | - Xinde Li
- Gout Laboratory, The Affiliated Hospital of Medical College Qingdao University, Shandong Provincial Key Laboratory of Metabolic Diseases, 16 Jiangsu Road, Qingdao, China
| | - Xuefeng Wang
- Gout Laboratory, The Affiliated Hospital of Medical College Qingdao University, Shandong Provincial Key Laboratory of Metabolic Diseases, 16 Jiangsu Road, Qingdao, China
| | - Jidong Zhang
- Department of Cardiology, The Affiliated Hospital of Medical College Qingdao University, 16 Jiangsu Road, Qingdao, China
| | - Lin Hou
- Department of Biochemistry, Medical College, Qingdao University, Qingdao, Shandong, China.
| | - Yunbo Sun
- ICU, The Affiliated Hospital of Medical College, 16 Jiangsu Road, Qingdao, China.
| |
Collapse
|
33
|
Schmidt MR, Pryds K, Bøtker HE. Novel adjunctive treatments of myocardial infarction. World J Cardiol 2014; 6:434-443. [PMID: 24976915 PMCID: PMC4072833 DOI: 10.4330/wjc.v6.i6.434] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 01/23/2014] [Accepted: 04/17/2014] [Indexed: 02/06/2023] Open
Abstract
Myocardial infarction is a major cause of death and disability worldwide and myocardial infarct size is a major determinant of prognosis. Early and successful restoration of myocardial reperfusion following an ischemic event is the most effective strategy to reduce final infarct size and improve clinical outcome, but reperfusion may induce further myocardial damage itself. Development of adjunctive therapies to limit myocardial reperfusion injury beyond opening of the coronary artery gains increasing attention. A vast number of experimental studies have shown cardioprotective effects of ischemic and pharmacological conditioning, but despite decades of research, the translation into clinical effects has been challenging. Recently published clinical studies, however, prompt optimism as novel techniques allow for improved clinical applicability. Cyclosporine A, the GLP-1 analogue exenatide and rapid cooling by endovascular infusion of cold saline all reduce infarct size and may confer clinical benefit for patients admitted with acute myocardial infarcts. Equally promising, three follow-up studies of the effect of remote ischemic conditioning (RIC) show clinical prognostic benefit in patients undergoing coronary surgery and percutaneous coronary intervention. The discovery that RIC can be performed noninvasively using a blood pressure cuff on the upper arm to induce brief episodes of limb ischemia and reperfusion has facilitated the translation of RIC into the clinical arena. This review focus on novel advances in adjunctive therapies in relation to acute and elective coronary procedures.
Collapse
|
34
|
Herring MJ, Dai W, Hale SL, Kloner RA. Rapid Induction of Hypothermia by the ThermoSuit System Profoundly Reduces Infarct Size and Anatomic Zone of No Reflow Following Ischemia-Reperfusion in Rabbit and Rat Hearts. J Cardiovasc Pharmacol Ther 2014; 20:193-202. [PMID: 24906542 DOI: 10.1177/1074248414535664] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Although hypothermia reduces myocardial infarct size, noninvasive and rapid cooling methods are lacking. This study tests the effectiveness of a novel cooling apparatus on myocardial infarct size and no-reflow area in 2 models of coronary artery occlusion (CAO). METHODS AND RESULTS Animals were randomized to normothermic (N) or hypothermic (H) groups after isolation of a proximal coronary artery. Animals were subjected to 30 minutes CAO and 3 hours reperfusion. In protocol 1 (rabbit, n = 8 per group), hypothermia was initiated, using the ThermoSuit apparatus (convective-immersion cooling), 5 minutes after the onset of CAO to a goal temperature of ∼32°C. In protocol 2 (rat, n = 5 per group), hypothermia was initiated 2 minutes after the onset of CAO to a goal temperature of ∼30°C. Goal temperature was reached in ∼20 minutes. In protocol 1, hypothermia caused an 82% reduction in infarct size as a percentage of the ischemic risk zone (N, 44% ± 5%; H; 8% ± 2%, P < 0.001) and an 89% reduction in the no-reflow area (N, 44% ± 4%; H, 5% ± 1%, P < 0.001). In protocol 2, hypothermia caused a 73% infarct size reduction (N, 51% ± 5%; H, 14% ± 6%, P < 0.01) and a 99% reduction in the no-reflow area (N, 33% ± 5%; H, 0.4% ± 0.3%, P < 0.01). CONCLUSION The ThermoSuit device induced rapid hypothermia and limited infarct size and no reflow to the greatest extent ever observed in this laboratory with a single intervention.
Collapse
Affiliation(s)
| | - Wangde Dai
- Heart Institute, Good Samaritan Hospital, Los Angeles, CA, USA Department of Cardiology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Sharon L Hale
- Heart Institute, Good Samaritan Hospital, Los Angeles, CA, USA
| | - Robert A Kloner
- Heart Institute, Good Samaritan Hospital, Los Angeles, CA, USA Department of Cardiology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
35
|
Capsaicin-Induced Cardioprotection. Is Hypothermia or the Salvage Kinase Pathway Involved? Cardiovasc Drugs Ther 2014; 28:295-301. [DOI: 10.1007/s10557-014-6527-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Yang XM, Cui L, Alhammouri A, Downey JM, Cohen MV. Triple therapy greatly increases myocardial salvage during ischemia/reperfusion in the in situ rat heart. Cardiovasc Drugs Ther 2014; 27:403-12. [PMID: 23832692 DOI: 10.1007/s10557-013-6474-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Cangrelor, a P2Y12 receptor blocker, administered just prior to reperfusion reduced but did not eliminate myocardial infarction in rabbits. Combining cangrelor with ischemic postconditioning offered no additional protection suggesting they protected by a similar mechanism. To determine if cangrelor's protection might be additive to other cardioprotective interventions we tested cangrelor in combination with ischemic preconditioning, cariporide, a sodium-hydrogen exchange blocker, and mild hypothermia. METHODS Open-chest rats underwent 30-min coronary occlusion/2-h reperfusion. RESULTS Cangrelor, administered as a bolus (60 μg/kg) 10 min before reperfusion and continued as an infusion (6 μg/kg/min) for the duration of the experiment, decreased infarction from 45.3 % of risk zone in control hearts to 25.0 %. Combining cangrelor and ischemic preconditioning offered no additional protection. Mild hypothermia (32-33 °C) instituted by peritoneal lavage with cold saline just prior to coronary occlusion resulted in 25.2 % infarction, and combining cangrelor and hypothermia nearly halved infarction to 14.1 % of risk zone. Cariporide (0.5 mg/kg) just prior to occlusion resulted in 27.2 % infarction and 15.8 % when combined with cangrelor. Combining cangrelor, hypothermia and cariporide further halved infarction to only 6.3 %. We also tested another P2Y12 inhibitor ticagrelor which is chemically similar to cangrelor. Ticagrelor (20 mg/kg) fed 1 h prior to surgery reduced infarct size by an amount similar to that obtained with cangrelor (25.6 % infarction), and this protective effect was abolished by chelerythrine and wortmannin, thus implicating participation of PKC and PI3-kinase, resp., in signaling. CONCLUSIONS Cardioprotection from a P2Y12 receptor antagonist can be combined with at least 2 other strategies to magnify the protection. Combining multiple interventions that use different cardioprotective mechanisms could provide powerful protection against infarction in patients with acute coronary thrombosis.
Collapse
Affiliation(s)
- Xi-Ming Yang
- Department of Physiology, University of South Alabama, College of Medicine, Mobile, AL, 36688, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
There is continued interest in the concept of limiting myocardial infarct size with adjunctive agents administered along with reperfusion injury; however, there remains considerable controversy in the literature. The purpose of this article is to review the medical literature on clinical trials performed during the past 3 years that have attempted to reduce myocardial infarct size by administration of adjunctive therapies along with reperfusion therapy. A PubMed-driven literature search revealed a host of clinical trials focusing on the following prominent types of therapies: endogenous conditioning (postconditioning and remote ischemic conditioning); rapid cooling; pharmacological therapy (cyclosporine, abciximab, clopidogrel, tirofiban, erythropoietin, thrombus aspiration, adenosine, glucose-insulin-potassium, statins, antidiabetic agents, FX06, iron chelation, and ranolazine). Although there remains some controversy, quite a few of these studies showed that adjunctive therapy further reduced myocardial infarct size when coupled with reperfusion. Antiplatelet agents are emerging as some of the newest agents that seem to have cardioprotective capabilities. Postconditioning has become a bit more controversial in the clinical literature; remote conditioning, early and rapid cooling, adenosine, and ranolazine are intriguing therapies deserving of larger studies. Certain agents and maneuvers, such as erythropoietin, protein kinase C δ inhibitors, iron chelation, and intra-aortic balloon counterpulsation, perhaps should be retired. The correct adjunctive therapy administered along with reperfusion has the capability of further reducing myocardial injury during ST-segment-elevation myocardial infarction.
Collapse
Affiliation(s)
- Robert A Kloner
- Division of Cardiovascular Medicine, Department of Medicine, Heart Institute, Good Samaritan Hospital, Los Angeles, CA 90017, USA.
| |
Collapse
|
38
|
Cohen MV, Downey JM. Combined cardioprotectant and antithrombotic actions of platelet P2Y12 receptor antagonists in acute coronary syndrome: just what the doctor ordered. J Cardiovasc Pharmacol Ther 2013; 19:179-90. [PMID: 24298192 DOI: 10.1177/1074248413508465] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Since the P2Y12 receptor antagonists were first introduced, they have been extensively tested in patients with acute coronary syndrome and are now standard of care. These antiplatelet drugs are very effective in reducing subsequent cardiovascular events, stent thromboses, and mortality in patients with acute myocardial infarction undergoing reperfusion therapy. Although the prevailing view is that their benefit derives from their antithrombotic properties, other unrelated pleiotropic effects appear to be equally beneficial. Accumulating clinical and animal evidence indicates that, if present at the time of reperfusion, these drugs have a direct anti-infarct effect similar to that of ischemic postconditioning. Four oral antagonists have been developed in rapid succession: ticlopidine, clopidogrel, prasugrel, and ticagrelor. Each agent had a more consistent and rapid onset of action than the previous one, and this has correlated with improved clinical outcomes when given early in treatment. Unfortunately, gut absorption causes an appreciable delay in the onset of effect, especially when morphine is used, and the constant push to minimize the door-to-balloon time has made it difficult to achieve adequate platelet inhibition at the time of percutaneous coronary intervention with an oral agent. An intravenous P2Y12 antagonist such as cangrelor may optimize treatment because it produces nearly maximal inhibition of platelet aggregation within minutes. If antiplatelet agents do protect through postconditioning's mechanism, then they would render any other intervention that protects through that mechanism redundant. Indeed, animals treated with cangrelor cannot be further protected by pre- or postconditioning. However, interventions that use a different mechanism such as mild hypothermia or cariporide, a Na(+)-H(+) exchange blocker, do add to cangrelor's protection. Future research should be directed toward identifying interventions that can augment the protection from antiplatelet therapy and finding a way to optimize P2Y12 inhibition at reperfusion in all patients.
Collapse
Affiliation(s)
- Michael V Cohen
- 1Department of Medicine, University of South Alabama College of Medicine, Mobile, AL, USA
| | | |
Collapse
|
39
|
The ERK1/2 signaling pathway is involved in sulfur dioxide preconditioning-induced protection against cardiac dysfunction in isolated perfused rat heart subjected to myocardial ischemia/reperfusion. Int J Mol Sci 2013; 14:22190-201. [PMID: 24217229 PMCID: PMC3856059 DOI: 10.3390/ijms141122190] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 11/17/2022] Open
Abstract
Ischemia/reperfusion injury (IRI) occurs frequently during reperfusion of ischemic myocardium, and preconditioning has been regarded as one of the best strategies to prevent myocardial injury during the ischemia/reperfusion process. Our previous studies indicated that a small dose of sulfur dioxide (SO2) used as preconditioning exerts cardioprotection. However, the mechanisms underlying the cardioprotection remain unclear. The present study was designed to examine if the extracellular regulated protein kinases 1/2 (ERK1/2) signaling pathway mediated protection against cardiac dysfunction after SO2 preconditioning in isolated rat hearts subjected to ischemia/reperfusion (I/R). Langendorff heart perfusion was performed in vitro, where 56 male Wistar rats were randomly divided into seven groups: control group, 5 μmol/L SO2 group (S5), 2-(2-Amino-3-methoxyphenyl)-4H-1-benzopyran-4-one (PD98059) + 5 μmol/L SO2 (PD98059 + S5) group, PD98059 group, I/R group, 5 μmol/L SO2 + I/R (S5 + I/R) group and PD98059 + 5 μmol/L SO2 + I/R (PD98059 + S5 + I/R) group. Cardiac function and myocardial phosphorylated ERK1/2 protein were measured. We found that I/R in isolated rat heart resulted in cardiac dysfunction with a significant increase in phosphorylated ERK1/2 protein. SO2 preconditioning markedly suppressed phosphorylated ERK1/2 protein and improved cardiac function in isolated rat heart with I/R (p < 0.05). However, pre-treatment with PD98059 could prevent the above effects of SO2 preconditioning. In conclusion, SO2 preconditioning protected against cardiac dysfunction in isolated rat heart subjected to I/R via suppression of the over-activation of the ERK1/2 signaling pathway.
Collapse
|
40
|
Effect of aqueous extract of sanweitanxiang powder on calcium homeostasis protein expression in ischemic-reperfusion injury rat heart. J TRADIT CHIN MED 2013; 33:355-60. [PMID: 24024332 DOI: 10.1016/s0254-6272(13)60178-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE To investigate the underlying mechanism of reduced myocardial ischemia-reperfusion (I/R) injury in rats using the traditional Tibetan medicine Sanweitanxiang powder (SWTX). METHODS Rats were randomly divided into six groups (n = 10) as follows: (a) propranolol dinitrate control group, given propranolol dinitrate 0.02 g/kg for 10 days before I/R, (b) SWTX with a high dose group, given SWTX 1.5 g/kg for 10 days before I/R, (c) SWTX with a medium dose group, given SWTX 1.25 g/kg for 10 days before I/R, (d) sham group (Sham), in which the rat heart was exposed by pericardiotomy but without I/R, (e) SWTX with a low dose group, given SWTX 1.0 g/kg for 10 days before I/R, and (f) I/R injury group. Rats were intragastrically pretreated with propranolol dinitrate or SWTX. After that, the operation to cause ischemia and reperfusion was conducted. The histopathologic changes of rat hearts were observed by hematoxylin and eosin staining and transmission electron microscopy. Ca2+ homeostasis protein expression was determined by western blot. RESULTS After SWTX pretreatment, the development of ultrastructural pathological changes from IR injury was attenuated. A decrease in the expression of B-cell lymphoma 2 associated X protein, and an increase in the expression of B-cell lymphoma 2 were observed. An increased activation of extracellular signal regulated kinases were found. Compared with the sham group, the expression of sarcoplasmic reticulum calcium-ATPase, phospholamban, and calsequestrin were all up-regulated after pretreatment with SWTX. CONCLUSION The protective mechanism of SWTX pretreatment on myocardial I/R injury might be related to its effect on maintaining the balance of calcium homeostasis in rat heart.
Collapse
|
41
|
|
42
|
Mochizuki T, Jiang Q, Katoh T, Aoki K, Sato S. Quality of Cardiopulmonary Resuscitation Affects Cardioprotection by Induced Hypothermia at 34°C Against Ischemia/Reperfusion Injury in a Rat Isolated Heart Model. Shock 2013; 39:527-32. [DOI: 10.1097/shk.0b013e318294e259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Rungatscher A, Linardi D, Giacomazzi A, Tessari M, Menon T, Mazzucco A, Faggian G. Cardioprotective effect of δ-opioid receptor agonist vs mild therapeutic hypothermia in a rat model of cardiac arrest with extracorporeal life support. Resuscitation 2013; 84:244-8. [DOI: 10.1016/j.resuscitation.2012.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/11/2012] [Accepted: 06/20/2012] [Indexed: 12/22/2022]
|
44
|
Tissier R, Chenoune M, Pons S, Zini R, Darbera L, Lidouren F, Ghaleh B, Berdeaux A, Morin D. Mild hypothermia reduces per-ischemic reactive oxygen species production and preserves mitochondrial respiratory complexes. Resuscitation 2012; 84:249-55. [PMID: 22796545 DOI: 10.1016/j.resuscitation.2012.06.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/21/2012] [Accepted: 06/23/2012] [Indexed: 11/18/2022]
Abstract
BACKGROUND Mitochondrial dysfunction is critical following ischemic disorders. Our goal was to determine whether mild hypothermia could limit this dysfunction through per-ischemic inhibition of reactive oxygen species (ROS) generation. METHODS First, ROS production was evaluated during simulated ischemia in an vitro model of isolated rat cardiomyocytes at hypothermic (32°C) vs. normothermic (38°C) temperatures. Second, we deciphered the direct effect of hypothermia on mitochondrial respiration and ROS production in oxygenated mitochondria isolated from rabbit hearts. Third, we investigated these parameters in cardiac mitochondria extracted after 30-min of coronary artery occlusion (CAO) under normothermic conditions (CAO-N) or with hypothermia induced by liquid ventilation (CAO-H; target temperature: 32°C). RESULTS In isolated rat cardiomyocytes, per-ischemic ROS generation was dramatically decreased at 32 vs. 38°C (e.g., -55±8% after 140min of hypoxia). In oxygenated mitochondria isolated from intact rabbit hearts, hypothermia also improved respiratory control ratio (+22±3%) and reduced H2O2 production (-41±1%). Decreased oxidative stress was further observed in rabbit hearts submitted to hypothermic vs. normothermic ischemia (CAO-H vs. CAO-N), using thiobarbituric acid-reactive substances as a marker. This was accompanied by a preservation of the respiratory control ratio as well as the activity of complexes I, II and III in cardiac mitochondria. CONCLUSION The cardioprotective effect of mild hypothermia involves a direct effect on per-ischemic ROS generation and results in preservation of mitochondrial function. This might explain why the benefit afforded by hypothermia during regional myocardial ischemia depends on how fast it is instituted during the ischemic process.
Collapse
|
45
|
Mitochondrial ROS production and subsequent ERK phosphorylation are necessary for temperature preconditioning of isolated ventricular myocytes. Cell Death Dis 2012; 3:e345. [PMID: 22764104 PMCID: PMC3406583 DOI: 10.1038/cddis.2012.84] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hypothermia and hypothermic preconditioning are known to be profoundly cardioprotective, but the molecular mechanisms of this protection have not been fully explained. In this study, temperature preconditioning (16 °C) was found to be cardioprotective in isolated adult rat ventricular myocytes, enhancing contractile recovery and preventing calcium dysregulation after oxidative stress. Hypothermic preconditioning preserved mitochondrial function by delaying the pathological opening of the mitochondrial permeability transition pore (mPTP), whereas transient mPTP flickering remained unaltered. For the first time, reactive oxygen species (ROS) from the mitochondria are shown to be released exclusively during the hypothermic episodes of the temperature-preconditioning protocol. Using a mitochondrially targeted ROS biosensor, ROS release was shown during the brief bursts to 16 °C of temperature preconditioning. The ROS scavenger N-(2-mercaptopropionyl) glycine attenuated ROS accumulation during temperature preconditioning, abolishing the protective delay in mPTP opening. Temperature preconditioning induces ROS-dependant phosphorylation of the prosurvival kinase extracellular signal-regulated kinase (ERK)1/2. ERK1/2 activation was shown to be downstream of ROS release, as the presence of a ROS scavenger during temperature preconditioning completely blocked ERK1/2 activation. The cardioprotective effects of temperature preconditioning on mPTP opening were completely lost by inhibiting ERK1/2 activation. Thus, mitochondrial ROS release and ERK1/2 activation are both necessary to signal the cardioprotective effects of temperature preconditioning in cardiac myocytes.
Collapse
|
46
|
Montecucco F, Braunersreuther V, Viviani GL, Lenglet S, Mach F. Update on the Pathophysiological Role of Intracellular Signaling Pathways in Atherosclerotic Plaques and Ischemic Myocardium. CURRENT SIGNAL TRANSDUCTION THERAPY 2012; 7:104-110. [PMID: 22754427 PMCID: PMC3382259 DOI: 10.2174/157436212800376663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 09/30/2011] [Accepted: 10/01/2011] [Indexed: 01/02/2023]
Abstract
Acute atherosclerotic complications, such as myocardial infarction, are often provoked by the rupture of an atherosclerotic plaque and the subsequent thrombotic occlusion of the arterial lumen, which interrupts the blood flow and renders ischemic the downstream peripheral tissue. Several inflammatory mediators (including cytokines, chemokines and matrix metalloproteases) have been shown to orchestrate common pathophysiological mechanisms regulating both plaque vulnerability and myocardial injury. In particular, the selective activation of certain protective intracellular signaling pathways might represent a promising target to reduce the dramatic consequences of an ischemic cardiac event. In the present review we will update evidence on the active role of intracellular kinase cascades (such as mitogen-activated protein kinases [MAPKs], Akt, Janus kinase [JAK]-signal transducer and activator of transcription [STAT]) to reduce the global patient vulnerability for acute myocardial infarction.
Collapse
Affiliation(s)
- Fabrizio Montecucco
- Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva, Geneva, Switzerland
| | - Vincent Braunersreuther
- Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva, Geneva, Switzerland
| | | | - Sébastien Lenglet
- Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva, Geneva, Switzerland
| | - François Mach
- Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva, Geneva, Switzerland
| |
Collapse
|
47
|
Gerczuk PZ, Kloner RA. An update on cardioprotection: a review of the latest adjunctive therapies to limit myocardial infarction size in clinical trials. J Am Coll Cardiol 2012; 59:969-78. [PMID: 22402067 DOI: 10.1016/j.jacc.2011.07.054] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/13/2011] [Accepted: 07/19/2011] [Indexed: 12/13/2022]
Abstract
Acute myocardial infarction (AMI) with subsequent left ventricular dysfunction and heart failure continues to be a major cause of morbidity and mortality in the Western world. Rapid advances in the treatment of AMI, mainly through timely reperfusion, have substantially improved outcomes in patients presenting with acute coronary syndrome and particularly ST-segment elevation myocardial infarction. A vast amount of research, both translational and clinical, has been published on various pharmacological and interventional techniques to prevent myocardial cell death during the time of ischemia and subsequent reperfusion. Several methods of cardioprotection have shown the ability to limit myocardial infarction size in clinical trials. Examples of interventional techniques that have proven beneficial are ischemic post-conditioning and remote ischemic per-conditioning, both of which can reduce infarction size. Lowering core body temperature with cold saline infusion and cooling catheters have also been shown to be effective in certain circumstances. The most promising pharmaceutical cardioprotective agents at this time appear to be adenosine, atrial natriuretic peptide, and cyclosporine, with other potentially effective medications in the pipeline. Additional pre-clinical and clinical research is needed to further investigate newer cardioprotective strategies to continue the current trend of improving outcomes following AMI.
Collapse
Affiliation(s)
- Paul Z Gerczuk
- Heart Institute, Good Samaritan Hospital, Wilshire Boulevard, Los Angeles, CA 90017, USA
| | | |
Collapse
|
48
|
Dae MW. Hypothermia and percutaneous coronary intervention during acute myocardial infarction. Interv Cardiol 2012. [DOI: 10.2217/ica.12.14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
49
|
Role of Mitogen-Activated Protein Kinases in Myocardial Ischemia-Reperfusion Injury during Heart Transplantation. J Transplant 2012; 2012:928954. [PMID: 22530110 PMCID: PMC3316985 DOI: 10.1155/2012/928954] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/09/2011] [Accepted: 12/23/2011] [Indexed: 12/13/2022] Open
Abstract
In solid organ transplantation, ischemia/reperfusion (IR) injury during organ procurement, storage and reperfusion is an unavoidable detrimental event for the graft, as it amplifies graft inflammation and rejection. Intracellular mitogen-activated protein kinase (MAPK) signaling pathways regulate inflammation and cell survival during IR injury. The four best-characterized MAPK subfamilies are the c-Jun NH2-terminal kinase (JNK), extracellular signal- regulated kinase-1/2 (ERK1/2), p38 MAPK, and big MAPK-1 (BMK1/ERK5). Here, we review the role of MAPK activation during myocardial IR injury as it occurs during heart transplantation. Most of our current knowledge regarding MAPK activation and cardioprotection comes from studies of preconditioning and postconditioning in nontransplanted hearts. JNK and p38 MAPK activation contributes to myocardial IR injury after prolonged hypothermic storage. p38 MAPK inhibition improves cardiac function after cold storage, rewarming and reperfusion. Small-molecule p38 MAPK inhibitors have been tested clinically in patients with chronic inflammatory diseases, but not in transplanted patients, so far. Organ transplantation offers the opportunity of starting a preconditioning treatment before organ procurement or during cold storage, thus modulating early events in IR injury. Future studies will need to evaluate combined strategies including p38 MAPK and/or JNK inhibition, ERK1/2 activation, pre- or postconditioning protocols, new storage solutions, and gentle reperfusion.
Collapse
|
50
|
Mochizuki T, Yu S, Katoh T, Aoki K, Sato S. Cardioprotective effect of therapeutic hypothermia at 34°C against ischaemia/reperfusion injury mediated by PI3K and nitric oxide in a rat isolated heart model. Resuscitation 2012; 83:238-42. [DOI: 10.1016/j.resuscitation.2011.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/15/2011] [Accepted: 08/13/2011] [Indexed: 10/17/2022]
|