1
|
Yang S, Penna V, Lavine KJ. Functional diversity of cardiac macrophages in health and disease. Nat Rev Cardiol 2025; 22:431-442. [PMID: 39743564 DOI: 10.1038/s41569-024-01109-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 01/04/2025]
Abstract
Macrophages make up a substantial portion of the stromal compartment of the heart in health and disease. In the past decade, the origins of these cardiac macrophages have been established as two broad populations derived from either embryonic or definitive haematopoiesis and that can be distinguished by the expression of CC-motif chemokine receptor 2 (CCR2). These cardiac macrophage populations are transcriptionally distinct and have differing cell surface markers and divergent roles in cardiac homeostasis and disease. Embryonic-derived CCR2- macrophages are a tissue-resident population that participates in tissue development, repair and maintenance, whereas CCR2+ macrophages are derived from definitive haematopoiesis and contribute to inflammation and tissue damage. Studies from the past 5 years have leveraged single-cell RNA sequencing technologies to expand our understanding of cardiac macrophage diversity, particularly of the monocyte-derived macrophage populations that reside in the injured and diseased heart. Emerging technologies in spatial transcriptomics have enabled the identification of distinct disease-associated cellular neighbourhoods consisting of macrophages, other immune cells and fibroblasts, highlighting the involvement of macrophages in cell-cell communication. Together, these discoveries lend new insights into the role of specific macrophage populations in the pathogenesis of cardiac disease, which can pave the way for the identification of new therapeutic targets and the development of diagnostic tools. In this Review, we discuss the developmental origin of cardiac macrophages and describe newly identified cell states and associated cellular neighbourhoods in the steady state and injury settings. We also discuss various contributions and effector functions of cardiac macrophages in homeostasis and disease.
Collapse
Affiliation(s)
- Steven Yang
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Vinay Penna
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kory J Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
2
|
Wu B, Constanty F, Beisaw A. Cardiac regeneration: Unraveling the complex network of intercellular crosstalk. Semin Cell Dev Biol 2025; 171:103619. [PMID: 40367899 DOI: 10.1016/j.semcdb.2025.103619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/13/2025] [Accepted: 05/06/2025] [Indexed: 05/16/2025]
Abstract
The heart is composed of multiple cell types, including cardiomyocytes, endothelial/endocardial cells, fibroblasts, resident immune cells and epicardium and crosstalk between these cell types is crucial for proper cardiac function and homeostasis. In response to cardiac injury or disease, cell-cell interactions and intercellular crosstalk contribute to remodeling to compensate reduced heart function. In some vertebrates, the heart can regenerate following cardiac injury. While cardiomyocytes play a crucial role in this process, additional cell types are necessary to create a pro-regenerative microenvironment in the injured heart. Here, we review recent literature regarding the importance of cellular crosstalk in promoting cardiac regeneration and provide insight into emerging technologies to investigate cell-cell interactions in vivo. Lastly, we explore recent studies highlighting the importance of inter-organ communication in response to injury and promotion of cardiac regeneration. Importantly, understanding how intercellular and inter-organ crosstalk promote cardiac regeneration is essential for the development of therapeutic strategies to stimulate regeneration in the human heart.
Collapse
Affiliation(s)
- Bailin Wu
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Heidelberg/Mannheim partner site, Germany
| | - Florian Constanty
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Heidelberg/Mannheim partner site, Germany; Helmholtz-Institute for Translational AngioCardioScience (HI-TAC) of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) at Heidelberg University, Heidelberg 69117, Germany
| | - Arica Beisaw
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Heidelberg/Mannheim partner site, Germany; Helmholtz-Institute for Translational AngioCardioScience (HI-TAC) of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) at Heidelberg University, Heidelberg 69117, Germany.
| |
Collapse
|
3
|
Punde A, Rayrikar A, Maity S, Patra C. Extracellular matrix in cardiac morphogenesis, fibrosis, and regeneration. Cells Dev 2025:204023. [PMID: 40154789 DOI: 10.1016/j.cdev.2025.204023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/14/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
The extracellular matrix (ECM) plays a crucial role in providing structural integrity and regulating cell communication essential for organ development, homeostasis, and regeneration, including hearts. Evidence indicates that disruptions in the spatiotemporal expression or alterations in ECM components lead to cardiac malformations, including a wide range of congenital heart diseases (CHDs). Furthermore, research on injured hearts across various vertebrate species, some of which show effective regeneration while others experience irreversible fibrosis, underscores the significance of ECM molecules in cardiac regeneration. This review presents an overview of heart development and the dynamics of ECM during cardiac morphogenesis, beginning with the formation of the contractile heart tube and advancing to the development of distinct chambers separated by valves to facilitate unidirectional blood flow. Furthermore, we discuss research emphasizing the multifaceted roles of secreted molecules in mediating fibrosis and regeneration following myocardial injury.
Collapse
Affiliation(s)
- Ashwini Punde
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Amey Rayrikar
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Shreya Maity
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Chinmoy Patra
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India.
| |
Collapse
|
4
|
Moraitis I, Taelman J, Arozamena B, Mularoni L, Wienskowska O, Sanjuan Garriga X, Arregui L, Stefanovic M, Modolell Farré I, Guedea F, Diaz M, Guiu J. Mucosal Macrophages Govern Intestinal Regeneration in Response to Injury. Gastroenterology 2025:S0016-5085(25)00465-2. [PMID: 40086603 DOI: 10.1053/j.gastro.2025.01.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 01/15/2025] [Accepted: 01/30/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND & AIMS Radiation-induced enteritis develops in cancer patients treated with radiotherapy in the abdominal and pelvic cavity, a condition that impairs their quality of life. Radiation injury depletes proliferative intestinal stem cells; in response to this, the epithelium activates a regenerative program that facilitates the healing of the intestine. However, the mechanisms that induce the activation of the intestinal regenerative program are poorly characterized. METHODS In this study, we induced radiation-induced enteritis in mice through abdominal irradiation, mimicking clinical scenarios. Through imaging and flow cytometric analysis, we investigated the recruitment of macrophages to the small intestine during injury and healing. Additionally, we developed a coculture system for mouse and human intestinal organoids and macrophages to explore the cross talk between these cells. Then by combining in vivo ablation of macrophages, fluorescent lineage tracing, imaging, bulk RNA-sequencing (RNA-seq), single-cell RNA-seq, human intestinal organoids, and cell trajectory analysis, we studied the macrophage induction of intestinal regeneration at the cellular and molecular level. RESULTS Our findings revealed that macrophages are recruited around the intestinal stem cell compartment upon radiation injury, promoting a fetal-like reprogramming and proliferation of epithelial cells that drives the regeneration process. In contrast, macrophage ablation led to compromised regeneration. Moreover, our single-cell RNA-seq analysis identified key secreted molecules, neuregulin 1 and osteopontin, as pivotal players in regulating this process. Additionally, characterization of human macrophage/organoid cocultures and cell trajectory inference confirmed the conservation of macrophages' role in triggering the regenerative program in primary human cells. CONCLUSIONS This study identifies macrophages as essential contributors to intestinal regeneration beyond their innate immune response. Targeting macrophages therapeutically may hold promise in enhancing regeneration and improving the quality of life for cancer survivors.
Collapse
Affiliation(s)
- Ilias Moraitis
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L'Hospitalet de Llobregat, Barcelona, Spain; Biomedicine PhD Program, Universitat de Barcelona, Barcelona, Spain
| | - Jasin Taelman
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Borja Arozamena
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Loris Mularoni
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Olga Wienskowska
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Xavier Sanjuan Garriga
- Department of Pathology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Laura Arregui
- HUB-ICO-IDIBELL Biobank, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Milica Stefanovic
- Department of Radiobiology and Cancer, ONCOBELL, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Department of Radiation Oncology, Institut Català d'Oncologia (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ignasi Modolell Farré
- Servei de Física Mèdica i Protecció Radiològica, Institut Català d'Oncologia (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ferran Guedea
- Department of Radiobiology and Cancer, ONCOBELL, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Department of Radiation Oncology, Institut Català d'Oncologia (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mònica Diaz
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jordi Guiu
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L'Hospitalet de Llobregat, Barcelona, Spain; Centre for Networked Biomedical Research on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
5
|
Jia Z, Li B, Matsuo M, Dewar A, Mustafaraj A, Dey SK, Yuan J, Sun X. Foxa2-dependent uterine glandular cell differentiation is essential for successful implantation. Nat Commun 2025; 16:2465. [PMID: 40074766 PMCID: PMC11904179 DOI: 10.1038/s41467-025-57848-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Uterine receptivity is essential for successful implantation. In mice, uterine receptivity begins with the secretion of LIF from uterine glands stimulated by estrogen on the morning of day 4 pregnancy. We hypothesize that gland readiness for estrogen stimulation is indispensable for uterine receptivity. The current study reveals that uterine glands undergo a differentiation process with expanded branching during the preimplantation period. The single-cell RNA profiling of glandular cells identifies that LIF is expressed exclusively in a Prss29+ subgroup of glandular cells on day 4 of pregnancy. Interestingly, Foxa2-deficient glands lacking LIF production fail to develop branches and the functional Prss29+ subgroup. This Prss29+ subgroup develops prior to estrogen secretion. Collectively, our findings show that uterine glands undergo a FOXA2-dependent maturation process to acquire the competence, named "transitional phase", for entering the receptive phase. The "transitional phase", predicting uterine receptivity one day before implantation, is a landmark concept in uterine receptivity.
Collapse
Affiliation(s)
- Zhaoyu Jia
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Bo Li
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Mitsunori Matsuo
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA
- Department of Obstetrics and Gynecology, University of Tokyo, Tokyo, Japan
| | - Amanda Dewar
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Anxhela Mustafaraj
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Sudhansu K Dey
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| | - Jia Yuan
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Xiaofei Sun
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
6
|
Meng L, Chen HM, Zhang JS, Wu YR, Xu YZ. Matricellular proteins: From cardiac homeostasis to immune regulation. Biomed Pharmacother 2024; 180:117463. [PMID: 39305814 DOI: 10.1016/j.biopha.2024.117463] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/23/2024] [Accepted: 09/19/2024] [Indexed: 11/14/2024] Open
Abstract
Tissue repair after myocardial injury is a complex process involving changes in all aspects of the myocardial tissue, including the extracellular matrix (ECM). The ECM is composed of large structural proteins such as collagen and elastin and smaller proteins with major regulatory properties called matricellular proteins. Matricellular cell proteins exert their functions and elicit cellular responses by binding to structural proteins not limited to interactions with cell surface receptors, cytokines, or proteases. At the same time, matricellular proteins act as the "bridge" of information exchange between cells and ECM, maintaining the integrity of the cardiac structure and regulating the immune environment, which is a key factor in determining cardiac homeostasis. In this review, we present an overview of the identified matricellular proteins and summarize the current knowledge regarding their roles in maintaining cardiac homeostasis and regulating the immune system.
Collapse
Affiliation(s)
- Li Meng
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China
| | - Hui-Min Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China
| | - Jia-Sheng Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China
| | - Yi-Rong Wu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China.
| | - Yi-Zhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China.
| |
Collapse
|
7
|
Yin W, Chen Y, Wang W, Guo M, Tong L, Zhang M, Wang Z, Yuan H. Macrophage-mediated heart repair and remodeling: A promising therapeutic target for post-myocardial infarction heart failure. J Cell Physiol 2024; 239:e31372. [PMID: 39014935 DOI: 10.1002/jcp.31372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024]
Abstract
Heart failure (HF) remains prevalent in patients who survived myocardial infarction (MI). Despite the accessibility of the primary percutaneous coronary intervention and medications that alleviate ventricular remodeling with functional improvement, there is an urgent need for clinicians and basic scientists to further reveal the mechanisms behind post-MI HF as well as investigate earlier and more efficient treatment after MI. Growing numbers of studies have highlighted the crucial role of macrophages in cardiac repair and remodeling following MI, and timely intervention targeting the immune response via macrophages may represent a promising therapeutic avenue. Recently, technology such as single-cell sequencing has provided us with an updated and in-depth understanding of the role of macrophages in MI. Meanwhile, the development of biomaterials has made it possible for macrophage-targeted therapy. Thus, an overall and thorough understanding of the role of macrophages in post-MI HF and the current development status of macrophage-based therapy will assist in the further study and development of macrophage-targeted treatment for post-infarction cardiac remodeling. This review synthesizes the spatiotemporal dynamics, function, mechanism and signaling of macrophages in the process of HF after MI, as well as discusses the emerging bio-materials and possible therapeutic agents targeting macrophages for post-MI HF.
Collapse
Affiliation(s)
- Wenchao Yin
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yong Chen
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wenjun Wang
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mengqi Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lingjun Tong
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mingxiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zhaoyang Wang
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
8
|
Valenzi E, Jia M, Gerges P, Fan J, Tabib T, Behara R, Zhou Y, Sembrat J, Das J, Benos PV, Singh H, Lafyatis R. Altered AP-1, RUNX and EGR chromatin dynamics drive fibrotic lung disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619858. [PMID: 39554071 PMCID: PMC11565795 DOI: 10.1101/2024.10.23.619858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Pulmonary fibrosis, including systemic sclerosis-associated interstitial lung disease (SSc-ILD), involves myofibroblasts and SPP1hi macrophages as drivers of fibrosis. Single-cell RNA sequencing has delineated fibroblast and macrophages transcriptomes, but limited insight into transcriptional control of profibrotic gene programs. To address this challenge, we analyzed multiomic snATAC/snRNA-seq on explanted SSc-ILD and donor control lungs. The neural network tool ChromBPNet inferred increased TF binding at single base pair resolution to profibrotic genes, including CTHRC1 and ADAM12, in fibroblasts and SPP1 and CCL18 in macrophages. The novel algorithm HALO confirmed AP-1, RUNX, and EGR TF activity controlling profibrotic gene programs and established TF-regulatory element-gene networks. This TF action atlas provides comprehensive insights into the transcriptional regulation of fibroblasts and macrophages in healthy and fibrotic human lungs.
Collapse
Affiliation(s)
- Eleanor Valenzi
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh
| | - Minxue Jia
- Department of Computational and Systems Biology, University of Pittsburgh
| | - Peter Gerges
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh
| | - Jingyu Fan
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh
| | - Rithika Behara
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh
| | - Yuechen Zhou
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh
| | - John Sembrat
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh
| | - Jishnu Das
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh
| | - Panayiotis V Benos
- Department of Computational and Systems Biology, University of Pittsburgh
- Department of Epidemiology, University of Florida
| | - Harinder Singh
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh
| |
Collapse
|
9
|
Hoebart C, Kiss A, Podesser BK, Tahir A, Fischer MJM, Heber S. Sensory Neurons Release Cardioprotective Factors in an In Vitro Ischemia Model. Biomedicines 2024; 12:1856. [PMID: 39200320 PMCID: PMC11351881 DOI: 10.3390/biomedicines12081856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Sensory neurons densely innervate the myocardium. The role of their sensing and response to acute and prolonged ischemia is largely unclear. In a cellular model of ischemia-reperfusion injury, the presence of sensory neurons increases cardiomyocyte survival. Here, after the exclusion of classical neurotransmitter release, and measurement of cytokine release, we modified the experiment from a direct co-culture of primary murine cardiomyocytes and sensory neurons to a transfer of the supernatant. Sensory neurons were exposed to ischemia and the resulting conditioned supernatant was transferred onto cardiomyocytes. This approach largely increased the tolerance of cardiomyocytes to ischemia and reperfusion. Towards the identification of the mechanism, it was demonstrated that after ten-fold dilution, the conditioned solution lost its protective effect. The effect remained after removal of extracellular vesicles by ultracentrifugation, and was not affected by exposure to protease activity, and fractionation pointed towards a hydrophilic agent. Solutions conditioned by HEK293t cells or 3T3 fibroblasts also increase cardiomyocyte survival, but to a lower degree. A metabolomic search identified 64 at least two-fold changed metabolites and lipids. Many of these could be identified and are involved in essential cellular functions. In the presented model for ischemia-reperfusion, sensory neurons secrete one or more cardioprotective substances that can improve cardiomyocyte survival.
Collapse
Affiliation(s)
- Clara Hoebart
- Institute of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (C.H.); (S.H.)
| | - Attila Kiss
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090 Vienna, Austria; (A.K.); (B.K.P.)
| | - Bruno K. Podesser
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090 Vienna, Austria; (A.K.); (B.K.P.)
| | - Ammar Tahir
- Division of Pharmacognosy, University of Vienna, 1090 Vienna, Austria;
| | - Michael J. M. Fischer
- Institute of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (C.H.); (S.H.)
| | - Stefan Heber
- Institute of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (C.H.); (S.H.)
| |
Collapse
|
10
|
Zhu C, Yuan T, Krishnan J. Targeting cardiomyocyte cell cycle regulation in heart failure. Basic Res Cardiol 2024; 119:349-369. [PMID: 38683371 PMCID: PMC11142990 DOI: 10.1007/s00395-024-01049-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/11/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024]
Abstract
Heart failure continues to be a significant global health concern, causing substantial morbidity and mortality. The limited ability of the adult heart to regenerate has posed challenges in finding effective treatments for cardiac pathologies. While various medications and surgical interventions have been used to improve cardiac function, they are not able to address the extensive loss of functioning cardiomyocytes that occurs during cardiac injury. As a result, there is growing interest in understanding how the cell cycle is regulated and exploring the potential for stimulating cardiomyocyte proliferation as a means of promoting heart regeneration. This review aims to provide an overview of current knowledge on cell cycle regulation and mechanisms underlying cardiomyocyte proliferation in cases of heart failure, while also highlighting established and novel therapeutic strategies targeting this area for treatment purposes.
Collapse
Affiliation(s)
- Chaonan Zhu
- Department of Medicine III, Cardiology/Angiology/Nephrology, Goethe University Hospital, 60590, Frankfurt am Main, Germany
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt am Main, Germany
| | - Ting Yuan
- Department of Medicine III, Cardiology/Angiology/Nephrology, Goethe University Hospital, 60590, Frankfurt am Main, Germany.
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt am Main, Germany.
- German Center for Cardiovascular Research, Partner Site Rhein-Main, 60590, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute, Goethe University Hospital, 60590, Frankfurt am Main, Germany.
| | - Jaya Krishnan
- Department of Medicine III, Cardiology/Angiology/Nephrology, Goethe University Hospital, 60590, Frankfurt am Main, Germany.
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt am Main, Germany.
- German Center for Cardiovascular Research, Partner Site Rhein-Main, 60590, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute, Goethe University Hospital, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
11
|
Caller T, Rotem I, Shaihov-Teper O, Lendengolts D, Schary Y, Shai R, Glick-Saar E, Dominissini D, Motiei M, Katzir I, Popovtzer R, Nahmoud M, Boomgarden A, D'Souza-Schorey C, Naftali-Shani N, Leor J. Small Extracellular Vesicles From Infarcted and Failing Heart Accelerate Tumor Growth. Circulation 2024; 149:1729-1748. [PMID: 38487879 PMCID: PMC11220912 DOI: 10.1161/circulationaha.123.066911] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/20/2024] [Indexed: 05/24/2024]
Abstract
BACKGROUND Myocardial infarction (MI) and heart failure are associated with an increased incidence of cancer. However, the mechanism is complex and unclear. Here, we aimed to test our hypothesis that cardiac small extracellular vesicles (sEVs), particularly cardiac mesenchymal stromal cell-derived sEVs (cMSC-sEVs), contribute to the link between post-MI left ventricular dysfunction (LVD) and cancer. METHODS We purified and characterized sEVs from post-MI hearts and cultured cMSCs. Then, we analyzed cMSC-EV cargo and proneoplastic effects on several lines of cancer cells, macrophages, and endothelial cells. Next, we modeled heterotopic and orthotopic lung and breast cancer tumors in mice with post-MI LVD. We transferred cMSC-sEVs to assess sEV biodistribution and its effect on tumor growth. Finally, we tested the effects of sEV depletion and spironolactone treatment on cMSC-EV release and tumor growth. RESULTS Post-MI hearts, particularly cMSCs, produced more sEVs with proneoplastic cargo than nonfailing hearts did. Proteomic analysis revealed unique protein profiles and higher quantities of tumor-promoting cytokines, proteins, and microRNAs in cMSC-sEVs from post-MI hearts. The proneoplastic effects of cMSC-sEVs varied with different types of cancer, with lung and colon cancers being more affected than melanoma and breast cancer cell lines. Post-MI cMSC-sEVs also activated resting macrophages into proangiogenic and protumorigenic states in vitro. At 28-day follow-up, mice with post-MI LVD developed larger heterotopic and orthotopic lung tumors than did sham-MI mice. Adoptive transfer of cMSC-sEVs from post-MI hearts accelerated the growth of heterotopic and orthotopic lung tumors, and biodistribution analysis revealed accumulating cMSC-sEVs in tumor cells along with accelerated tumor cell proliferation. sEV depletion reduced the tumor-promoting effects of MI, and adoptive transfer of cMSC-sEVs from post-MI hearts partially restored these effects. Finally, spironolactone treatment reduced the number of cMSC-sEVs and suppressed tumor growth during post-MI LVD. CONCLUSIONS Cardiac sEVs, specifically cMSC-sEVs from post-MI hearts, carry multiple protumorigenic factors. Uptake of cMSC-sEVs by cancer cells accelerates tumor growth. Treatment with spironolactone significantly reduces accelerated tumor growth after MI. Our results provide new insight into the mechanism connecting post-MI LVD to cancer and propose a translational option to mitigate this deadly association.
Collapse
Affiliation(s)
- Tal Caller
- Neufeld and Tamman Cardiovascular Research Institutes, School of Medicine, Tel Aviv University, Israel (T.C., I.R., O.S.-T., D.L., Y.S., R.S., M.N., N.N.-S., J.L.)
- Lev Leviev Cardiovascular and Thoracic Center (T.C., I.R., O.S.-T., D.L., Y.S., N.N.-S., J.L.), Sheba Medical Center, Tel Hashomer, Israel
| | - Itai Rotem
- Neufeld and Tamman Cardiovascular Research Institutes, School of Medicine, Tel Aviv University, Israel (T.C., I.R., O.S.-T., D.L., Y.S., R.S., M.N., N.N.-S., J.L.)
- Lev Leviev Cardiovascular and Thoracic Center (T.C., I.R., O.S.-T., D.L., Y.S., N.N.-S., J.L.), Sheba Medical Center, Tel Hashomer, Israel
| | - Olga Shaihov-Teper
- Neufeld and Tamman Cardiovascular Research Institutes, School of Medicine, Tel Aviv University, Israel (T.C., I.R., O.S.-T., D.L., Y.S., R.S., M.N., N.N.-S., J.L.)
- Lev Leviev Cardiovascular and Thoracic Center (T.C., I.R., O.S.-T., D.L., Y.S., N.N.-S., J.L.), Sheba Medical Center, Tel Hashomer, Israel
| | - Daria Lendengolts
- Neufeld and Tamman Cardiovascular Research Institutes, School of Medicine, Tel Aviv University, Israel (T.C., I.R., O.S.-T., D.L., Y.S., R.S., M.N., N.N.-S., J.L.)
- Lev Leviev Cardiovascular and Thoracic Center (T.C., I.R., O.S.-T., D.L., Y.S., N.N.-S., J.L.), Sheba Medical Center, Tel Hashomer, Israel
| | - Yeshai Schary
- Neufeld and Tamman Cardiovascular Research Institutes, School of Medicine, Tel Aviv University, Israel (T.C., I.R., O.S.-T., D.L., Y.S., R.S., M.N., N.N.-S., J.L.)
- Lev Leviev Cardiovascular and Thoracic Center (T.C., I.R., O.S.-T., D.L., Y.S., N.N.-S., J.L.), Sheba Medical Center, Tel Hashomer, Israel
| | - Ruty Shai
- Neufeld and Tamman Cardiovascular Research Institutes, School of Medicine, Tel Aviv University, Israel (T.C., I.R., O.S.-T., D.L., Y.S., R.S., M.N., N.N.-S., J.L.)
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital, Cancer Research Center (R.S.), Sheba Medical Center, Tel Hashomer, Israel
| | - Efrat Glick-Saar
- Cancer Research Center and Wohl Centre for Translational Medicine (E.G.-S., D.D.), Sheba Medical Center, Tel Hashomer, Israel
| | - Dan Dominissini
- Cancer Research Center and Wohl Centre for Translational Medicine (E.G.-S., D.D.), Sheba Medical Center, Tel Hashomer, Israel
| | - Menachem Motiei
- Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel (M.M., I.K., R.P.)
| | - Idan Katzir
- Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel (M.M., I.K., R.P.)
| | - Rachela Popovtzer
- Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel (M.M., I.K., R.P.)
| | | | - Alex Boomgarden
- Department of Biological Sciences, University of Notre Dame, IN (A.B., C.D'S.-S.)
| | | | - Nili Naftali-Shani
- Neufeld and Tamman Cardiovascular Research Institutes, School of Medicine, Tel Aviv University, Israel (T.C., I.R., O.S.-T., D.L., Y.S., R.S., M.N., N.N.-S., J.L.)
- Lev Leviev Cardiovascular and Thoracic Center (T.C., I.R., O.S.-T., D.L., Y.S., N.N.-S., J.L.), Sheba Medical Center, Tel Hashomer, Israel
| | - Jonathan Leor
- Neufeld and Tamman Cardiovascular Research Institutes, School of Medicine, Tel Aviv University, Israel (T.C., I.R., O.S.-T., D.L., Y.S., R.S., M.N., N.N.-S., J.L.)
- Lev Leviev Cardiovascular and Thoracic Center (T.C., I.R., O.S.-T., D.L., Y.S., N.N.-S., J.L.), Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
12
|
Bassat E, Tzahor E. How Can Young Extracellular Matrix Promote Cardiac Regeneration? Versi-Can! Circulation 2024; 149:1016-1018. [PMID: 38527129 DOI: 10.1161/circulationaha.123.068078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Affiliation(s)
- Elad Bassat
- Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, 1030, Vienna, Austria (E.B.)
| | - Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel (E.T.)
| |
Collapse
|
13
|
Kong L, Li Y, Deng Z, Chen X, Xia Y, Shen B, Ning R, Zhang L, Yin Z. Tibial cortex transverse transport regulates Orai1/STIM1-mediated NO release and improve the migration and proliferation of vessels via increasing osteopontin expression. J Orthop Translat 2024; 45:107-119. [PMID: 38524870 PMCID: PMC10960091 DOI: 10.1016/j.jot.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Background Diabetic foot is a major complication of diabetes. The bone transverse transport method could be applied in clinics for treatment, which could improve the metabolism of the tissues via lasting distraction forces. However, the process' specific regulating mechanism is still unknown. Methods Based on the notion that the healing of bones involves the recruitment of calcium ions, in this study, we established the model of tibial cortex transverse transport (TTT) on rats and then used tissue immunologic detection, such as the double fluorescent staining to explore the expression of the calcium channels' calcium release-activated calcium modulator 1 (Orai1)/stromal interaction molecule 1 (STIM1), which belong to the store-operated calcium entry (SOCE) signaling pathways on the tissues around the bone transport area. By using the laser capture microdissection (LCM) tool, we acquired samples of tissues around the bone and endeavored to identify pivotal protein molecules. Subsequently, we validated the functions of key protein molecules through in vitro and in vivo experiments. Results After protein profile analysis, we found the differentially expressed key protein osteopontin (OPN). The in vitro experiments verified that, being stimulated by OPN, the migration, proliferation, and angiogenesis of human umbilical vein endothelial cells (HUVEC) were observed to be enhanced. The activation of Orai1/STIM1 might increase the activity of endothelial nitric oxide synthase (eNOS) and its effect on releasing nitric oxide (NO). Subsequently, the migration and proliferation of the HUVECs are improved, which ultimately accelerates wound healing. These signaling pathway was also observed in the OPN-stimulated healing process of the skin wound surface of diabetic mice. Conclusion This study identifies the molecular biological mechanism of OPN-benefited the migration and proliferation of the HUVECs and provides ideas for searching for new therapeutic targets for drugs that repair diabetes-induced wounds to replace invasive treatment methods. The translational potential of this article The OPN is highly expressed in the tissues surrounding the TTT bone transfer area, which may possibly stimulate the activation of eNOS to increase NO release through the SOCE pathway mediated by Orai1/STIM1. This mechanism may play a significant role in the angiogenesis of diabetic foot's wounds promoted by TTT, providing new therapeutic strategies for the non-surgical treatment for this disease.
Collapse
Affiliation(s)
- Lingchao Kong
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Yangyang Li
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Zhongfang Deng
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Xiaoyu Chen
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Yin Xia
- Department of Anesthesiology, Anhui Provincial Children's Hospital, Hefei, Anhui, PR China
| | - Bing Shen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, PR China
| | - Rende Ning
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Lesha Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Zongsheng Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| |
Collapse
|
14
|
Wang J, Liu S, Meng X, Zhao X, Wang T, Lei Z, Lehmann HI, Li G, Alcaide P, Bei Y, Xiao J. Exercise Inhibits Doxorubicin-Induced Cardiotoxicity via Regulating B Cells. Circ Res 2024; 134:550-568. [PMID: 38323433 PMCID: PMC11233173 DOI: 10.1161/circresaha.123.323346] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Doxorubicin is an effective chemotherapeutic agent, but its use is limited by acute and chronic cardiotoxicity. Exercise training has been shown to protect against doxorubicin-induced cardiotoxicity, but the involvement of immune cells remains unclear. This study aimed to investigate the role of exercise-derived B cells in protecting against doxorubicin-induced cardiotoxicity and to further determine whether B cell activation and antibody secretion play a role in this protection. METHODS Mice that were administered with doxorubicin (5 mg/kg per week, 20 mg/kg cumulative dose) received treadmill running exercise. The adoptive transfer of exercise-derived splenic B cells to μMT-/- (B cell-deficient) mice was performed to elucidate the mechanism of B cell regulation that mediated the effect of exercise. RESULTS Doxorubicin-administered mice that had undergone exercise training showed improved cardiac function, and low levels of cardiac apoptosis, atrophy, and fibrosis, and had reduced cardiac antibody deposition and proinflammatory responses. Similarly, B cell pharmacological and genetic depletion alleviated doxorubicin-induced cardiotoxicity, which phenocopied the protection of exercise. In vitro performed coculture experiments confirmed that exercise-derived B cells reduced cardiomyocyte apoptosis and fibroblast activation compared with control B cells. Importantly, the protective effect of exercise on B cells was confirmed by the adoptive transfer of splenic B cells from exercised donor mice to μMT-/- recipient mice. However, blockage of Fc gamma receptor IIB function using B cell transplants from exercised Fc gamma receptor IIB-/- mice abolished the protection of exercise-derived B cells against doxorubicin-induced cardiotoxicity. Mechanistically, we found that Fc gamma receptor IIB, an important B cell inhibitory receptor, responded to exercise and increased B cell activation threshold, which participated in exercise-induced protection against doxorubicin-induced cardiotoxicity. CONCLUSIONS Our results demonstrate that exercise training protects against doxorubicin-induced cardiotoxicity by upregulating Fc gamma receptor IIB expression in B cells, which plays an important anti-inflammatory role and participates in the protective effect of exercise against doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong) and School of Life Science, Shanghai University, Nantong, 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Shuqin Liu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong) and School of Life Science, Shanghai University, Nantong, 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xinxiu Meng
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong) and School of Life Science, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xuan Zhao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong) and School of Life Science, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Tianhui Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong) and School of Life Science, Shanghai University, Nantong, 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhiyong Lei
- CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht 3508GA, The Netherlands
- UMC Utrecht Regenerative Medicine Center, University Medical Center, Utrecht University, Utrecht 3508GA, The Netherlands
| | - H. Immo Lehmann
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Yihua Bei
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong) and School of Life Science, Shanghai University, Nantong, 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong) and School of Life Science, Shanghai University, Nantong, 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
15
|
Sansonetti M, Al Soodi B, Thum T, Jung M. Macrophage-based therapeutic approaches for cardiovascular diseases. Basic Res Cardiol 2024; 119:1-33. [PMID: 38170281 PMCID: PMC10837257 DOI: 10.1007/s00395-023-01027-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Despite the advances in treatment options, cardiovascular disease (CVDs) remains the leading cause of death over the world. Chronic inflammatory response and irreversible fibrosis are the main underlying pathophysiological causes of progression of CVDs. In recent decades, cardiac macrophages have been recognized as main regulatory players in the development of these complex pathophysiological conditions. Numerous approaches aimed at macrophages have been devised, leading to novel prospects for therapeutic interventions. Our review covers the advancements in macrophage-centric treatment plans for various pathologic conditions and examines the potential consequences and obstacles of employing macrophage-targeted techniques in cardiac diseases.
Collapse
Affiliation(s)
- Marida Sansonetti
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany
| | - Bashar Al Soodi
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany.
- REBIRTH-Center for Translational Regenerative Medicine, Hannover Medical School, 30625, Hannover, Germany.
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), 30625, Hannover, Germany.
| | - Mira Jung
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
16
|
Wang L, Niu X. Immunoregulatory Roles of Osteopontin in Diseases. Nutrients 2024; 16:312. [PMID: 38276550 PMCID: PMC10819284 DOI: 10.3390/nu16020312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/07/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Osteopontin (OPN) is a multifunctional protein that plays a pivotal role in the immune system. It is involved in various biological processes, including cell adhesion, migration and survival. The study of the immunomodulatory effects of OPN is of paramount importance due to its potential therapeutic applications. A comprehensive understanding of how OPN regulates the immune response could pave the way for the development of novel treatments for a multitude of diseases, including autoimmune disorders, infectious diseases and cancer. Therefore, in the following paper, we provide a systematic overview of OPN and its immunoregulatory roles in various diseases, laying the foundation for the development of OPN-based therapies in the future.
Collapse
Affiliation(s)
- Lebei Wang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
- College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoyin Niu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| |
Collapse
|
17
|
Wang Z, Li W, Chen S, Tang XX. Role of ADAM and ADAMTS proteases in pathological tissue remodeling. Cell Death Discov 2023; 9:447. [PMID: 38071234 PMCID: PMC10710407 DOI: 10.1038/s41420-023-01744-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 09/10/2024] Open
Abstract
Pathological tissue remodeling is closely associated with the occurrence and aggravation of various diseases. A Disintegrin And Metalloproteinases (ADAM), as well as A Disintegrin And Metalloproteinase with ThromboSpondin motifs (ADAMTS), belong to zinc-dependent metalloproteinase superfamily, are involved in a range of pathological states, including cancer metastasis, inflammatory disorders, respiratory diseases and cardiovascular diseases. Mounting studies suggest that ADAM and ADAMTS proteases contribute to the development of tissue remodeling in various diseases, mainly through the regulation of cell proliferation, apoptosis, migration and extracellular matrix remodeling. This review focuses on the roles of ADAM and ADAMTS proteinases in diseases with pathological tissue remodeling, with particular emphasis on the molecular mechanisms through which ADAM and ADAMTS proteins mediate tissue remodeling. Some of these reported proteinases have defined protective or contributing roles in indicated diseases, while their underlying regulation is obscure. Future studies are warranted to better understand the catalytic and non-catalytic functions of ADAM and ADAMTS proteins, as well as to evaluate the efficacy of targeting these proteases in pathological tissue remodeling.
Collapse
Affiliation(s)
- Zhaoni Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wanshan Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shixing Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao Xiao Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou Laboratory, Bio-island, Guangzhou, China.
| |
Collapse
|
18
|
Tang Z, Xia Z, Wang X, Liu Y. The critical role of osteopontin (OPN) in fibrotic diseases. Cytokine Growth Factor Rev 2023; 74:86-99. [PMID: 37648616 DOI: 10.1016/j.cytogfr.2023.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Fibrosis is a pathological condition characterized by the excessive deposition of extracellular matrix components in tissues and organs, leading to progressive architectural remodelling and contributing to the development of various diseases. Osteopontin (OPN), a highly phosphorylated glycoprotein, has been increasingly recognized for its involvement in the progression of tissue fibrosis. This review provides a comprehensive overview of the genetic and protein structure of OPN and focuses on our current understanding of the role of OPN in the development of fibrosis in the lungs and other tissues. Additionally, special attention is given to the potential of OPN as a biomarker and a novel therapeutic target in the treatment of fibrosis.
Collapse
Affiliation(s)
- Ziyi Tang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Rare Diseases Center, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zijing Xia
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Rare Diseases Center, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiangpeng Wang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100000, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Rare Diseases Center, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
19
|
Ouyang JF, Mishra K, Xie Y, Park H, Huang KY, Petretto E, Behmoaras J. Systems level identification of a matrisome-associated macrophage polarisation state in multi-organ fibrosis. eLife 2023; 12:e85530. [PMID: 37706477 PMCID: PMC10547479 DOI: 10.7554/elife.85530] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/13/2023] [Indexed: 09/15/2023] Open
Abstract
Tissue fibrosis affects multiple organs and involves a master-regulatory role of macrophages which respond to an initial inflammatory insult common in all forms of fibrosis. The recently unravelled multi-organ heterogeneity of macrophages in healthy and fibrotic human disease suggests that macrophages expressing osteopontin (SPP1) associate with lung and liver fibrosis. However, the conservation of this SPP1+ macrophage population across different tissues and its specificity to fibrotic diseases with different etiologies remain unclear. Integrating 15 single-cell RNA-sequencing datasets to profile 235,930 tissue macrophages from healthy and fibrotic heart, lung, liver, kidney, skin, and endometrium, we extended the association of SPP1+ macrophages with fibrosis to all these tissues. We also identified a subpopulation expressing matrisome-associated genes (e.g., matrix metalloproteinases and their tissue inhibitors), functionally enriched for ECM remodelling and cell metabolism, representative of a matrisome-associated macrophage (MAM) polarisation state within SPP1+ macrophages. Importantly, the MAM polarisation state follows a differentiation trajectory from SPP1+ macrophages and is associated with a core set of regulon activity. SPP1+ macrophages without the MAM polarisation state (SPP1+MAM-) show a positive association with ageing lung in mice and humans. These results suggest an advanced and conserved polarisation state of SPP1+ macrophages in fibrotic tissues resulting from prolonged inflammatory cues within each tissue microenvironment.
Collapse
Affiliation(s)
- John F Ouyang
- Centre for Computational Biology, Duke-NUS Medical SchoolSingaporeSingapore
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical SchoolSingaporeSingapore
| | - Kunal Mishra
- Centre for Computational Biology, Duke-NUS Medical SchoolSingaporeSingapore
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical SchoolSingaporeSingapore
| | - Yi Xie
- Centre for Computational Biology, Duke-NUS Medical SchoolSingaporeSingapore
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical SchoolSingaporeSingapore
| | - Harry Park
- Centre for Computational Biology, Duke-NUS Medical SchoolSingaporeSingapore
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical SchoolSingaporeSingapore
| | - Kevin Y Huang
- Centre for Computational Biology, Duke-NUS Medical SchoolSingaporeSingapore
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical SchoolSingaporeSingapore
| | - Enrico Petretto
- Centre for Computational Biology, Duke-NUS Medical SchoolSingaporeSingapore
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical SchoolSingaporeSingapore
- Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University (CPU)NanjingChina
| | - Jacques Behmoaras
- Centre for Computational Biology, Duke-NUS Medical SchoolSingaporeSingapore
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical SchoolSingaporeSingapore
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
20
|
Fu H, Liu X, Shi L, Wang L, Fang H, Wang X, Song D. Regulatory roles of Osteopontin in lung epithelial inflammation and epithelial-telocyte interaction. Clin Transl Med 2023; 13:e1381. [PMID: 37605313 PMCID: PMC10442477 DOI: 10.1002/ctm2.1381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Lung epithelial cells play important roles in lung inflammation and injury, although mechanisms remain unclear. Osteopontin (OPN) has essential roles in epithelial damage and repair and in lung cancer biological behaviours. Telocyte (TC) is a type of interstitial cell that interacts with epithelial cells to alleviate acute inflammation and lung injury. The present studies aim at exploring potential mechanisms by which OPN regulates the epithelial origin lung inflammation and the interaction of epithelial cells with TCs in acute and chronic lung injury. METHODS The lung disease specificity of OPN and epithelial inflammation were defined by bioinformatics. We evaluated the regulatory roles of OPN in OPN-knockdown or over-expressed bronchial epithelia (HBEs) challenged with cigarette smoke extracts (CSE) or in animals with genome OPN knockout (gKO) or lung conditional OPN knockout (cKO). Acute lung injury and chronic obstructive pulmonary disease (COPD) were induced by smoking or lipopolysaccharide (LPS). Effects of OPN on PI3K subunits and ERK were assessed using the inhibitors. Spatialization and distribution of OPN, OPN-positive epithelial subtypes, and TCs were defined by spatial transcriptomics. The interaction between HBEs and TCs was assayed by the co-culture system. RESULTS Levels of OPN expression increased in smokers, smokers with COPD, and smokers with COPD and lung cancer, as compared with healthy nonsmokers. LPS and/or CSE induced over-production of cytokines from HBEs, dependent upon the dysfunction of OPN. The severity of lung inflammation and injury was significantly lower in OPN-gKO or OPN-cKO mice. HBEs transferred with OPN enhanced the expression of phosphoinositide 3-kinase (PI3K)CA/p110α, PIK3CB/p110β, PIK3CD/p110δ, PIK3CG/p110γ, PIK3R1, PIK3R2 or PIK3R3. Spatial locations of OPN and OPN-positive epithelial subtypes showed the tight contact of airway epithelia and TCs. Epithelial OPN regulated the epithelial communication with TCs, and the down-regulation of OPN induced more alterations in transcriptomic profiles than the up-regulation. CONCLUSION Our data evidenced that OPN regulated lung epithelial inflammation, injury, and cell communication between epithelium and TCs in acute and chronic lung injury. The conditional control of lung epithelial OPN may be an alternative for preventing and treating epithelial-origin lung inflammation and injury.
Collapse
Affiliation(s)
- Huirong Fu
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Center for Tumor Diagnosis & TherapyJinshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
| | - Xuanqi Liu
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
| | - Lin Shi
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
| | - Lingyan Wang
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
- Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Hao Fang
- Department of AnesthesiologyZhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Department of AnesthesiologyShanghai Geriatric Medical CenterShanghaiChina
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Center for Tumor Diagnosis & TherapyJinshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
- Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Dongli Song
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
- Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Department of Pulmonary MedicineShanghai Xuhui Central HospitalFudan UniversityShanghaiChina
| |
Collapse
|
21
|
Yu Y, Mao X, Wang J, Chen M, Wang F, Kong X, Hang H. SPP1 as a risk factor for patients with acute on chronic liver failure undergoing liver transplantation. Int Immunopharmacol 2023; 120:110355. [PMID: 37257271 DOI: 10.1016/j.intimp.2023.110355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/19/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Acute on chronic liver failure (ACLF) is characterized by systemic inflammation and significant mortality, calling for accurate assessment due to the diverse prognosis of liver transplantation (LT). METHODS 8 patients with ACLF and 4 normal controls (NC) underwent peripheral blood mononuclear cells (PBMCs) transcriptomics, whereas 9 patients with ACLF and 3 NC had hepatic CD45+ T cells transcriptomics. Thecandidateindicatorfoundinthetranscriptomicswas confirmedbya retrospective cohort (n = 137) and one prospective cohort (n = 68). RESULTS Transcriptomics revealed significant differentially expression genes (DEGs) and bioprocesses related to the PBMCs and hepatic CD45+ T cells. Secreted phosphoprotein 1 (SPP1) was identified as a potential indicator for ACLF patients receiving LT, which was supported by evidence from the cross-sectional cohorts. As the condition of ACLF got worse, so did SPP1 levels, which were associated with liver failure and coagulation failure. SPP1 levels prior to LT were considerably greater in non-survivors of ACLF within 90 days than that in survivors. In the derivation cohort and validation cohort, ACLF patients with elevated SPP1 levels had significantly shorter cumulative survival durations than those with low SPP1 levels, P = 0.02 and P < 0.001, respectively. The SPP1-MELD and SPP1-chronic liver failure consortium (CLIF-C) ACLF scores had comparatively larger areas under the receiver operating characteristic curves (AUCs) than MELD (P = 0.0388) and CLIF-C ACLF (P = 0.045). CONCLUSIONS The circulating SPP1 showed promise as a predictor for ACLF patients receiving LT, which demonstrated the need for tracking the clinical outcome of LT.
Collapse
Affiliation(s)
- Yeping Yu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Xinyi Mao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jieying Wang
- Clinical Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mo Chen
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Wang
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Xiaoni Kong
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Hualian Hang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
22
|
Yin X, Yin X, Pan X, Zhang J, Fan X, Li J, Zhai X, Jiang L, Hao P, Wang J, Chen Y. Post-myocardial infarction fibrosis: Pathophysiology, examination, and intervention. Front Pharmacol 2023; 14:1070973. [PMID: 37056987 PMCID: PMC10086160 DOI: 10.3389/fphar.2023.1070973] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Cardiac fibrosis plays an indispensable role in cardiac tissue homeostasis and repair after myocardial infarction (MI). The cardiac fibroblast-to-myofibroblast differentiation and extracellular matrix collagen deposition are the hallmarks of cardiac fibrosis, which are modulated by multiple signaling pathways and various types of cells in time-dependent manners. Our understanding of the development of cardiac fibrosis after MI has evolved in basic and clinical researches, and the regulation of fibrotic remodeling may facilitate novel diagnostic and therapeutic strategies, and finally improve outcomes. Here, we aim to elaborate pathophysiology, examination and intervention of cardiac fibrosis after MI.
Collapse
Affiliation(s)
- Xiaoying Yin
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xinxin Yin
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Pan
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jingyu Zhang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xinhui Fan
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiaxin Li
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoxuan Zhai
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Lijun Jiang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Panpan Hao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiali Wang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yuguo Chen
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
23
|
Schary Y, Rotem I, Caller T, Lewis N, Shaihov-Teper O, Brzezinski RY, Lendengolts D, Raanani E, Sternik L, Naftali-Shani N, Leor J. CRISPR-Cas9 editing of TLR4 to improve the outcome of cardiac cell therapy. Sci Rep 2023; 13:4481. [PMID: 36934130 PMCID: PMC10024743 DOI: 10.1038/s41598-023-31286-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/09/2023] [Indexed: 03/20/2023] Open
Abstract
Inflammation and fibrosis limit the reparative properties of human mesenchymal stromal cells (hMSCs). We hypothesized that disrupting the toll-like receptor 4 (TLR4) gene would switch hMSCs toward a reparative phenotype and improve the outcome of cell therapy for infarct repair. We developed and optimized an improved electroporation protocol for CRISPR-Cas9 gene editing. This protocol achieved a 68% success rate when applied to isolated hMSCs from the heart and epicardial fat of patients with ischemic heart disease. While cell editing lowered TLR4 expression in hMSCs, it did not affect classical markers of hMSCs, proliferation, and migration rate. Protein mass spectrometry analysis revealed that edited cells secreted fewer proteins involved in inflammation. Analysis of biological processes revealed that TLR4 editing reduced processes linked to inflammation and extracellular organization. Furthermore, edited cells expressed less NF-ƙB and secreted lower amounts of extracellular vesicles and pro-inflammatory and pro-fibrotic cytokines than unedited hMSCs. Cell therapy with both edited and unedited hMSCs improved survival, left ventricular remodeling, and cardiac function after myocardial infarction (MI) in mice. Postmortem histologic analysis revealed clusters of edited cells that survived in the scar tissue 28 days after MI. Morphometric analysis showed that implantation of edited cells increased the area of myocardial islands in the scar tissue, reduced the occurrence of transmural scar, increased scar thickness, and decreased expansion index. We show, for the first time, that CRISPR-Cas9-based disruption of the TLR4-gene reduces pro-inflammatory polarization of hMSCs and improves infarct healing and remodeling in mice. Our results provide a new approach to improving the outcomes of cell therapy for cardiovascular diseases.
Collapse
Affiliation(s)
- Yeshai Schary
- Neufeld and Tamman Cardiovascular Research Institutes, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Heart Center, Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - Itai Rotem
- Neufeld and Tamman Cardiovascular Research Institutes, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Heart Center, Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - Tal Caller
- Neufeld and Tamman Cardiovascular Research Institutes, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Heart Center, Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - Nir Lewis
- Neufeld and Tamman Cardiovascular Research Institutes, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Heart Center, Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - Olga Shaihov-Teper
- Neufeld and Tamman Cardiovascular Research Institutes, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Heart Center, Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - Rafael Y Brzezinski
- Neufeld and Tamman Cardiovascular Research Institutes, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Heart Center, Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - Daria Lendengolts
- Neufeld and Tamman Cardiovascular Research Institutes, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Heart Center, Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - Ehud Raanani
- Heart Center, Sheba Medical Center, 52621, Tel-Hashomer, Israel
- Department of Cardiac Surgery, Leviev Cardiothoracic and Vascular Center, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Leonid Sternik
- Heart Center, Sheba Medical Center, 52621, Tel-Hashomer, Israel
- Department of Cardiac Surgery, Leviev Cardiothoracic and Vascular Center, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nili Naftali-Shani
- Neufeld and Tamman Cardiovascular Research Institutes, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Heart Center, Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - Jonathan Leor
- Neufeld and Tamman Cardiovascular Research Institutes, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Heart Center, Sheba Medical Center, 52621, Tel-Hashomer, Israel.
| |
Collapse
|
24
|
Levy E, Marcil V, Tagharist Ép Baumel S, Dahan N, Delvin E, Spahis S. Lactoferrin, Osteopontin and Lactoferrin–Osteopontin Complex: A Critical Look on Their Role in Perinatal Period and Cardiometabolic Disorders. Nutrients 2023; 15:nu15061394. [PMID: 36986124 PMCID: PMC10052990 DOI: 10.3390/nu15061394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/02/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Milk-derived bioactive proteins have increasingly gained attention and consideration throughout the world due to their high-quality amino acids and multiple health-promoting attributes. Apparently, being at the forefront of functional foods, these bioactive proteins are also suggested as potential alternatives for the management of various complex diseases. In this review, we will focus on lactoferrin (LF) and osteopontin (OPN), two multifunctional dairy proteins, as well as to their naturally occurring bioactive LF–OPN complex. While describing their wide variety of physiological, biochemical, and nutritional functionalities, we will emphasize their specific roles in the perinatal period. Afterwards, we will evaluate their ability to control oxidative stress, inflammation, gut mucosal barrier, and intestinal microbiota in link with cardiometabolic disorders (CMD) (obesity, insulin resistance, dyslipidemia, and hypertension) and associated complications (diabetes and atherosclerosis). This review will not only attempt to highlight the mechanisms of action, but it will critically discuss the potential therapeutic applications of the underlined bioactive proteins in CMD.
Collapse
Affiliation(s)
- Emile Levy
- Research Centre, CHU Sainte-Justine, 3175 Sainte-Catherine Road, Montreal, QC H3T 1C5, Canada
- Department of Nutrition, Université de Montreal, C. P. 6205, succursale Centre-ville, Montreal, QC H3C 3T5, Canada
| | - Valérie Marcil
- Research Centre, CHU Sainte-Justine, 3175 Sainte-Catherine Road, Montreal, QC H3T 1C5, Canada
- Department of Nutrition, Université de Montreal, C. P. 6205, succursale Centre-ville, Montreal, QC H3C 3T5, Canada
| | - Sarah Tagharist Ép Baumel
- Research Centre, CHU Sainte-Justine, 3175 Sainte-Catherine Road, Montreal, QC H3T 1C5, Canada
- Department of Nutrition, Université de Montreal, C. P. 6205, succursale Centre-ville, Montreal, QC H3C 3T5, Canada
| | - Noam Dahan
- Research Centre, CHU Sainte-Justine, 3175 Sainte-Catherine Road, Montreal, QC H3T 1C5, Canada
| | - Edgard Delvin
- Research Centre, CHU Sainte-Justine, 3175 Sainte-Catherine Road, Montreal, QC H3T 1C5, Canada
- Biochemistry &Molecular Medicine, Faculty of Medicine, Université de Montreal, C. P. 6205, succursale Centre-ville, Montreal, QC H3C 3T5, Canada
| | - Schohraya Spahis
- Research Centre, CHU Sainte-Justine, 3175 Sainte-Catherine Road, Montreal, QC H3T 1C5, Canada
- Biochemistry &Molecular Medicine, Faculty of Medicine, Université de Montreal, C. P. 6205, succursale Centre-ville, Montreal, QC H3C 3T5, Canada
- Correspondence: ; Tel.: +1-(514)-345-4832
| |
Collapse
|