1
|
Wolter NA, Küttner H, Schmitz J, Karg M, Pich A. Asymmetric Microgels with Tunable Morphologies by Assembly-Guided Polymerization of Liquid Crystalline Monomers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410502. [PMID: 39757498 PMCID: PMC11840453 DOI: 10.1002/smll.202410502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/20/2024] [Indexed: 01/07/2025]
Abstract
Understanding and controlling the morphology of microgels is crucial for optimizing their properties and functions in diverse areas of application. The fabrication of microgels that exhibit both structural and chemical anisotropy using a template-free approach faces significant challenges. Existing approaches toward such microgels are typically limited to templating methods with low throughput. Here, an alternative bottom-up approach is developed for producing non-spherical N-vinylcaprolactam (VCL) based microgels through semi-batch precipitation polymerization, incorporating a functional comonomer with a liquid crystalline (LC) moiety. 4-methoxybenzoic acid 4-(6-acryloyloxy-hexyloxy)phenyl ester (LCM) is used as the LC comonomer. The resulting morphology of those microgels is tuned to multilobe-, dumbbell-, and raspberry-like shapes. The different morphologies are obtained by varying the addition time of LCM, temperature, solvent ratio, and monomer ratio. The microgel morphologies are characterized by (cryogenic) transmission and scanning electron microscopy. The thermoresponsiveness is investigated by dynamic light scattering (DLS), while the incorporation of LCM into the microgel structure is determined via 1H-NMR and Raman spectroscopy. The experimental data indicate that adjusting reaction conditions enables the fabrication of microgels with various morphologies. Finally, their capability to solubilize hydrophobic substances is demonstrated by successfully facilitating the uptake of the hydrophobic dye Nile Red (NR).
Collapse
Affiliation(s)
- Nadja A. Wolter
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWendlingweg 252074AachenGermany
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| | - Hannah Küttner
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWendlingweg 252074AachenGermany
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| | - Jonas Schmitz
- Institute for Physical ChemistryHeinrich‐Heine‐University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Matthias Karg
- Institute for Physical ChemistryHeinrich‐Heine‐University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Andrij Pich
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWendlingweg 252074AachenGermany
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
- Aachen‐Maastricht Institute for Biobased Materials (AMIBM)Maastricht UniversityBrightlands Chemelot CampusUrmonderbaan 22Geleen6167 RDThe Netherlands
| |
Collapse
|
2
|
Poplewska I, Strachota B, Strachota A, Poplewski G, Antos D. Thermo- and pH-Responsible Gels for Efficient Protein Adsorption and Desorption. Molecules 2024; 29:4858. [PMID: 39459226 PMCID: PMC11510233 DOI: 10.3390/molecules29204858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Protein adsorption behavior was examined on poly(N-isopropylacrylamide-co-sodium methacrylate)-based hydrogels at different temperatures: 5, 20, and 37 °C, and pH: 4.5, 7, and 9.2. The hydrogels, whose covalent skeleton contains pendant anionic units due to the presence of the sodium methacrylate co-monomer, exhibited both thermo- and pH-sensitivity with different extents, which depended on the content of ionizable moieties and the cross-linker density. The hydrogel composition, temperature, and pH influenced the zeta potential of the hydrogels and their swelling properties. The proteins selected for the study, i.e., bovine serum albumin (BSA), ovalbumin (OVA), lysozyme (LYZ), and a monoclonal antibody (mAb2), differed in their aminoacidic composition and conformation, thus in isoelectric point, molecular weight, electrostatic charge, and hydrophobicity. Therefore, the response of their adsorption behavior to changes in the solution properties and the hydrogel composition was different. LYZ exhibited the strongest adsorption of all proteins with a maximum at pH 7 (189.5 mg ggel-1); adsorption of BSA and OVA reached maximum at pH 4.5 (24.4 and 23.5 mg ggel-1), whereas mAb2 was strongly adsorbed at 9.2 (21.7 mg ggel-1). This indicated the possibility of using the hydrogels for pH-mediated separation of proteins differing in charge under mild conditions in a water-rich environment of both the liquid solution and the adsorbed phase. The adsorption affinity of all proteins increased with temperature, which was attributed to the synergistic effects of attractive electrostatic and hydrophobic interactions. That effect was particularly marked for mAb2, for which the temperature change from 5 to 37 °C caused a twentyfold increase in adsorption. In all cases, the proteins could be released from the hydrogel surface by a reduction in temperature, an increase in pH, or a combination of both. This allows for the elimination of the use of salt solution as a desorbing agent, whose presence renders the recycling of buffering solutions difficult.
Collapse
Affiliation(s)
- Izabela Poplewska
- Department of Chemical and Process Engineering, Rzeszów University of Technology, 35-959 Rzeszów, Poland; (G.P.); (D.A.)
| | - Beata Strachota
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic; (B.S.); (A.S.)
| | - Adam Strachota
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic; (B.S.); (A.S.)
| | - Grzegorz Poplewski
- Department of Chemical and Process Engineering, Rzeszów University of Technology, 35-959 Rzeszów, Poland; (G.P.); (D.A.)
| | - Dorota Antos
- Department of Chemical and Process Engineering, Rzeszów University of Technology, 35-959 Rzeszów, Poland; (G.P.); (D.A.)
| |
Collapse
|
3
|
Zhang Z, Wang Y, Wang Q, Shang L. Smart Film Actuators for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105116. [PMID: 35038215 DOI: 10.1002/smll.202105116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Taking inspiration from the extremely flexible motion abilities in natural organisms, soft actuators have emerged in the past few decades. Particularly, smart film actuators (SFAs) demonstrate unique superiority in easy fabrication, tailorable geometric configurations, and programmable 3D deformations. Thus, they are promising in many biomedical applications, such as soft robotics, tissue engineering, delivery system, and organ-on-a-chip. In this review, the latest achievements of SFAs applied in biomedical fields are summarized. The authors start by introducing the fabrication techniques of SFAs, then shift to the topology design of SFAs, followed by their material selections and distinct actuating mechanisms. After that, their biomedical applications are categorized in practical aspects. The challenges and prospects of this field are finally discussed. The authors believe that this review can boost the development of soft robotics, biomimetics, and human healthcare.
Collapse
Affiliation(s)
- Zhuohao Zhang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Qiao Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Luoran Shang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
4
|
Agnihotri P, Aery S, Dan A. Temperature- and pH-responsive poly( N-isopropylacrylamide- co-methacrylic acid) microgels as a carrier for controlled protein adsorption and release. SOFT MATTER 2021; 17:9595-9606. [PMID: 34633021 DOI: 10.1039/d1sm01197a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, we report controlled protein adsorption and delivery of thermo- and pH-responsive poly(N-isopropylacrylamide-co-methacrylic acid) (PNIPAM-co-MAA) microgels at different temperatures, pH values and ionic strengths by employing bovine serum albumin (BSA) as a model protein. For these dual-responsive microgels, we found that the BSA adsorption was driven by several of six competing contributions, viz., physical diffusion (PD), hydrophobic interactions (HI), electrostatic attraction (EA), hydrogen bonding (HB) and temperature or pH-induced seizing action (SAT or SApH), depending on the temperature and pH of the solution. Compared to the pure PNIPAM microgels, the higher swelling degree of the PNIPAM-co-MAA microgels allowed a large amount of BSA loading under any experimental conditions. A largest BSA adsorption of 45.1 μg mg-1 was achieved at 40 °C and pH 4 due to the presence of all six contributions. The BSA adsorption and delivery could be further tuned by changing the crosslinking density within the microgels. The BSA binding onto the microgels was found to be ionic strength dependent, which could be attributed to the charge shielding of Na+ ions, salting out of BSA and aggregate formation of the microgels. The adsorbed BSA could be controllably released by adjusting the temperature and pH of the experiment, and with the help of sodium dodecyl sulphate (SDS) addition so as to eliminate each interaction between BSA and the microgels. Thus, this study can be useful to design a stimuli-responsive microgel-based carrier for controlled release of proteins.
Collapse
Affiliation(s)
- Priyanshi Agnihotri
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University - Chandigarh, Sector 14, Chandigarh 160014, India.
| | - Shikha Aery
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University - Chandigarh, Sector 14, Chandigarh 160014, India.
| | - Abhijit Dan
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University - Chandigarh, Sector 14, Chandigarh 160014, India.
| |
Collapse
|
5
|
Keskin D, Tromp L, Mergel O, Zu G, Warszawik E, van der Mei HC, van Rijn P. Highly Efficient Antimicrobial and Antifouling Surface Coatings with Triclosan-Loaded Nanogels. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57721-57731. [PMID: 33320528 PMCID: PMC7775744 DOI: 10.1021/acsami.0c18172] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/03/2020] [Indexed: 05/11/2023]
Abstract
Multifunctional nanogel coatings provide a promising antimicrobial strategy against biomedical implant-associated infections. Nanogels can create a hydrated surface layer to promote antifouling properties effectively. Further modification of nanogels with quaternary ammonium compounds (QACs) potentiates antimicrobial activity owing to their positive charges along with the presence of a membrane-intercalating alkyl chain. This study effectively demonstrates that poly(N-isopropylacrylamide-co-N-[3(dimethylamino)propyl]methacrylamide) (P(NIPAM-co-DMAPMA)-based nanogel coatings possess antifouling behavior against S. aureus ATCC 12600, a Gram-positive bacterium. Through the tertiary amine in the DMAPMA comonomer, nanogels are quaternized with a 1-bromo-dodecane chain via an N-alkylation reaction. The alkylation introduces the antibacterial activity due to the bacterial membrane binding and the intercalating ability of the aliphatic QAC. Subsequently, the quaternized nanogels enable the formation of intraparticle hydrophobic domains because of intraparticle hydrophobic interactions of the aliphatic chains allowing for Triclosan incorporation. The coating with Triclosan-loaded nanogels shows a killing efficacy of up to 99.99% of adhering bacteria on the surface compared to nonquaternized nanogel coatings while still possessing an antifouling activity. This powerful multifunctional coating for combating biomaterial-associated infection is envisioned to greatly impact the design approaches for future clinically applied coatings.
Collapse
Affiliation(s)
- Damla Keskin
- University of Groningen and University
Medical Center Groningen, Department of
Biomedical Engineering, W. J. Kolff Institute for Biomedical Engineering
and Materials Science, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lisa Tromp
- University of Groningen and University
Medical Center Groningen, Department of
Biomedical Engineering, W. J. Kolff Institute for Biomedical Engineering
and Materials Science, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Olga Mergel
- University of Groningen and University
Medical Center Groningen, Department of
Biomedical Engineering, W. J. Kolff Institute for Biomedical Engineering
and Materials Science, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Guangyue Zu
- University of Groningen and University
Medical Center Groningen, Department of
Biomedical Engineering, W. J. Kolff Institute for Biomedical Engineering
and Materials Science, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Eliza Warszawik
- University of Groningen and University
Medical Center Groningen, Department of
Biomedical Engineering, W. J. Kolff Institute for Biomedical Engineering
and Materials Science, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henny C. van der Mei
- University of Groningen and University
Medical Center Groningen, Department of
Biomedical Engineering, W. J. Kolff Institute for Biomedical Engineering
and Materials Science, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Patrick van Rijn
- University of Groningen and University
Medical Center Groningen, Department of
Biomedical Engineering, W. J. Kolff Institute for Biomedical Engineering
and Materials Science, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
6
|
Cabrini FM, Champeau M, Oliveira MG. Effect of Pluronic F127 on the 3D pore morphology of poly(
N
‐isopropylacrylamide‐
co
‐acrylic acid) hydrogels and their nitric oxide release from S‐nitrosoglutathione. J Appl Polym Sci 2020. [DOI: 10.1002/app.49056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Mathilde Champeau
- Center for Engineering, Modeling and Applied Social SciencesFederal University of ABC Santo André São Paulo Brazil
| | | |
Collapse
|
7
|
Keskin D, Mergel O, van der Mei HC, Busscher HJ, van Rijn P. Inhibiting Bacterial Adhesion by Mechanically Modulated Microgel Coatings. Biomacromolecules 2019; 20:243-253. [PMID: 30512925 PMCID: PMC6335679 DOI: 10.1021/acs.biomac.8b01378] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/02/2018] [Indexed: 02/06/2023]
Abstract
Bacterial infection is a severe problem especially when associated with biomedical applications. This study effectively demonstrates that poly- N-isopropylmethacrylamide based microgel coatings prevent bacterial adhesion. The coating preparation via a spraying approach proved to be simple and both cost and time efficient creating a homogeneous dense microgel monolayer. In particular, the influence of cross-linking density, microgel size, and coating thickness was investigated on the initial bacterial adhesion. Adhesion of Staphylococcus aureus ATCC 12600 was imaged using a parallel plate flow chamber setup, which gave insights in the number of the total bacteria adhering per unit area onto the surface and the initial bacterial deposition rates. All microgel coatings successfully yielded more than 98% reduction in bacterial adhesion. Bacterial adhesion depends both on the cross-linking density/stiffness of the microgels and on the thickness of the microgel coating. Bacterial adhesion decreased when a lower cross-linking density was used at equal coating thickness and at equal cross-linking density with a thicker microgel coating. The highest reduction in the number of bacterial adhesion was achieved with the microgel that produced the thickest coating ( h = 602 nm) and had the lowest cross-linking density. The results provided in this paper indicate that microgel coatings serve as an interesting and easy applicable approach and that it can be fine-tuned by manipulating the microgel layer thickness and stiffness.
Collapse
Affiliation(s)
- Damla Keskin
- University
of Groningen, University Medical Center Groningen, Department of Biomedical
Engineering (FB40), W.J. Kolff Institute
for Biomedical Engineering and Materials Science (FB41), Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Olga Mergel
- University
of Groningen, University Medical Center Groningen, Department of Biomedical
Engineering (FB40), W.J. Kolff Institute
for Biomedical Engineering and Materials Science (FB41), Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henny C. van der Mei
- University
of Groningen, University Medical Center Groningen, Department of Biomedical
Engineering (FB40), W.J. Kolff Institute
for Biomedical Engineering and Materials Science (FB41), Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henk J. Busscher
- University
of Groningen, University Medical Center Groningen, Department of Biomedical
Engineering (FB40), W.J. Kolff Institute
for Biomedical Engineering and Materials Science (FB41), Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Patrick van Rijn
- University
of Groningen, University Medical Center Groningen, Department of Biomedical
Engineering (FB40), W.J. Kolff Institute
for Biomedical Engineering and Materials Science (FB41), Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- University of
Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
8
|
Shu T, Shen Q, Wan Y, Zhang W, Su L, Zhang X, Serpe MJ. Silver nanoparticle-loaded microgel-based etalons for H2O2sensing. RSC Adv 2018; 8:15567-15574. [PMID: 35539489 PMCID: PMC9080173 DOI: 10.1039/c8ra02215a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/16/2018] [Indexed: 02/02/2023] Open
Abstract
Silver nanoparticles (AgNPs) were generated inside the network structure of poly(N-isopropylacrylamide)-co-acrylic acid (pNIPAm-co-AAc) microgels that were sandwiched between two thin Au layers (15 nm) of an etalon. This was done by introducing Ag+ to the etalons composed of deprotonated microgels, followed by its subsequent reduction with NaBH4. The resultant microgels were collected and then characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), verifying the loading of AgNPs with relatively uniform diameter (5–7 nm) within the microgels. Furthermore, the optical properties of the resultant etalons and their response to H2O2 were evaluated by reflectance spectroscopy. Specifically, upon the addition of H2O2, the AgNP-loaded etalons exhibited both a red shift in the position of the reflectance peaks and an increase in reflected wavelength intensity. We hypothesize that the dual signal response of the devices was a result of oxidative decomposition of the AgNPs, enabling the microgels to swell and for more light to be reflected (due to the loss of the light absorbing AgNPs). Finally, we showed that the AgNPs could be regenerated in the used etalons multiple times without a loss in performance. This work provides a cost-effective means to detect H2O2, which could be modified to sense a variety of other species of physiological and environmental importance through rationally loading other functional nanomaterials. Silver nanoparticle (AgNP)-loaded poly(N-isopropylacrylamide)-co-acrylic acid (pNIPAm-co-AAc)-based microgels were generated and used to make etalons. The etalons were shown to exhibit optical properties that depended on the concentration of H2O2 in solution.![]()
Collapse
Affiliation(s)
- Tong Shu
- Beijing Key Laboratory for Bioengineering and Sensing Technology
- Research Center for Bioengineering and Sensing Technology
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
- Beijing 100083
| | - Qiming Shen
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada T6G 2G2
| | - Yu Wan
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada T6G 2G2
| | - Wei Zhang
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada T6G 2G2
| | - Lei Su
- Beijing Key Laboratory for Bioengineering and Sensing Technology
- Research Center for Bioengineering and Sensing Technology
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
- Beijing 100083
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology
- Research Center for Bioengineering and Sensing Technology
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
- Beijing 100083
| | - Michael J. Serpe
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada T6G 2G2
| |
Collapse
|
9
|
Formation of chitosan nanoparticles to encapsulate krill oil ( Euphausia superba ) for application as a dietary supplement. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.08.020] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|