1
|
Ji J, Giraud Q, Diedhiou N, Lipkow E, Spiegelhalter C, Laporte J. BIN1 gene replacement reverses BIN1-related centronuclear myopathy. Mol Ther 2025:S1525-0016(25)00315-6. [PMID: 40308061 DOI: 10.1016/j.ymthe.2025.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/07/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025] Open
Abstract
Centronuclear myopathies (CNMs) are severe genetic disorders characterized by generalized muscle weakness associated with organelle mispositioning in myofibers. Most CNM cases are caused by mutations in proteins involved in membrane remodeling, including amphiphysin 2 (BIN1). There is no treatment, and the pathological mechanisms are not understood. Here, we aimed to cure the Bin1-CNM mouse model (Bin1mck-/-) via an adeno-associated virus (AAV)-based gene replacement strategy. Early systemic exogenous BIN1 expression efficiently prevented disease progression. Moreover, BIN1 expression after disease onset reversed all disease signs 4 weeks after treatment, including motor defects, muscle weakness, muscle and myofiber hypotrophy, kyphosis, nuclei and mitochondria misposition, and altered T-tubules network. We then validated the most efficient construct combining a myotropic AAV serotype with the muscle BIN1 isoform. The rescue correlated with the normalization of autophagy and excitation-contraction coupling markers. Cellular and in vivo investigations revealed that different BIN1 natural isoforms shared similar beneficial effects. Artificial constructs coding for separated protein domains rescued different CNM hallmarks. Only the muscle-specific BIN1 isoform combined the different cellular functions of BIN1 on membrane tubulation and dynamin (DNM2) regulation necessary for a full rescue. Overall, this study validates BIN1 gene replacement as a promising strategy to cure BIN1-related CNM.
Collapse
Affiliation(s)
- Jacqueline Ji
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| | - Quentin Giraud
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| | - Nadège Diedhiou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| | - Eva Lipkow
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| | - Coralie Spiegelhalter
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch-Graffenstaden, France.
| |
Collapse
|
2
|
Dourlen P, Kilinc D, Landrieu I, Chapuis J, Lambert JC. BIN1 and Alzheimer's disease: the tau connection. Trends Neurosci 2025:S0166-2236(25)00059-1. [PMID: 40268578 DOI: 10.1016/j.tins.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/06/2025] [Accepted: 03/16/2025] [Indexed: 04/25/2025]
Abstract
Bridging integrator 1 (BIN1) is a ubiquitously expressed protein that plays a critical role in endocytosis, trafficking and cytoskeletal dynamics. In 2010, BIN1 gene was reported as a major genetic risk factor for Alzheimer's disease (AD), which shifted the focus on its physiological and pathophysiological roles in the brain (at a time when data available were scarce). In this review, we discuss the multiple cerebral roles of BIN1, especially in regulating synaptic function, and the strong link between BIN1 and tau pathology, supported by recent evidence ranging from genetic and clinical/postmortem observations to molecular interactions.
Collapse
Affiliation(s)
- Pierre Dourlen
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Devrim Kilinc
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Isabelle Landrieu
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases, Institut Pasteur de Lille, Université de Lille, Lille, France; CNRS EMR9002-BSI-Integrative Structural Biology, Lille, France
| | - Julien Chapuis
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Jean-Charles Lambert
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases, Institut Pasteur de Lille, Université de Lille, Lille, France.
| |
Collapse
|
3
|
Martin C, Servais L. X-linked myotubular myopathy: an untreated treatable disease. Expert Opin Biol Ther 2025; 25:379-394. [PMID: 40042390 DOI: 10.1080/14712598.2025.2473430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION X-linked myotubular myopathy (XLMTM) is a life-threatening congenital disorder characterized by severe respiratory and motor impairment. This disease presents significant therapeutic challenges, with various strategies being explored to address its underlying pathology. Among these approaches, gene replacement therapy has demonstrated substantial functional improvements in clinical trials. However, safety issues emerged across different therapeutic approaches, highlighting the need for further research. AREAS COVERED This review provides a comprehensive analysis of the data gathered from natural history studies, preclinical models and clinical trials, with a particular focus on gene replacement therapy for XLMTM. The different therapeutic strategies are addressed, including their outcomes and associated safety concerns. EXPERT OPINION Despite the encouraging potential of gene therapy for XLMTM, the occurrence of safety challenges emphasizes the urgent need for a more comprehensive understanding of the disease's complex phenotype. Enhancing preclinical models to more accurately mimic the full spectrum of disease manifestations will be crucial for optimizing therapeutic strategies and reducing risks in future clinical applications.
Collapse
Affiliation(s)
- Cristina Martin
- Department of Paediatrics, MDUK Oxford Neuromuscular Centre & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Laurent Servais
- Department of Paediatrics, MDUK Oxford Neuromuscular Centre & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Department of Pediatrics, Neuromuscular Reference Center, University and University Hospital of Liège, Liège, Belgium
| |
Collapse
|
4
|
Goret M, Thomas M, Edelweiss E, Messaddeq N, Laporte J. BIN1 reduction ameliorates DNM2-related Charcot-Marie-Tooth neuropathy. Proc Natl Acad Sci U S A 2025; 122:e2419244122. [PMID: 40042903 PMCID: PMC11912451 DOI: 10.1073/pnas.2419244122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/27/2025] [Indexed: 03/19/2025] Open
Abstract
Charcot-Marie-Tooth (CMT) disease, the most common inherited neuromuscular disorder, manifests as progressive muscle weakness and peripheral nerve defects. Dominant mutations in DNM2, encoding the large GTPase dynamin 2, result in CMT without any suggested therapeutic strategy. Different dominant mutations in DNM2 also cause centronuclear myopathy (CNM), and increasing BIN1 (amphiphysin 2), an endogenous modulator of DNM2, rescued CNM in mice. Here, we found that increasing BIN1 level exacerbated the phenotypes of the Dnm2K562E/+ mouse carrying the most common DNM2-CMT mutation. Conversely, whole-body reduction of Bin1 expression level, through the generation of Dnm2K562E/+ mice with heterozygous loss of BIN1, restored motor performance and ameliorated muscle organization and structural defects of peripheral nerves. The rescue of motor defects was maintained at least up to 1 y of age. BIN1 inhibited the GTPase activity of DNM2, and the rescue was driven by an increased activity of the K562E DNM2-CMT mutant, and a normalization of integrin localization in muscle. Overall, this study highlights BIN1 as a modifier of DNM2-CMT, and its reduction as a potential therapeutic strategy. It also revealed an opposite pathological mechanism and inverse therapeutic concepts for DNM2-CMT peripheral neuropathy versus DNM2-CNM myopathy.
Collapse
Affiliation(s)
- Marie Goret
- Institut de génétique, biologie moléculaire et cellulaire, département de Médecine translationnelle et neurogénétique, INSERM U1258, CNRS UMR7104, Université de Strasbourg, Illkirch67404, France
| | - Morgane Thomas
- Institut de génétique, biologie moléculaire et cellulaire, département de Médecine translationnelle et neurogénétique, INSERM U1258, CNRS UMR7104, Université de Strasbourg, Illkirch67404, France
| | - Evelina Edelweiss
- Institut de génétique, biologie moléculaire et cellulaire, département de Médecine translationnelle et neurogénétique, INSERM U1258, CNRS UMR7104, Université de Strasbourg, Illkirch67404, France
| | - Nadia Messaddeq
- Institut de génétique, biologie moléculaire et cellulaire, département de Médecine translationnelle et neurogénétique, INSERM U1258, CNRS UMR7104, Université de Strasbourg, Illkirch67404, France
| | - Jocelyn Laporte
- Institut de génétique, biologie moléculaire et cellulaire, département de Médecine translationnelle et neurogénétique, INSERM U1258, CNRS UMR7104, Université de Strasbourg, Illkirch67404, France
| |
Collapse
|
5
|
Serano M, Perni S, Pierantozzi E, Laurino A, Sorrentino V, Rossi D. Intracellular Membrane Contact Sites in Skeletal Muscle Cells. MEMBRANES 2025; 15:29. [PMID: 39852269 PMCID: PMC11767089 DOI: 10.3390/membranes15010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025]
Abstract
Intracellular organelles are common to eukaryotic cells and provide physical support for the assembly of specialized compartments. In skeletal muscle fibers, the largest intracellular organelle is the sarcoplasmic reticulum, a specialized form of the endoplasmic reticulum primarily devoted to Ca2+ storage and release for muscle contraction. Occupying about 10% of the total cell volume, the sarcoplasmic reticulum forms multiple membrane contact sites, some of which are unique to skeletal muscle. These contact sites primarily involve the plasma membrane; among these, specialized membrane contact sites between the transverse tubules and the terminal cisternae of the sarcoplasmic reticulum form triads. Triads are skeletal muscle-specific contact sites where Ca2+ channels and regulatory proteins assemble to form the so-called calcium release complex. Additionally, the sarcoplasmic reticulum contacts mitochondria to enable a more precise regulation of Ca2+ homeostasis and energy metabolism. The sarcoplasmic reticulum and the plasma membrane also undergo dynamic remodeling to allow Ca2+ entry from the extracellular space and replenish the stores. This process involves the formation of dynamic membrane contact sites called Ca2+ Entry Units. This review explores the key processes in biogenesis and assembly of intracellular membrane contact sites as well as the membrane remodeling that occurs in response to muscle fatigue.
Collapse
Affiliation(s)
- Matteo Serano
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
| | - Stefano Perni
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
| | - Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
| | - Annunziatina Laurino
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
- Program of Molecular Diagnosis of Rare Genetic Diseases, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
| | - Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
- Program of Molecular Diagnosis of Rare Genetic Diseases, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
| |
Collapse
|
6
|
Giraud Q, Laporte J. Amphiphysin-2 (BIN1) functions and defects in cardiac and skeletal muscle. Trends Mol Med 2024; 30:579-591. [PMID: 38514365 DOI: 10.1016/j.molmed.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 03/23/2024]
Abstract
Amphiphysin-2 is a ubiquitously expressed protein also known as bridging integrator 1 (BIN1), playing a critical role in membrane remodeling, trafficking, and cytoskeleton dynamics in a wide range of tissues. Mutations in the gene encoding BIN1 cause centronuclear myopathies (CNM), and recent evidence has implicated BIN1 in heart failure, underlining its crucial role in both skeletal and cardiac muscle. Furthermore, altered expression of BIN1 is linked to an increased risk of late-onset Alzheimer's disease and several types of cancer, including breast, colon, prostate, and lung cancers. Recently, the first proof-of-concept for potential therapeutic strategies modulating BIN1 were obtained for muscle diseases. In this review article, we discuss the similarities and differences in BIN1's functions in cardiac and skeletal muscle, along with its associated diseases and potential therapies.
Collapse
Affiliation(s)
- Quentin Giraud
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC, INSERM U1258, CNRS UMR7104, Université de Strasbourg, Illkirch-Graffenstaden, 67400, France
| | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC, INSERM U1258, CNRS UMR7104, Université de Strasbourg, Illkirch-Graffenstaden, 67400, France.
| |
Collapse
|
7
|
Li Q, Lin J, Luo S, Schmitz‐Abe K, Agrawal R, Meng M, Moghadaszadeh B, Beggs AH, Liu X, Perrella MA, Agrawal PB. Integrated multi-omics approach reveals the role of striated muscle preferentially expressed protein kinase in skeletal muscle including its relationship with myospryn complex. J Cachexia Sarcopenia Muscle 2024; 15:1003-1015. [PMID: 38725372 PMCID: PMC11154751 DOI: 10.1002/jcsm.13470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Autosomal-recessive mutations in SPEG (striated muscle preferentially expressed protein kinase) have been linked to centronuclear myopathy with or without dilated cardiomyopathy (CNM5). Loss of SPEG is associated with defective triad formation, abnormal excitation-contraction coupling, calcium mishandling and disruption of the focal adhesion complex in skeletal muscles. To elucidate the underlying molecular pathways, we have utilized multi-omics tools and analysis to obtain a comprehensive view of the complex biological processes and molecular functions. METHODS Skeletal muscles from 2-month-old SPEG-deficient (Speg-CKO) and wild-type (WT) mice were used for RNA sequencing (n = 4 per genotype) to profile transcriptomics and mass spectrometry (n = 4 for WT; n = 3 for Speg-CKO mice) to profile proteomics and phosphoproteomics. In addition, interactomics was performed using the SPEG antibody on pooled muscle lysates (quadriceps, gastrocnemius and triceps) from WT and Speg-CKO mice. Based on the multi-omics results, we performed quantitative real-time PCR, co-immunoprecipitation and immunoblot to verify the findings. RESULTS We identified that SPEG interacts with myospryn complex proteins CMYA5, FSD2 and RyR1, which are critical for triad formation, and that SPEG deficiency results in myospryn complex abnormalities (protein levels decreased to 22 ± 3% for CMYA5 [P < 0.05] and 18 ± 3% for FSD2 [P < 0.01]). Furthermore, SPEG phosphorylates RyR1 at S2902 (phosphorylation level decreased to 55 ± 15% at S2902 in Speg-CKO mice; P < 0.05), and its loss affects JPH2 phosphorylation at multiple sites (increased phosphorylation at T161 [1.90 ± 0.24-fold], S162 [1.61 ± 0.37-fold] and S165 [1.66 ± 0.13-fold]; decreased phosphorylation at S228 and S231 [39 ± 6%], S234 [50 ± 12%], S593 [48 ± 3%] and S613 [66 ± 10%]; P < 0.05 for S162 and P < 0.01 for other sites). On analysing the transcriptome, the most dysregulated pathways affected by SPEG deficiency included extracellular matrix-receptor interaction (P < 1e-15) and peroxisome proliferator-activated receptor signalling (P < 9e-14). CONCLUSIONS We have elucidated the critical role of SPEG in the triad as it works closely with myospryn complex proteins (CMYA5, FSD2 and RyR1), it regulates phosphorylation levels of various residues in JPH2 and S2902 in RyR1, and its deficiency is associated with dysregulation of several pathways. The study identifies unique SPEG-interacting proteins and their phosphorylation functions and emphasizes the importance of using a multi-omics approach to comprehensively evaluate the molecular function of proteins involved in various genetic disorders.
Collapse
Affiliation(s)
- Qifei Li
- Division of Neonatology, Department of PediatricsUniversity of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health SystemMiamiFLUSA
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Jasmine Lin
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Shiyu Luo
- Division of Neonatology, Department of PediatricsUniversity of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health SystemMiamiFLUSA
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Klaus Schmitz‐Abe
- Division of Neonatology, Department of PediatricsUniversity of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health SystemMiamiFLUSA
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Rohan Agrawal
- Division of Neonatology, Department of PediatricsUniversity of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health SystemMiamiFLUSA
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Melissa Meng
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Behzad Moghadaszadeh
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Alan H. Beggs
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
- Department of Pediatric Newborn MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Mark A. Perrella
- Division of Pulmonary and Critical Care MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
- Department of Pediatric Newborn MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Pankaj B. Agrawal
- Division of Neonatology, Department of PediatricsUniversity of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health SystemMiamiFLUSA
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| |
Collapse
|
8
|
Kawaguchi K, Fujita N. Shaping transverse-tubules: central mechanisms that play a role in the cytosol zoning for muscle contraction. J Biochem 2024; 175:125-131. [PMID: 37848047 PMCID: PMC10873525 DOI: 10.1093/jb/mvad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023] Open
Abstract
A transverse-tubule (T-tubule) is an invagination of the plasma membrane penetrating deep into muscle cells. An extensive membrane network of T-tubules is crucial for rapid and synchronized signal transmission from the cell surface to the entire sarcoplasmic reticulum for Ca2+ release, leading to muscle contraction. T-tubules are also indispensable for the formation and positioning of other muscle organelles. Their structure and physiological roles are relatively well established; however, the mechanisms shaping T-tubules require further elucidation. Centronuclear myopathy (CNM), an inherited muscular disorder, accompanies structural defects in T-tubules. Membrane traffic-related genes, including MTM1 (Myotubularin 1), DNM2 (Dynamin 2), and BIN1 (Bridging Integrator-1), were identified as causative genes of CNM. In addition, causative genes for other muscle diseases are also reported to be involved in the formation and maintenance of T-tubules. This review summarizes current knowledge on the mechanisms of how T-tubule formation and maintenance is regulated.
Collapse
Affiliation(s)
- Kohei Kawaguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 S2-11 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Naonobu Fujita
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 S2-11 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, 4259 S2-11 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
9
|
de Carvalho Neves J, Moschovaki-Filippidou F, Böhm J, Laporte J. DNM2 levels normalization improves muscle phenotypes of a novel mouse model for moderate centronuclear myopathy. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:321-334. [PMID: 37547294 PMCID: PMC10400865 DOI: 10.1016/j.omtn.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 07/11/2023] [Indexed: 08/08/2023]
Abstract
Dynamin 2 (DNM2) is a ubiquitously expressed GTPase regulating membrane trafficking and cytoskeleton dynamics. Heterozygous dominant mutations in DNM2 cause centronuclear myopathy (CNM), associated with muscle weakness and atrophy and histopathological hallmarks as fiber hypotrophy and organelles mis-position. Different severities range from the severe neonatal onset form to the moderate form with childhood onset and to the mild adult onset form. No therapy is approved for CNM. Here we aimed to validate and rescue a mouse model for the moderate form of DNM2-CNM harboring the common DNM2 R369W missense mutation. Dnm2R369W/+ mice presented with increased DNM2 protein level in muscle and moderate CNM-like phenotypes with force deficit, muscle and fiber hypotrophy, impaired mTOR signaling, and progressive mitochondria and nuclei mis-position with age. Molecular analyses revealed a fiber type switch toward oxidative metabolism correlating with decreased force and alteration of mitophagy markers paralleling mitochondria structural defects. Normalization of DNM2 levels through intramuscular injection of AAV-shDnm2 targeting Dnm2 mRNA significantly improved histopathology and muscle and myofiber hypotrophy. These results showed that the Dnm2R369W/+ mouse is a faithful model for the moderate form of DNM2-CNM and revealed that DNM2 normalization after a short 4-week treatment is sufficient to improve the CNM phenotypes.
Collapse
Affiliation(s)
- Juliana de Carvalho Neves
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, 1 rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Foteini Moschovaki-Filippidou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, 1 rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Johann Böhm
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, 1 rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, 1 rue Laurent Fries, 67404 Illkirch Cedex, France
| |
Collapse
|
10
|
Yildiz B, Schiedt L, Mulaw M, Bockmann J, Jesse S, Lutz AK, Boeckers TM. Shank3 related muscular hypotonia is accompanied by increased intracellular calcium concentrations and ion channel dysregulation in striated muscle tissue. Front Cell Dev Biol 2023; 11:1243299. [PMID: 37745298 PMCID: PMC10511643 DOI: 10.3389/fcell.2023.1243299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Phelan-McDermid syndrome (PMS) is a syndromic form of Autism Spectrum Disorders (ASD) classified as a rare genetic neurodevelopmental disorder featuring global developmental delay, absent or delayed speech, ASD-like behaviour and neonatal skeletal muscle hypotonia. PMS is caused by a heterozygous deletion of the distal end of chromosome 22q13.3 or SHANK3 mutations. We analyzed striated muscles of newborn Shank3Δ11(-/-) animals and found a significant enlargement of the sarcoplasmic reticulum as previously seen in adult Shank3Δ11(-/-) mice, indicative of a Shank3-dependent and not compensatory mechanism for this structural alteration. We analyzed transcriptional differences by RNA-sequencing of muscle tissue of neonatal Shank3Δ11(-/-) mice and compared those to Shank3(+/+) controls. We found significant differences in gene expression of ion channels crucial for muscle contraction and for molecules involved in calcium ion regulation. In addition, calcium storage- [i.e., Calsequestrin (CSQ)], calcium secretion- and calcium-related signaling-proteins were found to be affected. By immunostainings and Western blot analyses we could confirm these findings both in Shank3Δ11(-/-) mice and PMS patient muscle tissue. Moreover, alterations could be induced in vitro by the selective downregulation of Shank3 in C2C12 myotubes. Our results emphasize that SHANK3 levels directly or indirectly regulate calcium homeostasis in a cell autonomous manner that might contribute to muscular hypotonia especially seen in the newborn.
Collapse
Affiliation(s)
- Berra Yildiz
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
- International Graduate School in Molecular Medicine, IGradU, Ulm, Germany
| | - Lisa Schiedt
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
- International Graduate School in Molecular Medicine, IGradU, Ulm, Germany
| | - Medhanie Mulaw
- Unit for Single-cell Genomics, Medical Faculty, Ulm University, Ulm, Germany
| | - Jürgen Bockmann
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Sarah Jesse
- Neurologie, Universitätsklinikum Ulm, Ulm, Germany
| | - Anne-Kathrin Lutz
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Tobias M. Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Ulm Site, Ulm, Germany
| |
Collapse
|
11
|
Li Q, Lin J, Luo S, Schmitz-Abe K, Agrawal R, Meng M, Moghadaszadeh B, Beggs AH, Liu X, Perrella MA, Agrawal PB. Integrated multi-omics approach reveals the role of SPEG in skeletal muscle biology including its relationship with myospryn complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538136. [PMID: 37162921 PMCID: PMC10168260 DOI: 10.1101/2023.04.24.538136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Autosomal-recessive mutations in SPEG (striated muscle preferentially expressed protein kinase) have been linked to centronuclear myopathy. Loss of SPEG is associated with defective triad formation, abnormal excitation-contraction coupling, and calcium mishandling in skeletal muscles. To elucidate the underlying molecular pathways, we have utilized multi-omics tools and analysis to obtain a comprehensive view of the complex biological processes. We identified that SPEG interacts with myospryn complex proteins (CMYA5, FSD2, RyR1), and SPEG deficiency results in myospryn complex abnormalities. In addition, transcriptional and protein profiles of SPEG-deficient muscle revealed defective mitochondrial function including aberrant accumulation of enlarged mitochondria on electron microscopy. Furthermore, SPEG regulates RyR1 phosphorylation at S2902, and its loss affects JPH2 phosphorylation at multiple sites. On analyzing the transcriptome, the most dysregulated pathways affected by SPEG deficiency included extracellular matrix-receptor interaction and peroxisome proliferator-activated receptors signaling, which may be due to defective triad and mitochondrial abnormalities. In summary, we have elucidated the critical role of SPEG in triad as it works closely with myospryn complex, phosphorylates JPH2 and RyR1, and demonstrated that its deficiency is associated with mitochondrial abnormalities. This study emphasizes the importance of using multi-omics techniques to comprehensively analyze the molecular anomalies of rare diseases. Synopsis We have previously linked mutations in SPEG (striated preferentially expressed protein) with a recessive form of centronuclear myopathy and/or dilated cardiomyopathy and have characterized a striated muscle-specific SPEG-deficient mouse model that recapitulates human disease with disruption of the triad structure and calcium homeostasis in skeletal muscles. In this study, we applied multi-omics approaches (interactomic, proteomic, phosphoproteomic, and transcriptomic analyses) in the skeletal muscles of SPEG-deficient mice to assess the underlying pathways associated with the pathological and molecular abnormalities. SPEG interacts with myospryn complex proteins (CMYA5, FSD2, RyR1), and its deficiency results in myospryn complex abnormalities.SPEG regulates RyR1 phosphorylation at S2902, and its loss affects JPH2 phosphorylation at multiple sites.SPEGα and SPEGβ have different interacting partners suggestive of differential function.Transcriptome analysis indicates dysregulated pathways of ECM-receptor interaction and peroxisome proliferator-activated receptor signaling.Mitochondrial defects on the transcriptome, proteome, and electron microscopy, may be a consequence of defective calcium signaling.
Collapse
|
12
|
Swerdlow RH. The Alzheimer's Disease Mitochondrial Cascade Hypothesis: A Current Overview. J Alzheimers Dis 2023; 92:751-768. [PMID: 36806512 DOI: 10.3233/jad-221286] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Viable Alzheimer's disease (AD) hypotheses must account for its age-dependence; commonality; association with amyloid precursor protein, tau, and apolipoprotein E biology; connection with vascular, inflammation, and insulin signaling changes; and systemic features. Mitochondria and parameters influenced by mitochondria could link these diverse characteristics. Mitochondrial biology can initiate changes in pathways tied to AD and mediate the dysfunction that produces the clinical phenotype. For these reasons, conceptualizing a mitochondrial cascade hypothesis is a straightforward process and data accumulating over decades argue the validity of its principles. Alternative AD hypotheses may yet account for its mitochondria-related phenomena, but absent this happening a primary mitochondrial cascade hypothesis will continue to evolve and attract interest.
Collapse
Affiliation(s)
- Russell H Swerdlow
- University of Kansas Alzheimer's Disease Research Center, Fairway, KS, USA.,Departments of Neurology, Molecular and Integrative Physiology, and Biochemistry and Molecular Biology, University of Kansas School of Medicine, Kansas City, KS, USA
| |
Collapse
|
13
|
Younger DS. Congenital myopathies. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:533-561. [PMID: 37562885 DOI: 10.1016/b978-0-323-98818-6.00027-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The congenital myopathies are inherited muscle disorders characterized clinically by hypotonia and weakness, usually from birth, with a static or slowly progressive clinical course. Historically, the congenital myopathies have been classified according to major morphological features seen on muscle biopsy as nemaline myopathy, central core disease, centronuclear or myotubular myopathy, and congenital fiber type disproportion. However, in the past two decades, the genetic basis of these different forms of congenital myopathy has been further elucidated with the result being improved correlation with histological and genetic characteristics. However, these notions have been challenged for three reasons. First, many of the congenital myopathies can be caused by mutations in more than one gene that suggests an impact of genetic heterogeneity. Second, mutations in the same gene can cause different muscle pathologies. Third, the same genetic mutation may lead to different pathological features in members of the same family or in the same individual at different ages. This chapter provides a clinical overview of the congenital myopathies and a clinically useful guide to its genetic basis recognizing the increasing reliance of exome, subexome, and genome sequencing studies as first-line analysis in many patients.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
14
|
Li Q, Lin J, Widrick JJ, Luo S, Li G, Zhang Y, Laporte J, Perrella MA, Liu X, Agrawal PB. Dynamin-2 reduction rescues the skeletal myopathy of SPEG-deficient mouse model. JCI Insight 2022; 7:157336. [PMID: 35763354 PMCID: PMC9462472 DOI: 10.1172/jci.insight.157336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Striated preferentially expressed protein kinase (SPEG), a myosin light chain kinase, is mutated in centronuclear myopathy (CNM) and/or dilated cardiomyopathy. No precise therapies are available for this disorder, and gene replacement therapy is not a feasible option due to the large size of SPEG. We evaluated the potential of dynamin-2 (DNM2) reduction as a potential therapeutic strategy because it has been shown to revert muscle phenotypes in mouse models of CNM caused by MTM1, DNM2, and BIN1 mutations. We determined that SPEG-β interacted with DNM2, and SPEG deficiency caused an increase in DNM2 levels. The DNM2 reduction strategy in Speg-KO mice was associated with an increase in life span, body weight, and motor performance. Additionally, it normalized the distribution of triadic proteins, triad ultrastructure, and triad number and restored phosphatidylinositol-3-phosphate levels in SPEG-deficient skeletal muscles. Although DNM2 reduction rescued the myopathy phenotype, it did not improve cardiac dysfunction, indicating a differential tissue-specific function. Combining DNM2 reduction with other strategies may be needed to target both the cardiac and skeletal defects associated with SPEG deficiency. DNM2 reduction should be explored as a therapeutic strategy against other genetic myopathies (and dystrophies) associated with a high level of DNM2.
Collapse
Affiliation(s)
- Qifei Li
- Boston Children's Hospital, Boston, United States of America
| | - Jasmine Lin
- Boston Children's Hospital, Boston, United States of America
| | - Jeffrey J Widrick
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, United States of America
| | - Shiyu Luo
- Division of Newborn Medicine, Boston Children's Hospital, Boston, United States of America
| | - Gu Li
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, United States of America
| | - Yuanfan Zhang
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, United States of America
| | | | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, United States of America
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, United States of America
| | - Pankaj B Agrawal
- Division of Newborn Medicine, Boston Children's Hospital, Boston, United States of America
| |
Collapse
|
15
|
Fujise K, Noguchi S, Takeda T. Centronuclear Myopathy Caused by Defective Membrane Remodelling of Dynamin 2 and BIN1 Variants. Int J Mol Sci 2022; 23:ijms23116274. [PMID: 35682949 PMCID: PMC9181712 DOI: 10.3390/ijms23116274] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
Centronuclear myopathy (CNM) is a congenital myopathy characterised by centralised nuclei in skeletal myofibers. T-tubules, sarcolemmal invaginations required for excitation-contraction coupling, are disorganised in the skeletal muscles of CNM patients. Previous studies showed that various endocytic proteins are involved in T-tubule biogenesis and their dysfunction is tightly associated with CNM pathogenesis. DNM2 and BIN1 are two causative genes for CNM that encode essential membrane remodelling proteins in endocytosis, dynamin 2 and BIN1, respectively. In this review, we overview the functions of dynamin 2 and BIN1 in T-tubule biogenesis and discuss how their dysfunction in membrane remodelling leads to CNM pathogenesis.
Collapse
Affiliation(s)
- Kenshiro Fujise
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520-8001, USA;
| | - Satoru Noguchi
- National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan;
| | - Tetsuya Takeda
- Department of Biochemistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata-cho 2-5-1, Kita-ku, Okayama 700-8558, Japan
- Correspondence: ; Tel.: +81-86-235-7125; Fax: +81-86-235-7126
| |
Collapse
|
16
|
Rossi D, Pierantozzi E, Amadsun DO, Buonocore S, Rubino EM, Sorrentino V. The Sarcoplasmic Reticulum of Skeletal Muscle Cells: A Labyrinth of Membrane Contact Sites. Biomolecules 2022; 12:488. [PMID: 35454077 PMCID: PMC9026860 DOI: 10.3390/biom12040488] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/17/2022] Open
Abstract
The sarcoplasmic reticulum of skeletal muscle cells is a highly ordered structure consisting of an intricate network of tubules and cisternae specialized for regulating Ca2+ homeostasis in the context of muscle contraction. The sarcoplasmic reticulum contains several proteins, some of which support Ca2+ storage and release, while others regulate the formation and maintenance of this highly convoluted organelle and mediate the interaction with other components of the muscle fiber. In this review, some of the main issues concerning the biology of the sarcoplasmic reticulum will be described and discussed; particular attention will be addressed to the structure and function of the two domains of the sarcoplasmic reticulum supporting the excitation-contraction coupling and Ca2+-uptake mechanisms.
Collapse
Affiliation(s)
- Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (E.P.); (D.O.A.); (S.B.); (E.M.R.); (V.S.)
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
The mechanoenzyme dynamin 2 (DNM2) is crucial for intracellular organization and trafficking. DNM2 is mutated in dominant centronuclear myopathy (DNM2-CNM), a muscle disease characterized by defects in organelle positioning in myofibers. It remains unclear how the in vivo functions of DNM2 are regulated in muscle. Moreover, there is no therapy for DNM2-CNM to date. Here, we overexpressed human amphiphysin 2 (BIN1), a membrane remodeling protein mutated in other CNM forms, in Dnm2 RW/+ and Dnm2 RW/RW mice modeling mild and severe DNM2-CNM, through transgenesis or with adeno-associated virus (AAV). Increasing BIN1 improved muscle atrophy and main histopathological features of Dnm2 RW/+ mice and rescued the perinatal lethality and survival of Dnm2 RW/RW mice. In vitro experiments showed that BIN1 binds and recruits DNM2 to membrane tubules, and that the BIN1-DNM2 complex regulates tubules fission. Overall, BIN1 is a potential therapeutic target for dominant centronuclear myopathy linked to DNM2 mutations.
Collapse
|
18
|
Silva-Rojas R, Nattarayan V, Jaque-Fernandez F, Gomez-Oca R, Menuet A, Reiss D, Goret M, Messaddeq N, Lionello VM, Kretz C, Cowling BS, Jacquemond V, Laporte J. Mice with muscle-specific deletion of Bin1 recapitulate centronuclear myopathy and acute downregulation of dynamin 2 improves their phenotypes. Mol Ther 2022; 30:868-880. [PMID: 34371181 PMCID: PMC8821932 DOI: 10.1016/j.ymthe.2021.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/07/2021] [Accepted: 07/29/2021] [Indexed: 02/04/2023] Open
Abstract
Mutations in the BIN1 (Bridging Interactor 1) gene, encoding the membrane remodeling protein amphiphysin 2, cause centronuclear myopathy (CNM) associated with severe muscle weakness and myofiber disorganization and hypotrophy. There is no available therapy, and the validation of therapeutic proof of concept is impaired by the lack of a faithful and easy-to-handle mammalian model. Here, we generated and characterized the Bin1mck-/- mouse through Bin1 knockout in skeletal muscle. Bin1mck-/- mice were viable, unlike the constitutive Bin1 knockout, and displayed decreased muscle force and most histological hallmarks of CNM, including myofiber hypotrophy and intracellular disorganization. Notably, Bin1mck-/- myofibers presented strong defects in mitochondria and T-tubule networks associated with deficient calcium homeostasis and excitation-contraction coupling at the triads, potentially representing the main pathomechanisms. Systemic injection of antisense oligonucleotides (ASOs) targeting Dnm2 (Dynamin 2), which codes for dynamin 2, a BIN1 binding partner regulating membrane fission and mutated in other forms of CNM, improved muscle force and normalized the histological Bin1mck-/- phenotypes within 5 weeks. Overall, we generated a faithful mammalian model for CNM linked to BIN1 defects and validated Dnm2 ASOs as a first translatable approach to efficiently treat BIN1-CNM.
Collapse
Affiliation(s)
- Roberto Silva-Rojas
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Vasugi Nattarayan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Francisco Jaque-Fernandez
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR5310, INSERM U1217, Institut NeuroMyoGène, 69373 Lyon, France
| | - Raquel Gomez-Oca
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France,Dynacure, 67404 Illkirch, France
| | - Alexia Menuet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - David Reiss
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Marie Goret
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Nadia Messaddeq
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Valentina M. Lionello
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Christine Kretz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Belinda S. Cowling
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France,Dynacure, 67404 Illkirch, France
| | - Vincent Jacquemond
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR5310, INSERM U1217, Institut NeuroMyoGène, 69373 Lyon, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France,Corresponding author: Jocelyn Laporte, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France.
| |
Collapse
|
19
|
Gómez-Oca R, Cowling BS, Laporte J. Common Pathogenic Mechanisms in Centronuclear and Myotubular Myopathies and Latest Treatment Advances. Int J Mol Sci 2021; 22:11377. [PMID: 34768808 PMCID: PMC8583656 DOI: 10.3390/ijms222111377] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 10/18/2021] [Indexed: 01/18/2023] Open
Abstract
Centronuclear myopathies (CNM) are rare congenital disorders characterized by muscle weakness and structural defects including fiber hypotrophy and organelle mispositioning. The main CNM forms are caused by mutations in: the MTM1 gene encoding the phosphoinositide phosphatase myotubularin (myotubular myopathy), the DNM2 gene encoding the mechanoenzyme dynamin 2, the BIN1 gene encoding the membrane curvature sensing amphiphysin 2, and the RYR1 gene encoding the skeletal muscle calcium release channel/ryanodine receptor. MTM1, BIN1, and DNM2 proteins are involved in membrane remodeling and trafficking, while RyR1 directly regulates excitation-contraction coupling (ECC). Several CNM animal models have been generated or identified, which confirm shared pathological anomalies in T-tubule remodeling, ECC, organelle mispositioning, protein homeostasis, neuromuscular junction, and muscle regeneration. Dynamin 2 plays a crucial role in CNM physiopathology and has been validated as a common therapeutic target for three CNM forms. Indeed, the promising results in preclinical models set up the basis for ongoing clinical trials. Another two clinical trials to treat myotubular myopathy by MTM1 gene therapy or tamoxifen repurposing are also ongoing. Here, we review the contribution of the different CNM models to understanding physiopathology and therapy development with a focus on the commonly dysregulated pathways and current therapeutic targets.
Collapse
Affiliation(s)
- Raquel Gómez-Oca
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67400 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France
- Strasbourg University, 67081 Strasbourg, France
- Dynacure, 67400 Illkirch, France;
| | | | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67400 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France
- Strasbourg University, 67081 Strasbourg, France
| |
Collapse
|
20
|
Striated Preferentially Expressed Protein Kinase (SPEG) in Muscle Development, Function, and Disease. Int J Mol Sci 2021; 22:ijms22115732. [PMID: 34072258 PMCID: PMC8199188 DOI: 10.3390/ijms22115732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Mutations in striated preferentially expressed protein kinase (SPEG), a member of the myosin light chain kinase protein family, are associated with centronuclear myopathy (CNM), cardiomyopathy, or a combination of both. Burgeoning evidence suggests that SPEG plays critical roles in the development, maintenance, and function of skeletal and cardiac muscles. Here we review the genotype-phenotype relationships and the molecular mechanisms of SPEG-related diseases. This review will focus on the progress made toward characterizing SPEG and its interacting partners, and its multifaceted functions in muscle regeneration, triad development and maintenance, and excitation-contraction coupling. We will also discuss future directions that are yet to be investigated including understanding of its tissue-specific roles, finding additional interacting proteins and their relationships. Understanding the basic mechanisms by which SPEG regulates muscle development and function will provide critical insights into these essential processes and help identify therapeutic targets in SPEG-related disorders.
Collapse
|
21
|
Fujise K, Okubo M, Abe T, Yamada H, Nishino I, Noguchi S, Takei K, Takeda T. Mutant BIN1-Dynamin 2 complexes dysregulate membrane remodeling in the pathogenesis of centronuclear myopathy. J Biol Chem 2021; 296:100077. [PMID: 33187981 PMCID: PMC7949082 DOI: 10.1074/jbc.ra120.015184] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 11/08/2022] Open
Abstract
Membrane remodeling is required for dynamic cellular processes such as cell division, polarization, and motility. BAR domain proteins and dynamins are key molecules in membrane remodeling that work together for membrane deformation and fission. In striated muscles, sarcolemmal invaginations termed T-tubules are required for excitation-contraction coupling. BIN1 and DNM2, which encode a BAR domain protein BIN1 and dynamin 2, respectively, have been reported to be causative genes of centronuclear myopathy (CNM), a hereditary degenerative disease of skeletal muscle, and deformation of T-tubules is often observed in the CNM patients. However, it remains unclear how BIN1 and dynamin 2 are implicated in T-tubule biogenesis and how mutations in these molecules cause CNM to develop. Here, using an in cellulo reconstitution assay, we demonstrate that dynamin 2 is required for stabilization of membranous structures equivalent to T-tubules. GTPase activity of wild-type dynamin 2 is suppressed through interaction with BIN1, whereas that of the disease-associated mutant dynamin 2 remains active due to lack of the BIN1-mediated regulation, thus causing aberrant membrane remodeling. Finally, we show that in cellulo aberrant membrane remodeling by mutant dynamin 2 variants is correlated with their enhanced membrane fission activities, and the results can explain severity of the symptoms in patients. Thus, this study provides molecular insights into dysregulated membrane remodeling triggering the pathogenesis of DNM2-related CNM.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Blotting, Western
- Dynamin II/genetics
- Dynamin II/metabolism
- HEK293 Cells
- Humans
- Immunoprecipitation
- Microscopy, Fluorescence
- Muscle, Skeletal/metabolism
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/metabolism
- Nanotubes/chemistry
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Kenshiro Fujise
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Mariko Okubo
- National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan; Department of Pediatrics, The University of Tokyo, Tokyo, Japan
| | - Tadashi Abe
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroshi Yamada
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ichizo Nishino
- National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| | - Satoru Noguchi
- National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| | - Kohji Takei
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| | - Tetsuya Takeda
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| |
Collapse
|
22
|
Luo S, Li Q, Lin J, Murphy Q, Marty I, Zhang Y, Kazerounian S, Agrawal PB. SPEG binds with desmin and its deficiency causes defects in triad and focal adhesion proteins. Hum Mol Genet 2020; 29:3882-3891. [PMID: 33355670 DOI: 10.1093/hmg/ddaa276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/17/2020] [Accepted: 12/09/2020] [Indexed: 11/13/2022] Open
Abstract
Striated preferentially expressed gene (SPEG), a member of the myosin light chain kinase family, is localized at the level of triad surrounding myofibrils in skeletal muscles. In humans, SPEG mutations are associated with centronuclear myopathy and cardiomyopathy. Using a striated muscle-specific Speg-knockout (KO) mouse model, we have previously shown that SPEG is critical for triad maintenance and calcium handling. Here, we further examined the molecular function of SPEG and characterized the effects of SPEG deficiency on triad and focal adhesion proteins. We used yeast two-hybrid assay, and identified desmin, an intermediate filament protein, to interact with SPEG and confirmed this interaction by co-immunoprecipitation. Using domain-mapping assay, we defined that Ig-like and fibronectin III domains of SPEG interact with rod domain of desmin. In skeletal muscles, SPEG depletion leads to desmin aggregates in vivo and a shift in desmin equilibrium from soluble to insoluble fraction. We also profiled the expression and localization of triadic proteins in Speg-KO mice using western blot and immunofluorescence. The amount of RyR1 and triadin were markedly reduced, whereas DHPRα1, SERCA1 and triadin were abnormally accumulated in discrete areas of Speg-KO myofibers. In addition, Speg-KO muscles exhibited internalized vinculin and β1 integrin, both of which are critical components of the focal adhesion complex. Further, β1 integrin was abnormally accumulated in early endosomes of Speg-KO myofibers. These results demonstrate that SPEG-deficient skeletal muscles exhibit several pathological features similar to those seen in MTM1 deficiency. Defects of shared cellular pathways may underlie these structural and functional abnormalities in both types of diseases.
Collapse
Affiliation(s)
- Shiyu Luo
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Qifei Li
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jasmine Lin
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Quinn Murphy
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Isabelle Marty
- Grenoble Institut Neurosciences, Inserm, U1216, University Grenoble Alpes, 38000 Grenoble, France
| | - Yuanfan Zhang
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shideh Kazerounian
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pankaj B Agrawal
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
23
|
Prokic I, Cowling BS, Kutchukian C, Kretz C, Tasfaout H, Gache V, Hergueux J, Wendling O, Ferry A, Toussaint A, Gavriilidis C, Nattarayan V, Koch C, Lainé J, Combe R, Tiret L, Jacquemond V, Pilot-Storck F, Laporte J. Differential physiological roles for BIN1 isoforms in skeletal muscle development, function and regeneration. Dis Model Mech 2020; 13:dmm044354. [PMID: 32994313 PMCID: PMC7710016 DOI: 10.1242/dmm.044354] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/27/2020] [Indexed: 01/09/2023] Open
Abstract
Skeletal muscle development and regeneration are tightly regulated processes. How the intracellular organization of muscle fibers is achieved during these steps is unclear. Here, we focus on the cellular and physiological roles of amphiphysin 2 (BIN1), a membrane remodeling protein mutated in both congenital and adult centronuclear myopathies (CNM), that is ubiquitously expressed and has skeletal muscle-specific isoforms. We created and characterized constitutive muscle-specific and inducible Bin1 homozygous and heterozygous knockout mice targeting either ubiquitous or muscle-specific isoforms. Constitutive Bin1-deficient mice died at birth from lack of feeding due to a skeletal muscle defect. T-tubules and other organelles were misplaced and altered, supporting a general early role for BIN1 in intracellular organization, in addition to membrane remodeling. Although restricted deletion of Bin1 in unchallenged adult muscles had no impact, the forced switch from the muscle-specific isoforms to the ubiquitous isoforms through deletion of the in-frame muscle-specific exon delayed muscle regeneration. Thus, ubiquitous BIN1 function is necessary for muscle development and function, whereas its muscle-specific isoforms fine tune muscle regeneration in adulthood, supporting that BIN1 CNM with congenital onset are due to developmental defects, whereas later onset may be due to regeneration defects.
Collapse
Affiliation(s)
- Ivana Prokic
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Belinda S Cowling
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Candice Kutchukian
- Université Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, 8 Avenue Rockefeller, 69373 Lyon, France
| | - Christine Kretz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Hichem Tasfaout
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Vincent Gache
- Université Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, 8 Avenue Rockefeller, 69373 Lyon, France
| | - Josiane Hergueux
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Olivia Wendling
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Arnaud Ferry
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, Unité Mixte de Recherche (UMRS) 794, 75013 Paris, France
| | - Anne Toussaint
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Christos Gavriilidis
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Vasugi Nattarayan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Catherine Koch
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Jeanne Lainé
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, Department of Physiology, UMRS 974, 75013 Paris, France
- Sorbonne Université, Department of Physiology, Université Paris 06, Pitié-Salpêtrière Hospital, 75013 Paris, France
| | - Roy Combe
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
- CELPHEDIA-PHENOMIN, Institut Clinique de la Souris (ICS), 67404 Illkirch, France
| | - Laurent Tiret
- Université Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, BNMS Team, 94700 Maisons-Alfort, France
| | - Vincent Jacquemond
- Université Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, 8 Avenue Rockefeller, 69373 Lyon, France
| | - Fanny Pilot-Storck
- Université Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, BNMS Team, 94700 Maisons-Alfort, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
24
|
Usha Kalyani R, Perinbam K, Jeyanthi P, Al-Dhabi NA, Valan Arasu M, Esmail GA, Kim YO, Kim H, Kim HJ. Fer1L5, a Dysferlin Homologue Present in Vesicles and Involved in C2C12 Myoblast Fusion and Membrane Repair. BIOLOGY 2020; 9:biology9110386. [PMID: 33182221 PMCID: PMC7695329 DOI: 10.3390/biology9110386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 11/22/2022]
Abstract
Simple Summary Fer1L5 is a dysferlin and myoferlin homologue and has been implicated in muscle membrane fusion events; myoblast fusion and membrane repair respectively during C2C12 skeletal muscle development. The role of Fer1L5 was analyzed by immunoblot analysis, biochemical fractionation, confocal microscopy and electroporation method. We demonstrated that Fer1L5 is present in low density vesicles and resistant to non-ionic detergent and shows overlapping properties with dysferlin and myoferlin. The expression of Fer1L5 was highly observed at the fusing myoblasts membranes and its expression level is gradually increase at the early stages multinucleated myotube formation. Fusion defects were observed in the Fer1L5 deficient C2C12 cells. Fer1L5 shows impaired membrane repair. Our data provide evidence that Fer1L5 is involved in aligning the adjacent myotubes close to each other for membrane—membrane fusion to increase the muscle mass for contraction during muscle development. Our data for Fer1L5 will be of great importance in the dysferlinopathy research in near future. Abstract Fer1L5 is a dysferlin and myoferlin related protein, which has been predicted to have a role in vesicle trafficking and muscle membrane fusion events. Mutations in dysferlin and otoferlin genes cause heredity diseases: muscular dystrophy and deafness in humans, respectively. Dysferlin is implicated in membrane repair. Myoferlin has a role in myogenesis. In this study, we investigated the role of the Fer1L5 protein during myoblast fusion and membrane repair. To study the functions of Fer1L5 we used confocal microscopy, biochemical fractionation, Western blot analysis and multiphoton laser wounding assay. By immunolabelling, Fer1L5 was detected in vesicular structures. By biochemical fractionation Fer1L5 was observed in low density vesicles. Our studies show that the membranes of Fer1L5 vesicles are non-resistant to non-ionic detergent. Partial co-staining of Fer1L5 with other two ferlin vesicles, respectively, was observed. Fer1L5 expression was highly detected at the fusion sites of two apposed C2C12 myoblast membranes and its expression level gradually increased at D2 and reached a maximum at day 4 before decreasing during further differentiation. Our studies showed that Fer1L5 has fusion defects during myoblast fusion and impaired membrane repair when the C2C12 cultures were incubated with inhibitory Fer1L5 antibodies. In C2C12 cells Fer1L5 vesicles are involved in two stages, the fusion of myoblasts and the formation of large myotubes. Fer1L5 also plays a role in membrane repair.
Collapse
Affiliation(s)
- R. Usha Kalyani
- PG and Research Department of Botany, Government Arts College for Men (Autonomous), Affiliated to Univerity of Madras, Chennai 600035, India;
| | - K. Perinbam
- PG and Research Department of Botany, Government Arts College for Men (Autonomous), Affiliated to Univerity of Madras, Chennai 600035, India;
- Correspondence: (K.P.); (H.-J.K.); Tel.: +91-9940867295 (K.P.); +82-1037872570 (H.-J.K.); Fax: +44-24310589 (K.P.); +82-1037872570 (H.-J.K.)
| | - P. Jeyanthi
- Sathyabama Institute of Science and Technology, Chennai 600119, India;
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (N.A.A.-D.); (M.V.A.); (G.A.E.)
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (N.A.A.-D.); (M.V.A.); (G.A.E.)
| | - Galal Ali Esmail
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (N.A.A.-D.); (M.V.A.); (G.A.E.)
| | - Young Ock Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan 31538, Korea;
| | - Hyungsuk Kim
- Department of Rehabilitation Medicine of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Hak-Jae Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan 31538, Korea;
- Correspondence: (K.P.); (H.-J.K.); Tel.: +91-9940867295 (K.P.); +82-1037872570 (H.-J.K.); Fax: +44-24310589 (K.P.); +82-1037872570 (H.-J.K.)
| |
Collapse
|
25
|
Zhao M, Smith L, Volpatti J, Fabian L, Dowling JJ. Insights into wild-type dynamin 2 and the consequences of DNM2 mutations from transgenic zebrafish. Hum Mol Genet 2020; 28:4186-4196. [PMID: 31691805 DOI: 10.1093/hmg/ddz260] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/10/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022] Open
Abstract
Dynamin 2 (DNM2) encodes a ubiquitously expressed large GTPase with membrane fission capabilities that participates in the endocytosis of clathrin-coated vesicles. Heterozygous mutations in DNM2 are associated with two distinct neuromuscular disorders, Charcot-Marie-Tooth disease (CMT) and autosomal dominant centronuclear myopathy (CNM). Despite extensive investigations in cell culture, the role of dynamin 2 in normal muscle development is poorly understood and the consequences of DNM2 mutations at the molecular level in vivo are not known. To address these gaps in knowledge, we developed transgenic zebrafish expressing either wild-type dynamin 2 or dynamin 2 with either a CNM or CMT mutation. Taking advantage of the live imaging capabilities of the zebrafish embryo, we establish the localization of wild-type and mutant dynamin 2 in vivo, showing for the first time distinctive dynamin 2 subcellular compartments. Additionally, we demonstrate that CNM-related DNM2 mutations are associated with protein mislocalization and aggregation. Lastly, we define core phenotypes associated with our transgenic mutant fish, including impaired motor function and altered muscle ultrastructure, making them the ideal platform for drug screening. Overall, using the power of the zebrafish, we establish novel insights into dynamin 2 localization and dynamics and provide the necessary groundwork for future studies examining dynamin 2 pathomechanisms and therapy development.
Collapse
Affiliation(s)
- Mo Zhao
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Lindsay Smith
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Jonathan Volpatti
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Lacramioara Fabian
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - James J Dowling
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Division of Neurology, The Hospital for Sick Children, Toronto, Canada.,Department of Pediatrics, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
26
|
Papadimas GK, Xirou S, Kararizou E, Papadopoulos C. Update on Congenital Myopathies in Adulthood. Int J Mol Sci 2020; 21:ijms21103694. [PMID: 32456280 PMCID: PMC7279481 DOI: 10.3390/ijms21103694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Congenital myopathies (CMs) constitute a group of heterogenous rare inherited muscle diseases with different incidences. They are traditionally grouped based on characteristic histopathological findings revealed on muscle biopsy. In recent decades, the ever-increasing application of modern genetic technologies has not just improved our understanding of their pathophysiology, but also expanded their phenotypic spectrum and contributed to a more genetically based approach for their classification. Later onset forms of CMs are increasingly recognised. They are often considered milder with slower progression, variable clinical presentations and different modes of inheritance. We reviewed the key features and genetic basis of late onset CMs with a special emphasis on those forms that may first manifest in adulthood.
Collapse
|
27
|
Schartner V, Laporte J, Böhm J. Abnormal Excitation-Contraction Coupling and Calcium Homeostasis in Myopathies and Cardiomyopathies. J Neuromuscul Dis 2020; 6:289-305. [PMID: 31356215 DOI: 10.3233/jnd-180314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Muscle contraction requires specialized membrane structures with precise geometry and relies on the concerted interplay of electrical stimulation and Ca2+ release, known as excitation-contraction coupling (ECC). The membrane structure hosting ECC is called triad in skeletal muscle and dyad in cardiac muscle, and structural or functional defects of triads and dyads have been observed in a variety of myopathies and cardiomyopathies. Based on their function, the proteins localized at the triad/dyad can be classified into three molecular pathways: the Ca2+ release complex (CRC), store-operated Ca2+ entry (SOCE), and membrane remodeling. All three are mechanistically linked, and consequently, aberrations in any of these pathways cause similar disease entities. This review provides an overview of the clinical and genetic spectrum of triad and dyad defects with a main focus of attention on the underlying pathomechanisms.
Collapse
Affiliation(s)
- Vanessa Schartner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France
| | - Johann Böhm
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France
| |
Collapse
|
28
|
Ali T, Bednarska J, Vassilopoulos S, Tran M, Diakonov IA, Ziyadeh-Isleem A, Guicheney P, Gorelik J, Korchev YE, Reilly MM, Bitoun M, Shevchuk A. Correlative SICM-FCM reveals changes in morphology and kinetics of endocytic pits induced by disease-associated mutations in dynamin. FASEB J 2019; 33:8504-8518. [PMID: 31017801 PMCID: PMC6593877 DOI: 10.1096/fj.201802635r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Dynamin 2 (DNM2) is a GTP-binding protein that controls endocytic vesicle scission and defines a whole class of dynamin-dependent endocytosis, including clathrin-mediated endocytosis by caveoli. It has been suggested that mutations in the DNM2 gene, associated with 3 inherited diseases, disrupt endocytosis. However, how exactly mutations affect the nanoscale morphology of endocytic machinery has never been studied. In this paper, we used live correlative scanning ion conductance microscopy (SICM) and fluorescence confocal microscopy (FCM) to study how disease-associated mutations affect the morphology and kinetics of clathrin-coated pits (CCPs) by directly following their dynamics of formation, maturation, and internalization in skin fibroblasts from patients with centronuclear myopathy (CNM) and in Cos-7 cells expressing corresponding dynamin mutants. Using SICM-FCM, which we have developed, we show how p.R465W mutation disrupts pit structure, preventing its maturation and internalization, and significantly increases the lifetime of CCPs. Differently, p.R522H slows down the formation of CCPs without affecting their internalization. We also found that CNM mutations in DNM2 affect the distribution of caveoli and reduce dorsal ruffling in human skin fibroblasts. Collectively, our SICM-FCM findings at single CCP level, backed up by electron microscopy data, argue for the impairment of several forms of endocytosis in DNM2-linked CNM.-Ali, T., Bednarska, J., Vassilopoulos, S., Tran, M., Diakonov, I. A., Ziyadeh-Isleem, A., Guicheney, P., Gorelik, J., Korchev, Y. E., Reilly, M. M., Bitoun, M., Shevchuk, A. Correlative SICM-FCM reveals changes in morphology and kinetics of endocytic pits induced by disease-associated mutations in dynamin.
Collapse
Affiliation(s)
- Tayyibah Ali
- Division of Experimental Medicine, Department of Medicine, Imperial College London, London, United Kingdom
| | - Joanna Bednarska
- Division of Experimental Medicine, Department of Medicine, Imperial College London, London, United Kingdom
| | - Stéphane Vassilopoulos
- Research Center for Myology, Institut de Myologie, UMRS 974, INSERM, Sorbonne Université, Paris, France
| | - Martin Tran
- Division of Experimental Medicine, Department of Medicine, Imperial College London, London, United Kingdom
| | - Ivan A Diakonov
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Azza Ziyadeh-Isleem
- UMRS 1166, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France.,UMRS 1166, Sorbonne Universités-Pierre and Marie Curie University (UPMC), Paris, France
| | - Pascale Guicheney
- UMRS 1166, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France.,UMRS 1166, Sorbonne Universités-Pierre and Marie Curie University (UPMC), Paris, France
| | - Julia Gorelik
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Yuri E Korchev
- Division of Experimental Medicine, Department of Medicine, Imperial College London, London, United Kingdom
| | - Mary M Reilly
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square London, United Kingdom
| | - Marc Bitoun
- Research Center for Myology, Institut de Myologie, UMRS 974, INSERM, Sorbonne Université, Paris, France
| | - Andrew Shevchuk
- Division of Experimental Medicine, Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
29
|
Abstract
Congenital myopathies (CM) are a genetically heterogeneous group of neuromuscular disorders most commonly presenting with neonatal/childhood-onset hypotonia and muscle weakness, a relatively static or slowly progressive disease course, and originally classified into subcategories based on characteristic histopathologic findings in muscle biopsies. This enduring concept of disease definition and classification based on the clinicopathologic phenotype was pioneered in the premolecular era. Advances in molecular genetics have brought into focus the increased blurring of the original seemingly "watertight" categories through broadening of the clinical phenotypes in existing genes, and continuous identification of novel genetic backgrounds. This review summarizes the histopathologic landscape of the 4 "classical" subtypes of CM-nemaline myopathies, core myopathies, centronuclear myopathies, and congenital fiber type disproportion and some of the emerging and novel genetic diseases with a CM presentation.
Collapse
Affiliation(s)
- Rahul Phadke
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children and Division of Neuropathology, National Hospital for Neurology and Neurosurgery, London, UK; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
30
|
Lionello VM, Nicot AS, Sartori M, Kretz C, Kessler P, Buono S, Djerroud S, Messaddeq N, Koebel P, Prokic I, Hérault Y, Romero NB, Laporte J, Cowling BS. Amphiphysin 2 modulation rescues myotubular myopathy and prevents focal adhesion defects in mice. Sci Transl Med 2019; 11:11/484/eaav1866. [DOI: 10.1126/scitranslmed.aav1866] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/14/2018] [Accepted: 02/28/2019] [Indexed: 12/13/2022]
Abstract
Centronuclear myopathies (CNMs) are severe diseases characterized by muscle weakness and myofiber atrophy. Currently, there are no approved treatments for these disorders. Mutations in the phosphoinositide 3-phosphatase myotubularin (MTM1) are responsible for X-linked CNM (XLCNM), also called myotubular myopathy, whereas mutations in the membrane remodeling Bin/amphiphysin/Rvs protein amphiphysin 2 [bridging integrator 1 (BIN1)] are responsible for an autosomal form of the disease. Here, we investigated the functional relationship between MTM1 and BIN1 in healthy skeletal muscle and in the physiopathology of CNM. Genetic overexpression of human BIN1 efficiently rescued the muscle weakness and life span in a mouse model of XLCNM. Exogenous human BIN1 expression with adeno-associated virus after birth also prevented the progression of the disease, suggesting that human BIN1 overexpression can compensate for the lack of MTM1 expression in this mouse model. Our results showed that MTM1 controls cell adhesion and integrin localization in mammalian muscle. Alterations in this pathway in Mtm1−/y mice were associated with defects in myofiber shape and size. BIN1 expression rescued integrin and laminin alterations and restored myofiber integrity, supporting the idea that MTM1 and BIN1 are functionally linked and necessary for focal adhesions in skeletal muscle. The results suggest that BIN1 modulation might be an effective strategy for treating XLCNM.
Collapse
|
31
|
Fongy A, Falcone S, Lainé J, Prudhon B, Martins-Bach A, Bitoun M. Nuclear defects in skeletal muscle from a Dynamin 2-linked centronuclear myopathy mouse model. Sci Rep 2019; 9:1580. [PMID: 30733559 PMCID: PMC6367339 DOI: 10.1038/s41598-018-38184-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/21/2018] [Indexed: 12/21/2022] Open
Abstract
Dynamin 2 (DNM2) is a key protein of the endocytosis and intracellular membrane trafficking machinery. Mutations in the DNM2 gene cause autosomal dominant centronuclear myopathy (CNM) and a knock-in mouse model expressing the most frequent human DNM2 mutation in CNM (Knock In-Dnm2R465W/+) develops a myopathy sharing similarities with human disease. Using isolated muscle fibres from Knock In-Dnm2R465W/+ mice, we investigated number, spatial distribution and morphology of myonuclei. We showed a reduction of nuclear number from 20 weeks of age in Tibialis anterior muscle from heterozygous mice. This reduction is associated with a decrease in the satellite cell content in heterozygous muscles. The concomitant reduction of myonuclei number and cross-section area in the heterozygous fibres contributes to largely maintain myonuclear density and volume of myonuclear domain. Moreover, we identified signs of impaired spatial nuclear distribution including alteration of distance from myonuclei to their nearest neighbours and change in orientation of the nuclei. This study highlights reduction of number of myonuclei, a key regulator of the myofiber size, as a new pathomechanism underlying muscle atrophy in the dominant centronuclear myopathy. In addition, this study opens a new line of investigation which could prove particularly important on satellite cells in dominant centronuclear myopathy.
Collapse
Affiliation(s)
- Anaïs Fongy
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, F-75013, Paris, France
| | - Sestina Falcone
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, F-75013, Paris, France
| | - Jeanne Lainé
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, F-75013, Paris, France
| | - Bernard Prudhon
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, F-75013, Paris, France
| | - Aurea Martins-Bach
- Institute of Myology, NMR Laboratory, Paris, France.,CEA, DRF, IBFJ, MIRCen, NMR Laboratory, Paris, France
| | - Marc Bitoun
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, F-75013, Paris, France.
| |
Collapse
|
32
|
Tasfaout H, Cowling BS, Laporte J. Centronuclear myopathies under attack: A plethora of therapeutic targets. J Neuromuscul Dis 2019; 5:387-406. [PMID: 30103348 PMCID: PMC6218136 DOI: 10.3233/jnd-180309] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Centronuclear myopathies are a group of congenital myopathies characterized by severe muscle weakness, genetic heterogeneity, and defects in the structural organization of muscle fibers. Their names are derived from the central position of nuclei on biopsies, while they are at the fiber periphery under normal conditions. No specific therapy exists yet for these debilitating diseases. Mutations in the myotubularin phosphoinositides phosphatase, the GTPase dynamin 2, or amphiphysin 2 have been identified to cause respectively X-linked centronuclear myopathies (also called myotubular myopathy) or autosomal dominant and recessive forms. Mutations in additional genes, as RYR1, TTN, SPEG or CACNA1S, were linked to phenotypes that can overlap with centronuclear myopathies. Numerous animal models of centronuclear myopathies have been studied over the last 15 years, ranging from invertebrate to large mammalian models. Their characterization led to a partial understanding of the pathomechanisms of these diseases and allowed the recent validation of therapeutic proof-of-concepts. Here, we review the different therapeutic strategies that have been tested so far for centronuclear myopathies, some of which may be translated to patients.
Collapse
Affiliation(s)
- Hichem Tasfaout
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Belinda S. Cowling
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Correspondence to: Jocelyn Laporte, Tel.: 33 0 388653412; E-mail:
| |
Collapse
|
33
|
Alimohamadi H, Rangamani P. Modeling Membrane Curvature Generation due to Membrane⁻Protein Interactions. Biomolecules 2018; 8:E120. [PMID: 30360496 PMCID: PMC6316661 DOI: 10.3390/biom8040120] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 01/03/2023] Open
Abstract
To alter and adjust the shape of the plasma membrane, cells harness various mechanisms of curvature generation. Many of these curvature generation mechanisms rely on the interactions between peripheral membrane proteins, integral membrane proteins, and lipids in the bilayer membrane. Mathematical and computational modeling of membrane curvature generation has provided great insights into the physics underlying these processes. However, one of the challenges in modeling these processes is identifying the suitable constitutive relationships that describe the membrane free energy including protein distribution and curvature generation capability. Here, we review some of the commonly used continuum elastic membrane models that have been developed for this purpose and discuss their applications. Finally, we address some fundamental challenges that future theoretical methods need to overcome to push the boundaries of current model applications.
Collapse
Affiliation(s)
- Haleh Alimohamadi
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093, USA.
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093, USA.
| |
Collapse
|
34
|
Abstract
Dynamin 2 (DNM2) belongs to a family of large GTPases that are well known for mediating membrane fission by oligomerizing at the neck of membrane invaginations. Autosomal dominant mutations in the ubiquitously expressed DNM2 cause 2 discrete neuromuscular diseases: autosomal dominant centronuclear myopathy (ADCNM) and dominant intermediate Charcot-Marie-Tooth neuropathy (CMT). CNM and CMT mutations may affect DNM2 in distinct manners: CNM mutations may cause protein hyperactivity with elevated GTPase and fission activities, while CMT mutations could impair DNM2 lipid binding and activity. DNM2 is also a modifier of the X-linked and autosomal recessive forms of CNM, as DNM2 protein levels are upregulated in animal models and patient muscle samples. Strikingly, reducing DNM2 has been shown to revert muscle phenotypes in preclinical models of CNM. As DNM2 emerges as the key player in CNM pathogenesis, the role(s) of DNM2 in skeletal muscle remains unclear. This review aims to provide insights into potential pathomechanisms related to DNM2-CNM mutations, and discuss exciting outcomes of current and future therapeutic approaches targeting DNM2 hyperactivity.
Collapse
Affiliation(s)
- Mo Zhao
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Nika Maani
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - James J Dowling
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
- Division of Neurology, Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
- Department of Pediatrics, University of Toronto, Toronto, ON, M5G 1X8, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
35
|
Cabrera-Serrano M, Mavillard F, Biancalana V, Rivas E, Morar B, Hernández-Laín A, Olive M, Muelas N, Khan E, Carvajal A, Quiroga P, Diaz-Manera J, Davis M, Ávila R, Domínguez C, Romero NB, Vílchez JJ, Comas D, Laing NG, Laporte J, Kalaydjieva L, Paradas C. A Roma founder BIN1 mutation causes a novel phenotype of centronuclear myopathy with rigid spine. Neurology 2018; 91:e339-e348. [PMID: 29950440 DOI: 10.1212/wnl.0000000000005862] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 04/16/2018] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To describe a large series of BIN1 patients, in which a novel founder mutation in the Roma population of southern Spain has been identified. METHODS Patients diagnosed with centronuclear myopathy (CNM) at 5 major reference centers for neuromuscular disease in Spain (n = 53) were screened for BIN1 mutations. Clinical, histologic, radiologic, and genetic features were analyzed. RESULTS Eighteen patients from 13 families carried the p.Arg234Cys variant; 16 of them were homozygous for it and 2 had compound heterozygous p.Arg234Cys/p.Arg145Cys mutations. Both BIN1 variants have only been identified in Roma, causing 100% of CNM in this ethnic group in our cohort. The haplotype analysis confirmed all families are related. In addition to clinical features typical of CNM, such as proximal limb weakness and ophthalmoplegia, most patients in our cohort presented with prominent axial weakness, often associated with rigid spine. Severe fat replacement of paravertebral muscles was demonstrated by muscle imaging. This phenotype seems to be specific to the p.Arg234Cys mutation, not reported in other BIN1 mutations. Extreme clinical variability was observed in the 2 compound heterozygous patients for the p.Arg234Cys/p.Arg145Cys mutations, from a congenital onset with catastrophic outcome to a late-onset disease. Screening of European Roma controls (n = 758) for the p.Arg234Cys variant identified a carrier frequency of 3.5% among the Spanish Roma. CONCLUSION We have identified a BIN1 founder Roma mutation associated with a highly specific phenotype, which is, from the present cohort, the main cause of CNM in Spain.
Collapse
Affiliation(s)
- Macarena Cabrera-Serrano
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Fabiola Mavillard
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Valerie Biancalana
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Eloy Rivas
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Bharti Morar
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Aurelio Hernández-Laín
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Montse Olive
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Nuria Muelas
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Eduardo Khan
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Alejandra Carvajal
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Pablo Quiroga
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Jordi Diaz-Manera
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Mark Davis
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Rainiero Ávila
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Cristina Domínguez
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Norma Beatriz Romero
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Juan J Vílchez
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - David Comas
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Nigel G Laing
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Jocelyn Laporte
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Luba Kalaydjieva
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Carmen Paradas
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France.
| |
Collapse
|
36
|
Zanoteli E. Centronuclear myopathy: advances in genetic understanding and potential for future treatments. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1480366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Edmar Zanoteli
- Departamento de Neurologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
37
|
Sewry CA, Wallgren-Pettersson C. Myopathology in congenital myopathies. Neuropathol Appl Neurobiol 2018; 43:5-23. [PMID: 27976420 DOI: 10.1111/nan.12369] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/03/2016] [Indexed: 12/18/2022]
Abstract
Congenital myopathies are clinically and genetically a heterogeneous group of early onset neuromuscular disorders, characterized by hypotonia and muscle weakness. Clinical severity and age of onset are variable. Many patients are severely affected at birth while others have a milder, moderately progressive or nonprogressive phenotype. Respiratory weakness is a major clinical aspect that requires regular monitoring. Causative mutations in several genes have been identified that are inherited in a dominant, recessive or X-linked manner, or arise de novo. Muscle biopsies show characteristic pathological features such as nemaline rods/bodies, cores, central nuclei or caps. Small type 1 fibres expressing slow myosin are a common feature and may sometimes be the only abnormality. Small cores (minicores) devoid of mitochondria and areas showing variable myofibrillar disruption occur in several neuromuscular disorders including several forms of congenital myopathy. Muscle biopsies can also show more than one structural defect. There is considerable clinical, pathological and genetic overlap with mutations in one gene resulting in more than one pathological feature, and the same pathological feature being associated with defects in more than one gene. Increasing application of whole exome sequencing is broadening the clinical and pathological spectra in congenital myopathies, but pathology still has a role in clarifying the pathogenicity of gene variants as well as directing molecular analysis.
Collapse
Affiliation(s)
- C A Sewry
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health and Great Ormond Street Hospital for Children, London, UK.,Wolfson Centre for Inherited Neuromuscular Diseases, RJAH Orthopaedic Hospital, Oswestry, UK
| | - C Wallgren-Pettersson
- The Folkhälsan Institute of Genetics and the Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
38
|
Danièle N, Moal C, Julien L, Marinello M, Jamet T, Martin S, Vignaud A, Lawlor MW, Buj-Bello A. Intravenous Administration of a MTMR2-Encoding AAV Vector Ameliorates the Phenotype of Myotubular Myopathy in Mice. J Neuropathol Exp Neurol 2018; 77:282-295. [PMID: 29408998 PMCID: PMC5939852 DOI: 10.1093/jnen/nly002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
X-linked myotubular myopathy (XLMTM) is a severe congenital disorder in male infants that leads to generalized skeletal muscle weakness and is frequently associated with fatal respiratory failure. XLMTM is caused by loss-of-function mutations in the MTM1 gene, which encodes myotubularin, the founder member of a family of 15 homologous proteins in mammals. We recently demonstrated the therapeutic efficacy of intravenous delivery of rAAV vectors expressing MTM1 in animal models of myotubular myopathy. Here, we tested whether the closest homologues of MTM1, MTMR1, and MTMR2 (the latter being implicated in Charcot-Marie-Tooth neuropathy type 4B1) are functionally redundant and could represent a therapeutic target for XLMTM. Serotype 9 recombinant AAV vectors encoding either MTM1, MTMR1, or MTMR2 were injected into the tibialis anterior muscle of Mtm1-deficient knockout mice. Two weeks after vector delivery, a therapeutic effect was observed with Mtm1 and Mtmr2, but not Mtmr1; with Mtm1 being the most efficacious transgene. Furthermore, intravenous administration of a single dose of the rAAV9-Mtmr2 vector in XLMTM mice improved the motor activity and muscle strength and prolonged survival throughout a 3-month study. These results indicate that strategies aiming at increasing MTMR2 expression levels in skeletal muscle may be beneficial in the treatment of myotubular myopathy.
Collapse
MESH Headings
- Administration, Intravenous
- Animals
- Disease Models, Animal
- Escape Reaction/physiology
- HEK293 Cells
- Humans
- Locomotion/physiology
- Mice
- Muscle Contraction/drug effects
- Muscle Strength
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/ultrastructure
- Mutation
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/pathology
- Myopathies, Structural, Congenital/physiopathology
- Myopathies, Structural, Congenital/therapy
- PAX7 Transcription Factor/metabolism
- Phenotype
- Protein Tyrosine Phosphatases, Non-Receptor/administration & dosage
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- Protein Tyrosine Phosphatases, Non-Receptor/metabolism
- RNA, Messenger/metabolism
- Transduction, Genetic
- Transfection
Collapse
Affiliation(s)
- Nathalie Danièle
- INTEGRARE, INSERM UMRS 951, Univ Evry, Université Paris-Saclay, France
- R&D Department, Genethon, Evry, France
- Genethon, Evry, France
| | - Christelle Moal
- INTEGRARE, INSERM UMRS 951, Univ Evry, Université Paris-Saclay, France
- R&D Department, Genethon, Evry, France
- Genethon, Evry, France
| | - Laura Julien
- INTEGRARE, INSERM UMRS 951, Univ Evry, Université Paris-Saclay, France
- R&D Department, Genethon, Evry, France
- Genethon, Evry, France
| | - Martina Marinello
- INTEGRARE, INSERM UMRS 951, Univ Evry, Université Paris-Saclay, France
- R&D Department, Genethon, Evry, France
- Genethon, Evry, France
| | - Thibaud Jamet
- INTEGRARE, INSERM UMRS 951, Univ Evry, Université Paris-Saclay, France
- R&D Department, Genethon, Evry, France
- Genethon, Evry, France
| | - Samia Martin
- R&D Department, Genethon, Evry, France
- Genethon, Evry, France
| | - Alban Vignaud
- R&D Department, Genethon, Evry, France
- Genethon, Evry, France
| | - Michael W Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ana Buj-Bello
- INTEGRARE, INSERM UMRS 951, Univ Evry, Université Paris-Saclay, France
- R&D Department, Genethon, Evry, France
- Genethon, Evry, France
| |
Collapse
|
39
|
Congenital myopathies: disorders of excitation-contraction coupling and muscle contraction. Nat Rev Neurol 2018; 14:151-167. [PMID: 29391587 DOI: 10.1038/nrneurol.2017.191] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The congenital myopathies are a group of early-onset, non-dystrophic neuromuscular conditions with characteristic muscle biopsy findings, variable severity and a stable or slowly progressive course. Pronounced weakness in axial and proximal muscle groups is a common feature, and involvement of extraocular, cardiorespiratory and/or distal muscles can implicate specific genetic defects. Central core disease (CCD), multi-minicore disease (MmD), centronuclear myopathy (CNM) and nemaline myopathy were among the first congenital myopathies to be reported, and they still represent the main diagnostic categories. However, these entities seem to belong to a much wider phenotypic spectrum. To date, congenital myopathies have been attributed to mutations in over 20 genes, which encode proteins implicated in skeletal muscle Ca2+ homeostasis, excitation-contraction coupling, thin-thick filament assembly and interactions, and other mechanisms. RYR1 mutations are the most frequent genetic cause, and CCD and MmD are the most common subgroups. Next-generation sequencing has vastly improved mutation detection and has enabled the identification of novel genetic backgrounds. At present, management of congenital myopathies is largely supportive, although new therapeutic approaches are reaching the clinical trial stage.
Collapse
|
40
|
Cassandrini D, Trovato R, Rubegni A, Lenzi S, Fiorillo C, Baldacci J, Minetti C, Astrea G, Bruno C, Santorelli FM. Congenital myopathies: clinical phenotypes and new diagnostic tools. Ital J Pediatr 2017; 43:101. [PMID: 29141652 PMCID: PMC5688763 DOI: 10.1186/s13052-017-0419-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/02/2017] [Indexed: 12/26/2022] Open
Abstract
Congenital myopathies are a group of genetic muscle disorders characterized clinically by hypotonia and weakness, usually from birth, and a static or slowly progressive clinical course. Historically, congenital myopathies have been classified on the basis of major morphological features seen on muscle biopsy. However, different genes have now been identified as associated with the various phenotypic and histological expressions of these disorders, and in recent years, because of their unexpectedly wide genetic and clinical heterogeneity, next-generation sequencing has increasingly been used for their diagnosis. We reviewed clinical and genetic forms of congenital myopathy and defined possible strategies to improve cost-effectiveness in histological and imaging diagnosis.
Collapse
Affiliation(s)
| | - Rosanna Trovato
- Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Anna Rubegni
- Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Sara Lenzi
- Neurology, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Chiara Fiorillo
- Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genoa, Italy
| | - Jacopo Baldacci
- Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Carlo Minetti
- Unit of Pediatric Neurology and Muscular Disorders, Istituto G. Gaslini, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genoa, Italy
| | - Guja Astrea
- Neurology, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Claudio Bruno
- Department of Neuroscience, Center of Myology and Neurodegenerative Disorders, Istituto G. Gaslini, Genoa, Italy
| | | | | |
Collapse
|
41
|
Cowling BS, Prokic I, Tasfaout H, Rabai A, Humbert F, Rinaldi B, Nicot AS, Kretz C, Friant S, Roux A, Laporte J. Amphiphysin (BIN1) negatively regulates dynamin 2 for normal muscle maturation. J Clin Invest 2017; 127:4477-4487. [PMID: 29130937 DOI: 10.1172/jci90542] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/03/2017] [Indexed: 01/25/2023] Open
Abstract
Regulation of skeletal muscle development and organization is a complex process that is not fully understood. Here, we focused on amphiphysin 2 (BIN1, also known as bridging integrator-1) and dynamin 2 (DNM2), two ubiquitous proteins implicated in membrane remodeling and mutated in centronuclear myopathies (CNMs). We generated Bin1-/- Dnm2+/- mice to decipher the physiological interplay between BIN1 and DNM2. While Bin1-/- mice die perinatally from a skeletal muscle defect, Bin1-/- Dnm2+/- mice survived at least 18 months, and had normal muscle force and intracellular organization of muscle fibers, supporting BIN1 as a negative regulator of DNM2. We next characterized muscle-specific isoforms of BIN1 and DNM2. While BIN1 colocalized with and partially inhibited DNM2 activity during muscle maturation, BIN1 had no effect on the isoform of DNM2 found in adult muscle. Together, these results indicate that BIN1 and DNM2 regulate muscle development and organization, function through a common pathway, and define BIN1 as a negative regulator of DNM2 in vitro and in vivo during muscle maturation. Our data suggest that DNM2 modulation has potential as a therapeutic approach for patients with CNM and BIN1 defects. As BIN1 is implicated in cancers, arrhythmia, and late-onset Alzheimer disease, these findings may trigger research directions and therapeutic development for these common diseases.
Collapse
Affiliation(s)
- Belinda S Cowling
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Ivana Prokic
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Hichem Tasfaout
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Aymen Rabai
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Frédéric Humbert
- Biochemistry Department, University of Geneva, Geneva, Switzerland
| | - Bruno Rinaldi
- Department of Molecular and Cellular Genetics, UMR7156, Université de Strasbourg and CNRS, Strasbourg, France
| | - Anne-Sophie Nicot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Christine Kretz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Sylvie Friant
- Department of Molecular and Cellular Genetics, UMR7156, Université de Strasbourg and CNRS, Strasbourg, France
| | - Aurélien Roux
- Biochemistry Department, University of Geneva, Geneva, Switzerland.,Swiss National Centre of Competence in Research Programme Chemical Biology, Geneva, Switzerland
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
42
|
Aghbolaghi AG, Lechpammer M. A rare case of centronuclear myopathy with DNM2 mutation: genotype-phenotype correlation. Autops Case Rep 2017; 7:43-48. [PMID: 28740838 PMCID: PMC5507568 DOI: 10.4322/acr.2017.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/29/2017] [Indexed: 11/23/2022]
Abstract
Centronuclear myopathy (CNM) is a group of rare genetic muscle disorders characterized by muscle fibers with centrally located nuclei. The most common forms of CNM have been attributed to X-linked recessive mutations in the MTM1 gene; autosomal-dominant mutations in the DNM2 gene-encoding dynamin-2, the BIN1 gene; and autosomal-recessive mutations in BIN1, RYR1, and TTN genes. Dominant CNM due to DNM2 mutations usually follows a mild clinical course with the onset in adolescence. Currently, around 35 mutations of the DNM2 gene have been identified in CNM; however, the underlying molecular mechanism of DNM2 mutation in the pathology of CNM remains elusive, and the standard clinical characteristics have not yet been defined. Here, we describe the case of a 17-year-old female who presented with proximal muscle weakness along with congenital anomalous pulmonary venous connection (which has not been described in previous cases of CNM), scoliosis, and lung disease without a significant family history. Her creatine kinase level was normal. Histology, special stains, and electron microscope findings on her skeletal muscle biopsy showed CNM with the characteristic features of a DNM2 mutation, which was later confirmed by next-generation sequencing. This case expands the known clinical and pathological findings of CNM with DNM2 gene mutation.
Collapse
Affiliation(s)
- Amir Ghorbani Aghbolaghi
- University of California, Davis Medical Center, Department of Pathology and Laboratory Medicine. Sacramento, CA, USA
| | - Mirna Lechpammer
- University of California, Davis Medical Center, Department of Pathology and Laboratory Medicine. Sacramento, CA, USA
| |
Collapse
|
43
|
Tasfaout H, Buono S, Guo S, Kretz C, Messaddeq N, Booten S, Greenlee S, Monia BP, Cowling BS, Laporte J. Antisense oligonucleotide-mediated Dnm2 knockdown prevents and reverts myotubular myopathy in mice. Nat Commun 2017; 8:15661. [PMID: 28589938 PMCID: PMC5467247 DOI: 10.1038/ncomms15661] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 04/18/2017] [Indexed: 01/27/2023] Open
Abstract
Centronuclear myopathies (CNM) are non-dystrophic muscle diseases for which no effective therapy is currently available. The most severe form, X-linked CNM, is caused by myotubularin 1 (MTM1) loss-of-function mutations, while the main autosomal dominant form is due to dynamin2 (DNM2) mutations. We previously showed that genetic reduction of DNM2 expression in Mtm1 knockout (Mtm1KO) mice prevents development of muscle pathology. Here we show that systemic delivery of Dnm2 antisense oligonucleotides (ASOs) into Mtm1KO mice efficiently reduces DNM2 protein level in muscle and prevents the myopathy from developing. Moreover, systemic ASO injection into severely affected mice leads to reversal of muscle pathology within 2 weeks. Thus, ASO-mediated DNM2 knockdown can efficiently correct muscle defects due to loss of MTM1, providing an attractive therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Hichem Tasfaout
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,INSERM U964, Illkirch 67404, France.,CNRS UMR7104, Illkirch 67404, France.,FMTS, Strasbourg University, Illkirch 67404, France
| | - Suzie Buono
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,INSERM U964, Illkirch 67404, France.,CNRS UMR7104, Illkirch 67404, France.,FMTS, Strasbourg University, Illkirch 67404, France
| | - Shuling Guo
- Ionis Pharmaceuticals Inc., Carlsbad, California 92010, USA
| | - Christine Kretz
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,INSERM U964, Illkirch 67404, France.,CNRS UMR7104, Illkirch 67404, France.,FMTS, Strasbourg University, Illkirch 67404, France
| | - Nadia Messaddeq
- INSERM U964, Illkirch 67404, France.,CNRS UMR7104, Illkirch 67404, France.,Service de Microscopie Electronique, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France
| | - Sheri Booten
- Ionis Pharmaceuticals Inc., Carlsbad, California 92010, USA
| | - Sarah Greenlee
- Ionis Pharmaceuticals Inc., Carlsbad, California 92010, USA
| | - Brett P Monia
- Ionis Pharmaceuticals Inc., Carlsbad, California 92010, USA
| | - Belinda S Cowling
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,INSERM U964, Illkirch 67404, France.,CNRS UMR7104, Illkirch 67404, France.,FMTS, Strasbourg University, Illkirch 67404, France
| | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,INSERM U964, Illkirch 67404, France.,CNRS UMR7104, Illkirch 67404, France.,FMTS, Strasbourg University, Illkirch 67404, France
| |
Collapse
|
44
|
Hackman P, Udd B, Bönnemann CG, Ferreiro A. 219th ENMC International Workshop Titinopathies International database of titin mutations and phenotypes, Heemskerk, The Netherlands, 29 April-1 May 2016. Neuromuscul Disord 2017; 27:396-407. [PMID: 28214268 DOI: 10.1016/j.nmd.2017.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/12/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Peter Hackman
- Folkhälsan Institute of Genetics, University of Helsinki, Finland.
| | - Bjarne Udd
- Neuromuscular Research Center, Tampere University, Finland
| | | | - Ana Ferreiro
- Unité de Biologie Fonctionnelle et Adaptative, Université Paris Diderot/CNRS, France; Reference Center for Neuromuscular Disorders, Pitié-Salpêtrière Hospital, AP-HP, France
| | | |
Collapse
|
45
|
Wang MM, Hao LY, Guo F, Zhong B, Zhong XM, Yuan J, Hao YF, Zhao S, Sun XF, Lei M, Jiao GY. Decreased intracellular [Ca 2+ ] coincides with reduced expression of Dhprα1s, RyR1, and diaphragmatic dysfunction in a rat model of sepsis. Muscle Nerve 2017; 56:1128-1136. [PMID: 28044347 DOI: 10.1002/mus.25554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2016] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Sepsis can cause decreased diaphragmatic contractility. Intracellular calcium as a second messenger is central to diaphragmatic contractility. However, changes in intracellular calcium concentration ([Ca2+ ]) and the distribution and co-localization of relevant calcium channels [dihydropyridine receptors, (DHPRα1s) and ryanodine receptors (RyR1)] remain unclear during sepsis. In this study we investigated the effect of changed intracellular [Ca2+ ] and expression and distribution of DHPRα1s and RyR1 on diaphragm function during sepsis. METHODS We measured diaphragm contractility and isolated diaphragm muscle cells in a rat model of sepsis. The distribution and co-localization of DHPRα1s and RyR1 were determined using immunohistochemistry and immunofluorescence, whereas intracellular [Ca2+ ] was measured by confocal microscopy and fluorescence spectrophotometry. RESULTS Septic rat diaphragm contractility, expression of DHPRα1s and RyR1, and intracellular [Ca2+ ] were significantly decreased in the rat sepsis model compared with controls. DISCUSSION Decreased intracellular [Ca2+ ] coincides with diaphragmatic contractility and decreased expression of DHPRα1s and RyR1 in sepsis. Muscle Nerve 56: 1128-1136, 2017.
Collapse
Affiliation(s)
- Meng-Meng Wang
- Department of Respiratory and Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang, Postal Code 110004, People's Republic of China
| | - Li-Ying Hao
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Bin Zhong
- Department of Respiratory Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, People's Republic of China
| | - Xiao-Mei Zhong
- Department of Respiratory and Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang, Postal Code 110004, People's Republic of China
| | - Jing Yuan
- Department of Respiratory and Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang, Postal Code 110004, People's Republic of China
| | - Yi-Fei Hao
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Shuang Zhao
- Department of Respiratory and Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang, Postal Code 110004, People's Republic of China
| | - Xue-Fei Sun
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Ming Lei
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Guang-Yu Jiao
- Department of Respiratory and Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang, Postal Code 110004, People's Republic of China
| |
Collapse
|
46
|
Stewart MD, Lopez S, Nagandla H, Soibam B, Benham A, Nguyen J, Valenzuela N, Wu HJ, Burns AR, Rasmussen TL, Tucker HO, Schwartz RJ. Mouse myofibers lacking the SMYD1 methyltransferase are susceptible to atrophy, internalization of nuclei and myofibrillar disarray. Dis Model Mech 2016; 9:347-59. [PMID: 26935107 PMCID: PMC4833328 DOI: 10.1242/dmm.022491] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Smyd1 gene encodes a lysine methyltransferase specifically expressed in striated muscle. Because Smyd1-null mouse embryos die from heart malformation prior to formation of skeletal muscle, we developed a Smyd1 conditional-knockout allele to determine the consequence of SMYD1 loss in mammalian skeletal muscle. Ablation of SMYD1 specifically in skeletal myocytes after myofiber differentiation using Myf6(cre) produced a non-degenerative myopathy. Mutant mice exhibited weakness, myofiber hypotrophy, prevalence of oxidative myofibers, reduction in triad numbers, regional myofibrillar disorganization/breakdown and a high percentage of myofibers with centralized nuclei. Notably, we found broad upregulation of muscle development genes in the absence of regenerating or degenerating myofibers. These data suggest that the afflicted fibers are in a continual state of repair in an attempt to restore damaged myofibrils. Disease severity was greater for males than females. Despite equivalent expression in all fiber types, loss of SMYD1 primarily affected fast-twitch muscle, illustrating fiber-type-specific functions for SMYD1. This work illustrates a crucial role for SMYD1 in skeletal muscle physiology and myofibril integrity.
Collapse
Affiliation(s)
- M David Stewart
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Suhujey Lopez
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Harika Nagandla
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Benjamin Soibam
- Department of Computer Science and Engineering Technology, University of Houston-Downtown, Houston, TX 77002, USA
| | - Ashley Benham
- Stem Cell Engineering Department, Texas Heart Institute at St Luke's Episcopal Hospital, Houston, TX 77030, USA
| | - Jasmine Nguyen
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Nicolas Valenzuela
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Harry J Wu
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Alan R Burns
- College of Optometry, University of Houston, Houston, TX 77204, USA
| | - Tara L Rasmussen
- Department of Molecular Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Haley O Tucker
- Department of Molecular Biosciences, Institute for Cellular Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Robert J Schwartz
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA Stem Cell Engineering Department, Texas Heart Institute at St Luke's Episcopal Hospital, Houston, TX 77030, USA
| |
Collapse
|
47
|
Walmsley GL, Blot S, Venner K, Sewry C, Laporte J, Blondelle J, Barthélémy I, Maurer M, Blanchard-Gutton N, Pilot-Storck F, Tiret L, Piercy RJ. Progressive Structural Defects in Canine Centronuclear Myopathy Indicate a Role for HACD1 in Maintaining Skeletal Muscle Membrane Systems. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 187:441-456. [PMID: 27939133 DOI: 10.1016/j.ajpath.2016.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 11/16/2022]
Abstract
Mutations in HACD1/PTPLA cause recessive congenital myopathies in humans and dogs. Hydroxyacyl-coA dehydratases are required for elongation of very long chain fatty acids, and HACD1 has a role in early myogenesis, but the functions of this striated muscle-specific enzyme in more differentiated skeletal muscle remain unknown. Canine HACD1 deficiency is histopathologically classified as a centronuclear myopathy (CNM). We investigated the hypothesis that muscle from HACD1-deficient dogs has membrane abnormalities in common with CNMs with different genetic causes. We found progressive changes in tubuloreticular and sarcolemmal membranes and mislocalized triads and mitochondria in skeletal muscle from animals deficient in HACD1. Furthermore, comparable membranous abnormalities in cultured HACD1-deficient myotubes provide additional evidence that these defects are a primary consequence of altered HACD1 expression. Our novel findings, including T-tubule dilatation and disorganization, associated with defects in this additional CNM-associated gene provide a definitive pathophysiologic link with these disorders, confirm that dogs deficient in HACD1 are relevant models, and strengthen the evidence for a unifying pathogenesis in CNMs via defective membrane trafficking and excitation-contraction coupling in muscle. These results build on previous work by determining further functional roles of HACD1 in muscle and provide new insight into the pathology and pathogenetic mechanisms of HACD1 CNM. Consequently, alterations in membrane properties associated with HACD1 mutations should be investigated in humans with related phenotypes.
Collapse
Affiliation(s)
- Gemma L Walmsley
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Sciences and Services, Royal Veterinary College, London, United Kingdom.
| | - Stéphane Blot
- French National Institute of Health and Medical Research (Inserm), Mondor Institute of Biomedical Research (IMRB) U955-E10 Biology of the Neuromuscular System, Créteil, France; University of Paris East, Alfort School of Veterinary Medicine (EnvA), Maisons-Alfort, France
| | - Kerrie Venner
- Electron Microscopy Unit, Institute of Neurology, London, United Kingdom
| | - Caroline Sewry
- Dubowitz Neuromuscular Centre, University College London Institute of Child Health and Great Ormond Street Hospital, London, United Kingdom
| | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institute of Genetics and Cellular and Molecular Biology (IGBMC), Inserm U964, CNRS UMR7104, Strasbourg University, Illkirch, France
| | - Jordan Blondelle
- French National Institute of Health and Medical Research (Inserm), Mondor Institute of Biomedical Research (IMRB) U955-E10 Biology of the Neuromuscular System, Créteil, France; University of Paris East, Alfort School of Veterinary Medicine (EnvA), Maisons-Alfort, France
| | - Inès Barthélémy
- French National Institute of Health and Medical Research (Inserm), Mondor Institute of Biomedical Research (IMRB) U955-E10 Biology of the Neuromuscular System, Créteil, France; University of Paris East, Alfort School of Veterinary Medicine (EnvA), Maisons-Alfort, France
| | - Marie Maurer
- French National Institute of Health and Medical Research (Inserm), Mondor Institute of Biomedical Research (IMRB) U955-E10 Biology of the Neuromuscular System, Créteil, France; University of Paris East, Alfort School of Veterinary Medicine (EnvA), Maisons-Alfort, France
| | - Nicolas Blanchard-Gutton
- French National Institute of Health and Medical Research (Inserm), Mondor Institute of Biomedical Research (IMRB) U955-E10 Biology of the Neuromuscular System, Créteil, France; University of Paris East, Alfort School of Veterinary Medicine (EnvA), Maisons-Alfort, France
| | - Fanny Pilot-Storck
- French National Institute of Health and Medical Research (Inserm), Mondor Institute of Biomedical Research (IMRB) U955-E10 Biology of the Neuromuscular System, Créteil, France; University of Paris East, Alfort School of Veterinary Medicine (EnvA), Maisons-Alfort, France
| | - Laurent Tiret
- French National Institute of Health and Medical Research (Inserm), Mondor Institute of Biomedical Research (IMRB) U955-E10 Biology of the Neuromuscular System, Créteil, France; University of Paris East, Alfort School of Veterinary Medicine (EnvA), Maisons-Alfort, France
| | - Richard J Piercy
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Sciences and Services, Royal Veterinary College, London, United Kingdom
| |
Collapse
|
48
|
Fraysse B, Guicheney P, Bitoun M. Calcium homeostasis alterations in a mouse model of the Dynamin 2-related centronuclear myopathy. Biol Open 2016; 5:1691-1696. [PMID: 27870637 PMCID: PMC5155535 DOI: 10.1242/bio.020263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Autosomal dominant centronuclear myopathy (CNM) is a rare congenital myopathy characterized by centrally located nuclei in muscle fibers. CNM results from mutations in the gene encoding dynamin 2 (DNM2), a large GTPase involved in endocytosis, intracellular membrane trafficking, and cytoskeleton regulation. We developed a knock-in mouse model expressing the most frequent DNM2-CNM mutation; i.e. the KI-Dnm2R465W model. Heterozygous (HTZ) KI-Dnm2 mice progressively develop muscle atrophy, impairment of contractile properties, histopathological abnormalities, and elevated cytosolic calcium concentration. Here, we aim at better characterizing the calcium homeostasis impairment in extensor digitorum longus (EDL) and soleus muscles from adult HTZ KI-Dnm2 mice. We demonstrate abnormal contractile properties and cytosolic Ca2+ concentration in EDL but not soleus muscles showing that calcium impairment is correlated with muscle weakness and might be a determinant factor of the spatial muscle involvement. In addition, the elevated cytosolic Ca2+ concentration in EDL muscles is associated with an increased sarcolemmal permeability to Ca2+ and releasable Ca2+ content from the sarcoplasmic reticulum. However, amplitude and kinetics characteristics of the calcium transient appear unchanged. This suggests that calcium defect is probably not a primary cause of decreased force generation by compromised sarcomere shortening but may be involved in long-term deleterious consequences on muscle physiology. Our results highlight the first pathomechanism which may explain the spatial muscle involvement occurring in DNM2-related CNM and open the way toward development of a therapeutic approach to normalize calcium content. Summary: Dynamin 2 mutations cause centronuclear myopathy via unclear mechanisms. We show in a mouse model that changes in cytosolic calcium via incorrect membrane permeability correlate with muscle weakness.
Collapse
Affiliation(s)
- Bodvaël Fraysse
- Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes 44200, France
| | - Pascale Guicheney
- INSERM, UMR_S1166, Sorbonne Universités, UPMC Univ Paris 06, UMR_S1166, Institute of Cardiometabolism and Nutrition (ICAN), Paris 75013, France
| | - Marc Bitoun
- Research Center for Myology, UPMC Univ Paris 06 and INSERM UMR_S974, CNRS FRE 3617, Institute of Myology, Paris 75013, France
| |
Collapse
|
49
|
Hohendahl A, Roux A, Galli V. Structural insights into the centronuclear myopathy-associated functions of BIN1 and dynamin 2. J Struct Biol 2016; 196:37-47. [PMID: 27343996 PMCID: PMC5039012 DOI: 10.1016/j.jsb.2016.06.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 01/10/2023]
Abstract
Centronuclear myopathies (CNMs) are genetic diseases whose symptoms are muscle weakness and atrophy (wasting) and centralised nuclei. Recent human genetic studies have isolated several groups of mutations. Among them, many are found in two interacting proteins essential to clathrin-mediated endocytosis, dynamin and the BIN-Amphiphysin-Rvs (BAR) protein BIN1/amphiphysin 2. In this review, by using structural and functional data from the study of endocytosis mainly, we discuss how the CNM mutations could affect the structure and the function of these ubiquitous proteins and cause the muscle-specific phenotype. The literature shows that both proteins are involved in the plasma membrane tubulation required for T-tubule biogenesis. However, this system also requires the regulation of the dynamin-mediated membrane fission, and the formation of a stable protein-scaffold to maintain the T-tubule structure. We discuss how the specific functions, isoforms and partners (myotubularin in particular) of these two proteins can lead to the establishment of muscle-specific features.
Collapse
Affiliation(s)
- Annika Hohendahl
- Biochemistry Department, University of Geneva, CH-1211 Geneva, Switzerland
| | - Aurélien Roux
- Biochemistry Department, University of Geneva, CH-1211 Geneva, Switzerland; Swiss National Centre for Competence in Research Programme Chemical Biology, CH-1211 Geneva, Switzerland.
| | - Valentina Galli
- Biochemistry Department, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
50
|
Laury-Kleintop LD, Mulgrew JR, Heletz I, Nedelcoviciu RA, Chang MY, Harris DM, Koch WJ, Schneider MD, Muller AJ, Prendergast GC. Cardiac-specific disruption of Bin1 in mice enables a model of stress- and age-associated dilated cardiomyopathy. J Cell Biochem 2016; 116:2541-51. [PMID: 25939245 DOI: 10.1002/jcb.25198] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/14/2015] [Indexed: 12/21/2022]
Abstract
Non-compensated dilated cardiomyopathy (DCM) leading to death from heart failure is rising rapidly in developed countries due to aging demographics, and there is a need for informative preclinical models to guide the development of effective therapeutic strategies to prevent or delay disease onset. In this study, we describe a novel model of heart failure based on cardiac-specific deletion of the prototypical mammalian BAR adapter-encoding gene Bin1, a modifier of age-associated disease. Bin1 deletion during embryonic development causes hypertrophic cardiomyopathy and neonatal lethality, but there is little information on how Bin1 affects cardiac function in adult animals. Here we report that cardiomyocyte-specific loss of Bin1 causes age-associated dilated cardiomyopathy (DCM) beginning by 8-10 months of age. Echocardiographic analysis showed that Bin1 loss caused a 45% reduction in ejection fraction during aging. Younger animals rapidly developed DCM if cardiac pressure overload was created by transverse aortic constriction. Heterozygotes exhibited an intermediate phenotype indicating Bin1 is haplo-insufficient to sustain normal heart function. Bin1 loss increased left ventricle (LV) volume and diameter during aging, but it did not alter LV volume or diameter in hearts from heterozygous mice nor did it affect LV mass. Bin1 loss increased interstitial fibrosis and mislocalization of the voltage-dependent calcium channel Cav 1.2, and the lipid raft scaffold protein caveolin-3, which normally complexes with Bin1 and Cav 1.2 in cardiomyocyte membranes. Our findings show how cardiac deficiency in Bin1 function causes age- and stress-associated heart failure, and they establish a new preclinical model of this terminal cardiac disease.
Collapse
Affiliation(s)
| | | | - Ido Heletz
- Lankenau Medical Center, Wynnewood, Pennsylvania
| | | | - Mee Young Chang
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - David M Harris
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Walter J Koch
- Center for Translational Medicine, Temple University Medical School, Philadelphia, Pennsylvania
| | - Michael D Schneider
- National Heart and Lung Institute, British Heart Foundation Centre of Research Excellence, Faculty of Medicine, Imperial College London, London, UK
| | | | - George C Prendergast
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania.,Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical School and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|