1
|
Shabani P, Dong F, Yun J, Shin SY, Dinchman A, Kundu D, Goodwill A, Gadd J, Pucci T, Kolz C, Shockling L, Yin L, Chilian W, Ohanyan V. Does coronary microvascular dysfunction play a role in heart failure with reduced ejection fraction? J Mol Cell Cardiol 2025; 200:61-67. [PMID: 39884552 DOI: 10.1016/j.yjmcc.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/31/2024] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
Heart failure (HF) is a conundrum in that, current therapies only slow the progression of the disease. We posit, if the causal mechanism were targeted, progression of the disease could be stopped and potentially reversed. We hypothesize that insufficient myocardial blood flow (MBF) produces minute areas of ischemia, that lead to an accumulating injury culminating in HF. Accordingly, we determined the relationship between MBF and cardiac work (wall stress-rate product [WSRP]) in control C57Bl6/J mice (Control), mice with transaortic constriction to produce HF (TAC-HF) and HF mice treated with the coronary vasodilator, chromonar (4 weeks of treatment, TAC-Chromonar). MBF and WSRP were measured during norepinephrine infusion in anesthetized mice. In Controls, MBF increased when work/WSRP was increased with norepinephrine, however, when cardiac work was increased in TAC-HF, MBF did not increase. After chromonar treatment, when work increased, MBF increased. Changes in cardiac function paralleled MBF, i.e., decrement in cardiac function occurred in TAC-HF (ejection fraction), but 4 weeks of chromonar treatment reversed this functional decline. We also found in a model of cardiac hypoxia fate-mapping, a 5-fold increase in the number of hypoxic cardiac myocytes (TAC-HF vs Control), which was reversed by chromonar. Capillary densities also followed this trend with a decrease from Control in TAC-HF, which was restored by Chromonar. We propose that a cause of HF is inadequate MBF to meet the metabolic demands of the working heart. Pharmacological coronary vasodilation with chromonar to increase MBF in HF can reverse the functional decline and improve cardiac function.
Collapse
Affiliation(s)
- Parisa Shabani
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - June Yun
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Song Yi Shin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Amber Dinchman
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Dipan Kundu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Adam Goodwill
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - James Gadd
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Thomas Pucci
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Christopher Kolz
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Lindsay Shockling
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - William Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Vahagn Ohanyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA.
| |
Collapse
|
2
|
Tucker SM, Essajee SI, Warne CM, Dick GM, Goulopoulou S, Tune JD. Functional Adaptations in Coronary Reactivity following Healthy Pregnancy in Swine. J Vasc Res 2024; 62:78-87. [PMID: 39662079 PMCID: PMC11961330 DOI: 10.1159/000543116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024] Open
Abstract
INTRODUCTION This study was designed to test the hypothesis that coronary artery adaptations during the postpartum period are related to underlying reductions in endothelium-dependent relaxation and/or augmented smooth muscle vasoconstrictor responsiveness. METHODS In vivo experiments were performed in control (nonpregnant) and postpartum swine 35-45 days of postdelivery, with isometric tension experiments performed in isolated coronary arteries from those animals. RESULTS Coronary artery rings demonstrated increases in active tension generation following incremental increases in passive stretch with no differences between groups. Endothelium-dependent relaxation to bradykinin was attenuated in arteries from postpartum swine versus control (p < 0.005). Concentration-dependent contractions to the thromboxane A2 mimetic U46619 (0.1 nm-1 µm) were shifted rightward (EC50 27 ± 10 nm vs. 238 ± 66 nm; p < 0.01) in arteries from postpartum swine, with no changes in maximum contractile responses (p = 0.68). Intracoronary administration of U46619 (1 nm-1 µm) in open-chest swine decreased coronary blood flow ∼45 ± 3% in nonpregnant controls but had no effect on coronary blood flow in postpartum swine. Concentration-dependent contractions to KCl (5-90 mm) showed a rightward shift in arteries from postpartum swine (15.6 ± 1.4 mm vs. 21.8 ± 1.9 mm; p = 0.03), with no change in maximum response. Taken together, the postpartum period is associated with reduced endothelium-dependent relaxation and responsiveness to receptor-dependent and -independent vasoconstrictor stimuli. CONCLUSION These findings indicate that chronic exposure of the coronary circulation to the pregnancy/postpartum milieu results in functional adaptations in sensitivity to paracrine/hormonal compounds that should be further explored.
Collapse
MESH Headings
- Animals
- Female
- Coronary Vessels/drug effects
- Coronary Vessels/physiology
- Pregnancy
- Vasoconstriction/drug effects
- Adaptation, Physiological
- Vasoconstrictor Agents/pharmacology
- Vasodilation/drug effects
- Postpartum Period
- Swine
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Bradykinin/pharmacology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- Vasodilator Agents/pharmacology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Dose-Response Relationship, Drug
- Coronary Circulation/drug effects
Collapse
Affiliation(s)
- Selina M. Tucker
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX
| | - Salman I. Essajee
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX
| | - Cooper M. Warne
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX
| | - Gregory M. Dick
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX
| | - Styliani Goulopoulou
- Lawrence D. Longo, MD Center for Perinatal Biology, Departments of Basic Sciences, Gynecology and Obstetrics, Loma Linda University, Loma Linda, CA
| | - Johnathan D. Tune
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX
| |
Collapse
|
3
|
Tucker SM, Essajee SI, Warne CM, Dick GM, Heard MP, Crowe N, Goulopoulou S, Tune JD. Impaired balance between coronary blood flow and myocardial metabolism in postpartum swine. J Mol Cell Cardiol 2024; 194:96-104. [PMID: 38971217 DOI: 10.1016/j.yjmcc.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Understanding of the mechanisms contributing to the increased maternal susceptibility for major adverse cardiovascular events in the postpartum period remains poor. Accordingly, this study tested the hypothesis that the balance between coronary blood flow and myocardial metabolism is compromised during the puerperium period (35-45 days post-delivery) in swine. Systemic and coronary hemodynamic responses were assessed in anesthetized, open-chest control (nonpregnant) and puerperium/postpartum swine at baseline and in response to intravenous infusion of dobutamine (1-30 μg/kg/min). Blood pressure and heart rate were lower in postpartum swine at baseline and in response to dobutamine (P < 0.05). Coronary blood flow and myocardial oxygen delivery were significantly diminished at baseline in postpartum swine (P < 0.001), which corresponded with ∼35% reduction in myocardial oxygen consumption (MVO2) (P < 0.001). Postpartum swine displayed enhanced retrograde coronary flow, larger cardiomyocyte area (P < 0.01) and marked capillary rarefaction (P < 0.01). The relationship between coronary blood flow and heart rate (P < 0.05) or MVO2 (P < 0.001) was significantly diminished in postpartum swine as dobutamine increased MVO2 up to ∼135% in both groups. This reduction in myocardial perfusion was associated with decreases in myocardial lactate uptake (P < 0.001), increases in coronary venous PCO2 (P < 0.01) and decreased coronary venous pH (P < 0.01). These findings suggest an impaired balance between coronary blood flow and myocardial metabolism could contribute to the increased incidence of maternal myocardial ischemia and premature death in the postpartum period.
Collapse
Affiliation(s)
- Selina M Tucker
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Salman I Essajee
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Cooper M Warne
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Gregory M Dick
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Michael P Heard
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Nicole Crowe
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States of America
| | - Styliani Goulopoulou
- Lawrence D. Longo, MD Center for Perinatal Biology, Departments of Basic Sciences, Gynecology and Obstetrics Loma Linda University, Loma Linda, CA, United States of America
| | - Johnathan D Tune
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States of America.
| |
Collapse
|
4
|
McCallinhart PE, Chade AR, Bender SB, Trask AJ. Expanding landscape of coronary microvascular disease in co-morbid conditions: Metabolic disease and beyond. J Mol Cell Cardiol 2024; 192:26-35. [PMID: 38734061 PMCID: PMC11340124 DOI: 10.1016/j.yjmcc.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Coronary microvascular disease (CMD) and impaired coronary blood flow control are defects that occur early in the pathogenesis of heart failure in cardiometabolic conditions, prior to the onset of atherosclerosis. In fact, recent studies have shown that CMD is an independent predictor of cardiac morbidity and mortality in patients with obesity and metabolic disease. CMD is comprised of functional, structural, and mechanical impairments that synergize and ultimately reduce coronary blood flow in metabolic disease and in other co-morbid conditions, including transplant, autoimmune disorders, chemotherapy-induced cardiotoxicity, and remote injury-induced CMD. This review summarizes the contemporary state-of-the-field related to CMD in metabolic and these other co-morbid conditions based on mechanistic data derived mostly from preclinical small- and large-animal models in light of available clinical evidence and given the limitations of studying these mechanisms in humans. In addition, we also discuss gaps in current understanding, emerging areas of interest, and opportunities for future investigations in this field.
Collapse
Affiliation(s)
- Patricia E McCallinhart
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States of America
| | - Alejandro R Chade
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, United States of America; Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States of America
| | - Shawn B Bender
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States of America; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, MO, United States of America.
| | - Aaron J Trask
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States of America; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States of America.
| |
Collapse
|
5
|
Tune JD, Warne CM, Essajee SI, Tucker SM, Figueroa CA, Dick GM, Beard DA. Unraveling the Gordian knot of coronary pressure-flow autoregulation. J Mol Cell Cardiol 2024; 190:82-91. [PMID: 38608928 DOI: 10.1016/j.yjmcc.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
The coronary circulation has the inherent ability to maintain myocardial perfusion constant over a wide range of perfusion pressures. The phenomenon of pressure-flow autoregulation is crucial in response to flow-limiting atherosclerotic lesions which diminish coronary driving pressure and increase risk of myocardial ischemia and infarction. Despite well over half a century of devoted research, understanding of the mechanisms responsible for autoregulation remains one of the most fundamental and contested questions in the field today. The purpose of this review is to highlight current knowledge regarding the complex interrelationship between the pathways and mechanisms proposed to dictate the degree of coronary pressure-flow autoregulation. Our group recently likened the intertwined nature of the essential determinants of coronary flow control to the symbolically unsolvable "Gordian knot". To further efforts to unravel the autoregulatory "knot", we consider recent challenges to the local metabolic and myogenic hypotheses and the complicated dynamic structural and functional heterogeneity unique to the heart and coronary circulation. Additional consideration is given to interrogation of putative mediators, role of K+ and Ca2+ channels, and recent insights from computational modeling studies. Improved understanding of how specific vasoactive mediators, pathways, and underlying disease states influence coronary pressure-flow relations stands to significantly reduce morbidity and mortality for what remains the leading cause of death worldwide.
Collapse
Affiliation(s)
- Johnathan D Tune
- Department of Physiology and Anatomy, University of North Texas Health Science Center, USA.
| | - Cooper M Warne
- Department of Physiology and Anatomy, University of North Texas Health Science Center, USA
| | - Salman I Essajee
- Department of Physiology and Anatomy, University of North Texas Health Science Center, USA
| | - Selina M Tucker
- Department of Physiology and Anatomy, University of North Texas Health Science Center, USA
| | - C Alberto Figueroa
- Section of Vascular Surgery, Department of Surgery, University of Michigan, USA; Department of Biomedical Engineering, University of Michigan, USA
| | - Gregory M Dick
- Department of Physiology and Anatomy, University of North Texas Health Science Center, USA
| | - Daniel A Beard
- Department of Molecular and Integrative Physiology, University of Michigan, USA
| |
Collapse
|
6
|
Kanithi M, Kumari L, Yalakaturi K, Munjal K, Jimitreddy S, Kandamuri M, Veeramachineni P, Chopra H, Junapudi S. Nanoparticle Polymers Influence on Cardiac Health: Good or Bad for Cardiac Physiology? Curr Probl Cardiol 2024; 49:102145. [PMID: 37852559 DOI: 10.1016/j.cpcardiol.2023.102145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
Cardiovascular diseases (CVD) are one of the leading causes of death and morbidity worldwide. Lifestyle modifications, medications, and addressing epidemiological factors have long been at the forefront of targeting therapeutics for CVD. Treatments can be further complicated given the intersection of gender, age, unique comorbidities, and healthcare access, among many other factors. Therefore, expanding treatment and diagnostic modalities for CVD is absolutely necessary. Nanoparticles and nanomaterials are increasingly being used as therapeutic and diagnostic modalities in various disciplines of biomedicine. Nanoparticles have multiple ways of interacting with the cardiovascular system. Some of them alter cardiac physiology by impacting ion channels, whereas others influence ions directly or indirectly, improving cellular death via decreasing oxidative stress. While embedding nanoparticles into therapeutics can help enhance healthy cardiovascular function in other scenarios, they can also impair physiology by increasing reactive oxidative species and leading to cardiotoxicity. This review explores different types of nanoparticles, their effects, and the applicable dosages to create a better foundation for understanding the current research findings.
Collapse
Affiliation(s)
- Manasa Kanithi
- Michigan State University College of Osteopathic Medicine, East Lansing, MI
| | - Lata Kumari
- People University of Medical and Health Sciences, Nawab Shah, Sindh, Pakistan
| | | | - Kavita Munjal
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | | | | | | | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.
| | - Sunil Junapudi
- Geethanjali College of Pharmacy, Hyderabad, Telangana, India.
| |
Collapse
|
7
|
Tune JD, Goodwill AG, Baker HE, Dick GM, Warne CM, Tucker SM, Essajee SI, Bailey CA, Klasing JA, Russell JJ, McCallinhart PE, Trask AJ, Bender SB. Chronic high-rate pacing induces heart failure with preserved ejection fraction-like phenotype in Ossabaw swine. Basic Res Cardiol 2022; 117:50. [PMID: 36222894 PMCID: PMC12010922 DOI: 10.1007/s00395-022-00958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 09/12/2022] [Accepted: 09/28/2022] [Indexed: 01/31/2023]
Abstract
The lack of pre-clinical large animal models of heart failure with preserved ejection fraction (HFpEF) remains a growing, yet unmet obstacle to improving understanding of this complex condition. We examined whether chronic cardiometabolic stress in Ossabaw swine, which possess a genetic propensity for obesity and cardiovascular complications, produces an HFpEF-like phenotype. Swine were fed standard chow (lean; n = 13) or an excess calorie, high-fat, high-fructose diet (obese; n = 16) for ~ 18 weeks with lean (n = 5) and obese (n = 8) swine subjected to right ventricular pacing (180 beats/min for ~ 4 weeks) to induce heart failure (HF). Baseline blood pressure, heart rate, LV end-diastolic volume, and ejection fraction were similar between groups. High-rate pacing increased LV end-diastolic pressure from ~ 11 ± 1 mmHg in lean and obese swine to ~ 26 ± 2 mmHg in lean HF and obese HF swine. Regression analyses revealed an upward shift in LV diastolic pressure vs. diastolic volume in paced swine that was associated with an ~ twofold increase in myocardial fibrosis and an ~ 50% reduction in myocardial capillary density. Hemodynamic responses to graded hemorrhage revealed an ~ 40% decrease in the chronotropic response to reductions in blood pressure in lean HF and obese HF swine without appreciable changes in myocardial oxygen delivery or transmural perfusion. These findings support that high-rate ventricular pacing of lean and obese Ossabaw swine initiates underlying cardiac remodeling accompanied by elevated LV filling pressures with normal ejection fraction. This distinct pre-clinical tool provides a unique platform for further mechanistic and therapeutic studies of this highly complex syndrome.
Collapse
Affiliation(s)
- Johnathan D Tune
- Department of Physiology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA.
| | - Adam G Goodwill
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Hana E Baker
- Diabetes and Complications Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Gregory M Dick
- Department of Physiology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Cooper M Warne
- Department of Physiology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Selina M Tucker
- Department of Physiology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Salman I Essajee
- Department of Physiology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Chastidy A Bailey
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Jessica A Klasing
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Jacob J Russell
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Patricia E McCallinhart
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Aaron J Trask
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Shawn B Bender
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
8
|
Cluzel GL, Ryan PM, Herisson FM, Caplice NM. High-fidelity porcine models of metabolic syndrome: a contemporary synthesis. Am J Physiol Endocrinol Metab 2022; 322:E366-E381. [PMID: 35224983 DOI: 10.1152/ajpendo.00413.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review aims to describe and compare porcine models of metabolic syndrome. This syndrome and its associated secondary comorbidities are set to become the greatest challenge to healthcare providers and policy makers in the coming century. However, an incomplete understanding of the pathogenesis has left significant knowledge gaps in terms of efficacious therapeutics. To further our comprehension and, in turn, management of metabolic syndrome, appropriate high-fidelity models of the disease complex are of great importance. In this context, our review aims to assess the most promising porcine models of metabolic syndrome currently available for their similarity to the human phenotype. In addition, we aim to highlight the strengths and shortcomings of each model in an attempt to identify the most appropriate application of each. Although no porcine model perfectly recapitulates the human metabolic syndrome, several pose satisfactory approximations. The Ossabaw miniature swine in particular represents a highly translatable model that develops each of the core parameters of the syndrome with many of the associated secondary comorbidities. Future high-fidelity porcine models of metabolic syndrome need to focus on secondary sequelae replication, which may require extended induction period to reveal.
Collapse
Affiliation(s)
- Gaston L Cluzel
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul M Ryan
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Florence M Herisson
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Noel M Caplice
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
9
|
Badin JK, Eggenberger C, Rodenbeck SD, Hashmi ZA, Wang IW, Garcia JP, Alloosh M, Sturek M. Intracellular Ca 2+ Dysregulation in Coronary Smooth Muscle Is Similar in Coronary Disease of Humans and Ossabaw Miniature Swine. J Cardiovasc Transl Res 2022; 15:167-178. [PMID: 34286469 PMCID: PMC10620470 DOI: 10.1007/s12265-021-10153-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 07/02/2021] [Indexed: 12/31/2022]
Abstract
Intracellular free Ca2+ ([Ca2+]i) dysregulation occurs in coronary smooth muscle (CSM) in atherosclerotic coronary artery disease (CAD) of metabolic syndrome (MetS) swine. Our goal was to determine how CAD severity, arterial structure, and MetS risk factors associate with [Ca2+]i dysregulation in human CAD compared to changes in Ossabaw miniature swine. CSM cells were dispersed from coronary arteries of explanted hearts from transplant recipients and from lean and MetS swine with CAD. CSM [Ca2+]i elicited by Ca2+ influx and sarcoplasmic reticulum (SR) Ca2+ release and sequestration was measured with fura-2. Increased [Ca2+]i signaling was associated with advanced age and a greater media area in human CAD. Decreased [Ca2+]i signaling was associated with a greater number of risk factors and a higher plaque burden in human and swine CAD. Similar [Ca2+]i dysregulation exhibited in human and Ossabaw swine CSM provides strong evidence for the translational relevance of this large animal model.
Collapse
Affiliation(s)
- Jill K Badin
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, 635 Barnhill Dr., Medical Sciences, Room 385, Indianapolis, IN, 46202, USA
| | - Caleb Eggenberger
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, 635 Barnhill Dr., Medical Sciences, Room 385, Indianapolis, IN, 46202, USA
- Marian University College of Osteopathic Medicine, Indianapolis, IN, 46222, USA
| | - Stacey Dineen Rodenbeck
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, 635 Barnhill Dr., Medical Sciences, Room 385, Indianapolis, IN, 46202, USA
- Department of Biology, Harding University, Searcy, AR, 72149, USA
| | - Zubair A Hashmi
- Cardiothoracic Transplantation Surgery, Indiana University - Methodist Hospital, Indianapolis, IN, 46202, USA
| | - I-Wen Wang
- Cardiothoracic Transplantation Surgery, Indiana University - Methodist Hospital, Indianapolis, IN, 46202, USA
| | - Jose P Garcia
- Cardiothoracic Transplantation Surgery, Indiana University - Methodist Hospital, Indianapolis, IN, 46202, USA
| | - Mouhamad Alloosh
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, 635 Barnhill Dr., Medical Sciences, Room 385, Indianapolis, IN, 46202, USA
| | - Michael Sturek
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, 635 Barnhill Dr., Medical Sciences, Room 385, Indianapolis, IN, 46202, USA.
| |
Collapse
|
10
|
Brandt MM, Cheng C, Merkus D, Duncker DJ, Sorop O. Mechanobiology of Microvascular Function and Structure in Health and Disease: Focus on the Coronary Circulation. Front Physiol 2022; 12:771960. [PMID: 35002759 PMCID: PMC8733629 DOI: 10.3389/fphys.2021.771960] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
The coronary microvasculature plays a key role in regulating the tight coupling between myocardial perfusion and myocardial oxygen demand across a wide range of cardiac activity. Short-term regulation of coronary blood flow in response to metabolic stimuli is achieved via adjustment of vascular diameter in different segments of the microvasculature in conjunction with mechanical forces eliciting myogenic and flow-mediated vasodilation. In contrast, chronic adjustments in flow regulation also involve microvascular structural modifications, termed remodeling. Vascular remodeling encompasses changes in microvascular diameter and/or density being largely modulated by mechanical forces acting on the endothelium and vascular smooth muscle cells. Whereas in recent years, substantial knowledge has been gathered regarding the molecular mechanisms controlling microvascular tone and how these are altered in various diseases, the structural adaptations in response to pathologic situations are less well understood. In this article, we review the factors involved in coronary microvascular functional and structural alterations in obstructive and non-obstructive coronary artery disease and the molecular mechanisms involved therein with a focus on mechanobiology. Cardiovascular risk factors including metabolic dysregulation, hypercholesterolemia, hypertension and aging have been shown to induce microvascular (endothelial) dysfunction and vascular remodeling. Additionally, alterations in biomechanical forces produced by a coronary artery stenosis are associated with microvascular functional and structural alterations. Future studies should be directed at further unraveling the mechanisms underlying the coronary microvascular functional and structural alterations in disease; a deeper understanding of these mechanisms is critical for the identification of potential new targets for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Maarten M Brandt
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Caroline Cheng
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Division of Internal Medicine and Dermatology, Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Walter Brendel Center of Experimental Medicine (WBex), LMU Munich, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Oana Sorop
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
11
|
Severino P, D’Amato A, Pucci M, Infusino F, Birtolo LI, Mariani MV, Lavalle C, Maestrini V, Mancone M, Fedele F. Ischemic Heart Disease and Heart Failure: Role of Coronary Ion Channels. Int J Mol Sci 2020; 21:E3167. [PMID: 32365863 PMCID: PMC7246492 DOI: 10.3390/ijms21093167] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 01/09/2023] Open
Abstract
Heart failure is a complex syndrome responsible for high rates of death and hospitalization. Ischemic heart disease is one of the most frequent causes of heart failure and it is normally attributed to coronary artery disease, defined by the presence of one or more obstructive plaques, which determine a reduced coronary blood flow, causing myocardial ischemia and consequent heart failure. However, coronary obstruction is only an element of a complex pathophysiological process that leads to myocardial ischemia. In the literature, attention paid to the role of microcirculation, in the pathophysiology of ischemic heart disease and heart failure, is growing. Coronary microvascular dysfunction determines an inability of coronary circulation to satisfy myocardial metabolic demands, due to the imbalance of coronary blood flow regulatory mechanisms, including ion channels, leading to the development of hypoxia, fibrosis and tissue death, which may determine a loss of myocardial function, even beyond the presence of atherosclerotic epicardial plaques. For this reason, ion channels may represent the link among coronary microvascular dysfunction, ischemic heart disease and consequent heart failure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Francesco Fedele
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (P.S.); (A.D.); (M.P.); (F.I.); (L.I.B.); (M.V.M.); (C.L.); (V.M.); (M.M.)
| |
Collapse
|
12
|
Abstract
Swine disease models are essential for mimicry of human metabolic and vascular pathophysiology, thereby enabling high-fidelity translation to human medicine. The worldwide epidemic of obesity, metabolic disease, and diabetes has prompted the focus on these diseases in this review. We highlight the remarkable similarity between Ossabaw miniature swine and humans with metabolic syndrome and atherosclerosis. Although the evidence is strongest for swine models of coronary artery disease, findings are generally applicable to any vascular bed. We discuss the major strengths and weaknesses of swine models. The development of vascular imaging is an example of optimal vascular engineering in swine. Although challenges regarding infrastructure and training of engineers in the use of swine models exist, opportunities are ripe for gene editing, studies of molecular mechanisms, and use of swine in coronary artery imaging and testing of devices that can move quickly to human clinical studies.
Collapse
Affiliation(s)
- Michael Sturek
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120, USA; .,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 46907, USA
| | - Mouhamad Alloosh
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120, USA;
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| |
Collapse
|
13
|
Sorop O, van de Wouw J, Merkus D, Duncker DJ. Coronary Microvascular Dysfunction in Cardiovascular Disease: Lessons from Large Animal Models. Microcirculation 2020. [DOI: 10.1007/978-3-030-28199-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Sassoon DJ, Tune JD, Mather KJ, Noblet JN, Eagleson MA, Conteh AM, Sturek JT, Goodwill AG. Glucagon-Like Peptide 1 Receptor Activation Augments Cardiac Output and Improves Cardiac Efficiency in Obese Swine After Myocardial Infarction. Diabetes 2017; 66:2230-2240. [PMID: 28483802 PMCID: PMC5521862 DOI: 10.2337/db16-1206] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 04/30/2017] [Indexed: 01/15/2023]
Abstract
This study tested the hypothesis that glucagon-like peptide 1 (GLP-1) therapies improve cardiac contractile function at rest and in response to adrenergic stimulation in obese swine after myocardial infarction. Obese Ossabaw swine were subjected to gradually developing regional coronary occlusion using an ameroid occluder placed around the left anterior descending coronary artery. Animals received subcutaneous injections of saline or liraglutide (0.005-0.015 mg/kg/day) for 30 days after ameroid placement. Cardiac performance was assessed at rest and in response to sympathomimetic challenge (dobutamine 0.3-10 μg/kg/min) using a left ventricular pressure/volume catheter. Liraglutide increased diastolic relaxation (dP/dt; Tau 1/2; Tau 1/e) during dobutamine stimulation (P < 0.01) despite having no influence on the magnitude of myocardial infarction. The slope of the end-systolic pressure volume relationship (i.e., contractility) increased with dobutamine after liraglutide (P < 0.001) but not saline administration (P = 0.63). Liraglutide enhanced the slope of the relationship between cardiac power and pressure volume area (i.e., cardiac efficiency) with dobutamine (P = 0.017). Hearts from animals treated with liraglutide demonstrated decreased β1-adrenoreceptor expression. These data support that GLP-1 agonism augments cardiac efficiency via attenuation of maladaptive sympathetic signaling in the setting of obesity and myocardial infarction.
Collapse
Affiliation(s)
- Daniel J Sassoon
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Johnathan D Tune
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Kieren J Mather
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Jillian N Noblet
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Mackenzie A Eagleson
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Abass M Conteh
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Joshua T Sturek
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Adam G Goodwill
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
15
|
Abstract
The heart is uniquely responsible for providing its own blood supply through the coronary circulation. Regulation of coronary blood flow is quite complex and, after over 100 years of dedicated research, is understood to be dictated through multiple mechanisms that include extravascular compressive forces (tissue pressure), coronary perfusion pressure, myogenic, local metabolic, endothelial as well as neural and hormonal influences. While each of these determinants can have profound influence over myocardial perfusion, largely through effects on end-effector ion channels, these mechanisms collectively modulate coronary vascular resistance and act to ensure that the myocardial requirements for oxygen and substrates are adequately provided by the coronary circulation. The purpose of this series of Comprehensive Physiology is to highlight current knowledge regarding the physiologic regulation of coronary blood flow, with emphasis on functional anatomy and the interplay between the physical and biological determinants of myocardial oxygen delivery. © 2017 American Physiological Society. Compr Physiol 7:321-382, 2017.
Collapse
Affiliation(s)
- Adam G Goodwill
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Gregory M Dick
- California Medical Innovations Institute, 872 Towne Center Drive, Pomona, CA
| | - Alexander M Kiel
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Drive, Lafayette, IN
| | - Johnathan D Tune
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
16
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
17
|
McKenney-Drake ML, Rodenbeck SD, Owen MK, Schultz KA, Alloosh M, Tune JD, Sturek M. Biphasic alterations in coronary smooth muscle Ca(2+) regulation in a repeat cross-sectional study of coronary artery disease severity in metabolic syndrome. Atherosclerosis 2016; 249:1-9. [PMID: 27062403 PMCID: PMC4879093 DOI: 10.1016/j.atherosclerosis.2016.03.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/02/2016] [Accepted: 03/24/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Coronary artery disease (CAD) is progressive, classified by stages of severity. Alterations in Ca(2+) regulation within coronary smooth muscle (CSM) cells in metabolic syndrome (MetS) have been observed, but there is a lack of data in relatively early (mild) and late (severe) stages of CAD. The current study examined alterations in CSM Ca(2+) regulation at several time points during CAD progression. METHODS MetS was induced by feeding an excess calorie atherogenic diet for 6, 9, or 12 months and compared to age-matched lean controls. CAD was measured with intravascular ultrasound (IVUS). Intracellular Ca(2+) was assessed with fura-2. RESULTS IVUS revealed that the extent of atherosclerotic CAD correlated with the duration on atherogenic diet. Fura-2 imaging of intracellular Ca(2+) in CSM cells revealed heightened Ca(2+) signaling at 9 months on diet, compared to 6 and 12 months, and to age-matched lean controls. Isolated coronary artery rings from swine fed for 9 months followed the same pattern, developing greater tension to depolarization, compared to 6 and 12 months (6 months = 1.8 ± 0.6 g, 9 months = 5.0 ± 1.0 g, 12 months = 0.7 ± 0.1 g). CSM in severe atherosclerotic plaques showed dampened Ca(2+) regulation and decreased proliferation compared to CSM from the wall. CONCLUSIONS These CSM Ca(2+) regulation data from several time points in CAD progression and severity help to resolve the controversy regarding up-vs. down-regulation of CSM Ca(2+) regulation in previous reports. These data are consistent with the hypothesis that alterations in sarcoplasmic reticulum Ca(2+) contribute to progression of atherosclerotic CAD in MetS.
Collapse
Affiliation(s)
- Mikaela L McKenney-Drake
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN 46202, USA; College of Pharmacy & Health Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA
| | - Stacey D Rodenbeck
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN 46202, USA
| | - Meredith K Owen
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN 46202, USA; Covance, Inc., 671 South Meridian Road, Greenfield, IN 46140, USA
| | - Kyle A Schultz
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN 46202, USA
| | - Mouhamad Alloosh
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN 46202, USA
| | - Johnathan D Tune
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN 46202, USA
| | - Michael Sturek
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN 46202, USA.
| |
Collapse
|
18
|
Noblet JN, Goodwill AG, Sassoon DJ, Kiel AM, Tune JD. Leptin augments coronary vasoconstriction and smooth muscle proliferation via a Rho-kinase-dependent pathway. Basic Res Cardiol 2016; 111:25. [PMID: 26975316 PMCID: PMC5126981 DOI: 10.1007/s00395-016-0545-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/16/2016] [Accepted: 02/26/2016] [Indexed: 10/24/2022]
Abstract
Leptin has been implicated as a key upstream mediator of pathways associated with coronary vascular dysfunction and disease. The purpose of this investigation was to test the hypothesis that leptin modifies the coronary artery proteome and promotes increases in coronary smooth muscle contraction and proliferation via influences on Rho kinase signaling. Global proteomic assessment of coronary arteries from lean swine cultured with obese concentrations of leptin (30 ng/mL) for 3 days revealed significant alterations in the coronary artery proteome (68 proteins) and identified an association between leptin treatment and calcium signaling/contraction (four proteins) and cellular growth and proliferation (35 proteins). Isometric tension studies demonstrated that both acute (30 min) and chronic (3 days, serum-free media) exposure to obese concentrations of leptin potentiated depolarization-induced contraction of coronary arteries. Inhibition of Rho kinase significantly reduced leptin-mediated increases in coronary artery contractions. The effects of leptin on the functional expression of Rho kinase were time-dependent, as acute treatment increased Rho kinase activity while chronic (3 day) exposure was associated with increases in Rho kinase protein abundance. Proliferation assays following chronic leptin administration (8 day, serum-containing media) demonstrated that leptin augmented coronary vascular smooth muscle proliferation and increased Rho kinase activity. Inhibition of Rho kinase significantly reduced these effects of leptin. Taken together, these findings demonstrate that leptin promotes increases in coronary vasoconstriction and smooth muscle proliferation and indicate that these phenotypic effects are associated with alterations in the coronary artery proteome and dynamic effects on the Rho kinase pathway.
Collapse
Affiliation(s)
- Jillian N Noblet
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA
| | - Adam G Goodwill
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA
| | - Daniel J Sassoon
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA
| | - Alexander M Kiel
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Johnathan D Tune
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA.
| |
Collapse
|
19
|
Goodwill AG, Fu L, Noblet JN, Casalini ED, Sassoon D, Berwick ZC, Kassab GS, Tune JD, Dick GM. KV7 channels contribute to paracrine, but not metabolic or ischemic, regulation of coronary vascular reactivity in swine. Am J Physiol Heart Circ Physiol 2016; 310:H693-704. [PMID: 26825518 DOI: 10.1152/ajpheart.00688.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/20/2016] [Indexed: 12/30/2022]
Abstract
Hydrogen peroxide (H2O2) and voltage-dependent K(+) (KV) channels play key roles in regulating coronary blood flow in response to metabolic, ischemic, and paracrine stimuli. The KV channels responsible have not been identified, but KV7 channels are possible candidates. Existing data regarding KV7 channel function in the coronary circulation (limited to ex vivo assessments) are mixed. Thus we examined the hypothesis that KV7 channels are present in cells of the coronary vascular wall and regulate vasodilation in swine. We performed a variety of molecular, biochemical, and functional (in vivo and ex vivo) studies. Coronary arteries expressed KCNQ genes (quantitative PCR) and KV7.4 protein (Western blot). Immunostaining demonstrated KV7.4 expression in conduit and resistance vessels, perhaps most prominently in the endothelial and adventitial layers. Flupirtine, a KV7 opener, relaxed coronary artery rings, and this was attenuated by linopirdine, a KV7 blocker. Endothelial denudation inhibited the flupirtine-induced and linopirdine-sensitive relaxation of coronary artery rings. Moreover, linopirdine diminished bradykinin-induced endothelial-dependent relaxation of coronary artery rings. There was no effect of intracoronary flupirtine or linopirdine on coronary blood flow at the resting heart rate in vivo. Linopirdine had no effect on coronary vasodilation in vivo elicited by ischemia, H2O2, or tachycardia. However, bradykinin increased coronary blood flow in vivo, and this was attenuated by linopirdine. These data indicate that KV7 channels are expressed in some coronary cell type(s) and influence endothelial function. Other physiological functions of coronary vascular KV7 channels remain unclear, but they do appear to contribute to endothelium-dependent responses to paracrine stimuli.
Collapse
Affiliation(s)
- Adam G Goodwill
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Lijuan Fu
- California Medical Innovations Institute, San Diego, California
| | - Jillian N Noblet
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Eli D Casalini
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Daniel Sassoon
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; and
| | | | | | - Johnathan D Tune
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Gregory M Dick
- California Medical Innovations Institute, San Diego, California
| |
Collapse
|
20
|
|
21
|
Owen MK, Noblet JN, Sassoon DJ, Conteh AM, Goodwill AG, Tune JD. Perivascular adipose tissue and coronary vascular disease. Arterioscler Thromb Vasc Biol 2014; 34:1643-9. [PMID: 24790142 DOI: 10.1161/atvbaha.114.303033] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Coronary perivascular adipose tissue is a naturally occurring adipose tissue depot that normally surrounds the major coronary arteries on the surface of the heart. Although originally thought to promote vascular health and integrity, there is a growing body of evidence to support that coronary perivascular adipose tissue displays a distinct phenotype relative to other adipose depots and is capable of producing local factors with the potential to augment coronary vascular tone, inflammation, and the initiation and progression of coronary artery disease. The purpose of the present review is to outline previous findings about the cardiovascular effects of coronary perivascular adipose tissue and the potential mechanisms by which adipose-derived factors may influence coronary vascular function and the progression of atherogenesis.
Collapse
Affiliation(s)
- Meredith Kohr Owen
- From the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill (M.K.O.); and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis (J.N.N., D.J.S., A.M.C., A.G.G., J.D.T.)
| | - Jillian N Noblet
- From the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill (M.K.O.); and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis (J.N.N., D.J.S., A.M.C., A.G.G., J.D.T.)
| | - Daniel J Sassoon
- From the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill (M.K.O.); and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis (J.N.N., D.J.S., A.M.C., A.G.G., J.D.T.)
| | - Abass M Conteh
- From the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill (M.K.O.); and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis (J.N.N., D.J.S., A.M.C., A.G.G., J.D.T.)
| | - Adam G Goodwill
- From the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill (M.K.O.); and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis (J.N.N., D.J.S., A.M.C., A.G.G., J.D.T.)
| | - Johnathan D Tune
- From the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill (M.K.O.); and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis (J.N.N., D.J.S., A.M.C., A.G.G., J.D.T.).
| |
Collapse
|
22
|
DuPont JJ, Hill MA, Bender SB, Jaisser F, Jaffe IZ. Aldosterone and vascular mineralocorticoid receptors: regulators of ion channels beyond the kidney. Hypertension 2014; 63:632-7. [PMID: 24379184 PMCID: PMC3954941 DOI: 10.1161/hypertensionaha.113.01273] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|