1
|
Uchino A, Saito Y, Oonuma S, Murayama S, Yagishita S, Kitamoto T, Hasegawa K. An autopsy case of variably protease-sensitive prionopathy with Met/Met homogeneity at codon 129. Neuropathology 2023; 43:486-495. [PMID: 37253452 DOI: 10.1111/neup.12911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023]
Abstract
The typical clinical manifestations of sporadic Creutzfeldt-Jakob disease (sCJD) are rapid-progressive dementia and myoclonus. However, the diagnosis of atypical sCJD can be challenging due to its wide phenotypic variations. We report an autopsy case of variably protease-sensitive prionopathy (VPSPr) with Met/Met homogeneity at codon 129. An 81-year-old woman presented with memory loss without motor symptoms. Seventeen months after the onset, her spontaneous language production almost disappeared. Diffusion-weighted images (DWI) showed hyperintensity in the cerebral cortex while electroencephalogram (EEG) showed nonspecific change. 14-3-3 protein and real-time qualing-induced conversion (RT-QuIC) of cerebrospinal fluid were negative. She died at age 85, 3.5 years after the onset. Pathological investigation revealed spongiform change, severe neuronal loss, and gliosis in the cerebral cortex. Mild to moderate neuronal loss and gliosis were observed in the basal ganglia. PrP immunostaining revealed plaque-like, dotlike, and synaptic structures in the cerebral cortex and small plaque-like structures in the molecular layer of the cerebellum. Analysis of PRNP showed no pathogenic mutations, and Western blot examination revealed the lack of a diglycosylated band consistent with VPSPr. The present case, which is the first report on a VPSPr case in Japan, supports previously published evidence that VPSPr cases can present variable and nonspecific clinical presentations. Because a small number of VPSPr cases can show typical magnetic resonance imaging (MRI) change in sCJD. We should investigate the possibility of VPSPr in a differential diagnosis with atypical dementia that presented DWIs of high intensity in the cortex, even though 14-3-3 proteins and RT-QuIC are both negative. In addition, VPSPr cases can take a longer clinical course compared to that of sCJD, and long-term follow-up is important.
Collapse
Affiliation(s)
- Akiko Uchino
- Department of Preventive Medical Center, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
- Department of Neuropathology (Brain Bank for Aging Research), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Yuko Saito
- Department of Pathology and Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Saori Oonuma
- Department of Neurology, NHO Sagamihara National Hospital, Sagamihara-shi, Japan
| | - Shigeo Murayama
- Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development & Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Neurology and Neuropathology (Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital & Institute of Gerontology, Tokyo, Japan
| | - Saburo Yagishita
- Department of Neurology, NHO Sagamihara National Hospital, Sagamihara-shi, Japan
| | - Tetsuyuki Kitamoto
- Department of Neurological Science, Tohoku University School of Medicine, Sendai, Japan
| | - Kazuko Hasegawa
- Department of Neurology, NHO Sagamihara National Hospital, Sagamihara-shi, Japan
| |
Collapse
|
2
|
Abstract
Variably protease-sensitive prionopathy (VPSPr), originally identified in 2008, was further characterized and renamed in 2010. Thirty-seven cases of VPSPr have been reported to date, consistent with estimated prevalence of 0.7-1.7% of all sporadic prion diseases. The lack of gene mutations establishes VPSPr as a sporadic form of human prion diseases, along with sporadic Creutzfeldt-Jakob disease (sCJD) and sporadic fatal insomnia. Like sCJD, VPSPr affects patients harboring any of the three genotypes, MM, MV, and VV at the prion protein (PrP) gene polymorphic codon 129, with VPSPr VV accounting for 65% of all VPSPr cases. Distinguishing clinical features include a median 2-year duration and presentation with psychiatric signs, speech/language impairment, or cognitive decline. Neuropathology comprises moderate spongiform degeneration, PrP amyloid miniplaques, and a target-like or plaque-like PrP deposition. The abnormal PrP associated with VPSPr typically forms an electrophoretic profile of five to seven bands (according to the antibody) presenting variable protease resistance depending on the 129 genotype. The familial prion disease associated with the V180I PrP gene mutation which harbors an abnormal PrP with similar electrophoretic profile might serve as a model for VPSPr. Transmission to animals has definitively established VPSPr as a prion disease. Because of its recent identification, rarity, and the elusiveness of its abnormal PrP, VPSPr remains largely understudied.
Collapse
Affiliation(s)
- Silvio Notari
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Brian S Appleby
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States; National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, OH, United States; Department of Neurology, Case Western Reserve University, Cleveland, OH, United States; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, United States
| | - Pierluigi Gambetti
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States.
| |
Collapse
|
3
|
Head MW, Yull HM, Ritchie DL, Langeveld JP, Fletcher NA, Knight RS, Ironside JW. Variably protease-sensitive prionopathy in the UK: a retrospective review 1991-2008. ACTA ACUST UNITED AC 2013; 136:1102-15. [PMID: 23550113 DOI: 10.1093/brain/aws366] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Variably protease-sensitive prionopathy is a newly described human prion disease of unknown aetiology lying out with the hitherto recognized phenotypic spectrum of Creutzfeldt-Jakob disease. Two cases that conform to the variably protease-sensitive prionopathy phenotype have been identified prospectively in the U.K. since the first description of the condition in 2008 in the U.S.A. To determine the incidence and phenotype of variably protease-sensitive prionopathy within a single well-defined cohort, we have conducted a retrospective review of patients referred to the National Creutzfeldt-Jakob Disease Research & Surveillance Unit during the period 1991-2008. The approach taken was to screen frozen brain tissue by western blotting for the form of protease-resistant prion protein that characterizes variably protease-sensitive prionopathy, followed by neuropathological and clinical review of candidate cases. Cases diagnosed as sporadic Creutzfeldt-Jakob disease with atypical neuropathology were also reviewed. Four hundred and sixty-five cases were screened biochemically, yielding four candidate cases of variably protease-sensitive prionopathy. One was discounted on pathological and clinical grounds, and one was a known case of variably protease-sensitive prionopathy previously reported, leaving two new cases, which were confirmed biochemically and neuropathologically as variably protease-sensitive prionopathy. A third new case that lacked frozen tissue was recognized retrospectively on neuropathological grounds alone. This means that five cases of variably protease-sensitive prionopathy have been identified (prospectively and retrospectively) during the surveillance period 1991-2011 in the U.K. Assuming ascertainment levels equivalent to that of other human prion diseases, these data indicate that variably protease-sensitive prionopathy is a rare phenotype within human prion diseases, which are themselves rare. Biochemical investigation indicates that the abnormal protease-resistant prion protein fragment that characterizes variably protease-sensitive prionopathy is detectable at low levels in some cases of sporadic Creutzfeldt-Jakob disease and conversely, that the form of abnormal prion protein that characterizes sporadic Creutzfeldt-Jakob disease can be found in certain brain regions of cases of variably protease-sensitive prionopathy, indicating molecular overlaps between these two disorders.
Collapse
Affiliation(s)
- Mark W Head
- National Creutzfeldt-Jakob Disease Research & Surveillance Unit, Bryan Matthews Building, Western General Hospital, Edinburgh EH4 2XU, UK.
| | | | | | | | | | | | | |
Collapse
|
4
|
Kretzschmar H, Tatzelt J. Prion disease: a tale of folds and strains. Brain Pathol 2013; 23:321-32. [PMID: 23587138 PMCID: PMC8029118 DOI: 10.1111/bpa.12045] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 02/04/2013] [Indexed: 12/31/2022] Open
Abstract
Research on prions, the infectious agents of devastating neurological diseases in humans and animals, has been in the forefront of developing the concept of protein aggregation diseases. Prion diseases are distinguished from other neurodegenerative diseases by three peculiarities. First, prion diseases, in addition to being sporadic or genetic like all other neurodegenerative diseases, are infectious diseases. Animal models were developed early on (a long time before the advent of transgenic technology), and this has made possible the discovery of the prion protein as the infectious agent. Second, human prion diseases have true equivalents in animals, such as scrapie, which has been the subject of experimental research for many years. Variant Creutzfeldt-Jakob disease (vCJD) is a zoonosis caused by bovine spongiform encephalopathy (BSE) prions. Third, they show a wide variety of phenotypes in humans and animals, much wider than the variants of any other sporadic or genetic neurodegenerative disease. It has now become firmly established that particular PrP(Sc) isoforms are closely related to specific human prion strains. The variety of human prion diseases, still an enigma in its own right, is a focus of this article. Recently, a series of experiments has shown that the concept of aberrant protein folding and templating, first developed for prions, may apply to a variety of neurodegenerative diseases. In the wake of these discoveries, the term prion has come to be used for Aβ, α-synuclein, tau and possibly others. The self-propagation of alternative conformations seems to be the common denominator of these "prions," which in future, in order to avoid confusion, may have to be specified either as "neurodegenerative prions" or "infectious prions."
Collapse
Affiliation(s)
| | - Jörg Tatzelt
- NeurobiochemistryAdolf‐Butenandt‐InstituteLudwig‐Maximilians‐University MunichMunichGermany
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
| |
Collapse
|
5
|
Götte DR, Benestad SL, Laude H, Zurbriggen A, Oevermann A, Seuberlich T. Atypical scrapie isolates involve a uniform prion species with a complex molecular signature. PLoS One 2011; 6:e27510. [PMID: 22096587 PMCID: PMC3214077 DOI: 10.1371/journal.pone.0027510] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 10/18/2011] [Indexed: 12/20/2022] Open
Abstract
The pathobiology of atypical scrapie, a prion disease affecting sheep and goats, is still poorly understood. In a previous study, we demonstrated that atypical scrapie affecting small ruminants in Switzerland differs in the neuroanatomical distribution of the pathological prion protein (PrPd). To investigate whether these differences depend on host-related vs. pathogen-related factors, we transmitted atypical scrapie to transgenic mice over-expressing the ovine prion protein (tg338). The clinical, neuropathological, and molecular phenotype of tg338 mice is similar between mice carrying the Swiss atypical scrapie isolates and the Nor98, an atypical scrapie isolate from Norway. Together with published data, our results suggest that atypical scrapie is caused by a uniform type of prion, and that the observed phenotypic differences in small ruminants are likely host-dependant. Strikingly, by using a refined SDS-PAGE technique, we established that the prominent proteinase K-resistant prion protein fragment in atypical scrapie consists of two separate, unglycosylated peptides with molecular masses of roughly 5 and 8 kDa. These findings show similarities to those for other prion diseases in animals and humans, and lay the groundwork for future comparative research.
Collapse
Affiliation(s)
- Dorothea R. Götte
- NeuroCentre, National and OIE Reference Laboratories for BSE and Scrapie, Division of Experimental Clinical Research, Vetsuisse Faculty, University of Berne, Berne, Switzerland
| | | | - Hubert Laude
- 3U892 Virologie Immunologie Moléculaires, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - Andreas Zurbriggen
- NeuroCentre, National and OIE Reference Laboratories for BSE and Scrapie, Division of Experimental Clinical Research, Vetsuisse Faculty, University of Berne, Berne, Switzerland
| | - Anna Oevermann
- NeuroCentre, National and OIE Reference Laboratories for BSE and Scrapie, Division of Experimental Clinical Research, Vetsuisse Faculty, University of Berne, Berne, Switzerland
| | - Torsten Seuberlich
- NeuroCentre, National and OIE Reference Laboratories for BSE and Scrapie, Division of Experimental Clinical Research, Vetsuisse Faculty, University of Berne, Berne, Switzerland
- * E-mail:
| |
Collapse
|
6
|
Gambetti P, Cali I, Notari S, Kong Q, Zou WQ, Surewicz WK. Molecular biology and pathology of prion strains in sporadic human prion diseases. Acta Neuropathol 2011; 121:79-90. [PMID: 21058033 PMCID: PMC3077936 DOI: 10.1007/s00401-010-0761-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 09/28/2010] [Accepted: 10/11/2010] [Indexed: 01/12/2023]
Abstract
Prion diseases are believed to propagate by the mechanism involving self-perpetuating conformational conversion of the normal form of the prion protein, PrP(C), to the misfolded, pathogenic state, PrP(Sc). One of the most intriguing aspects of these disorders is the phenomenon of prion strains. It is believed that strain properties are fully encoded in distinct conformations of PrP(Sc). Strains are of practical relevance to human prion diseases as their diversity may explain the unusual heterogeneity of these disorders. The first insight into the molecular mechanisms underlying heterogeneity of human prion diseases was provided by the observation that two distinct disease phenotypes and their associated PrP(Sc) conformers co-distribute with distinct PrP genotypes as determined by the methionine/valine polymorphism at codon 129 of the PrP gene. Subsequent studies identified six possible combinations of the three genotypes (determined by the polymorphic codon 129) and two common PrP(Sc) conformers (named types 1 and 2) as the major determinants of the phenotype in sporadic human prion diseases. This scenario implies that each 129 genotype-PrP(Sc) type combination would be associated with a distinct disease phenotype and prion strain. However, notable exceptions have been found. For example, two genotype-PrP(Sc) type combinations are linked to the same phenotype, and conversely, the same combination was found to be associated with two distinct phenotypes. Furthermore, in some cases, PrP(Sc) conformers naturally associated with distinct phenotypes appear, upon transmission, to lose their phenotype-determining strain characteristics. Currently it seems safe to assume that typical sporadic prion diseases are associated with at least six distinct prion strains. However, the intrinsic characteristics that distinguish at least four of these strains remain to be identified.
Collapse
Affiliation(s)
- Pierluigi Gambetti
- Department of Pathology, Case Western Reserve University, 2085 Adelbert Road, Cleveland, OH, 44106, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
Although prion diseases, such as Creutzfeldt-Jakob disease (CJD) in humans and scrapie in sheep, have long been recognized, our understanding of their epidemiology and pathogenesis is still in its early stages. Progress is hampered by the lengthy incubation periods and the lack of effective ways of monitoring and characterizing these agents. Protease-resistant conformers of the prion protein (PrP), known as the "scrapie form" (PrP(Sc)), are used as disease markers, and for taxonomic purposes, in correlation with clinical, pathological, and genetic data. In humans, prion diseases can arise sporadically (sCJD) or genetically (gCJD and others), caused by mutations in the PrP-gene (PRNP), or as a foodborne infection, with the agent of bovine spongiform encephalopathy (BSE) causing variant CJD (vCJD). Person-to-person spread of human prion disease has only been known to occur following cannibalism (kuru disease in Papua New Guinea) or through medical or surgical treatment (iatrogenic CJD, iCJD). In contrast, scrapie in small ruminants and chronic wasting disease (CWD) in cervids behave as infectious diseases within these species. Recently, however, so-called atypical forms of prion diseases have been discovered in sheep (atypical/Nor98 scrapie) and in cattle, BSE-H and BSE-L. These maladies resemble sporadic or genetic human prion diseases and might be their animal equivalents. This hypothesis also raises the significant public health question of possible epidemiological links between these diseases and their counterparts in humans.
Collapse
|
8
|
Parchi P, Strammiello R, Giese A, Kretzschmar H. Phenotypic variability of sporadic human prion disease and its molecular basis: past, present, and future. Acta Neuropathol 2011; 121:91-112. [PMID: 21107851 DOI: 10.1007/s00401-010-0779-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 11/05/2010] [Accepted: 11/06/2010] [Indexed: 11/28/2022]
Abstract
Human prion diseases are rare neurodegenerative disorders related to prion protein misfolding that can occur as sporadic, familial or acquired forms. In comparison to other more common neurodegenerative disorders, prion diseases show a wider range of phenotypic variation and largely transmit to experimental animals, a feature that led to the isolation and characterization of different strains of the transmissible agent or prion with distinct biological properties. Biochemically distinct PrP(Sc) types have been demonstrated which differ in their size after proteinase cleavage, glycosylation pattern, and possibly other features related to their conformation. These PrP(Sc) types, possibly enciphering the prion strains, together with the naturally occurring polymorphism at codon 129 in the prion protein gene have a major influence on the disease phenotype. In the sporadic form, the most common but perhaps least understood form of human prion disease, there are at least six major combinations of codon 129 genotype and prion protein isotype, which are significantly related to distinctive clinical-pathological subgroups of the disease. In this review, we provide an update on the current knowledge and classification of the disease subtypes of the sporadic human prion diseases as defined by molecular features and pathological changes. Furthermore, we discuss the molecular basis of phenotypic variability taking into account the results of recent transmission studies that shed light on the extent of prion strain variation in humans.
Collapse
Affiliation(s)
- Piero Parchi
- Dipartimento di Scienze Neurologiche, Università di Bologna, Bologna, Italy
| | | | | | | |
Collapse
|
9
|
Rodríguez-Martínez AB, Garrido JM, Zarranz JJ, Arteagoitia JM, de Pancorbo MM, Atarés B, Bilbao MJ, Ferrer I, Juste RA. A novel form of human disease with a protease-sensitive prion protein and heterozygosity methionine/valine at codon 129: Case report. BMC Neurol 2010; 10:99. [PMID: 20973975 PMCID: PMC2987858 DOI: 10.1186/1471-2377-10-99] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 10/25/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sporadic Creutzfeldt-Jakob disease (sCJD) is a rare neurodegenerative disorder in humans included in the group of Transmissible Spongiform Encephalopathies or prion diseases. The vast majority of sCJD cases are molecularly classified according to the abnormal prion protein (PrPSc) conformations along with polymorphism of codon 129 of the PRNP gene. Recently, a novel human disease, termed "protease-sensitive prionopathy", has been described. This disease shows a distinct clinical and neuropathological phenotype and it is associated to an abnormal prion protein more sensitive to protease digestion. CASE PRESENTATION We report the case of a 75-year-old-man who developed a clinical course and presented pathologic lesions compatible with sporadic Creutzfeldt-Jakob disease, and biochemical findings reminiscent of "protease-sensitive prionopathy". Neuropathological examinations revealed spongiform change mainly affecting the cerebral cortex, putamen/globus pallidus and thalamus, accompanied by mild astrocytosis and microgliosis, with slight involvement of the cerebellum. Confluent vacuoles were absent. Diffuse synaptic PrP deposits in these regions were largely removed following proteinase treatment. PrP deposition, as revealed with 3F4 and 1E4 antibodies, was markedly sensitive to pre-treatment with proteinase K. Molecular analysis of PrPSc showed an abnormal prion protein more sensitive to proteinase K digestion, with a five-band pattern of 28, 24, 21, 19, and 16 kDa, and three aglycosylated isoforms of 19, 16 and 6 kDa. This PrPSc was estimated to be 80% susceptible to digestion while the pathogenic prion protein associated with classical forms of sporadic Creutzfeldt-Jakob disease were only 2% (type VV2) and 23% (type MM1) susceptible. No mutations in the PRNP gene were found and genotype for codon 129 was heterozygous methionine/valine. CONCLUSIONS A novel form of human disease with abnormal prion protein sensitive to protease and MV at codon 129 was described. Although clinical signs were compatible with sporadic Creutzfeldt-Jakob disease, the molecular subtype with the abnormal prion protein isoforms showing enhanced protease sensitivity was reminiscent of the "protease-sensitive prionopathy". It remains to be established whether the differences found between the latter and this case are due to the polymorphism at codon 129. Different degrees of proteinase K susceptibility were easily determined with the chemical polymer detection system which could help to detect proteinase-susceptible pathologic prion protein in diseases other than the classical ones.
Collapse
|
10
|
Polymenidou M, Prokop S, Jung HH, Hewer E, Peretz D, Moos R, Tolnay M, Aguzzi A. Atypical prion protein conformation in familial prion disease with PRNP P105T mutation. Brain Pathol 2010; 21:209-14. [PMID: 20875062 DOI: 10.1111/j.1750-3639.2010.00439.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Protease-resistant prion protein (PrP(Sc) ) is diagnostic of prion disease, yet its detection is frequently difficult. Here, we describe a patient with a PRNP P105T mutation and typical familial prion disease. Brain PrP(Sc) was undetectable by conventional Western blotting and barely detectable after phosphotungstate precipitation, where it displayed an atypical pattern suggestive of noncanonical conformation. Therefore, we used a novel misfolded protein assay (MPA) that detects PrP aggregates independently of their protease resistance. The MPA revealed the presence of aggregated PrP in similar amounts as in typical sporadic Creutzfeldt-Jakob disease. These findings suggest that measurements of PrP aggregation with the MPA may be potentially more sensitive than protease-based methodologies.
Collapse
Affiliation(s)
- Magdalini Polymenidou
- Department of Neurology, Institute of Neuropathology, University Hospital Zurich and Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Report of the Working Group 'Overall Blood Supply Strategy with Regard to Variant Creutzfeldt-Jakob Disease (vCJD)': Statement on the Development and Implementation of Test Systems Suitable for the Screening of Blood Donors for vCJD - Dated September 17, 2008. Transfus Med Hemother 2009; 36:79-93. [PMID: 21048823 DOI: 10.1159/000188082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|