1
|
Wang L, Liu X, Yue M, Liu Z, Zhang Y, Ma Y, Luo J, Li W, Bai J, Yao H, Chen Y, Li X, Feng D, Song X. Identification of hub genes in bladder cancer based on weighted gene co-expression network analysis from TCGA database. Cancer Rep (Hoboken) 2021; 5:e1557. [PMID: 34541834 PMCID: PMC9458504 DOI: 10.1002/cnr2.1557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022] Open
Abstract
Background Muscular invasive bladder cancer (MIBC) is a common malignant tumor in the world. Because of their heterogeneity in prognosis and response to treatment, biomarkers that can predict survival or help make treatment decisions in patients with MIBC are essential for individualized treatment. Aim We aimed to integrate bioinformatics research methods to identify a set of effective biomarkers capable of predicting, diagnosing, and treating MIBC. To provide a new theoretical basis for the diagnosis and treatment of bladder cancer. Methods and results Gene expression profiles and clinical data of MIBC were obtained by downloading from the Cancer Genome Atlas database. A dataset of 129 MIBC cases and controls was included. 2084 up‐regulated genes and 2961 down‐regulated genes were identified by differentially expressed gene (DEG) analysis. Then, gene ontology analysis was performed to explore the biological functions of DEGs, respectively. The up‐regulated DEGs are mainly enriched in epidermal cell differentiation, mitotic nuclear division, and so forth. They are also involved in the cell cycle, p53 signaling pathway, PPAR signaling pathway, and so forth. The weighted gene co‐expression network analysis yielded five modules related to pathological stages and grading, of which blue and turquoise were the most relevant modules for MIBC. Next, Using Kaplan–Meier survival analysis to identify further hub genes, the screening criteria at p ≤ .05, we found CNKSR1, HIP1R, CFL2, TPM1, CSRP1, SYNM, POPDC2, PJA2, and RBBP8NL genes associated with the progression and prognosis of MIBC patients. Finally, immunohistochemistry experiments further confirmed that CNKSR1 plays a vital role in the tumorigenic context of MIBC. Conclusion The research suggests that CNKSR1, POPDC2, and PJA2 may be novel biomarkers as therapeutic targets for MIBC, especially we used immunohistochemical further to validate CNKSR1 as a therapeutic target for MIBC which may help to improve the prognosis for MIBC.
Collapse
Affiliation(s)
- Lei Wang
- College of Life Sciences, Xinyang Normal University, Xinyang, China.,College of Life Medicine, Xinyang Normal University, Xinyang, China
| | - Xudong Liu
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Miao Yue
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Zhe Liu
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Yu Zhang
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Ying Ma
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Jia Luo
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Wuling Li
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Jiangshan Bai
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Hongmei Yao
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Yuxuan Chen
- Department of Recovery Medicine, People's Liberation Army 990 Hospital, Xinyang, China
| | - Xiaofeng Li
- Department of Pathology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dayun Feng
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xinqiang Song
- College of Life Sciences, Xinyang Normal University, Xinyang, China.,College of Life Medicine, Xinyang Normal University, Xinyang, China
| |
Collapse
|
2
|
Integrated proteomic and transcriptomic profiling identifies aberrant gene and protein expression in the sarcomere, mitochondrial complex I, and the extracellular matrix in Warmblood horses with myofibrillar myopathy. BMC Genomics 2021; 22:438. [PMID: 34112090 PMCID: PMC8194174 DOI: 10.1186/s12864-021-07758-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Background Myofibrillar myopathy in humans causes protein aggregation, degeneration, and weakness of skeletal muscle. In horses, myofibrillar myopathy is a late-onset disease of unknown origin characterized by poor performance, atrophy, myofibrillar disarray, and desmin aggregation in skeletal muscle. This study evaluated molecular and ultrastructural signatures of myofibrillar myopathy in Warmblood horses through gluteal muscle tandem-mass-tag quantitative proteomics (5 affected, 4 control), mRNA-sequencing (8 affected, 8 control), amalgamated gene ontology analyses, and immunofluorescent and electron microscopy. Results We identified 93/1533 proteins and 47/27,690 genes that were significantly differentially expressed. The top significantly differentially expressed protein CSRP3 and three other differentially expressed proteins, including, PDLIM3, SYNPO2, and SYNPOL2, are integrally involved in Z-disc signaling, gene transcription and subsequently sarcomere integrity. Through immunofluorescent staining, both desmin aggregates and CSRP3 were localized to type 2A fibers. The highest differentially expressed gene CHAC1, whose protein product degrades glutathione, is associated with oxidative stress and apoptosis. Amalgamated transcriptomic and proteomic gene ontology analyses identified 3 enriched cellular locations; the sarcomere (Z-disc & I-band), mitochondrial complex I and the extracellular matrix which corresponded to ultrastructural Z-disc disruption and mitochondrial cristae alterations found with electron microscopy. Conclusions A combined proteomic and transcriptomic analysis highlighted three enriched cellular locations that correspond with MFM ultrastructural pathology in Warmblood horses. Aberrant Z-disc mechano-signaling, impaired Z-disc stability, decreased mitochondrial complex I expression, and a pro-oxidative cellular environment are hypothesized to contribute to the development of myofibrillar myopathy in Warmblood horses. These molecular signatures may provide further insight into diagnostic biomarkers, treatments, and the underlying pathophysiology of MFM. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07758-0.
Collapse
|
3
|
Paulin D, Hovhannisyan Y, Kasakyan S, Agbulut O, Li Z, Xue Z. Synemin-related skeletal and cardiac myopathies: an overview of pathogenic variants. Am J Physiol Cell Physiol 2020; 318:C709-C718. [PMID: 32023076 DOI: 10.1152/ajpcell.00485.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review analyzes data concerning patients with cardiomyopathies or skeletal myopathies associated with a variation in the intermediate filament (IF) synemin gene (SYNM), also referred to as desmuslin (DMN). Molecular studies demonstrate that synemin copolymerizes with desmin and vimentin IF and interacts with vinculin, α-actinin, α-dystrobrevin, dystrophin, talin, and zyxin. It has been found that synemin is an A-kinase-anchoring protein (AKAP) that anchors protein kinase A (PKA) and modulates the PKA-dependent phosphorylation of several cytoskeletal substrates such as desmin. Because several IF proteins, including desmin, have been implicated in human genetic disorders such as dominant or recessive congenital and adult-onset myopathy, synemin becomes a significant candidate for cardiac and skeletal myopathies of unknown etiology. Because SYNM is a new candidate gene that displays numerous sequence polymorphisms, in this review, we summarize the genetic and clinical literature about SYNM mutations. Protein-changing variants (missense, frameshifts, nonsense) were further evaluated based on structural modifications and amino acid interactions. We present in silico modeling of helical salt-bridges between residues to evaluate the impact of the synemin networks crucial to interactions with cytoskeletal proteins. Finally, a discussion is featured regarding certain variants that may contribute to the disease state.
Collapse
Affiliation(s)
- Denise Paulin
- Sorbonne Université, Institut de Biologie Paris-Seine, CNRS UMR 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Yeranuhi Hovhannisyan
- Sorbonne Université, Institut de Biologie Paris-Seine, CNRS UMR 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Serdar Kasakyan
- Duzen Laboratories Group, Center of Genetic Diagnosis, Istanbul, Turkey
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine, CNRS UMR 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Zhenlin Li
- Sorbonne Université, Institut de Biologie Paris-Seine, CNRS UMR 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Zhigang Xue
- Sorbonne Université, Institut de Biologie Paris-Seine, CNRS UMR 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, France
| |
Collapse
|
4
|
Geigerin-induced disorganization of desmin, an intermediate filament of the cytoskeleton, in a murine myoblast cell line (C2C12). Toxicon 2019; 167:162-167. [PMID: 31207352 DOI: 10.1016/j.toxicon.2019.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/22/2019] [Accepted: 06/13/2019] [Indexed: 01/30/2023]
Abstract
Ingestion of large quantities of Geigeria species by sheep causes "vermeersiekte", an economically important poisoning in southern Africa. The toxic principles are several sesquiterpene lactones, such as vermeerin, geigerin and ivalin. These sesquitepene lactones are myotoxic and the disease is characterized by microscopic and ultrastructural lesions in skeletal and cardiac muscle. Murine myoblast cells (C2C12) were exposed to 2.0, 2.5 and 5.0 mM geigerin for 24, 48 and 72 h to evaluate its effect on cytoskeletal proteins and filaments using immunocytochemistry and immunofluorescence staining. A concentration-dependent cytotoxic response was observed in desmin-expressing murine myoblasts under the light microscope, evidenced by disorganization and dot-like perinuclear aggregation of desmin filaments in the cells. β-Tubulin, other desmin-associated proteins (αB-crystallin and synemin) as well as the microfilament F-actin were unaffected. The disorganization and aggregation of desmin following exposure to increasing geigerin concentrations is significant and can explain some of the striated muscle lesions observed in "vermeersiekte".
Collapse
|
5
|
Brodehl A, Gaertner-Rommel A, Milting H. Molecular insights into cardiomyopathies associated with desmin (DES) mutations. Biophys Rev 2018; 10:983-1006. [PMID: 29926427 DOI: 10.1007/s12551-018-0429-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/22/2018] [Indexed: 12/15/2022] Open
Abstract
Increasing usage of next-generation sequencing techniques pushed during the last decade cardiogenetic diagnostics leading to the identification of a huge number of genetic variants in about 170 genes associated with cardiomyopathies, channelopathies, or syndromes with cardiac involvement. Because of the biochemical and cellular complexity, it is challenging to understand the clinical meaning or even the relevant pathomechanisms of the majority of genetic sequence variants. However, detailed knowledge about the associated molecular pathomechanism is essential for the development of efficient therapeutic strategies in future and genetic counseling. Mutations in DES, encoding the muscle-specific intermediate filament protein desmin, have been identified in different kinds of cardiac and skeletal myopathies. Here, we review the functions of desmin in health and disease with a focus on cardiomyopathies. In addition, we will summarize the genetic and clinical literature about DES mutations and will explain relevant cell and animal models. Moreover, we discuss upcoming perspectives and consequences of novel experimental approaches like genome editing technology, which might open a novel research field contributing to the development of efficient and mutation-specific treatment options.
Collapse
Affiliation(s)
- Andreas Brodehl
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany.
| | - Anna Gaertner-Rommel
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany.
| |
Collapse
|
6
|
Zlotina A, Kiselev A, Sergushichev A, Parmon E, Kostareva A. Rare Case of Ulnar-Mammary-Like Syndrome With Left Ventricular Tachycardia and Lack of TBX3 Mutation. Front Genet 2018; 9:209. [PMID: 29963074 PMCID: PMC6013977 DOI: 10.3389/fgene.2018.00209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/25/2018] [Indexed: 12/13/2022] Open
Abstract
"Heart-hand" type syndromes represent a group of rare congenital conditions that combine cardiac pathology (structural defect or arrhythmic disorder) and limb abnormality. Significant clinical variability and genetic heterogeneity typical for such syndromes complicate correct diagnosis, prognosis, and appropriate genetic counseling of the affected families. By now, only single genes have been unambiguously determined as a genetic cause of heart-hand syndromes and phenotypically similar conditions. In the present study, we report on a 25-year-old Russian female patient with a clinical picture resembling ulnar-mammary syndrome (UMS). Principal clinical manifestations included heart septal fibrosis and non-sustained left ventricular tachycardia combined with fifth finger camptodactyly, hypoplastic breast, abnormal teeth, and mental retardation. Target Sanger sequencing and array-based comparative genome hybridization confirmed the lack of pathogenic mutations and large-scale deletions in TBX3 (12q24.21), the only gene known to be associated with UMS cases to date. Based on the results of whole-exome sequencing, 14 potential candidate variants were identified. Among them, a novel missense variant in SYNM gene (exon 1, c.173C > T, p.A58V), encoding intermediate filament protein synemin was characterized. Until the present, no association between SYNM mutations and congenital clinical syndromes has been reported. At the same time, taking into account synemin tissue-specific expression profiles and available data on abnormal knock-out mice phenotypes, we propose SYNM as a candidate gene contributing to the UMS-like phenotype. Further comprehensive functional studies are required to evaluate possible involvement of SYNM in genesis of complex heart-limb pathology.
Collapse
Affiliation(s)
- Anna Zlotina
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Artem Kiselev
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | | | - Elena Parmon
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Anna Kostareva
- Almazov National Medical Research Centre, Saint Petersburg, Russia
- Department of Women’s and Children’s Health, Center for Molecular Medicine, Karolinska Institute, Solna, Sweden
| |
Collapse
|
7
|
Ferrer I. Sisyphus in Neverland. J Alzheimers Dis 2018; 62:1023-1047. [PMID: 29154280 PMCID: PMC5870014 DOI: 10.3233/jad-170609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2017] [Indexed: 11/24/2022]
Abstract
The study of life and living organisms and the way in which these interact and organize to form social communities have been central to my career. I have been fascinated by biology, neurology, and neuropathology, but also by history, sociology, and art. Certain current historical, political, and social events, some occurring proximally but others affecting people in apparently distant places, have had an impact on me. Epicurus, Seneca, and Camus shared their philosophical positions which I learned from. Many scientists from various disciplines have been exciting sources of knowledge as well. I have created a world of hypothesis and experiments but I have also got carried away by serendipity following unexpected observations. It has not been an easy path; errors and wanderings are not uncommon, and opponents close to home much more abundant than one might imagine. Ambition, imagination, resilience, and endurance have been useful in moving ahead in response to setbacks. In the end, I have enjoyed my dedication to science and I am grateful to have glimpsed beauty in it. These are brief memories of a Spanish neuropathologist born and raised in Barcelona, EU.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona; Service of Pathological Anatomy, Bellvitge University Hospital; CIBERNED; Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
8
|
Güttsches AK, Brady S, Krause K, Maerkens A, Uszkoreit J, Eisenacher M, Schreiner A, Galozzi S, Mertens-Rill J, Tegenthoff M, Holton JL, Harms MB, Lloyd TE, Vorgerd M, Weihl CC, Marcus K, Kley RA. Proteomics of rimmed vacuoles define new risk allele in inclusion body myositis. Ann Neurol 2017; 81:227-239. [PMID: 28009083 DOI: 10.1002/ana.24847] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/22/2016] [Accepted: 12/11/2016] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Sporadic inclusion body myositis (sIBM) pathogenesis is unknown; however, rimmed vacuoles (RVs) are a constant feature. We propose to identify proteins that accumulate within RVs. METHODS RVs and intact myofibers were laser microdissected from skeletal muscle of 18 sIBM patients and analyzed by a sensitive mass spectrometry approach using label-free spectral count-based relative protein quantification. Whole exome sequencing was performed on 62 sIBM patients. Immunofluorescence was performed on patient and mouse skeletal muscle. RESULTS A total of 213 proteins were enriched by >1.5 -fold in RVs compared to controls and included proteins previously reported to accumulate in sIBM tissue or when mutated cause myopathies with RVs. Proteins associated with protein folding and autophagy were the largest group represented. One autophagic adaptor protein not previously identified in sIBM was FYCO1. Rare missense coding FYCO1 variants were present in 11.3% of sIBM patients compared with 2.6% of controls (p = 0.003). FYCO1 colocalized at RVs with autophagic proteins such as MAP1LC3 and SQSTM1 in sIBM and other RV myopathies. One FYCO1 variant protein had reduced colocalization with MAP1LC3 when expressed in mouse muscle. INTERPRETATION This study used an unbiased proteomic approach to identify RV proteins in sIBM that included a novel protein involved in sIBM pathogenesis. FYCO1 accumulates at RVs, and rare missense variants in FYCO1 are overrepresented in sIBM patients. These FYCO1 variants may impair autophagic function, leading to RV formation in sIBM patient muscle. FYCO1 functionally connects autophagic and endocytic pathways, supporting the hypothesis that impaired endolysosomal degradation underlies the pathogenesis of sIBM. Ann Neurol 2017;81:227-239.
Collapse
Affiliation(s)
- Anne-Katrin Güttsches
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Stefen Brady
- Department of Neurology, Southmead Hospital, Bristol, United Kingdom
| | - Kathryn Krause
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany.,Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Alexandra Maerkens
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany.,Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Julian Uszkoreit
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Martin Eisenacher
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Anja Schreiner
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Sara Galozzi
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Janine Mertens-Rill
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Martin Tegenthoff
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Janice L Holton
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom.,Department of Molecular Neuroscience, Queen Square Brain Bank, UCL Institute of Neurology, London, United Kingdom
| | | | - Thomas E Lloyd
- Johns Hopkins University School of Medicine, Baltimore, MD
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Conrad C Weihl
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO
| | - Katrin Marcus
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Rudolf A Kley
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
9
|
|
10
|
Marini M, Guglielmi V, Faulkner G, Piffer S, Tomelleri G, Vattemi G. Immunoblot as a potential diagnostic tool for myofibrillar myopathies. Electrophoresis 2015; 36:3097-100. [DOI: 10.1002/elps.201500277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Matteo Marini
- Department of Neurological and Movement Sciences, Section of Clinical Neurology; University of Verona; Verona Italy
| | - Valeria Guglielmi
- Department of Neurological and Movement Sciences, Section of Clinical Neurology; University of Verona; Verona Italy
| | - Georgine Faulkner
- Muscle Molecular Biology Group; International Centre for Genetic Engineering and Biotechnology (ICGEB); Trieste Italy
| | - Silvio Piffer
- Department of Neurological and Movement Sciences, Section of Clinical Neurology; University of Verona; Verona Italy
| | - Giuliano Tomelleri
- Department of Neurological and Movement Sciences, Section of Clinical Neurology; University of Verona; Verona Italy
| | - Gaetano Vattemi
- Department of Neurological and Movement Sciences, Section of Clinical Neurology; University of Verona; Verona Italy
| |
Collapse
|
11
|
Hughes DC, Wallace MA, Baar K. Effects of aging, exercise, and disease on force transfer in skeletal muscle. Am J Physiol Endocrinol Metab 2015; 309:E1-E10. [PMID: 25968577 PMCID: PMC4490334 DOI: 10.1152/ajpendo.00095.2015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/08/2015] [Indexed: 11/22/2022]
Abstract
The loss of muscle strength and increased injury rate in aging skeletal muscle has previously been attributed to loss of muscle protein (cross-sectional area) and/or decreased neural activation. However, it is becoming clear that force transfer within and between fibers plays a significant role in this process as well. Force transfer involves a secondary matrix of proteins that align and transmit the force produced by the thick and thin filaments along muscle fibers and out to the extracellular matrix. These specialized networks of cytoskeletal proteins aid in passing force through the muscle and also serve to protect individual fibers from injury. This review discusses the cytoskeleton proteins that have been identified as playing a role in muscle force transmission, both longitudinally and laterally, and where possible highlights how disease, aging, and exercise influence the expression and function of these proteins.
Collapse
Affiliation(s)
- David C Hughes
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, California
| | - Marita A Wallace
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, California
| | - Keith Baar
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, California
| |
Collapse
|
12
|
Liu YH, Cheng CC, Lai YS, Chao WT, Pei RJ, Hsu YH, Ho CC. Synemin down-regulation in human hepatocellular carcinoma does not destabilize cytoskeletons in vivo. Biochem Biophys Res Commun 2010; 404:488-93. [PMID: 21144834 DOI: 10.1016/j.bbrc.2010.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 12/02/2010] [Indexed: 11/17/2022]
Abstract
Synemin is a large intermediate filament protein that has been identified in all types of muscle cells. It plays a role in human muscle diseases; however, the role of synemin in tumor cell transformation has rarely been investigated. Because hepatocellular carcinoma cells are morphologically different from normal human hepatocytes, we hypothesized that altered synemin expression and cytoskeletal disorganization might underlie this pleomorphic transformation. To test this hypothesis, we studied synemin expression in hepatocellular carcinoma and liver tissues by immunohistochemistry and immunoblotting. In addition, we analyzed the expression level and organization of all cytoskeletal elements after synemin knock-down in human Chang liver cells. Previously we found that plectin knock-down in human Chang liver cells causes a reduction in cytokeratin 18 expression with effects on intermediate filament disorganization and altered cellular morphology. In this study we also compared the effects of synemin knock-down and plectin knock-down on the cytoskeleton expression and organization. The results revealed that synemin expression was down-regulated in human hepatocellular carcinoma compared with normal liver, which is similar to the plectin expression. Surprisingly, the expression of cytoskeletal elements (cytokeratin 18, actin and tubulin) was not influenced by synemin knock-down in human Chang liver cells. The organization of cytoskeletal networks was also unaltered after synemin knock-down. In conclusion, both plectin and synemin are down-regulated in human hepatocellular carcinoma in vivo and transformed human liver cell in vitro. However, the mechanism of cell transformation caused by synemin knock-down is different from that of plectin knock-down. Plectin, but not synemin, knock-down provoked liver cell transformation via suppressing cytokeratin 18 expression and disrupting intermediate filament networks. Synemin knock-down did not influence the cytoskeleton expression and organization of human Chang liver cells.
Collapse
Affiliation(s)
- Yi-Hsiang Liu
- Department of Pathology, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | | | | | | | | | | | | |
Collapse
|
13
|
Hanada S, Snider NT, Brunt EM, Hollenberg PF, Omary MB. Gender dimorphic formation of mouse Mallory-Denk bodies and the role of xenobiotic metabolism and oxidative stress. Gastroenterology 2010; 138:1607-17. [PMID: 20064513 PMCID: PMC2847059 DOI: 10.1053/j.gastro.2009.12.055] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 12/14/2009] [Accepted: 12/28/2009] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Mallory-Denk bodies (MDBs) are keratin (K)-rich cytoplasmic hepatocyte inclusions commonly associated with alcoholic steatohepatitis. Given the significant gender differences in predisposition to human alcohol-related liver injury, and the strain difference in mouse MDB formation, we hypothesized that sex affects MDB formation. METHODS MDBs were induced in male and female mice overexpressing K8, which are predisposed to MDB formation, and in nontransgenic mice by feeding the porphyrinogenic compound 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). MDB presence was determined by histologic, immunofluorescence, and biochemical analyses and correlated to liver injury using serologic and pathologic markers. Cytoskeletal and metabolic liver protein analysis, in vitro metabolism studies, and measurement of oxidative stress markers and protoporphyrin-IX were performed. RESULTS Male mice formed significantly more MDBs, which was attenuated modestly by estradiol. MDB formation was accompanied by increased oxidative stress. Female mice had significantly fewer MDBs and oxidative stress-related changes, but had increased ductular reaction protoporphyrin-IX accumulation, and MDB-preventive K18 induction. Evaluation of the microsomal cytochrome-P450 (CYP) enzymes revealed significant gender differences in protein expression and activity in untreated and DDC-fed mice, and showed that DDC is metabolized by CYP3A. The changes in CYPs account for the gender differences in porphyria and DDC metabolism. DDC metabolite formation and oxidative injury accumulate on chronic DDC exposure in males, despite more efficient acute metabolism in females. CONCLUSIONS Gender dimorphic formation of MDBs and porphyria associate with differences in CYPs, oxidative injury, and selective keratin induction. These findings may extend to human MDBs and other neuropathy- and myopathy-related inclusions.
Collapse
Affiliation(s)
- Shinichiro Hanada
- Departments of Molecular & Integrative Physiology, Medicine, University of Michigan School of Medicine, Ann Arbor, MI 48109–5622, Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 830–0011, Japan
| | - Natasha T. Snider
- Departments of Molecular & Integrative Physiology, Medicine, University of Michigan School of Medicine, Ann Arbor, MI 48109–5622,To whom correspondence should be addressed: Natasha Snider, University of Michigan School of Medicine, Department of Molecular & Integrative Physiology, 7720 Medical Science II, 1301 E. Catherine Street, Ann Arbor, MI 48109-5622, (734) 647-6461 Phone; (734) 936-8813 Fax,
| | - Elizabeth M. Brunt
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Paul F. Hollenberg
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI 48109–5622
| | - M. Bishr Omary
- Departments of Molecular & Integrative Physiology, Medicine, University of Michigan School of Medicine, Ann Arbor, MI 48109–5622
| |
Collapse
|
14
|
Abstract
Myofibrillar myopathies (MFMs) are clinically and genetically heterogeneous muscle disorders that are defined morphologically by the presence of foci of myofibril dissolution, accumulation of myofibrillar degradation products, and ectopic expression of multiple proteins. MFMs are the paradigm of conformational protein diseases of the skeletal (and cardiac) muscles characterised by intracellular protein accumulation in muscle cells. Understanding of this group of disorders has advanced in recent years through the identification of causative mutations in various genes, most of which encode proteins of the sarcomeric Z-disc, including desmin, alphaB-crystallin, myotilin, ZASP and filamin C. This review focuses on the MFMs arising from defects in these proteins, summarising genetic and clinical features of the disorders and then discussing emerging understanding of the molecular pathogenic mechanisms leading to muscle fibre degeneration. Defective extralysosomal degradation of proteins is now recognised as an important element in this process. Several factors--including mutant proteins, a defective ubiquitin-proteasome system, aggresome formation, mutant ubiquitin, p62, oxidative stress and abnormal regulation of some transcription factors--are thought to participate in the cascade of events occurring in muscle fibres in MFMs.
Collapse
|
15
|
Goebel HH, Fardeau M, Olivé M, Schröder R. 156th ENMC International Workshop: desmin and protein aggregate myopathies, 9-11 November 2007, Naarden, The Netherlands. Neuromuscul Disord 2008; 18:583-92. [PMID: 18595698 DOI: 10.1016/j.nmd.2008.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Indexed: 11/20/2022]
Affiliation(s)
- Hans H Goebel
- Johannes Gutenberg University, Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany.
| | | | | | | |
Collapse
|
16
|
Liu YH, Ho CC, Cheng CC, Hsu YH, Lai YS. Photoradiation could influence the cytoskeleton organization and inhibit the survival of human hepatoma cells in vitro. Lasers Med Sci 2006; 21:42-8. [PMID: 16570120 DOI: 10.1007/s10103-005-0369-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Accepted: 11/22/2005] [Indexed: 11/29/2022]
Abstract
Low-power laser therapy has become popular in clinical applications including promoting wound healing and pain relief. However, effects of this photoradiation on human hepatoma cells are rarely studied. Previously, we found 808 nm gallium aluminum arsenide (GaAlAs) continuous wave laser had an inhibitory effect on the proliferation of human hepatoma cell lines HepG2 and J-5 at the energy density of 5.85 and 11.7 J/cm(2), respectively. The aim of the present study was to evaluate the possible mechanism of action of this photoradiation on HepG2 and J-5 cells. HepG2 and J-5 cells were cultured in 24-well plates for 24 h. After photoradiation by 130 mW 808 nm GaAlAs continuous wave laser for different time intervals (0, 30, 60, 90, 120, 150, and 180 s), Western blot and immunofluorescent staining were used to examine the expression and distribution of histone and cytoskeletal proteins. The cell counts as well as histone and synemin expression of HepG2 and J-5 cells were reduced by photoradiation at the energy density of 5.85 and 11.7 J/cm(2), respectively. Furthermore, the architecture of cytoskeletons and the distribution of intermediate filament-associated proteins (plectin and synemin) were disorganized by photoradiation. Photoradiation by 808 nm GaAlAs continuous wave laser at the energy density of 5.85 and 7.8 J/cm(2) inhibited the survival of human hepatoma cell lines. The mechanism might reduce synthesis of histone and synemin. Reduced histone synthesis might further reduce the proliferation rate of these cells. Reduced synemin synthesis might result in the destruction of the cytoskeleton. Therefore, the net effects by this photoradiation were reduced cell survival.
Collapse
Affiliation(s)
- Yi-Hsiang Liu
- Department of Pathology, Tzu Chi Hospital and University, Hualien, Taiwan
| | | | | | | | | |
Collapse
|
17
|
Ferrer I, Martín B, Castaño JG, Lucas JJ, Moreno D, Olivé M. Proteasomal expression, induction of immunoproteasome subunits, and local MHC class I presentation in myofibrillar myopathy and inclusion body myositis. J Neuropathol Exp Neurol 2004; 63:484-98. [PMID: 15198127 DOI: 10.1093/jnen/63.5.484] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Inclusion body myositis (IBM) and myofibrillar myopathy (MM) are diseases characterized by the abnormal accumulation of proteins in muscle fibers, including desmin, alphaB-crystallin, gelsolin, actin, kinases, and phospho-tau, along with ubiquitin in muscle fibers, suggesting abnormal protein degradation as a possible cause of the surplus myopathy. Since the ubiquitin-proteasome system plays a crucial role in non-lysosomal protein degradation, the present study has examined by immunohistochemistry the expression of components of the catalytic core of 20S proteasomes and its regulators: 19S and PA28alpha/beta, and the expression of immunoproteasome subunits LMP2, LMP7, and MECL1 in 8 patients with MM and 10 patients with IBM. The patients with MM were from 6 unrelated families, 2 sporadic cases, I with autosomal recessive and 5 with autosomal dominant inheritance. One sporadic patient had a de novo R406W mutation in the desmin gene, and 1 patient with autosomal dominant MM had a single amino acid deletion at position 366 in the desmin gene. Increased immunoreactivity to 20S, 19S, and PA28alpha/beta colocalizing abnormal protein deposits, as revealed in consecutive serial sections, was seen in all cases with MM and IBM. In all cases, the subunits of the immunoproteasome LMP2, LMP7, and MECL1 colocalized with proteasomal immunoreactivity and abnormal protein accumulation. Immunohistochemistry revealed focal MHC class I immunoreactivity in the cytoplasmic membrane of muscle fibers in IBM and in association with protein aggregates in IBM, and to a lesser degree, in MM. The present findings provide a link between abnormal protein accumulation and altered proteasomal expression in IBM and MM.
Collapse
MESH Headings
- Adenosine Triphosphatases/immunology
- Adenosine Triphosphatases/metabolism
- Adult
- Aged
- Aged, 80 and over
- Antigen Presentation/immunology
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Cell Membrane/pathology
- Cysteine Endopeptidases/immunology
- Cysteine Endopeptidases/metabolism
- DNA Mutational Analysis
- Desmin/deficiency
- Desmin/genetics
- Endopeptidases/immunology
- Endopeptidases/metabolism
- Female
- Genetic Testing
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Humans
- Immunohistochemistry
- Male
- Middle Aged
- Multienzyme Complexes/immunology
- Multienzyme Complexes/metabolism
- Muscle Proteins/immunology
- Muscle Proteins/metabolism
- Muscle, Skeletal/immunology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiopathology
- Mutation/genetics
- Myofibrils/immunology
- Myofibrils/metabolism
- Myofibrils/pathology
- Myopathies, Structural, Congenital/immunology
- Myopathies, Structural, Congenital/metabolism
- Myopathies, Structural, Congenital/pathology
- Myositis, Inclusion Body/immunology
- Myositis, Inclusion Body/metabolism
- Myositis, Inclusion Body/pathology
- Proteasome Endopeptidase Complex
- Protein Subunits/genetics
- Protein Subunits/immunology
- Protein Subunits/metabolism
- Protein Transport/genetics
- Proteins/immunology
- Proteins/metabolism
Collapse
Affiliation(s)
- Isidro Ferrer
- Instituto de Neuropatología, Servicio de Anatomía Patológica, Hospital Universitario de Bellvitge, Hospitalet de Llobregat, Spain.
| | | | | | | | | | | |
Collapse
|
18
|
Olivé M, Goldfarb L, Moreno D, Laforet E, Dagvadorj A, Sambuughin N, Martínez-Matos JA, Martínez F, Alió J, Farrero E, Vicart P, Ferrer I. Desmin-related myopathy: clinical, electrophysiological, radiological, neuropathological and genetic studies. J Neurol Sci 2004; 219:125-37. [PMID: 15050448 DOI: 10.1016/j.jns.2004.01.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2003] [Revised: 12/16/2003] [Accepted: 01/05/2004] [Indexed: 11/24/2022]
Abstract
Ten Spanish patients from six unrelated families diagnosed with desmin-related myopathy (DRM) were studied. The pattern of DRM inheritance was autosomal dominant in three families, autosomal recessive in one, and there was no family history in two cases. The disease onset was in early adulthood. Cardiac myopathy was the initial presentation in two patients, respiratory insufficiency in one, and lower limb weakness in all others. Cardiac involvement was observed in four patients. Lens opacities were found in four. CK level was normal or slightly elevated, and electrophysiological examination was consistent with myopathy. Muscle biopsies identified intracytoplasmic desmin-immunoreactive inclusions. In addition to desmin, synemin, actin, gelsolin, ubiquitin, alphaB-crystallin and amyloid betaA4 were also present in the deposits. Ultrastructural examination revealed areas of myofibrillary disruption, abnormal electron-dense structures and accumulations of granulofilamentous material. A missense R406W mutation and a novel single amino acid deletion in the desmin gene were identified in two patients; the other patients did not show mutations in desmin, synemin, syncoilin or alphaB-crystallin genes. Analysis of 10 Spanish DRM cases illustrates a wide clinical, myopathological and genetic spectrum of DRM, reinforcing the need for further exploration of genetic causes for this group of disorders.
Collapse
Affiliation(s)
- Montse Olivé
- Institut de Neuropatologia, Hospital de Bellvitge, C/Feixa Llarga s/n degrees, 08907 Hospitalet de Llobregat, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- Richard M Robson
- Muscle Biology Group, Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | |
Collapse
|