1
|
Xuan R, Hu T, Cai L, Zhao B, Han E, Xia Z. CARD16 restores tumorigenesis and restraints apoptosis in glioma cells Via FOXO1/TRAIL axis. Cell Death Dis 2024; 15:804. [PMID: 39516471 PMCID: PMC11549220 DOI: 10.1038/s41419-024-07196-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
A hallmark of glioma cells, particularly glioblastoma multiforme (GBM) cells, is their resistance to apoptosis. Accumulating evidences has demonstrated that CARD16, a caspase recruitment domain (CARD) only protein, enhances both anti-apoptotic and tumorigenic properties. Nevertheless, there is a limited understanding of the expression and functional role of CARD16 in glioma. This study seeks to investigate, through in silico analysis and clinical specimens, the role of CARD16 as a potential tumor promoter in glioma. Functional assays and molecular studies revealed that CARD16 promotes tumorigenesis and suppresses apoptosis in glioma cells. Moreover, knockdown of CARD16 enhances the expression of the FOXO1/TRAIL axis in GBM cells. Additionally, FOXO1 downregulation in CARD16 knockdown GBM cells restores proliferation and reduces apoptosis. Further investigation demonstrated that elevated P21 expression inhibits CDK2-mediated FOXO1 phosphorylation and ubiquitination in CARD16-knockdown GBM cells. Collectively, these findings suggest that CARD16 is a tumor-promoting molecular in glioma via downregulating FOXO1/TRAIL axis, and suppressing TRAIL-induced apoptosis. The CARD16 gene presents significant potential for prognostic prediction and advances in innovative apoptotic therapeutics.
Collapse
Affiliation(s)
- Ruoheng Xuan
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tianyu Hu
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lingshan Cai
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Beichuan Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Erqiao Han
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhibo Xia
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Guo F, Zhang Y, Bai L, Cui J. Natural killer cell therapy targeting cancer stem cells: Old wine in a new bottle. Cancer Lett 2023; 570:216328. [PMID: 37499742 DOI: 10.1016/j.canlet.2023.216328] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/14/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
A small proportion of cancer cells that have stem cell-like properties are known as cancer stem cells (CSCs). They can be used to identify malignant tumor phenotypes and patients with poor prognosis. Targeting these cells has been shown to improve the effectiveness of cancer therapies. Owing to the nature of CSCs, they are resistant to conventional treatment methods such as radio- and chemotherapy. Therefore, more effective anti-CSC therapies are required. Immunotherapy, including natural killer (NK) and T cell therapy, has demonstrated the ability to eliminate CSCs. NK cells have demonstrated superior anti-CSC capabilities compared to T cells in recognizing low levels of major histocompatibility complex (MHC) class I expression. However, CSC escape also occurs during NK cell therapy. It is important to determine CSC-specific immune evasion mechanisms and find out potential solutions to optimize NK cell function. Therefore, this review discusses promising strategies that can improve the efficiency of NK cell therapy in treating CSCs, and aims to provide a reference for future research.
Collapse
Affiliation(s)
- Feifei Guo
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Yi Zhang
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Ling Bai
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
3
|
Pandrangi SL, Chittineedi P, Chalumuri SS, Meena AS, Neira Mosquera JA, Sánchez Llaguno SN, Pamuru RR, Mohiddin GJ, Mohammad A. Role of Intracellular Iron in Switching Apoptosis to Ferroptosis to Target Therapy-Resistant Cancer Stem Cells. Molecules 2022; 27:3011. [PMID: 35566360 PMCID: PMC9100132 DOI: 10.3390/molecules27093011] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 02/07/2023] Open
Abstract
Iron is a crucial element required for the proper functioning of the body. For instance, hemoglobin is the vital component in the blood that delivers oxygen to various parts of the body. The heme protein present in hemoglobin comprises iron in the form of a ferrous state which regulates oxygen delivery. Excess iron in the body is stored as ferritin and would be utilized under iron-deficient conditions. Surprisingly, cancer cells as well as cancer stem cells have elevated ferritin levels suggesting that iron plays a vital role in protecting these cells. However, apart from the cytoprotective role iron also has the potential to induce cell death via ferroptosis which is a non-apoptotic cell death dependent on iron reserves. Apoptosis a caspase-dependent cell death mechanism is effective on cancer cells however little is known about its impact on cancer stem cell death. This paper focuses on the molecular characteristics of apoptosis and ferroptosis and the importance of switching to ferroptosis to target cancer stem cells death thereby preventing cancer relapse. To the best of our knowledge, this is the first review to demonstrate the importance of intracellular iron in regulating the switching of tumor cells and therapy resistant CSCs from apoptosis to ferroptosis.
Collapse
Affiliation(s)
- Santhi Latha Pandrangi
- Onco-Stem Cell Research Laboratory, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM Deemed to be University, Visakhapatnam 530045, India; (P.C.); (S.S.C.)
| | - Prasanthi Chittineedi
- Onco-Stem Cell Research Laboratory, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM Deemed to be University, Visakhapatnam 530045, India; (P.C.); (S.S.C.)
| | - Sphoorthi Shree Chalumuri
- Onco-Stem Cell Research Laboratory, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM Deemed to be University, Visakhapatnam 530045, India; (P.C.); (S.S.C.)
| | - Avtar Singh Meena
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India;
| | - Juan Alejandro Neira Mosquera
- Department of Life Sciences and Agriculture, Armed Forces University-ESPE, Santo Domingo 230101, Ecuador; (J.A.N.M.); (S.N.S.L.)
- Faculty of Industry and Production Sciences, Quevedo State Technical University, km 11/2 via Santo Domingo, Quevedo 120301, Ecuador
| | - Sungey Naynee Sánchez Llaguno
- Department of Life Sciences and Agriculture, Armed Forces University-ESPE, Santo Domingo 230101, Ecuador; (J.A.N.M.); (S.N.S.L.)
| | | | - Gooty Jaffer Mohiddin
- Department of Life Sciences and Agriculture, Armed Forces University-ESPE, Santo Domingo 230101, Ecuador; (J.A.N.M.); (S.N.S.L.)
| | - Arifullah Mohammad
- Department of Agriculture Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli 17600, Malaysia
| |
Collapse
|
4
|
Jing Y, Liang W, Zhang L, Tang J, Huang Z. The Role of Mesenchymal Stem Cells in the Induction of Cancer-Stem Cell Phenotype. Front Oncol 2022; 12:817971. [PMID: 35251985 PMCID: PMC8891610 DOI: 10.3389/fonc.2022.817971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer stem cells (CSCs) modify and form their microenvironment by recruiting and activating specific cell types such as mesenchymal stem cells (MSCs). Tumor-infiltrating MSCs help to establish a suitable tumor microenvironment for the restoration of CSCs and tumor progression. In addition, crosstalk between cancer cells and MSCs in the microenvironment induces a CSC phenotype in cancer cells. Many mechanisms are involved in crosstalk between CSCs/cancer cells and MSCs including cell-cell interaction, secretion of exosomes, and paracrine secretion of several molecules including inflammatory mediators, cytokines, and growth factors. Since this crosstalk may contribute to drug resistance, metastasis, and tumor growth, it is suggested that blockade of the crosstalk between MSCs and CSCs/cancer cells can provide a new avenue to improving the cancer therapeutic tools. In this review, we will discuss the role of MSCs in the induction of cancer stem cell phenotype and the restoration of CSCs. We also discuss targeting the crosstalk between MSCs and CSCs/cancer cells as a therapeutic strategy.
Collapse
Affiliation(s)
- Yuanming Jing
- Department of Gastrointestinal Surgery, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Lin Zhang
- Department of Pharmacy, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Junjun Tang
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Zongliang Huang, ; Junjun Tang ,
| | - Zongliang Huang
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Zongliang Huang, ; Junjun Tang ,
| |
Collapse
|
5
|
Khorsandi K, Esfahani H, Abrahamse H. Characteristics of circRNA and its approach as diagnostic tool in melanoma. Expert Rev Mol Diagn 2021; 21:1079-1094. [PMID: 34380368 DOI: 10.1080/14737159.2021.1967749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
One of the most common types of cancer in the world is skin cancer, which has been divided into two groups: non-melanoma and melanoma skin cancer. Different external and internal agents are considered as risk factors for melanoma skin cancer pathogenesis but the exact mechanisms are not yet confirmed. Genetic and epigenetic changes, UV exposure, arsenic compounds, and chemical substances are contributory factors to the development of melanoma. A correlation has emerged between new therapies and the discovery of a basic molecular pattern for skin cancer patients. Circular RNAs (circRNAs) are described as a unique group of extensively expressed endogenous regulatory RNAs with closed-loop structure bonds connecting the 5' and 3' ends, which are commonly expressed in mammalian cells. In this review, we describe the biogenesis of circular RNAs and its function in cancerous conditions focusing on the crosstalk between different circRNAs and melanoma. Increasing evidence suggests that circRNAs appears to be relative to the origin and development of skin-related diseases like malignant melanoma. Different circular RNAs like hsa_circ_0025039, hsa_circRNA006612, circRNA005537, and circANRIL, by targeting different cellular and molecular targets (e.g., CDK4, DAB2IP, ZEB1, miR-889, and let-7 c-3p), can participate in melanoma cancer progression.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - HomaSadat Esfahani
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Heidi Abrahamse
- Laser Research Centre, Nrf SARChI Chair: Laser Applications in Health, Faculty of Health Sciences, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
6
|
Shrestha R, Bridle KR, Cao L, Crawford DHG, Jayachandran A. Dual Targeting of Sorafenib-Resistant HCC-Derived Cancer Stem Cells. ACTA ACUST UNITED AC 2021; 28:2150-2172. [PMID: 34208001 PMCID: PMC8293268 DOI: 10.3390/curroncol28030200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022]
Abstract
Sorafenib, an oral multi-tyrosine kinase inhibitor, has been the first-line therapy for the treatment of patients with advanced HCC, providing a survival benefit of only three months in approximately 30% of patients. Cancer stem cells (CSCs) are a rare tumour subpopulation with self-renewal and differentiation capabilities, and have been implicated in tumour growth, recurrence and drug resistance. The process of epithelial-to-mesenchymal transition (EMT) contributes to the generation and maintenance of the CSC population, resulting in immune evasion and therapy resistance in several cancers, including HCC. The aim of this study is to target the chemoresistant CSC population in HCC by assessing the effectiveness of a combination treatment approach with Sorafenib, an EMT inhibitor and an immune checkpoint inhibitor (ICI). A stem-cell-conditioned serum-free medium was utilised to enrich the CSC population from the human HCC cell lines Hep3B, PLC/PRF/5 and HepG2. The anchorage independent spheres were characterised for CSC features. The human HCC-derived spheres were assessed for EMT status and expression of immune checkpoint molecules. The effect of combination treatment with SB431542, an EMT inhibitor, and siRNA-mediated knockdown of programmed cell death protein ligand-1 (PD-L1) or CD73 along with Sorafenib on human HCC-derived CSCs was examined with cell viability and apoptosis assays. The three-dimensional spheres enriched from human HCC cell lines demonstrated CSC-like features. The human HCC-derived CSCs also exhibited the EMT phenotype along with the upregulation of immune checkpoint molecules. The combined treatment with SB431542 and siRNA-mediated PD-L1 or CD73 knockdown effectively enhanced the cytotoxicity of Sorafenib against the CSC population compared to Sorafenib alone, as evidenced by the reduced size and proliferation of spheres. Furthermore, the combination treatment of Sorafenib with SB431542 and PD-L1 or CD73 siRNA resulted in an increased proportion of an apoptotic population, as evidenced by flow cytometry analysis. In conclusion, the combined targeting of EMT and immune checkpoint molecules with Sorafenib can effectively target the CSC tumour subpopulation.
Collapse
Affiliation(s)
- Ritu Shrestha
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4120, Australia; (R.S.); (K.R.B.); (L.C.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | - Kim R. Bridle
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4120, Australia; (R.S.); (K.R.B.); (L.C.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | - Lu Cao
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4120, Australia; (R.S.); (K.R.B.); (L.C.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | - Darrell H. G. Crawford
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4120, Australia; (R.S.); (K.R.B.); (L.C.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | - Aparna Jayachandran
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4120, Australia; (R.S.); (K.R.B.); (L.C.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia
- Correspondence: ; Tel.: +61-4-2424-8058
| |
Collapse
|
7
|
Hu XM, Zhang Q, Zhou RX, Wu YL, Li ZX, Zhang DY, Yang YC, Yang RH, Hu YJ, Xiong K. Programmed cell death in stem cell-based therapy: Mechanisms and clinical applications. World J Stem Cells 2021; 13:386-415. [PMID: 34136072 PMCID: PMC8176847 DOI: 10.4252/wjsc.v13.i5.386] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/26/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
Stem cell-based therapy raises hopes for a better approach to promoting tissue repair and functional recovery. However, transplanted stem cells show a high death percentage, creating challenges to successful transplantation and prognosis. Thus, it is necessary to investigate the mechanisms underlying stem cell death, such as apoptotic cascade activation, excessive autophagy, inflammatory response, reactive oxygen species, excitotoxicity, and ischemia/hypoxia. Targeting the molecular pathways involved may be an efficient strategy to enhance stem cell viability and maximize transplantation success. Notably, a more complex network of cell death receives more attention than one crucial pathway in determining stem cell fate, highlighting the challenges in exploring mechanisms and therapeutic targets. In this review, we focus on programmed cell death in transplanted stem cells. We also discuss some promising strategies and challenges in promoting survival for further study.
Collapse
Affiliation(s)
- Xi-Min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Rui-Xin Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Yan-Lin Wu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Zhi-Xin Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Dan-Yi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Yi-Chao Yang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Rong-Hua Yang
- Department of Burns, Fo Shan Hospital of Sun Yat-Sen University, Foshan 528000, Guangdong Province, China
| | - Yong-Jun Hu
- Department of Cardiovascular Medicine, Hunan People's Hospital (the First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China.
| |
Collapse
|
8
|
Deng L, Zhai X, Liang P, Cui H. Overcoming TRAIL Resistance for Glioblastoma Treatment. Biomolecules 2021; 11:biom11040572. [PMID: 33919846 PMCID: PMC8070820 DOI: 10.3390/biom11040572] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) shows a promising therapeutic potential in cancer treatment as it exclusively causes apoptosis in a broad spectrum of cancer cells through triggering the extrinsic apoptosis pathway via binding to cognate death receptors, with negligible toxicity in normal cells. However, most cancers, including glioblastoma multiforme (GBM), display TRAIL resistance, hindering its application in clinical practice. Recent studies have unraveled novel mechanisms in regulating TRAIL-induced apoptosis in GBM and sought effective combinatorial modalities to sensitize GBM to TRAIL treatment, establishing pre-clinical foundations and the reasonable expectation that the TRAIL/TRAIL death receptor axis could be harnessed to treat GBM. In this review, we will revisit the status quo of the mechanisms of TRAIL resistance and emerging strategies for sensitizing GBM to TRAIL-induced apoptosis and also discuss opportunities of TRAIL-based combinatorial therapies in future clinical use for GBM treatment.
Collapse
Affiliation(s)
- Longfei Deng
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China;
| | - Xuan Zhai
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China;
| | - Ping Liang
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China;
- Correspondence: (P.L.); (H.C.)
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China;
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China;
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Correspondence: (P.L.); (H.C.)
| |
Collapse
|
9
|
Stanković T, Ranđelović T, Dragoj M, Stojković Burić S, Fernández L, Ochoa I, Pérez-García VM, Pešić M. In vitro biomimetic models for glioblastoma-a promising tool for drug response studies. Drug Resist Updat 2021; 55:100753. [PMID: 33667959 DOI: 10.1016/j.drup.2021.100753] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
The poor response of glioblastoma to current treatment protocols is a consequence of its intrinsic drug resistance. Resistance to chemotherapy is primarily associated with considerable cellular heterogeneity, and plasticity of glioblastoma cells, alterations in gene expression, presence of specific tumor microenvironment conditions and blood-brain barrier. In an attempt to successfully overcome chemoresistance and better understand the biological behavior of glioblastoma, numerous tri-dimensional (3D) biomimetic models were developed in the past decade. These novel advanced models are able to better recapitulate the spatial organization of glioblastoma in a real time, therefore providing more realistic and reliable evidence to the response of glioblastoma to therapy. Moreover, these models enable the fine-tuning of different tumor microenvironment conditions and facilitate studies on the effects of the tumor microenvironment on glioblastoma chemoresistance. This review outlines current knowledge on the essence of glioblastoma chemoresistance and describes the progress achieved by 3D biomimetic models. Moreover, comprehensive literature assessment regarding the influence of 3D culturing and microenvironment mimicking on glioblastoma gene expression and biological behavior is also provided. The contribution of the blood-brain barrier as well as the blood-tumor barrier to glioblastoma chemoresistance is also reviewed from the perspective of 3D biomimetic models. Finally, the role of mathematical models in predicting 3D glioblastoma behavior and drug response is elaborated. In the future, technological innovations along with mathematical simulations should create reliable 3D biomimetic systems for glioblastoma research that should facilitate the identification and possibly application in preclinical drug testing and precision medicine.
Collapse
Affiliation(s)
- Tijana Stanković
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia
| | - Teodora Ranđelović
- Tissue Microenvironment Lab (TME), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Aragon 50018, Spain; Institute for Health Research Aragon (IIS Aragón), Instituto de Salud Carlos III, Zaragoza, Spain
| | - Miodrag Dragoj
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia
| | - Sonja Stojković Burić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia
| | - Luis Fernández
- Tissue Microenvironment Lab (TME), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Aragon 50018, Spain; Centro Investigación Biomédica en Red. Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Aragon 50018, Spain; Institute for Health Research Aragon (IIS Aragón), Instituto de Salud Carlos III, Zaragoza, Spain
| | - Ignacio Ochoa
- Tissue Microenvironment Lab (TME), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Aragon 50018, Spain; Centro Investigación Biomédica en Red. Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Aragon 50018, Spain; Institute for Health Research Aragon (IIS Aragón), Instituto de Salud Carlos III, Zaragoza, Spain
| | - Victor M Pérez-García
- Departamento de Matemáticas, E.T.S.I. Industriales and Instituto de Matemática Aplicada a la Ciencia y la Ingeniería (IMACI), Universidad de Castilla-La Mancha, Ciudad Real, 13071, Spain
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia.
| |
Collapse
|
10
|
Peyre L, Meyer M, Hofman P, Roux J. TRAIL receptor-induced features of epithelial-to-mesenchymal transition increase tumour phenotypic heterogeneity: potential cell survival mechanisms. Br J Cancer 2021; 124:91-101. [PMID: 33257838 PMCID: PMC7782794 DOI: 10.1038/s41416-020-01177-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
The continuing efforts to exploit the death receptor agonists, such as the tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), for cancer therapy, have largely been impaired by the anti-apoptotic and pro-survival signalling pathways leading to drug resistance. Cell migration, invasion, differentiation, immune evasion and anoikis resistance are plastic processes sharing features of the epithelial-to-mesenchymal transition (EMT) that have been shown to give cancer cells the ability to escape cell death upon cytotoxic treatments. EMT has recently been suggested to drive a heterogeneous cellular environment that appears favourable for tumour progression. Recent studies have highlighted a link between EMT and cell sensitivity to TRAIL, whereas others have highlighted their effects on the induction of EMT. This review aims to explore the molecular mechanisms by which death signals can elicit an increase in response heterogeneity in the metastasis context, and to evaluate the impact of these processes on cell responses to cancer therapeutics.
Collapse
Affiliation(s)
- Ludovic Peyre
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice (IRCAN), Centre Antoine Lacassagne, 06107, Nice, France
| | - Mickael Meyer
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice (IRCAN), Centre Antoine Lacassagne, 06107, Nice, France
| | - Paul Hofman
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice (IRCAN), Centre Antoine Lacassagne, 06107, Nice, France
| | - Jérémie Roux
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice (IRCAN), Centre Antoine Lacassagne, 06107, Nice, France.
| |
Collapse
|
11
|
Defective Regulation of Membrane TNFα Expression in Dendritic Cells of Glioblastoma Patients Leads to the Impairment of Cytotoxic Activity against Autologous Tumor Cells. Int J Mol Sci 2020; 21:ijms21082898. [PMID: 32326230 PMCID: PMC7215742 DOI: 10.3390/ijms21082898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/29/2020] [Accepted: 04/18/2020] [Indexed: 12/14/2022] Open
Abstract
Besides an antigen-presenting function and ability to induce antitumor immune responses, dendritic cells (DCs) possess a direct tumoricidal activity. We previously reported that monocyte-derived IFNα-induced DCs (IFN-DCs) of glioblastoma multiforme patients express low levels of membrane TNFα molecule (mTNFα) and have impaired TNFα/TNF-R1-mediated cytotoxicity against immortalized tumor cell line HEp-2. However, whether the observed defect could affect killer activity of glioma patient DCs against autologous tumor cells remained unclear. Here, we show that donor IFN-DCs possess cytotoxic activity against glioblastoma cell lines derived from a primary tumor culture. Granule-mediated and TNFα/TNF-R1-dependent pathways were established as the main mechanisms underlying cytotoxic activity of IFN-DCs. Glioblastoma patient IFN-DCs showed lower cytotoxicity against autologous glioblastoma cells sensitive to TNFα/TNFR1-mediated lysis, which was associated with low TNFα mRNA expression and high TACE/ADAM-17 enzyme activity. Recombinant IL-2 (rIL-2) and human double-stranded DNA (dsDNA) increased 1.5-fold cytotoxic activity of patient IFN-DCs against autologous glioblastoma cells. dsDNA, but not rIL-2, enhanced the expression of TNFα mRNA and decreased expression and activity of TACE/ADAM-17 enzyme. In addition, dsDNA and rIL-2 stimulated the expression of perforin and granzyme B (in the presence of dsDNA), suggesting the possibility of enhancing DC cytotoxicity against autologous glioblastoma cells via various mechanisms.
Collapse
|
12
|
Neamati F, Asemi Z. The effects of melatonin on signaling pathways and molecules involved in glioma. Fundam Clin Pharmacol 2019; 34:192-199. [PMID: 31808968 DOI: 10.1111/fcp.12526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/13/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022]
Abstract
Glioblastoma is one of the most common brain tumors with high invasion and malignancy. Despite extensive research in this area and the use of new and advanced therapies, the survival rate in this disease is very low. In addition, resistance to treatment has also been observed in this disease. One of the reasons for rapid progression and failure in treatment for this disease is the presence of a class of cells with high proliferation and high differentiation, a class called glioblastoma stem-like cells shown as being the source of glioblastoma tumors. It has been reported that several oncogenes are expressed in this disease. One important issue in recognizing the pathogenesis of this disease, and which could improve the treatment process, is the identification of involved oncogenes as well as molecules that affect the reduction of the expression of these oncogenes. Melatonin regulates the biological rhythm and inhibits the proliferation of malignant glioma cells due to antioxidant and anti-apoptotic effects. Melatonin has been considered in biological processes and in signaling pathways involved in the development of glioma. The aim of this review is to investigate the effects of melatonin on signaling pathways and molecules involved in the progression of glioma.
Collapse
Affiliation(s)
- Foroogh Neamati
- Department of Microbiology, Kashan University of Medical Sciences, Kashan, 87159-88141, I.R. Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, 87159-88141, I.R. Iran
| |
Collapse
|
13
|
Wang L, Guo X, Guo X, Zhang X, Ren J. Decitabine promotes apoptosis in mesenchymal stromal cells isolated from patients with myelodysplastic syndromes by inducing reactive oxygen species generation. Eur J Pharmacol 2019; 863:172676. [PMID: 31542488 DOI: 10.1016/j.ejphar.2019.172676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 10/26/2022]
Abstract
Myelodysplastic syndromes (MDSs) are a group of clonal disorders of hematopoietic stem cells, resulting in ineffective hematopoiesis. Previous studies have reported that decitabine (DAC) plays an essential role in cell cycle arrest and cell death induction in multiple cell types. Nevertheless, the effect of decitabine on mesenchymal stromal cells derived from bone marrow of patients with MDSs is not completely clarified. Here, we explored the apoptotic and anti-proliferative effect of DAC on MSCs isolated from patients with MDSs. Treatment with DAC inhibited cell growth in a concentration- and time-dependent manner by inducing apoptosis. We found a positive relationship between cell death triggered by DAC in MSCs and the death receptor family members Fas and FasL mRNA and protein levels (***P < 0.00085), cleaved caspase (-3, -8, and -9) activity, and mitochondrial membrane potential reduction. Additionally, DAC-induced apoptosis was inhibited by Kp7-6, a FasL/Fas antagonist, indicating a crucial role of FasL/Fas, a cell death receptor, in mediating the apoptotic effect of DAC. DAC also induced reactive oxygen species (ROS) generation in MSCs derived from MDSs patients (*P = 0.038). Furthermore, N-acetyl-L-cysteine (NAC), a widely accepted ROS scavenger, efficiently reversed DAC-induced apoptosis by inhibiting ROS generation (***P < 0.00051) in mitochondria and restoring mitochondrial membrane potential. Furthermore, ROS production was found to be a consequence of caspase activation via caspases inhibition. Our data imply that DAC triggers ROS production in human MSCs, which serves as a crucial factor for mitochondrial membrane potential reduction, and DAC induces cell death prior to FasL/Fas stimulation.
Collapse
Affiliation(s)
- Lihua Wang
- Department of Hematology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Xiaonan Guo
- Department of Hematology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Xiaoling Guo
- Department of Hematology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Xiaolei Zhang
- Department of Hematology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Jinhai Ren
- Department of Hematology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
14
|
Zeniou M, Nguekeu-Zebaze L, Dantzer F. Therapeutic considerations of PARP in stem cell biology: Relevance in cancer and beyond. Biochem Pharmacol 2019; 167:107-115. [PMID: 31202733 DOI: 10.1016/j.bcp.2019.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022]
Abstract
Cancer stem cells (CSCs) are of fundamental importance in tumor progression because of their tumor-initiating properties, their resistance to radio- and chemotherapy, their invasive properties and their propensity to escape immune responses that together contribute to tumor relapse. These highly aggressive features underscore the importance of constantly identifying new and innovative therapeutic solutions to eradicate these cells. In this narrative review we discuss recent findings on the involvement of PARP family members in cancer stem cell biology and the benefit of their inhibition. Nonetheless, an important limitation in the use of PARP inhibitors is the emergence of a prominent function of PARP1 in non-cancer stem cell biology including stem cell maintenance and differentiation during development, neurogenesis or adipogenesis. Thus, we also summarize the dominant discoveries revealing the importance of PARP1 in normal stem cell biology.
Collapse
Affiliation(s)
- M Zeniou
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, UMR7242, Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, CS10413, 67412 Illkirch, France
| | - L Nguekeu-Zebaze
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, UMR7242, Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, CS10413, 67412 Illkirch, France
| | - F Dantzer
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, UMR7242, Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, CS10413, 67412 Illkirch, France.
| |
Collapse
|
15
|
Bhuvanalakshmi G, Gamit N, Patil M, Arfuso F, Sethi G, Dharmarajan A, Kumar AP, Warrier S. Stemness, Pluripotentiality, and Wnt Antagonism: sFRP4, a Wnt antagonist Mediates Pluripotency and Stemness in Glioblastoma. Cancers (Basel) 2018; 11:E25. [PMID: 30591679 PMCID: PMC6356444 DOI: 10.3390/cancers11010025] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Chemotherapeutic resistance of glioblastoma has been attributed to a self-renewing subpopulation, the glioma stem cells (GSCs), which is known to be maintained by the Wnt β-catenin pathway. Our previous findings demonstrated that exogeneous addition of the Wnt antagonist, secreted fizzled-related protein 4 (sFRP4) hampered stem cell properties in GSCs. METHODS To understand the molecular mechanism of sFRP4, we overexpressed sFRP4 (sFRP4 OE) in three human glioblastoma cell lines U87MG, U138MG, and U373MG. We also performed chromatin immunoprecipitation (ChIP) sequencing of sFRP4 OE and RNA sequencing of sFRP4 OE and sFRP4 knocked down U87 cells. RESULTS We observed nuclear localization of sFRP4, suggesting an unknown nuclear role. ChIP-sequencing of sFRP4 pulldown DNA revealed a homeobox Cphx1, related to the senescence regulator ETS proto-oncogene 2 (ETS2). Furthermore, miRNA885, a p53-mediated apoptosis inducer, was upregulated in sFRP4 OE cells. RNA sequencing analysis suggested that sFRP4-mediated apoptosis is via the Fas-p53 pathway by activating the Wnt calcium and reactive oxygen species pathways. Interestingly, sFRP4 OE cells had decreased stemness, but when knocked down in multipotent mesenchymal stem cells, pluripotentiality was induced and the Wnt β-catenin pathway was upregulated. CONCLUSIONS This study unveils a novel nuclear role for sFRP4 to promote apoptosis by a possible activation of DNA damage machinery in glioblastoma.
Collapse
Affiliation(s)
- Gurubharathi Bhuvanalakshmi
- Division of Cancer Stem Cells and Cardiovascular and Neuronal Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India.
| | - Naisarg Gamit
- Division of Cancer Stem Cells and Cardiovascular and Neuronal Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India.
| | - Manasi Patil
- Division of Cancer Stem Cells and Cardiovascular and Neuronal Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India.
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
- School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Arun Dharmarajan
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
- School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
- Cancer Program, Medical Science Cluster, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia.
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular and Neuronal Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India.
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia.
- Cuor Stem Cellutions Pvt Ltd., School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India.
| |
Collapse
|
16
|
Liu J, Gao Q, Xie T, Liu Y, Luo L, Xu C, Shen L, Wan F, Lei T, Ye F. Synergistic effect of TRAIL and irradiation in elimination of glioblastoma stem-like cells. Clin Exp Med 2018; 18:399-411. [PMID: 29777390 DOI: 10.1007/s10238-018-0504-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common malignancy in central nervous system. A small subpopulation of GBM cells known as GBM stem-like cells (GSLCs) were supposed to be the most malignant cells among GBM cells as they are resistant to multiple therapies including radiotherapy. In this study, we set up two GSLCs cell lines from the two parental U87 and U251 glioma cell lines, and studied the expression of apoptosis-related genes alteration in GSLCs before and after irradiation. We found that one of the receptors of TNF-related apoptosis-inducing ligand (TRAIL), DR5, was dramatically up-regulated in GSLCs after irradiation (IR). Although GSLCs are resistant to both TRAIL and radiation treatment alone, the combined treatment with TRAIL and irradiation achieved maximum killing effect of GSLCs due to inducing the expression of DR5 and inhibiting the expression of cFLIP. Therefore, TRAIL and IR combined treatment would be a simple but practical therapeutic strategy for clinical application.
Collapse
Affiliation(s)
- Junfeng Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Qinglei Gao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Tao Xie
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Yu Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Longjun Luo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Cheng Xu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Lu Shen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Feng Wan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Fei Ye
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
17
|
Addressing intra-tumoral heterogeneity and therapy resistance. Oncotarget 2018; 7:72322-72342. [PMID: 27608848 PMCID: PMC5342165 DOI: 10.18632/oncotarget.11875] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/24/2016] [Indexed: 12/12/2022] Open
Abstract
In the last several years, our appreciation of intra-tumoral heterogeneity has greatly increased due to accumulating evidence for the co-existence of genetically and epigenetically divergent cancer cells residing in different microenvironments within a tumor. Herein, we review recent literature discussing intra-tumoral heterogeneity in the context of therapy resistance mechanisms at the genetic, epigenetic and microenvironmental levels. We illustrate the influence of tumor microenvironment on therapy resistance and epigenetic states of cancer cells by highlighting the role of cancer stem cells in therapy resistance. We also summarize different strategies that have been employed to address various resistance mechanisms at genetic, epigenetic, and microenvironmental levels in preclinical and clinical studies. We propose that future personalized cancer therapy design needs to incorporate dynamic and comprehensive analyses of tumor heterogeneity landscape and multi-dimensional mechanisms of therapy resistance.
Collapse
|
18
|
Chowdhury FA, Hossain MK, Mostofa AGM, Akbor MM, Bin Sayeed MS. Therapeutic Potential of Thymoquinone in Glioblastoma Treatment: Targeting Major Gliomagenesis Signaling Pathways. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4010629. [PMID: 29651429 PMCID: PMC5831880 DOI: 10.1155/2018/4010629] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 12/27/2017] [Indexed: 02/06/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most devastating brain tumors with median survival of one year and presents unique challenges to therapy because of its aggressive behavior. Current treatment strategy involves surgery, radiotherapy, immunotherapy, and adjuvant chemotherapy even though optimal management requires a multidisciplinary approach and knowledge of potential complications from both the disease and its treatment. Thymoquinone (TQ), the main bioactive component of Nigella sativa L., has exhibited anticancer effects in numerous preclinical studies. Due to its multitargeting nature, TQ interferes in a wide range of tumorigenic processes and counteract carcinogenesis, malignant growth, invasion, migration, and angiogenesis. TQ can specifically sensitize tumor cells towards conventional cancer treatments and minimize therapy-associated toxic effects in normal cells. Its potential to enter brain via nasal pathway due to volatile nature of TQ adds another advantage in overcoming blood-brain barrier. In this review, we summarized the potential role of TQ in different signaling pathways in GBM that have undergone treatment with standard therapeutic modalities or with TQ. Altogether, we suggest further comprehensive evaluation of TQ in preclinical and clinical level to delineate its implied utility as novel therapeutics to combat the challenges for the treatment of GBM.
Collapse
Affiliation(s)
- Fabliha Ahmed Chowdhury
- Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md Kamal Hossain
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - A. G. M. Mostofa
- Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Maruf Mohammad Akbor
- Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka 1000, Bangladesh
| | | |
Collapse
|
19
|
Bayat S, Shekari Khaniani M, Choupani J, Alivand MR, Mansoori Derakhshan S. HDACis (class I), cancer stem cell, and phytochemicals: Cancer therapy and prevention implications. Biomed Pharmacother 2018; 97:1445-1453. [DOI: 10.1016/j.biopha.2017.11.065] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
|
20
|
Lou JC, Lan YL, Gao JX, Ma BB, Yang T, Yuan ZB, Zhang HQ, Zhu TZ, Pan N, Leng S, Song GJ, Zhang B. Silencing NUDT21 Attenuates the Mesenchymal Identity of Glioblastoma Cells via the NF-κB Pathway. Front Mol Neurosci 2017; 10:420. [PMID: 29311812 PMCID: PMC5742174 DOI: 10.3389/fnmol.2017.00420] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 12/04/2017] [Indexed: 01/04/2023] Open
Abstract
The proneural (PN) and mesenchymal (MES) subtypes of glioblastoma multiforme (GBM) are robust and generally consistent with classification schemes. GBMs in the MES subclass are predominantly primary tumors that, compared to PN tumors, exhibit a worse prognosis; thus, understanding the mechanism of MES differentiation may be of great benefit for the treatment of GBM. Nuclear factor kappa B (NF-κB) signaling is critically important in GBM, and activation of NF-κB could induce MES transdifferentiation in GBM, which warrants additional research. NUDT21 is a newly discovered tumor-associated gene according to our current research. The exact roles of NUDT21 in cancer incidence have not been elucidated. Here, we report that NUDT21 expression was upregulated in human glioma tissues and that NUDT21 promoted glioma cell proliferation, likely through the NF-κB signaling pathway. Gene set enrichment analysis, western blotting, and quantitative real-time reverse transcription polymerase chain reaction confirmed that NF-κB inhibitor zeta (NFKBIZ) was a downstream target affected by NUDT21 and that the MES identity genes in glioblastoma cells, CHI3L1 and FN1, were also differentially regulated. Our results suggest that NUDT21 is an upstream regulator of the NF-κB pathway and a potential molecular target for the MES subtype of GBM.
Collapse
Affiliation(s)
- Jia-Cheng Lou
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yu-Long Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jin-Xia Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bin-Bin Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ting Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhong-Bo Yuan
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hong-Qiang Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ting-Zhun Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ning Pan
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Song Leng
- Health Management Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Gui-Jun Song
- Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bo Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
21
|
Karpel-Massler G, Banu MA, Shu C, Halatsch ME, Westhoff MA, Bruce JN, Canoll P, Siegelin MD. Inhibition of deubiquitinases primes glioblastoma cells to apoptosis in vitro and in vivo. Oncotarget 2017; 7:12791-805. [PMID: 26872380 PMCID: PMC4914322 DOI: 10.18632/oncotarget.7302] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/26/2016] [Indexed: 11/25/2022] Open
Abstract
It remains a challenge in oncology to identify novel drug regimens to efficiently tackle glioblastoma, the most common primary brain tumor in adults. Here, we target deubiquitinases for glioblastoma therapy by utilizing the small-molecule inhibitor WP1130 which has been characterized as a deubiquitinase inhibitor that interferes with the function of Usp9X. Expression analysis data confirm that Usp9X expression is increased in glioblastoma compared to normal brain tissue indicating its potential as a therapeutic. Consistently, increasing concentrations of WP1130 decrease the cellular viability of established, patient-derived xenograft (PDX) and stem cell-like glioblastoma cells. Specific down-regulation of Usp9X reduces viability in glioblastoma cells mimicking the effects of WP1130. Mechanistically, WP1130 elicits apoptosis and increases activation of caspases. Moreover, WP1130 and siRNAs targeting Usp9X reduce the expression of anti-apoptotic Bcl-2 family members and Inhibitor of Apoptosis Proteins, XIAP and Survivin. Pharmacological and genetic interference with Usp9X efficiently sensitized glioblastoma cells to intrinsic and extrinsic apoptotic stimuli. In addition, single treatment with WP1130 elicited anti-glioma activity in an orthotopic proneural murine model of glioblastoma. Finally, the combination treatment of WP1130 and ABT263 inhibited tumor growth more efficiently than each reagent by its own in vivo without detectable side effects or organ toxicity. Taken together, these results suggest that targeting deubiquitinases for glioma therapy is feasible and effective.
Collapse
Affiliation(s)
- Georg Karpel-Massler
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Matei A Banu
- Department of Neurosurgery, Columbia University Medical Center, New York, New York, USA
| | - Chang Shu
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | | | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Jeffrey N Bruce
- Department of Neurosurgery, Columbia University Medical Center, New York, New York, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Markus D Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
22
|
Karpel-Massler G, Bâ M, Shu C, Halatsch ME, Westhoff MA, Bruce JN, Canoll P, Siegelin MD. TIC10/ONC201 synergizes with Bcl-2/Bcl-xL inhibition in glioblastoma by suppression of Mcl-1 and its binding partners in vitro and in vivo. Oncotarget 2017; 6:36456-71. [PMID: 26474387 PMCID: PMC4742189 DOI: 10.18632/oncotarget.5505] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/29/2015] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma is the most frequent primary brain tumor in adults. Current therapeutic options are sparse and the prognosis of patients suffering from this disease is grim. Abundance in intratumoral heterogeneity among different deregulated signaling pathways is a hallmark of glioblastoma and likely accounts for its recurrence and resistance to treatment. Glioblastomas harbor a plethora of deregulated pathways driving tumor formation and growth. In this study, we show that TIC10/ONC201, a promising compound that is currently in planned clinical development, along with Bcl-2/Bcl-xL inhibition by ABT263 yields a strong synergistic antiproliferative effect on pediatric, adult, proneural glioblastoma and glioma stem-like cells. On the molecular level, treatment with TIC10/ONC201 results in a posttranslational decrease of the anti-apoptotic Bcl-2 family member, myeloid cell leukemia 1 (Mcl-1), through modulation of the chaperone Bag3 and the deubiquitinase Usp9X. Consistently, the combination treatment of TIC10/ONC201 and ABT263 required the presence of functional BAX and BAK to drive intrinsic apoptosis, but is surprisingly independent of the extrinsic apoptotic pathway. Moreover, the expression of Noxa protein was required for efficient apoptosis induction by TIC10/ONC201 and ABT263. Importantly, the drug combination of TIC10/ONC201 and the BH3-mimetic, ABT263, led to a regression of tumors in vivo, without any notable toxicity and side effects. Overall, TIC10/ONC201 along with Bcl-2/Bcl-xL inhibition holds significant promise as a novel potential approach for the treatment of recalcitrant tumors such as glioblastoma.
Collapse
Affiliation(s)
- Georg Karpel-Massler
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York, U.S.A
| | - Maïmouna Bâ
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York, U.S.A
| | - Chang Shu
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York, U.S.A
| | | | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Jeffrey N Bruce
- Department of Neurosurgery, Columbia University Medical Center, New York, New York, U.S.A
| | - Peter Canoll
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York, U.S.A
| | - Markus D Siegelin
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York, U.S.A
| |
Collapse
|
23
|
Lei Q, Liu X, Fu H, Sun Y, Wang L, Xu G, Wang W, Yu Z, Liu C, Li P, Feng J, Li G, Wu M. miR-101 reverses hypomethylation of the PRDM16 promoter to disrupt mitochondrial function in astrocytoma cells. Oncotarget 2016; 7:5007-22. [PMID: 26701852 PMCID: PMC4826261 DOI: 10.18632/oncotarget.6652] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 12/05/2015] [Indexed: 01/17/2023] Open
Abstract
Our previous report identified PR domain containing 16 (PRDM16), a member of the PR-domain gene family, as a new methylation associated gene in astrocytoma cells. This previous study also reported that miR-101 is a tumor suppressor in glioma. The present study confirms that PRDM16 is a hypomethylated gene that can be overexpressed in astrocytoma patients and demonstrates that the hypomethylation status of the PRDM16 promoter can predict poor prognoses for astrocytoma patients. The results reported herein show that PRDM16 was inhibited by miR-101 directly and also through epigenetic regulation. PRDM16 was confirmed as a new target of miR-101 and shown to be directly inhibited by miR-101. miR-101 also decreased the expression of PRDM16 by altering the methylation status of the PRDM16 promoter. miR-101 was associated with a decrease in the methylation-related histones H3K4me2 and H3K27me3 and an increase in H3K9me3 and H4K20me3 on the PRDM16 promoter. In addition, EZH2, EED and DNMT3A were identified as direct targets of miR-101, and miR-101 suppressed PRDM16 expression by targeting DNMT3A which decreases histone H3K27me3 and H3K4me2 at the PRDM16 core promoter. The results reported here demonstrate that miR-101 disrupted cellular mitochondrial function and induced cellular apoptosis via the mitochondrial pathway; for example, MMP and ATP levels decreased, while there was an increase in ADP/ATP ratios and ROS levels, levels of cleaved Caspase-9 and cleaved-PARP, the Bax/Bcl-2 ratios, and Smac release from the mitochondria to the cytoplasm. Knockdown of PRDM16 reversed the anti-apoptotic effect of miR-101 inhibition. In summary, miR-101 reversed the hypomethylation of the PRDM16 promoter which suppressed the expression of PRDM16, disrupted cellular mitochondrial function, and induced cellular apoptosis.
Collapse
Affiliation(s)
- Qianqian Lei
- Hunan Provincial Tumor Hospital and The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, Hunan, China
| | - Xiaoping Liu
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China
| | - Haijuan Fu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, Hunan, China
| | - Yingnan Sun
- Hunan Provincial Tumor Hospital and The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, Hunan, China
| | - Liping Wang
- Department of Oncology, The First Hospital of Chenzhou City, 423000, Hunan, China
| | - Gang Xu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, Hunan, China
| | - Wei Wang
- Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, Hunan, China
| | - Zhibin Yu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, Hunan, China
| | - Changhong Liu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, Hunan, China
| | - Peiyao Li
- Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, Hunan, China
| | - Jianbo Feng
- Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, Hunan, China
| | - Guiyuan Li
- Hunan Provincial Tumor Hospital and The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, Hunan, China
| | - Minghua Wu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, Hunan, China
| |
Collapse
|
24
|
Kazimirsky G, Jiang W, Slavin S, Ziv-Av A, Brodie C. Mesenchymal stem cells enhance the oncolytic effect of Newcastle disease virus in glioma cells and glioma stem cells via the secretion of TRAIL. Stem Cell Res Ther 2016; 7:149. [PMID: 27724977 PMCID: PMC5057491 DOI: 10.1186/s13287-016-0414-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/12/2016] [Accepted: 09/16/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Newcastle disease virus (NDV) is an avian paramyxovirus, which selectively exerts oncolytic effects in cancer cells. Mesenchymal stem cells (MSCs) have been reported to affect tumor growth and deliver anti-tumor agents to experimental glioblastoma (GBM). Here, we explored the effects of NDV-infected MSCs derived from different sources, on glioma cells and glioma stem cells (GSCs) and the mechanisms involved in their effects. METHODS The glioma cell lines (A172 and U87) and primary GSCs that were generated from GBM tumors were used in this study. MSCs derived from bone marrow, adipose tissue or umbilical cord were infected with NDV (MTH-68/H). The ability of these cells to deliver the virus to glioma cell lines and GSCs and the effects of NDV-infected MSCs on cell death and on the stemness and self-renewal of GSCs were examined. The mechanisms involved in the cytotoxic effects of the NDV-infected MSCs and their influence on the radiation sensitivity of GSCs were examined as well. RESULTS NDV induced a dose-dependent cell death in glioma cells and a low level of apoptosis and inhibition of self-renewal in GSCs. MSCs derived from bone marrow, adipose and umbilical cord that were infected with NDV delivered the virus to co-cultured glioma cells and GSCs. Conditioned medium of NDV-infected MSCs induced higher level of apoptosis in the tumor cells compared with the apoptosis induced by their direct infection with similar virus titers. These results suggest that factor(s) secreted by the infected MSCs sensitized the glioma cells to the cytotoxic effects of NDV. We identified TRAIL as a mediator of the cytotoxic effects of the infected MSCs and demonstrated that TRAIL synergized with NDV in the induction of cell death in glioma cells and GSCs. Moreover, conditioned medium of infected MSCs enhanced the sensitivity of GSCs to γ-radiation. CONCLUSIONS NDV-infected umbilical cord-derived MSCs may provide a novel effective therapeutic approach for targeting GSCs and GBM and for sensitizing these tumors to γ-radiation.
Collapse
Affiliation(s)
- Gila Kazimirsky
- Mina & Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Wei Jiang
- Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, 2799 W Grand Blvd, Detroit, MI 48202 USA
| | - Shimon Slavin
- Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Amotz Ziv-Av
- Mina & Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Chaya Brodie
- Mina & Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
- Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, 2799 W Grand Blvd, Detroit, MI 48202 USA
| |
Collapse
|
25
|
Cancer Stem Cell Quiescence and Plasticity as Major Challenges in Cancer Therapy. Stem Cells Int 2016; 2016:1740936. [PMID: 27418931 PMCID: PMC4932171 DOI: 10.1155/2016/1740936] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/15/2016] [Indexed: 02/06/2023] Open
Abstract
Cells with stem-like properties, tumorigenic potential, and treatment-resistant phenotypes have been identified in many human malignancies. Based on the properties they share with nonneoplastic stem cells or their ability to initiate and propagate tumors in vivo, such cells were designated as cancer stem (stem-like) or tumor initiating/propagating cells. Owing to their implication in treatment resistance, cancer stem cells (CSCs) have been the subject of intense investigation in past years. Comprehension of CSCs' intrinsic properties and mechanisms they develop to survive and even enhance their aggressive phenotype within the hostile conditions of the tumor microenvironment has reoriented therapeutic strategies to fight cancer. This report provides selected examples of malignancies in which the presence of CSCs has been evidenced and briefly discusses methods to identify, isolate, and functionally characterize the CSC subpopulation of cancer cells. Relevant biological targets in CSCs, their link to treatment resistance, proposed targeting strategies, and limitations of these approaches are presented. Two major aspects of CSC physiopathology, namely, relative in vivo quiescence and plasticity in response to microenvironmental cues or treatment, are highlighted. Implications of these findings in the context of the development of new therapies are discussed.
Collapse
|
26
|
Eng JWL, Mace TA, Sharma R, Twum DYF, Peng P, Gibbs JF, Pitoniak R, Reed CB, Abrams SI, Repasky EA, Hylander BL. Pancreatic cancer stem cells in patient pancreatic xenografts are sensitive to drozitumab, an agonistic antibody against DR5. J Immunother Cancer 2016; 4:33. [PMID: 27330806 PMCID: PMC4915140 DOI: 10.1186/s40425-016-0136-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 05/16/2016] [Indexed: 02/07/2023] Open
Abstract
Background Therapeutic resistance and tumor recurrence are two major hurdles in the treatment of pancreatic ductal adenocarcinoma. Recent findings suggest that both of these attributes are associated with a small subset of pancreatic tumor initiating cancer stem cells (CSCs). Here, we demonstrate that drozitumab, a human agonistic monoclonal antibody which binds the death receptor DR5, selectively eliminates CSCs, resulting in tumor growth inhibition and even regression of pancreatic tumors. Methods To examine the efficacy of drozitumab against pancreatic CSCs, we treated patient-derived pancreatic tumor xenografts (PDX) in immunocompromised SCID mice and evaluated tumor control. To assess apoptosis following drozitumab treatment, we identified the CSCs as CD24+, CD44+, and EpCAM+ by FACS analysis, and measured in vivo and in vitro levels of cleaved caspase-3. Lastly, in vitro evaluation of DR5 re-expression was performed using isolated patient pancreatic cancer xenograft cells along with the cell line, Panc-1. After treatment with drozitumab, the remaining DR5- cells were assessed by FACS analysis for DR5 expression at the cell surface at 8, 24 and 48 h post-treatment. All in vivo growth data was analyzed by 2-way Anova, incidence data was analyzed using Mantel-Cox, and in vitro studies statistics were performed with a t-test. Results We find that while 75–100 % of CSCs express DR5, only 25 % of bulk tumor cells express the death receptors at any one time. Consequently, drozitumab treatment of SCID mice bearing PDX kills higher percentages of CSCs than bulk tumor cells. Additionally, SCID mice implanted with isolated CSCs and then immediately treated with drozitumab fail to ever develop tumors. In vitro studies demonstrate that while drozitumab treatment reduces the DR5+ cell population, the remaining tumor cells begin to express DR5, suggesting a mechanism by which continuous administration of drozitumab can ultimately result in tumor regression despite the initially low percentage of DR5+ cells. Conclusions Overall, our work reveals that treatment of pancreatic tumors with the drozitumab can lead to long-term tumor control by targeting both bulk cells and CSCs. Electronic supplementary material The online version of this article (doi:10.1186/s40425-016-0136-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jason W-L Eng
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263 USA
| | - Thomas A Mace
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263 USA.,Present Address: Division of Medical Oncology, Department Internal Medicine, The Ohio State University, Columbus, OH 43210 USA
| | - Rohit Sharma
- Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, 14263 NY USA.,Present Address: Department of Surgery, Lehigh Valley Physician Group, Allentown, 18103 PA USA
| | - Danielle Y F Twum
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263 USA
| | - Peng Peng
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263 USA
| | - John F Gibbs
- Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, 14263 NY USA.,Present address: Department of Surgery Chief of Surgical Oncology, Jersey Shore University Medical Center, 1945 State Highway 33, Neptune, NJ 07753 USA
| | - Rosemarie Pitoniak
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263 USA
| | - Chelsey B Reed
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263 USA
| | - Scott I Abrams
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263 USA
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263 USA
| | - Bonnie L Hylander
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263 USA
| |
Collapse
|
27
|
Qi L, Ren K, Fang F, Zhao DH, Yang NJ, Li Y. Over Expression of BCL2 and Low Expression of Caspase 8 Related to TRAIL Resistance in Brain Cancer Stem Cells. Asian Pac J Cancer Prev 2016; 16:4849-52. [PMID: 26163602 DOI: 10.7314/apjcp.2015.16.12.4849] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been investigated as an effective agent to treat various cancers. Cancer stem cells are resistant to TRAIL treatment, but the mechanism of TRAIL resistance remains unknown. In this study, brain cancer stem cells were isolated by CD133 magnetic sorting, and the number of CD133 positive cells detected by flow cytometry. The self-renewing capacity of brain cancer stem cells was examined by a neurosphere formation assay, and the percentage of cell death after TRAIL treatment was examined by an MTS assay. Expression of DR5, FADD, caspase 8 and BCL2 proteins was detected by western blot. The amount of CD133 positive cells was enriched to 71% after CD133 magnetic sorting. Brain cancer stem cell neurosphere formation was significantly increased after TRAIL treatment. TRAIL treatment also reduced the amount of viable cells and this decrease was inhibited by a caspase 8 inhibitor or by the pan-caspase inhibitor z-VAD (P<0.05). Brain cancer stem cells expressed lower levels caspase 8 protein and higher levels of BCL2 protein when compared with CD133 negative cells (P<0.05). Our data suggest that TRAIL resistance is related to overexpression of BCL2 and low expression of caspase 8 which limit activation of caspase 8 in brain cancer stem cells.
Collapse
Affiliation(s)
- Ling Qi
- Department of Pathology, Jilin Medical College, Jilin, China E-mail :
| | | | | | | | | | | |
Collapse
|
28
|
Koukourakis MI, Mitrakas AG, Giatromanolaki A. Therapeutic interactions of autophagy with radiation and temozolomide in glioblastoma: evidence and issues to resolve. Br J Cancer 2016; 114:485-96. [PMID: 26889975 PMCID: PMC4782209 DOI: 10.1038/bjc.2016.19] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/21/2015] [Accepted: 12/31/2015] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is a unique model of non-metastasising disease that kills the vast majority of patients through local growth, despite surgery and local irradiation. Glioblastoma cells are resistant to apoptotic stimuli, and their death occurs through autophagy. This review aims to critically present our knowledge regarding the autophagic response of glioblastoma cells to radiation and temozolomide (TMZ) and to delineate eventual research directions to follow, in the quest of improving the curability of this incurable, as yet, disease. Radiation and TMZ interfere with the autophagic machinery, but whether cell response is driven to autophagy flux acceleration or blockage is disputable and may depend on both cell individuality and radiotherapy fractionation or TMZ schedules. Potent agents that block autophagy at an early phase of initiation or at a late phase of autolysosomal fusion are available aside to agents that induce functional autophagy, or even demethylating agents that may unblock the function of autophagy-initiating genes in a subset of tumours. All these create a maze, which if properly investigated can open new insights for the application of novel radio- and chemosensitising policies, exploiting the autophagic pathways that glioblastomas use to escape death.
Collapse
Affiliation(s)
- Michael I Koukourakis
- Department of Radiotherapy/Oncology, Democritus University of Thrace, PO Box 12, Alexandroupolis 68100, Greece
| | - Achilleas G Mitrakas
- Department of Radiotherapy/Oncology, Democritus University of Thrace, PO Box 12, Alexandroupolis 68100, Greece
| | | |
Collapse
|
29
|
Abstract
Chemoresistant metastatic relapse of minimal residual disease plays a significant role for poor prognosis of cancer. Growing evidence supports a critical role of cancer stem cell (CSC) behind the mechanisms for this deadly disease. This review briefly introduces the basics of the conventional chemotherapies, updates the CSC theories, highlights the molecular and cellular mechanisms by which CSC smartly designs and utilizes multiple lines of self-defense to avoid being killed by chemotherapy, and concisely summarizes recent progress in studies on CSC-targeted therapies in the end, with the hope to help guide future research toward developing more effective therapeutic strategies to eradicate tumor cells in the patients.
Collapse
Affiliation(s)
- Jihe Zhao
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 6900 Lake Nona Boulevard, Orlando, FL 32827, USA.
| |
Collapse
|
30
|
Kim SH, Ezhilarasan R, Phillips E, Gallego-Perez D, Sparks A, Taylor D, Ladner K, Furuta T, Sabit H, Chhipa R, Cho JH, Mohyeldin A, Beck S, Kurozumi K, Kuroiwa T, Iwata R, Asai A, Kim J, Sulman EP, Cheng SY, Lee LJ, Nakada M, Guttridge D, DasGupta B, Goidts V, Bhat KP, Nakano I. Serine/Threonine Kinase MLK4 Determines Mesenchymal Identity in Glioma Stem Cells in an NF-κB-dependent Manner. Cancer Cell 2016; 29:201-13. [PMID: 26859459 PMCID: PMC4837946 DOI: 10.1016/j.ccell.2016.01.005] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 06/26/2015] [Accepted: 01/11/2016] [Indexed: 12/24/2022]
Abstract
Activation of nuclear factor κB (NF-κB) induces mesenchymal (MES) transdifferentiation and radioresistance in glioma stem cells (GSCs), but molecular mechanisms for NF-κB activation in GSCs are currently unknown. Here, we report that mixed lineage kinase 4 (MLK4) is overexpressed in MES but not proneural (PN) GSCs. Silencing MLK4 suppresses self-renewal, motility, tumorigenesis, and radioresistance of MES GSCs via a loss of the MES signature. MLK4 binds and phosphorylates the NF-κB regulator IKKα, leading to activation of NF-κB signaling in GSCs. MLK4 expression is inversely correlated with patient prognosis in MES, but not PN high-grade gliomas. Collectively, our results uncover MLK4 as an upstream regulator of NF-κB signaling and a potential molecular target for the MES subtype of glioblastomas.
Collapse
Affiliation(s)
- Sung-Hak Kim
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ravesanker Ezhilarasan
- Department of Radiation Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Emma Phillips
- Division of Molecular Genetics, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Daniel Gallego-Perez
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA; Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, OH 43210, USA; Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, OH 43210, USA
| | - Amanda Sparks
- Department of Neurosurgery, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - David Taylor
- Department of Neurosurgery, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Katherine Ladner
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Takuya Furuta
- Department of Neurosurgery, Kanazawa University, Kanazawa 920-8641, Japan
| | - Hemragul Sabit
- Department of Neurosurgery, Kanazawa University, Kanazawa 920-8641, Japan
| | - Rishi Chhipa
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45242, USA
| | - Ju Hwan Cho
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Ahmed Mohyeldin
- Department of Neurosurgery, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Samuel Beck
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kazuhiko Kurozumi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Toshihiko Kuroiwa
- Department of Neurosurgery, Osaka Medical College, Osaka 569-8686, Japan
| | - Ryoichi Iwata
- Department of Neurosurgery, Kansai Medical University, Osaka 573-1191, Japan
| | - Akio Asai
- Department of Neurosurgery, Kansai Medical University, Osaka 573-1191, Japan
| | - Jonghwan Kim
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Erik P Sulman
- Department of Radiation Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Shi-Yuan Cheng
- The Ken & Ruth Davee Department of Neurology & Northwestern Brain Tumor Institute, Center for Genetic Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - L James Lee
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, OH 43210, USA; Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, OH 43210, USA; Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Kanazawa University, Kanazawa 920-8641, Japan
| | - Denis Guttridge
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Biplab DasGupta
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45242, USA
| | - Violaine Goidts
- Division of Molecular Genetics, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Krishna P Bhat
- Department of Translational Molecular Pathology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Ichiro Nakano
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
31
|
Podergajs N, Motaln H, Rajčević U, Verbovšek U, Koršič M, Obad N, Espedal H, Vittori M, Herold-Mende C, Miletic H, Bjerkvig R, Turnšek TL. Transmembrane protein CD9 is glioblastoma biomarker, relevant for maintenance of glioblastoma stem cells. Oncotarget 2016; 7:593-609. [PMID: 26573230 PMCID: PMC4808020 DOI: 10.18632/oncotarget.5477] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 10/31/2015] [Indexed: 12/20/2022] Open
Abstract
The cancer stem cell model suggests that glioblastomas contain a subpopulation of stem-like tumor cells that reproduce themselves to sustain tumor growth. Targeting these cells thus represents a novel treatment strategy and therefore more specific markers that characterize glioblastoma stem cells need to be identified. In the present study, we performed transcriptomic analysis of glioblastoma tissues compared to normal brain tissues revealing sensible up-regulation of CD9 gene. CD9 encodes the transmembrane protein tetraspanin which is involved in tumor cell invasion, apoptosis and resistance to chemotherapy. Using the public REMBRANDT database for brain tumors, we confirmed the prognostic value of CD9, whereby a more than two fold up-regulation correlates with shorter patient survival. We validated CD9 gene and protein expression showing selective up-regulation in glioblastoma stem cells isolated from primary biopsies and in primary organotypic glioblastoma spheroids as well as in U87-MG and U373 glioblastoma cell lines. In contrast, no or low CD9 gene expression was observed in normal human astrocytes, normal brain tissue and neural stem cells. CD9 silencing in three CD133+ glioblastoma cell lines (NCH644, NCH421k and NCH660h) led to decreased cell proliferation, survival, invasion, and self-renewal ability, and altered expression of the stem-cell markers CD133, nestin and SOX2. Moreover, CD9-silenced glioblastoma stem cells showed altered activation patterns of the Akt, MapK and Stat3 signaling transducers. Orthotopic xenotransplantation of CD9-silenced glioblastoma stem cells into nude rats promoted prolonged survival. Therefore, CD9 should be further evaluated as a target for glioblastoma treatment.
Collapse
Affiliation(s)
- Neža Podergajs
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Helena Motaln
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Uroš Rajčević
- Department of Biochemistry, Blood Transfusion Centre of Slovenia, 1000 Ljubljana, Slovenia
| | - Urška Verbovšek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Marjan Koršič
- Department of Neurosurgery, University Medical Centre, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Nina Obad
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Heidi Espedal
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Miloš Vittori
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Christel Herold-Mende
- Division of Neurosurgical Research, Department of Neurosurgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Rolf Bjerkvig
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
- NorLux Neuro-Oncology Laboratory, Centre de Recherche Public de la Santé, 1526 Luxembourg, Luxembourg
| | - Tamara Lah Turnšek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
- Department of Biochemistry, Faculty of Chemistry and Chemical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
32
|
Glioma Stem Cells. Transl Neurosci 2016. [DOI: 10.1007/978-1-4899-7654-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Brany D, Dvorska D, Nachajova M, Slavik P, Burjanivova T. Malignant tumors of the uterine corpus: molecular background of their origin. Tumour Biol 2015; 36:6615-21. [DOI: 10.1007/s13277-015-3824-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/20/2015] [Indexed: 12/21/2022] Open
|
34
|
Kološa K, Motaln H, Herold-Mende C, Koršič M, Lah TT. Paracrine effects of mesenchymal stem cells induce senescence and differentiation of glioblastoma stem-like cells. Cell Transplant 2015; 24:631-44. [PMID: 25806680 DOI: 10.3727/096368915x687787] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Glioblastoma multiforme (GBM) displays high resistance to radiation and chemotherapy, due to the presence of a fraction of GBM stem-like cells (GSLCs), which are thus representing the target for GBM elimination. Since mesenchymal stem cells (MSCs) display high tumor tropism, we examined possible antitumor effects of the secreted factors from human MSCs on four GSLC lines (NCH421k, NCH644, NIB26, and NIB50). We found that conditioned media from bone marrow and umbilical cord-derived MSCs (MSC-CM) mediated cell cycle arrest of GSLCs by downregulating cyclin D1. PCR arrays revealed significantly deregulated expression of 13 genes associated with senescence in NCH421k cells exposed to MSC-CM. Among these, ATM, CD44, COL1A1, MORC3, NOX4, CDKN1A, IGFBP5, and SERPINE1 genes were upregulated, whereas IGFBP3, CDKN2A, CITED2, FN1, and PRKCD genes were found to be downregulated. Pathway analyses in GO and KEGG revealed their association with p53 signaling, which can trigger senescence via cell cycle inhibitors p21 or p16. For both, upregulated expression was proven in all four GSLC lines exhibiting senescence after MSC-CM exposure. Moreover, MSC paracrine signals were shown to increase the sensitivity of NCH421k and NCH644 cells toward temozolomide, possibly by altering them toward more differentiated cell types, as evidenced by vimentin and GFAP upregulation, and Sox-2 and Notch-1 downregulation. Our findings support the notion that MSCs posses an intrinsic ability to inhibit cell cycle and induce senescence and differentiation of GSLCs.
Collapse
Affiliation(s)
- Katja Kološa
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
35
|
Extracellular vesicles in the biology of brain tumour stem cells--Implications for inter-cellular communication, therapy and biomarker development. Semin Cell Dev Biol 2015; 40:17-26. [PMID: 25721810 DOI: 10.1016/j.semcdb.2015.02.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 02/17/2015] [Accepted: 02/17/2015] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs) act as carriers of molecular and oncogenic signatures present in subsets of tumour cells and tumour-associated stroma, and as mediators of intercellular communication. These processes likely involve cancer stem cells (CSCs). EVs represent a unique pathway of cellular export and cell-to-cell transfer of insoluble molecular regulators such as membrane receptors, signalling proteins and metabolites, thereby influencing the functional integration of cancer cell populations. While mechanisms that control biogenesis, cargo and uptake of different classes of EVs (exosomes, microvesicles, ectosomes, large oncosomes) are poorly understood, they likely remain under the influence of stress-responses, microenvironment and oncogenic processes that define the biology and heterogeneity of human cancers. In glioblastoma (GBM), recent molecular profiling approaches distinguished several disease subtypes driven by distinct molecular, epigenetic and mutational mechanisms, leading to formation of proneural, neural, classical and mesenchymal tumours. Moreover, molecularly distinct clonal cellular lineages co-exist within individual GBM lesions, where they differentiate according to distinct stem cell hierarchies resulting in several facets of tumour heterogeneity and the related potential for intercellular interactions. Glioma stem cells (GSCs) may carry signatures of either proneural or mesenchymal GBM subtypes and differ in several biological characteristics that are, at least in part, represented by the output and repertoire of EV production (vesiculome). We report that vesiculomes differ between known GBM subtypes. EVs may also reflect and influence the equilibrium of the stem cell hierarchy, contain oncogenic drivers and modulate the microenvironment (vascular niche). The GBM/GSC subtype-specific differentials in EV cargo of proteins, transcripts, microRNA and DNA may enable detection of the dynamics of the stem cell compartment and result in biological effects that remain to be fully characterized.
Collapse
|
36
|
Prabhu VV, Allen JE, Dicker DT, El-Deiry WS. Small-Molecule ONC201/TIC10 Targets Chemotherapy-Resistant Colorectal Cancer Stem-like Cells in an Akt/Foxo3a/TRAIL-Dependent Manner. Cancer Res 2015; 75:1423-32. [PMID: 25712124 DOI: 10.1158/0008-5472.can-13-3451] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/30/2015] [Indexed: 01/05/2023]
Abstract
Self-renewing colorectal cancer stem/progenitor cells (CSC) contribute to tumor maintenance and resistance to therapy. Therapeutic targeting of CSCs could improve treatment response and prolong patient survival. ONC201/TIC10 is a first-in-class antitumor agent that induces TRAIL pathway-mediated cell death in cancer cells without observed toxicity. We have previously described that ONC201/TIC10 exposure leads to transcriptional induction of the TRAIL gene via transcription factor Foxo3a, which is activated by dual inactivation of Akt and ERK. The Akt and ERK pathways serve as important targets in CSCs. Foxo3a is a key mediator of Akt and ERK-mediated CSC regulation. We hypothesized that the potent antitumor effect of ONC201/TIC10 in colorectal cancer involves targeting CSCs and bulk tumor cells. ONC201/TIC10 depletes CD133(+), CD44(+), and Aldefluor(+) cells in vitro and in vivo. TIC10 significantly inhibits colonosphere formation of unsorted and sorted 5-fluorouracil-resistant CSCs. ONC201/TIC10 significantly reduces CSC-initiated xenograft tumor growth in mice and prevents the passage of these tumors. ONC201/TIC10 treatment also decreased xenograft tumor initiation and was superior to 5-fluorouracil treatment. Thus, ONC201/TIC10 inhibits CSC self-renewal in vitro and in vivo. ONC201/TIC10 inhibits Akt and ERK, consequently activating Foxo3a and significantly induces cell surface TRAIL and DR5 expression in both CSCs and non-CSCs. ONC201/TIC10-mediated anti-CSC effect is significantly blocked by the TRAIL sequestering antibody RIK-2. Overexpression of Akt, DR5 knockdown, and Foxo3a knockdown rescues ONC201/TIC10-mediated depletion of CD44(+) cells and colonosphere inhibition. In conclusion, ONC201/TIC10 is a promising agent for colorectal cancer therapy that targets both non-CSCs and CSCs in an Akt-Foxo3a-TRAIL-dependent manner.
Collapse
Affiliation(s)
- Varun V Prabhu
- Penn State Hershey Cancer Institute, Department of Medicine (Hematology/Oncology), Penn State College of Medicine, Hershey, Pennsylvania. Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | - David T Dicker
- Penn State Hershey Cancer Institute, Department of Medicine (Hematology/Oncology), Penn State College of Medicine, Hershey, Pennsylvania. Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Wafik S El-Deiry
- Penn State Hershey Cancer Institute, Department of Medicine (Hematology/Oncology), Penn State College of Medicine, Hershey, Pennsylvania. Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
37
|
Wongtrakoongate P. Epigenetic therapy of cancer stem and progenitor cells by targeting DNA methylation machineries. World J Stem Cells 2015; 7:137-148. [PMID: 25621113 PMCID: PMC4300924 DOI: 10.4252/wjsc.v7.i1.137] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/01/2014] [Accepted: 10/29/2014] [Indexed: 02/06/2023] Open
Abstract
Recent advances in stem cell biology have shed light on how normal stem and progenitor cells can evolve to acquire malignant characteristics during tumorigenesis. The cancer counterparts of normal stem and progenitor cells might be occurred through alterations of stem cell fates including an increase in self-renewal capability and a decrease in differentiation and/or apoptosis. This oncogenic evolution of cancer stem and progenitor cells, which often associates with aggressive phenotypes of the tumorigenic cells, is controlled in part by dysregulated epigenetic mechanisms including aberrant DNA methylation leading to abnormal epigenetic memory. Epigenetic therapy by targeting DNA methyltransferases (DNMT) 1, DNMT3A and DNMT3B via 5-Azacytidine (Aza) and 5-Aza-2’-deoxycytidine (Aza-dC) has proved to be successful toward treatment of hematologic neoplasms especially for patients with myelodysplastic syndrome. In this review, I summarize the current knowledge of mechanisms underlying the inhibition of DNA methylation by Aza and Aza-dC, and of their apoptotic- and differentiation-inducing effects on cancer stem and progenitor cells in leukemia, medulloblastoma, glioblastoma, neuroblastoma, prostate cancer, pancreatic cancer and testicular germ cell tumors. Since cancer stem and progenitor cells are implicated in cancer aggressiveness such as tumor formation, progression, metastasis and recurrence, I propose that effective therapeutic strategies might be achieved through eradication of cancer stem and progenitor cells by targeting the DNA methylation machineries to interfere their “malignant memory”.
Collapse
|
38
|
Karpel-Massler G, Pareja F, Aimé P, Shu C, Chau L, Westhoff MA, Halatsch ME, Crary JF, Canoll P, Siegelin MD. PARP inhibition restores extrinsic apoptotic sensitivity in glioblastoma. PLoS One 2014; 9:e114583. [PMID: 25531448 PMCID: PMC4273972 DOI: 10.1371/journal.pone.0114583] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/11/2014] [Indexed: 01/23/2023] Open
Abstract
Background Resistance to apoptosis is a paramount issue in the treatment of Glioblastoma (GBM). We show that targeting PARP by the small molecule inhibitors, Olaparib (AZD-2281) or PJ34, reduces proliferation and lowers the apoptotic threshold of GBM cells in vitro and in vivo. Methods The sensitizing effects of PARP inhibition on TRAIL-mediated apoptosis and potential toxicity were analyzed using viability assays and flow cytometry in established GBM cell lines, low-passage neurospheres and astrocytes in vitro. Molecular analyses included western blots and gene silencing. In vivo, effects on tumor growth were examined in a murine subcutaneous xenograft model. Results The combination treatment of PARP inhibitors and TRAIL led to an increased cell death with activation of caspases and inhibition of formation of neurospheres when compared to single-agent treatment. Mechanistically, pharmacological PARP inhibition elicited a nuclear stress response with up-regulation of down-stream DNA-stress response proteins, e.g., CCAAT enhancer binding protein (C/EBP) homology protein (CHOP). Furthermore, Olaparib and PJ34 increased protein levels of DR5 in a concentration and time-dependent manner. In turn, siRNA-mediated suppression of DR5 mitigated the effects of TRAIL/PARP inhibitor-mediated apoptosis. In addition, suppression of PARP-1 levels enhanced TRAIL-mediated apoptosis in malignant glioma cells. Treatment of human astrocytes with the combination of TRAIL/PARP inhibitors did not cause toxicity. Finally, the combination treatment of TRAIL and PJ34 significantly reduced tumor growth in vivo when compared to treatment with each agent alone. Conclusions PARP inhibition represents a promising avenue to overcome apoptotic resistance in GBM.
Collapse
Affiliation(s)
- Georg Karpel-Massler
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Fresia Pareja
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Pascaline Aimé
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Chang Shu
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Lily Chau
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | | | - John F Crary
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Peter Canoll
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Markus D Siegelin
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| |
Collapse
|
39
|
The tumor suppressor prostate apoptosis response-4 (Par-4) is regulated by mutant IDH1 and kills glioma stem cells. Acta Neuropathol 2014; 128:723-32. [PMID: 25135281 DOI: 10.1007/s00401-014-1334-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 08/09/2014] [Accepted: 08/09/2014] [Indexed: 10/24/2022]
Abstract
Prostate apoptosis response-4 (Par-4) is an endogenous tumor suppressor that selectively induces apoptosis in a variety of cancers. Although it has been the subject of intensive research in other cancers, less is known about its significance in gliomas, including whether it is regulated by key driver mutations, has therapeutic potential against glioma stem cells (GSCs), and/or is a prognostic marker. We found that patient-derived gliomas with mutant isocitrate dehydrogenase 1 have markedly lower Par-4 expression (P < 0.0001), which was validated by The Cancer Genome Atlas dataset (P = 2.0 E-13). The metabolic product of mutant IDH1, D-2-hydroxyglutarate (2-HG), can suppress Par-4 transcription in vitro via inhibition of promoter activity as well as enhanced mRNA degradation, but interestingly not by direct DNA promoter hypermethylation. The Selective for Apoptosis induction in Cancer cells (SAC) domain within Par-4 is highly active against glioma cells, including orthotopic xenografts of patient-derived primary GSCs (P < 0.0001). Among high-grade gliomas that are IDH1 wild type, those that express more Par-4 have significantly longer median survival (18.4 vs. 8.0 months, P = 0.002), a finding confirmed in two external GBM cohorts. Together, these data suggest that Par-4 is a significant component of the mutant IDH1 phenotype, that the activity of 2-HG is complex and can extend beyond direct DNA hypermethylation, and that Par-4 is a promising therapeutic strategy against GSCs. Furthermore, not every effect of mutant IDH1 necessarily contributes to the overall favorable prognosis seen in such tumors; inhibition of Par-4 may be one such effect.
Collapse
|
40
|
Goffart N, Dedobbeleer M, Rogister B. Glioblastoma stem cells: new insights in therapeutic strategies. FUTURE NEUROLOGY 2014. [DOI: 10.2217/fnl.14.56] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
ABSTRACT Despite notable achievements in glioblastoma diagnosis and treatment, the prognosis of glioblastoma patients remains poor and reflects the failure of current therapeutic modalities. In this context, innovative therapeutic strategies have recently been developed to specifically target glioblastoma stem cells, a subpopulation of tumor cells involved in experimental tumorigenesis and known to be critical for tumor recurrence and therapeutic resistance. The current review summarizes the different trails which make glioblastoma stem cells resistant to treatments, mainly focusing on radio-, chemo- and immunotherapy. This broad overview might actually help to set up new bases for glioblastoma therapy in order to better fight tumor relapses and to improve the patients’ prognosis.
Collapse
Affiliation(s)
- Nicolas Goffart
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium
| | - Matthias Dedobbeleer
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium
| | - Bernard Rogister
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium
- Department of Neurology, CHU & University of Liège, Liège, Belgium
- GIGA-Development, Stem Cells & Regenerative Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
41
|
van Roosmalen IAM, Reis CR, Setroikromo R, Yuvaraj S, Joseph JV, Tepper PG, Kruyt FAE, Quax WJ. The ER stress inducer DMC enhances TRAIL-induced apoptosis in glioblastoma. SPRINGERPLUS 2014; 3:495. [PMID: 26331107 PMCID: PMC4554544 DOI: 10.1186/2193-1801-3-495] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 08/13/2014] [Indexed: 01/13/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumour in humans and is highly resistant to current treatment modalities. We have explored the combined treatment of the endoplasmic reticulum (ER) stress-inducing agent 2,5-dimethyl-celecoxib (DMC) and TNF-related apoptosis-inducing ligand (TRAIL WT) or the DR5-specific TRAIL D269H/E195R variant as a potential new strategy to eradicate GBM cells using TRAIL-resistant and -sensitive GBM cells. GBM cell lines were investigated for their sensitivity to TRAIL, DMC and combination of both agents. Cell viability was measured by MTS assay and apoptosis was assessed by Annexin V/PI and acridine orange staining. Caspase activation and protein expression levels were analysed with Western blotting. Death Receptor (DR) cell surface expression levels were quantified by flow cytometry. DR5 expression was increased in U87 cells by ectopic expression using a retroviral plasmid and survivin expression was silenced using specific siRNAs. We demonstrate that A172 expresses mainly DR5 on the cell surface and that these cells show increased sensitivity for the DR5-specific rhTRAIL D269H/E195R variant. In contrast, U87 cells show low DR cell surface levels and is insensitive via both DR4 and DR5. We determined that DMC treatment displays a dose-dependent reduction in cell viability against a number of GBM cells, associated with ER stress induction, as shown by the up-regulation of glucose-regulated protein 78 (GRP78) and CCAAT/-enhancer-binding protein homologous protein (CHOP) in A172 and U87 cells. The dramatic decrease in cell viability is not accompanied by a correspondent increase in Annexin V/PI or caspase activation typically seen in apoptotic or/and necrotic cells within 24h of treatment. Although DMC did not affect DR5 expression in the GBM cells, it increased TRAIL-induced caspase-8 activation in both TRAIL-sensitive and -resistant cells, indicating that DMC potentiates initiator caspase activation in these cells. In A172 cells, sub-toxic concentrations of DMC greatly potentiated TRAIL-induced apoptosis. Furthermore, DMC strongly reduced survivin expression in A172 and U87 cells and silencing of this anti-apoptotic protein partially sensitized cells to TRAIL-induced apoptosis. Our findings corroborate that DMC is a promising agent against GBM, and uncovers a potential synergistic cooperation with TRAIL in this highly malignant cancer.
Collapse
Affiliation(s)
- Ingrid A M van Roosmalen
- Department of Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV The Netherlands.,Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, 9713 GZ The Netherlands
| | - Carlos R Reis
- Department of Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV The Netherlands.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390-9039 USA
| | - Rita Setroikromo
- Department of Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV The Netherlands
| | - Saravanan Yuvaraj
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, 9713 GZ The Netherlands.,Department of Pulmonary Medicine, Erasmus Medical Center, Westzeedijk 353, Rotterdam, 3015 AA The Netherlands
| | - Justin V Joseph
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, 9713 GZ The Netherlands
| | - Pieter G Tepper
- Department of Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV The Netherlands
| | - Frank A E Kruyt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, 9713 GZ The Netherlands
| | - Wim J Quax
- Department of Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV The Netherlands
| |
Collapse
|
42
|
Sotiropoulou PA, Christodoulou MS, Silvani A, Herold-Mende C, Passarella D. Chemical approaches to targeting drug resistance in cancer stem cells. Drug Discov Today 2014; 19:1547-62. [PMID: 24819719 DOI: 10.1016/j.drudis.2014.05.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 03/24/2014] [Accepted: 05/01/2014] [Indexed: 12/16/2022]
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer cells with high clonogenic capacity and ability to reform parental tumors upon transplantation. Resistance to therapy has been shown for several types of CSC and, therefore, they have been proposed as the cause of tumor relapse. Consequently, much effort has been made to design molecules that can target CSCs specifically and sensitize them to therapy. In this review, we summarize the mechanisms underlying CSC resistance, the potential biological targets to overcome resistance and the chemical compounds showing activity against different types of CSC. The chemical compounds discussed here have been divided according to their origin: natural, natural-derived and synthetic compounds.
Collapse
Affiliation(s)
- Panagiota A Sotiropoulou
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles (ULB), 808 route de Lennik, BatC, 1070 Bruxelles, Belgium
| | - Michael S Christodoulou
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Alessandra Silvani
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Daniele Passarella
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy.
| |
Collapse
|
43
|
Pareja F, Macleod D, Shu C, Crary JF, Canoll PD, Ross AH, Siegelin MD. PI3K and Bcl-2 inhibition primes glioblastoma cells to apoptosis through downregulation of Mcl-1 and Phospho-BAD. Mol Cancer Res 2014; 12:987-1001. [PMID: 24757258 DOI: 10.1158/1541-7786.mcr-13-0650] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Glioblastoma multiforme (GBM) is a highly malignant human brain neoplasm with limited therapeutic options. GBMs display a deregulated apoptotic pathway with high levels of the antiapoptotic Bcl-2 family of proteins and overt activity of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Therefore, combined interference of the PI3K pathway and the Bcl-2 family of proteins is a reasonable therapeutic strategy. ABT-263 (Navitoclax), an orally available small-molecule Bcl-2 inhibitor, and GDC-0941, a PI3K inhibitor, were used to treat established glioblastoma and glioblastoma neurosphere cells, alone or in combination. Although GDC-0941 alone had a modest effect on cell viability, treatment with ABT-263 displayed a marked reduction of cell viability and induction of apoptotic cell death. Moreover, combinatorial therapy using ABT-263 and GDC-0941 showed an enhanced effect, with a further decrease in cellular viability. Furthermore, combination treatment abrogated the ability of stem cell-like glioma cells to form neurospheres. ABT-263 and GDC-0941, in combination, resulted in a consistent and significant increase of Annexin V positive cells and loss of mitochondrial membrane potential compared with either monotherapy. The combination treatment led to enhanced cleavage of both initiator and effector caspases. Mechanistically, GDC-0941 depleted pAKT (Serine 473) levels and suppressed Mcl-1 protein levels, lowering the threshold for the cytotoxic actions of ABT-263. GDC-0941 decreased Mcl-1 in a posttranslational manner and significantly decreased the half-life of Mcl-1 protein. Ectopic expression of human Mcl-1 mitigated apoptotic cell death induced by the drug combination. Furthermore, GDC-0941 modulated the phosphorylation status of BAD, thereby further enhancing ABT-263-mediated cell death. IMPLICATIONS Combination therapy with ABT-263 and GDC-0941 has novel therapeutic potential by specifically targeting aberrantly active, deregulated pathways in GBM, overcoming endogenous resistance to apoptosis.
Collapse
Affiliation(s)
- Fresia Pareja
- Authors' Affiliations: Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York; and
| | - David Macleod
- Authors' Affiliations: Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York; and
| | - Chang Shu
- Authors' Affiliations: Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York; and
| | - John F Crary
- Authors' Affiliations: Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York; and
| | - Peter D Canoll
- Authors' Affiliations: Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York; and
| | - Alonzo H Ross
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Markus D Siegelin
- Authors' Affiliations: Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York; and
| |
Collapse
|
44
|
Xin HW, Ambe CM, Hari DM, Wiegand GW, Miller TC, Chen JQ, Anderson AJ, Ray S, Mullinax JE, Koizumi T, Langan RC, Burka D, Herrmann MA, Goldsmith PK, Stojadinovic A, Rudloff U, Thorgeirsson SS, Avital I. Label-retaining liver cancer cells are relatively resistant to sorafenib. Gut 2013; 62:1777-86. [PMID: 23411027 PMCID: PMC6993136 DOI: 10.1136/gutjnl-2012-303261] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The standard therapy for advanced hepatocellular carcinoma (HCC) is sorafenib, with most patients experiencing disease progression within 6 months. Label-retaining cancer cells (LRCC) represent a novel subpopulation of cancer stem cells (CSC). The objective was to test whether LRCC are resistant to sorafenib. METHODS We tested human HCC derived LRCC and non-LRCC before and after treatment with sorafenib. RESULTS LRCC derived from human HCC are relatively resistant to sorafenib. The proportion of LRCC in HCC cell lines is increased after sorafenib while the general population of cancer cells undergoes growth suppression. We show that LRCC demonstrate improved viability and toxicity profiles, and reduced apoptosis, over non-LRCC. We show that after treatment with sorafenib, LRCC upregulate the CSC marker aldehyde dehydrogenase 1 family, wingless-type MMTV-integration-site family, cell survival and proliferation genes, and downregulate apoptosis, cell cycle arrest, cell adhesion and stem cells differentiation genes. This phenomenon was accompanied by non-uniform activation of specific isoforms of the sorafenib target proteins extracellular-signal-regulated kinases and v-akt-murine-thymoma-viral-oncogene homologue (AKT) in LRCC but not in non-LRCC. A molecular pathway map for sorafenib treated LRCC is proposed. CONCLUSIONS Our results suggest that HCC derived LRCC are relatively resistant to sorafenib. Since LRCC can generate tumours with as few as 10 cells, our data suggest a potential role for these cells in disease recurrence. Further investigation of this phenomenon might provide novel insights into cancer biology, cancer recurrence and drug resistance with important implications for the development of novel cancer therapies based on targeting LRCC.
Collapse
Affiliation(s)
- Hong-Wu Xin
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chenwi M Ambe
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Danielle M Hari
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gordon W Wiegand
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tyler C Miller
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jin-Qiu Chen
- Collaborative Protein Technology Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew J Anderson
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Satyajit Ray
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - John E Mullinax
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tomotake Koizumi
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Russell C Langan
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Douglas Burka
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michelle A Herrmann
- Collaborative Protein Technology Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Paul K Goldsmith
- Collaborative Protein Technology Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Alexander Stojadinovic
- Department of Surgery, Division of Surgical Oncology, Walter Reed National Military Medical Center, Bethesda, Maryland, USA,Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Udo Rudloff
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Snorri S Thorgeirsson
- Laboratory for Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Itzhak Avital
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA,Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA,Bon Secours Cancer Institute, Richmond, Virginia, USA
| |
Collapse
|
45
|
Lee SH, Kim MJ, Kim DW, Kang CD, Kim SH. Amurensin G enhances the susceptibility to tumor necrosis factor-related apoptosis-inducing ligand-mediated cytotoxicity of cancer stem-like cells of HCT-15 cells. Cancer Sci 2013; 104:1632-9. [PMID: 24118446 DOI: 10.1111/cas.12299] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/26/2013] [Accepted: 10/01/2013] [Indexed: 12/31/2022] Open
Abstract
Cancer stem cells (CSCs) are resistant to radiotherapy and chemotherapy and play a significant role in cancer recurrence. Design of better treatment strategies that can eliminate or otherwise control CSC populations in tumors is necessary. In this study, the sensitivity to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced cytotoxicity and the effect of amurensin G, a novel sirtuin 1 (SIRT1) inhibitor, were examined using the CSC-enriched fraction of HCT-15 human colon cancer cells. Cancer stem cell-enriched HCT-15 colony cells were paradoxically less sensitive to doxorubicin, and more sensitive to TRAIL-induced cytotoxicity, than their parental cells. Also, CD44(+) HCT-15 cells were more susceptible to TRAIL-mediated cytotoxicity than CD44(-) HCT-15 cells, possibly due to increased levels of death receptors DR4 and DR5 as well as c-Myc, and decreased levels of c-FLIPL /S in CD44(+) cells compared with CD44(-) HCT-15 cells. The combination effect of amurensin G on TRAIL-mediated cytotoxicity was much more apparent in CD44(+) cells than in CD44(-) HCT-15 cells, and this was associated with more prominent downregulation of c-FLIP(L/S) in CD44(+) cells than in CD44(-) HCT-15 cells. These results indicate that HCT-15 colony or CD44(+) cells, which may have CSC properties, are more sensitive to TRAIL than parental or CD44(-) HCT-15 cells. Amurensin G may be effective in eliminating colon CSCs and be applicable to potentiate the sensitivity of colon CSCs to TRAIL.
Collapse
Affiliation(s)
- Su-Hoon Lee
- Department of Biochemistry and Medical Research Institute, Pusan National University School of Medicine, Yangsan, Korea
| | | | | | | | | |
Collapse
|
46
|
Targeting metabolism to induce cell death in cancer cells and cancer stem cells. Int J Cell Biol 2013; 2013:805975. [PMID: 23476653 PMCID: PMC3583110 DOI: 10.1155/2013/805975] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 01/02/2013] [Indexed: 12/18/2022] Open
Abstract
Abnormal metabolism and the evasion of apoptosis are considered hallmarks of cancers. Accumulating evidence shows that cancer stem cells are key drivers of tumor formation, progression, and recurrence. A successful therapy must therefore eliminate these cells known to be highly resistant to apoptosis. In this paper, we describe the metabolic changes as well as the mechanisms of resistance to apoptosis occurring in cancer cells and cancer stem cells, underlying the connection between these two processes.
Collapse
|
47
|
Ning X, Shu J, Du Y, Ben Q, Li Z. Therapeutic strategies targeting cancer stem cells. Cancer Biol Ther 2013; 14:295-303. [PMID: 23358473 DOI: 10.4161/cbt.23622] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Increasing studies have demonstrated a small proportion of cancer stem cells (CSCs) exist in the cancer cell population. CSCs have powerful self-renewal capacity and tumor-initiating ability and are resistant to chemotherapy and radiation. Conventional anticancer therapies kill the rapidly proliferating bulk cancer cells but spare the relatively quiescent CSCs, which cause cancer recurrence. So it is necessary to develop therapeutic strategies acting specifically on CSCs. In recent years, studies have shown that therapeutic agents such as metformin, salinomycin, DECA-14, rapamycin, oncostatin M (OSM), some natural compounds, oncolytic viruses, microRNAs, cell signaling pathway inhibitors, TNF-related apoptosis inducing ligand (TRAIL), interferon (IFN), telomerase inhibitors, all-trans retinoic acid (ATRA) and monoclonal antibodies can suppress the self-renewal of CSCs in vitro and in vivo. A combination of these agents and conventional chemotherapy drugs can significantly inhibit tumor growth, metastasis and recurrence. These strategies targeting CSCs may bring new hopes to cancer therapy.
Collapse
Affiliation(s)
- Xiaoyan Ning
- Department of Gastroenterology, Changhai Hospital of Second Military Medical University, Shanghai, China
| | | | | | | | | |
Collapse
|
48
|
TRAIL and paclitaxel synergize to kill U87 cells and U87-derived stem-like cells in vitro. Int J Mol Sci 2012; 13:9142-9156. [PMID: 22942757 PMCID: PMC3430288 DOI: 10.3390/ijms13079142] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 07/11/2012] [Accepted: 07/11/2012] [Indexed: 11/16/2022] Open
Abstract
U87-derived stem-like cells (U87-SLCs) were cultured using serum-free stem cell media and identified by both biological behaviors and markers. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and paclitaxel (PX), in combination or alone, was used to treat U87-MG human glioma cells (U87 cells) or U87-SLCs. The results showed that TRAIL/PX cannot only synergistically inhibit U87 cells but also U87-SLCs. We observed a significantly higher apoptotic rate in U87 cells simultaneously treated with TRAIL/PX for 24 h compared to cells treated with either drug alone. Furthermore, there was a remarkably higher apoptosis rate in U87-SLCs induced by the TRAIL/PX combination compared with either drug alone. Unlike the simultaneous treatment in U87 cells, U87-SLCs were pretreated for 24 h with 1 μmol/L of PX followed by 1000 ng/mL of TRAIL. Protein assays revealed that TRAIL/PX synergy was related to DR4, cleaved caspase-8 and cleaved caspase-3 upregulation, whereas the mitochondrial pathway was not involved in TRAIL-induced apoptosis. The present study indicates that PX can sensitize U87 cells and U87-SLCs to TRAIL treatment through an extrinsic pathway of cell apoptosis. The combined treatment of TRAIL and PX may be a promising glioma chemotherapy because of its successful inhibition of U87-SLCs, which are hypothesized to influence chemotherapeutic outcomes of gliomas.
Collapse
|
49
|
SHIN DONGYEOK, PARK YOUSOO, YANG KWANGMO, KIM GIYOUNG, KIM WUNJAE, HAN MINHO, KANG HOSUNG, CHOI YUNGHYUN. Decitabine, a DNA methyltransferase inhibitor, induces apoptosis in human leukemia cells through intracellular reactive oxygen species generation. Int J Oncol 2012; 41:910-8. [DOI: 10.3892/ijo.2012.1546] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 05/16/2012] [Indexed: 11/05/2022] Open
|
50
|
Fulda S. Regulation of apoptosis pathways in cancer stem cells. Cancer Lett 2012; 338:168-73. [PMID: 22429999 DOI: 10.1016/j.canlet.2012.03.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 03/06/2012] [Accepted: 03/08/2012] [Indexed: 12/18/2022]
Abstract
Cancer stem cell are considered to represent a population within the bulk tumor that share many similarities to normal stem cells as far as their capacities to self-renew, differentiate, proliferate and to reconstitute the entire tumor upon serial transplantation are concerned. Since cancer stem cells have been shown to be critical for maintaining tumor growth and have been implicated in treatment resistance and tumor progression, they constitute relevant targets for therapeutic intervention. Indeed, it has been postulated that eradication of cancer stem cells will be pivotal in order to achieve long-term relapse-free survival. However, one of the hallmarks of cancer stem cells is their high resistance to undergo cell death including apoptosis in response to environmental cues or cytotoxic stimuli. Since activation of apoptosis programs in tumor cells underlies the antitumor activity of most currently used cancer therapeutics, it will be critical to develop strategies to overcome the intrinsic resistance to apoptosis of cancer stem cells. Thus, a better understanding of the molecular mechanisms that are responsible for the ability of cancer stem cells to evade apoptosis will likely open new avenues to target this critical pool of cells within the tumor in order to develop more efficient treatment options for patients suffering from cancer.
Collapse
Affiliation(s)
- Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstr. 3a, 60528 Frankfurt, Germany.
| |
Collapse
|