1
|
Lo Russo F, Contarino VE, Conte G, Morelli C, Trogu F, Casale S, Sbaraini S, Caschera L, Genovese V, Liu C, Cinnante CM, Silani V, Triulzi FM. Amyotrophic lateral sclerosis with upper motor neuron predominance: diagnostic accuracy of qualitative and quantitative susceptibility metrics in the precentral gyrus. Eur Radiol 2023; 33:7677-7685. [PMID: 37606662 DOI: 10.1007/s00330-023-10070-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/07/2023] [Accepted: 07/01/2023] [Indexed: 08/23/2023]
Abstract
OBJECTIVE The study aims at comparing the diagnostic accuracy of qualitative and quantitative assessment of the susceptibility in the precentral gyrus in detecting amyotrophic lateral sclerosis (ALS) with predominance of upper motor neuron (UMN) impairment. METHODS We retrospectively collected clinical and 3T MRI data of 47 ALS patients, of whom 12 with UMN predominance (UMN-ALS). We further enrolled 23 healthy controls (HC) and 15 ALS Mimics (ALS-Mim). The Motor Cortex Susceptibility (MCS) score was qualitatively assessed on the susceptibility-weighted images (SWI) and automatic metrics were extracted from the quantitative susceptibility mapping (QSM) in the precentral gyrus. MCS scores and QSM-based metrics were tested for correlation, and ROC analyses. RESULTS The correlation of MCS score and susceptibility skewness was significant (Rho = 0.55, p < 0.001). The susceptibility SD showed an AUC of 0.809 with a specificity and positive predictive value of 100% in differentiating ALS and ALS Mim versus HC, significantly higher than MCS (Z = -3.384, p-value = 0.00071). The susceptibility skewness value of -0.017 showed specificity of 92.3% and predictive positive value of 91.7% in differentiating UMN-ALS versus ALS mimics, even if the performance was not significantly better than MCS (Z = 0.81, p = 0.21). CONCLUSION The MCS and susceptibility skewness of the precentral gyrus show high diagnostic accuracy in differentiating UMN-ALS from ALS-mimics subjects. The quantitative assessment might be preferred being an automatic measure unbiased by the reader. CLINICAL RELEVANCE STATEMENT The clinical diagnostic evaluation of ALS patients might benefit from the qualitative and/or quantitative assessment of the susceptibility in the precentral gyrus as imaging marker of upper motor neuron predominance. KEY POINTS • Amyotrophic lateral sclerosis diagnostic work-up lacks biomarkers able to identify upper motor neuron involvement. • Susceptibility-weighted imaging/quantitative susceptibility mapping-based measures showed good diagnostic accuracy in discriminating amyotrophic lateral sclerosis with predominant upper motor neuron impairment from patients with suspected motor neuron disorder. • Susceptibility-weighted imaging/quantitative susceptibility mapping-based assessment of the magnetic susceptibility provides a diagnostic marker for amyotrophic lateral sclerosis with upper motor neuron predominance.
Collapse
Affiliation(s)
- Francesco Lo Russo
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, Milan, Italy
| | - Valeria Elisa Contarino
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, Milan, Italy
| | - Giorgio Conte
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, Milan, Italy.
- Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, Milan, Italy.
| | - Claudia Morelli
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Francesca Trogu
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Silvia Casale
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, Milan, Italy
| | - Sara Sbaraini
- Neuroradiology Unit, ASST Santi Paolo e Carlo, San Carlo Borromeo Hospital, Milan, Italy
| | - Luca Caschera
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, Milan, Italy
| | - Valentina Genovese
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, Milan, Italy
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Claudia Maria Cinnante
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Vincenzo Silani
- Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, Milan, Italy
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Fabio Maria Triulzi
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, Milan, Italy
- Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, Milan, Italy
| |
Collapse
|
2
|
Tsuboguchi S, Nakamura Y, Ishihara T, Kato T, Sato T, Koyama A, Mori H, Koike Y, Onodera O, Ueno M. TDP-43 differentially propagates to induce antero- and retrograde degeneration in the corticospinal circuits in mouse focal ALS models. Acta Neuropathol 2023; 146:611-629. [PMID: 37555859 DOI: 10.1007/s00401-023-02615-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/22/2023] [Accepted: 07/15/2023] [Indexed: 08/10/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by TDP-43 inclusions in the cortical and spinal motor neurons. It remains unknown whether and how pathogenic TDP-43 spreads across neural connections to progress degenerative processes in the cortico-spinal motor circuitry. Here we established novel mouse ALS models that initially induced mutant TDP-43 inclusions in specific neuronal or cell types in the motor circuits, and investigated whether TDP-43 and relevant pathological processes spread across neuronal or cellular connections. We first developed ALS models that primarily induced TDP-43 inclusions in the corticospinal neurons, spinal motor neurons, or forelimb skeletal muscle, by using adeno-associated virus (AAV) expressing mutant TDP-43. We found that TDP-43 induced in the corticospinal neurons was transported along the axons anterogradely and transferred to the oligodendrocytes along the corticospinal tract (CST), coinciding with mild axon degeneration. In contrast, TDP-43 introduced in the spinal motor neurons did not spread retrogradely to the cortical or spinal neurons; however, it induced an extreme loss of spinal motor neurons and subsequent degeneration of neighboring spinal neurons, suggesting a degenerative propagation in a retrograde manner in the spinal cord. The intraspinal degeneration further led to severe muscle atrophy. Finally, TDP-43 induced in the skeletal muscle did not propagate pathological events to spinal neurons retrogradely. Our data revealed that mutant TDP-43 spread across neuro-glial connections anterogradely in the corticospinal pathway, whereas it exhibited different retrograde degenerative properties in the spinal circuits. This suggests that pathogenic TDP-43 may induce distinct antero- and retrograde mechanisms of degeneration in the motor system in ALS.
Collapse
Affiliation(s)
- Shintaro Tsuboguchi
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Niigata, 951-8585, Japan
| | - Yuka Nakamura
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tomohiko Ishihara
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Niigata, 951-8585, Japan
| | - Taisuke Kato
- Department of Molecular Neuroscience, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tokiharu Sato
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akihide Koyama
- Division of Legal Medicine, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, Japan
| | - Hideki Mori
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Niigata, 951-8585, Japan
| | - Yuka Koike
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Niigata, 951-8585, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Niigata, 951-8585, Japan.
- Department of Molecular Neuroscience, Brain Research Institute, Niigata University, Niigata, Japan.
| | - Masaki Ueno
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan.
| |
Collapse
|
3
|
Abstract
The scientific landscape surrounding amyotrophic lateral sclerosis has shifted immensely with a number of well-defined ALS disease-causing genes, each with related phenotypical and cellular motor neuron processes that have come to light. Yet in spite of decades of research and clinical investigation, there is still no etiology for sporadic amyotrophic lateral sclerosis, and treatment options even for those with well-defined familial syndromes are still limited. This chapter provides a comprehensive review of the genetic basis of amyotrophic lateral sclerosis, highlighting factors that contribute to its heritability and phenotypic manifestations, and an overview of past, present, and upcoming therapeutic strategies.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| | - Robert H Brown
- Department of Neurology, UMass Chan Medical School, Donna M. and Robert J. Manning Chair in Neurosciences and Director in Neurotherapeutics, Worcester, MA, United States
| |
Collapse
|
4
|
Lundt S, Ding S. NAD + Metabolism and Diseases with Motor Dysfunction. Genes (Basel) 2021; 12:1776. [PMID: 34828382 PMCID: PMC8625820 DOI: 10.3390/genes12111776] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases result in the progressive deterioration of the nervous system, with motor and cognitive impairments being the two most observable problems. Motor dysfunction could be caused by motor neuron diseases (MNDs) characterized by the loss of motor neurons, such as amyotrophic lateral sclerosis and Charcot-Marie-Tooth disease, or other neurodegenerative diseases with the destruction of brain areas that affect movement, such as Parkinson's disease and Huntington's disease. Nicotinamide adenine dinucleotide (NAD+) is one of the most abundant metabolites in the human body and is involved with numerous cellular processes, including energy metabolism, circadian clock, and DNA repair. NAD+ can be reversibly oxidized-reduced or directly consumed by NAD+-dependent proteins. NAD+ is synthesized in cells via three different paths: the de novo, Preiss-Handler, or NAD+ salvage pathways, with the salvage pathway being the primary producer of NAD+ in mammalian cells. NAD+ metabolism is being investigated for a role in the development of neurodegenerative diseases. In this review, we discuss cellular NAD+ homeostasis, looking at NAD+ biosynthesis and consumption, with a focus on the NAD+ salvage pathway. Then, we examine the research, including human clinical trials, focused on the involvement of NAD+ in MNDs and other neurodegenerative diseases with motor dysfunction.
Collapse
Affiliation(s)
- Samuel Lundt
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA;
- Interdisciplinary Neuroscience Program, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Shinghua Ding
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA;
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri-Columbia, Columbia, MO 65211, USA
| |
Collapse
|
5
|
McKenna MC, Corcia P, Couratier P, Siah WF, Pradat PF, Bede P. Frontotemporal Pathology in Motor Neuron Disease Phenotypes: Insights From Neuroimaging. Front Neurol 2021; 12:723450. [PMID: 34484106 PMCID: PMC8415268 DOI: 10.3389/fneur.2021.723450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 01/18/2023] Open
Abstract
Frontotemporal involvement has been extensively investigated in amyotrophic lateral sclerosis (ALS) but remains relatively poorly characterized in other motor neuron disease (MND) phenotypes such as primary lateral sclerosis (PLS), progressive muscular atrophy (PMA), spinal muscular atrophy (SMA), spinal bulbar muscular atrophy (SBMA), post poliomyelitis syndrome (PPS), and hereditary spastic paraplegia (HSP). This review focuses on insights from structural, metabolic, and functional neuroimaging studies that have advanced our understanding of extra-motor disease burden in these phenotypes. The imaging literature is limited in the majority of these conditions and frontotemporal involvement has been primarily evaluated by neuropsychology and post mortem studies. Existing imaging studies reveal that frontotemporal degeneration can be readily detected in ALS and PLS, varying degree of frontotemporal pathology may be captured in PMA, SBMA, and HSP, SMA exhibits cerebral involvement without regional predilection, and there is limited evidence for cerebral changes in PPS. Our review confirms the heterogeneity extra-motor pathology across the spectrum of MNDs and highlights the role of neuroimaging in characterizing anatomical patterns of disease burden in vivo. Despite the contribution of neuroimaging to MND research, sample size limitations, inclusion bias, attrition rates in longitudinal studies, and methodological constraints need to be carefully considered. Frontotemporal involvement is a quintessential clinical facet of MND which has important implications for screening practices, individualized management strategies, participation in clinical trials, caregiver burden, and resource allocation. The academic relevance of imaging frontotemporal pathology in MND spans from the identification of genetic variants, through the ascertainment of presymptomatic changes to the design of future epidemiology studies.
Collapse
Affiliation(s)
- Mary Clare McKenna
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | - Philippe Corcia
- Department of Neurology-Neurophysiology, CRMR ALS, Tours, France.,UMR 1253 iBrain, University of Tours, Tours, France.,LITORALS, Federation of ALS Centres: Tours-Limoges, Limoges, France
| | - Philippe Couratier
- LITORALS, Federation of ALS Centres: Tours-Limoges, Limoges, France.,ALS Centre, Limoges University Hospital (CHU de Limoges), Limoges, France
| | - We Fong Siah
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | | | - Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland.,Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France
| |
Collapse
|
6
|
Ramírez-Nuñez O, Jové M, Torres P, Sol J, Fontdevila L, Romero-Guevara R, Andrés-Benito P, Ayala V, Rossi C, Boada J, Povedano M, Ferrer I, Pamplona R, Portero-Otin M. Nuclear lipidome is altered in amyotrophic lateral sclerosis: A pilot study. J Neurochem 2021; 158:482-499. [PMID: 33905537 DOI: 10.1111/jnc.15373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 03/28/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022]
Abstract
Nucleocytosolic transport, a membrane process, is impaired in motor neurons in amyotrophic lateral sclerosis (ALS). This study analyzes the nuclear lipidome in motor neurons in ALS and examines molecular pathways linked to the major lipid alterations. Nuclei were obtained from the frozen anterior horn of the lumbar spinal cord of ALS patients and age-matched controls. Lipidomic profiles of this subcellular fraction were obtained using liquid chromatography and mass spectrometry. We validated the mechanisms behind presumable lipidomic changes by exploring ALS surrogate models including human motor neurons (derived from ALS lines and controls) subjected to oxidative stress, the hSOD-G93A transgenic mice, and samples from an independent cohort of ALS patients. Among the differential lipid species, we noted 41 potential identities, mostly belonging to phospholipids (particularly ether phospholipids, as plasmalogens), as well as diacylglycerols and triacylglycerides. Decreased expression of alkyldihydroxyacetonephosphate synthase (AGPS)-a critical peroxisomal enzyme in plasmalogen synthesis-is found in motor neuron disease models; this occurs in parallel with an increase in the expression of sterol carrier protein 2 (SCP2) mRNA in ALS and Scp2 levels in G93A transgenic mice. Further, we identified diminished expression of diacylglycerol-related enzymes, such as phospholipase C βI (PLCβI) and protein kinase CβII (PKCβII), linked to diacylglycerol metabolism. Finally, lipid droplets were recognized in the nuclei, supporting the identification of triacylglycerides as differential lipids. Our results point to the potentially pathogenic role of altered composition of nuclear membrane lipids and lipids in the nucleoplasm in the anterior horn of the spinal cord in ALS. Overall, these data support the usefulness of subcellular lipidomics applied to neurodegenerative diseases.
Collapse
Affiliation(s)
- Omar Ramírez-Nuñez
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain
| | - Pascual Torres
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain
| | - Joaquim Sol
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain.,Institut Català de la Salut, Lleida, Spain.,Research Support Unit Lleida, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Lleida, Spain
| | - Laia Fontdevila
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain
| | | | - Pol Andrés-Benito
- Departament of Pathology and Experimental Therapeutics, Hospital Universitari de Bellvitge, IDIBELL, Universitat de Barcelona, Hospitalet de Llobregat, Spain.,CIBERNED (Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas), Instituto Carlos III, Barcelona, Spain
| | - Victòria Ayala
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain
| | - Chiara Rossi
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain
| | - Jordi Boada
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain
| | - Mònica Povedano
- Neurology Service, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Isidro Ferrer
- Departament of Pathology and Experimental Therapeutics, Hospital Universitari de Bellvitge, IDIBELL, Universitat de Barcelona, Hospitalet de Llobregat, Spain.,CIBERNED (Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas), Instituto Carlos III, Barcelona, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain
| | - Manuel Portero-Otin
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain
| |
Collapse
|
7
|
Conte G, Contarino VE, Casale S, Morelli C, Sbaraini S, Scola E, Trogu F, Siggillino S, Cinnante CM, Caschera L, Lo Russo FM, Triulzi FM, Silani V. Amyotrophic lateral sclerosis phenotypes significantly differ in terms of magnetic susceptibility properties of the precentral cortex. Eur Radiol 2021; 31:5272-5280. [PMID: 33399906 DOI: 10.1007/s00330-020-07547-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/27/2020] [Accepted: 11/19/2020] [Indexed: 01/29/2023]
Abstract
OBJECTIVES The aim of our study was to investigate whether the magnetic susceptibility varies according to the amyotrophic lateral sclerosis (ALS) phenotypes based on the predominance of upper motor neuron (UMN)/lower motor neuron (LMN) impairment. METHODS We retrospectively collected imaging and clinical data of 47 ALS patients (12 with UMN predominance (UMN-ALS), 16 with LMN predominance (LMN-ALS), and 19 with no clinically defined predominance (Np-ALS)). We further enrolled 23 healthy controls (HC) and 15 ALS mimics (ALS-Mim). These participants underwent brain 3-T magnetic resonance imaging (3-T MRI) with T1-weighted and gradient-echo multi-echo sequences. Automatic segmentation and quantitative susceptibility mapping (QSM) were performed. The skewness of the susceptibility values in the precentral cortex (SuscSKEW) was automatically computed, compared among the groups, and correlated to the clinical variables. RESULTS The Kruskal-Wallis test showed significant differences in terms of SuscSKEW among groups (χ2(3) = 24.2, p < 0.001), and pairwise tests showed that SuscSKEW was higher in UMN-ALS compared to those in LMN-ALS (p < 0.001), HC (p < 0.001), Np-ALS (p = 0.012), and ALS-Mim (p < 0.001). SuscSKEW was highly correlated with the Penn UMN score (Spearman's rho 0.612, p < 0.001). CONCLUSION This study demonstrates that the clinical ALS phenotypes based on UMN/LMN sign predominance significantly differ in terms of magnetic susceptibility properties of the precentral cortex. Combined MRI-histopathology investigations are strongly encouraged to confirm whether this evidence is due to iron overload in UMN-ALS, unlike in LMN-ALS. KEY POINTS • Magnetic susceptibility in the precentral cortex reflects the prevalence of UMN/LMN impairment in the clinical ALS phenotypes. • The degree of UMN/LMN impairment might be well described by the automatically derived measure of SuscSKEW in the precentral cortex. • Increased SuscSKEW in the precentral cortex is more relevant in UMN-ALS patients compared to those in Np-ALS and LMN-ALS patients.
Collapse
Affiliation(s)
- Giorgio Conte
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, Milan, Italy
| | - Valeria Elisa Contarino
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, Milan, Italy
| | - Silvia Casale
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, Milan, Italy.
| | - Claudia Morelli
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, piazzale Brescia 20, Milan, Italy
| | - Sara Sbaraini
- Neuroradiology Unit, ASST Santi Paolo e Carlo, San Carlo Borromeo Hospital, Via Pio II 3, Milan, Italy
| | - Elisa Scola
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, Milan, Italy
| | - Francesca Trogu
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, piazzale Brescia 20, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, via Festa del Perdono 7, Milan, Italy
| | - Silvia Siggillino
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, Milan, Italy
| | - Claudia Maria Cinnante
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, Milan, Italy
| | - Luca Caschera
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, Milan, Italy
| | - Francesco Maria Lo Russo
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, Milan, Italy
| | - Fabio Maria Triulzi
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, via Festa del Perdono 7, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, piazzale Brescia 20, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, via Festa del Perdono 7, Milan, Italy
| |
Collapse
|
8
|
Quinn C, Elman L. Amyotrophic Lateral Sclerosis and Other Motor Neuron Diseases. Continuum (Minneap Minn) 2020; 26:1323-1347. [DOI: 10.1212/con.0000000000000911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Geser F, Fellner L, Haybaeck J, Wenning GK. Development of neurodegeneration in amyotrophic lateral sclerosis: from up or down? J Neural Transm (Vienna) 2020; 127:1097-1105. [PMID: 32500222 DOI: 10.1007/s00702-020-02213-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/23/2020] [Indexed: 12/19/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease associated with neurodegeneration and intracellular pathological 43-kDa transactive response sequence DNA-binding protein (TDP-43) positive inclusions. The various clinical symptoms, such as motor disorders and cognitive impairment, reflect the degeneration of certain areas of the nervous system. Since the discovery of the significance of pathological TDP-43 for human disease including ALS, there has been an increasing number of studies reporting on the distribution and severity of neurodegeneration. These have rekindled the old debate about whether the first or second motor neuron is the primary site of degeneration in ALS. To shed light on this question, the following is a review of the relevant neuropathological studies.
Collapse
Affiliation(s)
- F Geser
- Department of Neurology, Hegau-Bodensee-Klinikum Singen, Virchowstr. 10, 78224, Singen (Hohentwiel), Germany.
| | - L Fellner
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - J Haybaeck
- Department of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Neuropathology, Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - G K Wenning
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
10
|
Wang L, Zhang L. Circulating MicroRNAs as Diagnostic Biomarkers for Motor Neuron Disease. Front Neurosci 2020; 14:354. [PMID: 32372911 PMCID: PMC7177050 DOI: 10.3389/fnins.2020.00354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/24/2020] [Indexed: 12/11/2022] Open
Abstract
Motor neuron disease (MND) is a kind of neurodegenerative disease that selectively invades spinal cord anterior horn cells, brainstem motor neurons, cortical pyramidal cells and the pyramidal tract. The main clinical features are the symptoms and signs of impaired upper and lower motor neurons, manifested as muscle weakness, atrophy and pyramidal tract signs. Histopathology has shown the disappearance of pyramidal cells in the motor cortex, loss of motor neurons in the anterior horn of the spinal cord and brainstem, and degeneration of the corticospinal tract. Due to the lack of effective treatment methods, the prognosis is generally poor, so it is of great significance to confirm the diagnosis early by various means. However, the current diagnosis of MND mainly relies on the combination of clinical manifestations and neurophysiological examinations, lacking effective means of early diagnosis. Circulating microRNA (CmiRNA) is a kind of stable miRNA molecule in serum, plasma and other body fluids, which has the characteristics of distinct differential expression, sensitive detection and convenient sample collection. As a possible new biomarker of MND, CmiRNA can not only reveal the pathophysiological process of MND, but also monitor disease progression and response to drug therapy. With the development of miRNA detection technology, more and more CmiRNAs as biomarkers with potential diagnostic value have been investigated. In this review, we explored the possibility of circulating samples as different sources of biomarkers for the diagnosis of MND, analyzing the progress of CmiRNA detection techniques, and presenting potential diagnostic MND biomarkers that have been reported.
Collapse
Affiliation(s)
- Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lijuan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
The upper cervical spinal cord in ALS assessed by cross-sectional and longitudinal 3T MRI. Sci Rep 2020; 10:1783. [PMID: 32020025 PMCID: PMC7000761 DOI: 10.1038/s41598-020-58687-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/20/2020] [Indexed: 02/08/2023] Open
Abstract
The upper cervical spinal cord is measured in a large longitudinal amyotrophic lateral sclerosis (ALS) cohort to evaluate its role as a biomarker. Specifically, the cervical spinal cord´s cross-sectional area (CSA) in plane of the segments C1–C3 was measured semi-automatically with T1-weighted 3T MRI sequences in 158 ALS patients and 86 controls. Six-month longitudinal follow-up MRI scans were analyzed in 103 patients. Compared to controls, in ALS there was a significant mean spinal cord atrophy (63.8 mm² vs. 60.8 mm², p = 0.001) which showed a trend towards worsening over time (mean spinal cord CSA decrease from 61.4 mm² to 60.6 mm² after 6 months, p = 0.06). Findings were most pronounced in the caudal segments of the upper cervical spinal cord and in limb-onset ALS. Baseline CSA was related to the revised ALS functional rating scale, disease duration, precentral gyrus thickness and total brain gray matter volume. In conclusion, spinal cord atrophy as assessed in brain MRIs in ALS patients mirrors the extent of overall neurodegeneration and parallels disease severity.
Collapse
|
12
|
Kon T, Mori F, Oyama Y, Tanji K, Kimura T, Takahashi S, Wakabayashi K. An autopsy case of early-stage amyotrophic lateral sclerosis with TDP-43 immunoreactive neuronal, but not glial, inclusions. Neuropathology 2019; 39:224-230. [PMID: 31020724 DOI: 10.1111/neup.12554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 01/11/2023]
Abstract
Phosphorylated transactivation response DNA-binding protein 43 kDa (p-TDP-43)-immunoreactive neuronal and glial cytoplasmic inclusions are a histopathological hallmark of sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43. We report an autopsy case of lower motor neuron-predominant ALS in a 47-year-old Japanese man who committed suicide 5 months after onset. Histopathologically, neuronal loss was restricted to the anterior horn of the spinal cord, and no obvious neuronal loss was noted in the motor cortex or brainstem motor nuclei. Bunina bodies were found in the spinal anterior horn cells and the facial and hypoglossal nuclei. Immunohistochemically, p-TDP-43-immunoreactive neuronal, but not glial, cytoplasmic inclusions were frequently found in the spinal anterior horn and facial and hypoglossal nuclei, and rarely in the motor cortex. We considered the present case to be an example of lower motor neuron-predominant ALS. p-TDP-43-immunoreactive aggregates in neurons, but not in glial cells, may be an early-stage pathology of ALS.
Collapse
Affiliation(s)
- Tomoya Kon
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Fumiaki Mori
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yoshinobu Oyama
- Department of Neurology, Aomori National Hospital, Aomori, Japan
| | - Kunikazu Tanji
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tamaki Kimura
- Department of Neurology, Aomori National Hospital, Aomori, Japan
| | - Shirushi Takahashi
- Department of Forensic Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
13
|
de Vries BS, Rustemeijer LMM, Bakker LA, Schröder CD, Veldink JH, van den Berg LH, Nijboer TCW, van Es MA. Cognitive and behavioural changes in PLS and PMA:challenging the concept of restricted phenotypes. J Neurol Neurosurg Psychiatry 2019; 90:141-147. [PMID: 30076267 DOI: 10.1136/jnnp-2018-318788] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Cognitive and behavioural changes within the spectrum of frontotemporal dementia (FTD) are observed frequently in patients with amyotrophic lateral sclerosis (ALS). Whether these changes also occur in other forms of motor neuron disease (MND) is not well studied. We therefore systemically screened a large cohort of patients with primary lateral sclerosis (PLS) and progressive muscular atrophy (PMA) for cognitive and behavioural changes, and subsequently compared our findings with a cohort of patients with ALS. METHODS Using a set of screening instruments (Edinburgh Cognitive and Behavioural ALS Screen, ALS and Frontotemporal Dementia Questionnaire, Frontal Assessment Battery, and Hospital Anxiety and Depression Scale), the presence of cognitive and behavioural changes as well as anxiety and depression in 277 patients with ALS, 75 patients with PLS and 143 patients with PMA was evaluated retrospectively. RESULTS We found a high frequency of cognitive and behavioural abnormalities with similar profiles in all three groups. Subjects with behavioural variant FTD were identified in all groups. CONCLUSIONS The percentage of patients with PLS and PMA with cognitive dysfunction was similar to patients with ALS, emphasising the importance for cognitive screening as part of routine clinical care in all three patient groups. With a similar cognitive profile, in line with genetic and clinical overlap between the MNDs, the view of PLS as an MND exclusively affecting upper motor neurons and PMA exclusively affecting lower motor neurons cannot be held. Therefore, our findings are in contrast to the recently revised El Escorial criteria of 2015, where PLS and PMA are described as restricted phenotypes. Our study favours a view of PLS and PMA as multidomain diseases similar to ALS.
Collapse
Affiliation(s)
- Bálint S de Vries
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Laura M M Rustemeijer
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leonhard A Bakker
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.,Center of Excellence for Rehabilitation Medicine, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University and De Hoogstraat Rehabilitation, Utrecht, The Netherlands
| | - Carin D Schröder
- Center of Excellence for Rehabilitation Medicine, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University and De Hoogstraat Rehabilitation, Utrecht, The Netherlands.,Ecare4you, Amersfoort, The Netherlands
| | - Jan H Veldink
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tanja C W Nijboer
- Center of Excellence for Rehabilitation Medicine, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University and De Hoogstraat Rehabilitation, Utrecht, The Netherlands.,Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Michael A van Es
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
14
|
Matsubara T, Oda M, Takahashi T, Watanabe C, Tachiyama Y, Morino H, Kawakami H, Kaji R, Maruyama H, Murayama S, Izumi Y. Amyotrophic lateral sclerosis of long clinical course clinically presenting with progressive muscular atrophy. Neuropathology 2018; 39:47-53. [DOI: 10.1111/neup.12523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/29/2018] [Accepted: 10/04/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Tomoyasu Matsubara
- Department of Neurology; Mifukai Vihara Hananosato Hospital; Hiroshima Japan
- Department of Clinical Neuroscience and Therapeutics; Hiroshima University Graduate School of Biomedical and Health Sciences; Hiroshima Japan
- Department of Neurology and Neuropathology (Brain Bank for Aging Research); Tokyo Metropolitan Geriatric Hospital & Institute of Gerontology; Tokyo Japan
| | - Masaya Oda
- Department of Neurology; Mifukai Vihara Hananosato Hospital; Hiroshima Japan
| | - Tetsuya Takahashi
- Department of Clinical Neuroscience and Therapeutics; Hiroshima University Graduate School of Biomedical and Health Sciences; Hiroshima Japan
| | - Chigusa Watanabe
- Department of Neurology; National Hospital Organization Hiroshima-Nishi Medical Center; Hiroshima Japan
| | - Yoshiro Tachiyama
- Department of Clinical Laboratory; National Hospital Organization Hiroshima-Nishi Medical Center; Hiroshima Japan
| | - Hiroyuki Morino
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine; Hiroshima University; Hiroshima Japan
| | - Hideshi Kawakami
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine; Hiroshima University; Hiroshima Japan
| | - Ryuji Kaji
- Department of Clinical Neuroscience, Institute of Biomedical Sciences; Tokushima University Graduate School; Tokushima Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics; Hiroshima University Graduate School of Biomedical and Health Sciences; Hiroshima Japan
| | - Shigeo Murayama
- Department of Neurology and Neuropathology (Brain Bank for Aging Research); Tokyo Metropolitan Geriatric Hospital & Institute of Gerontology; Tokyo Japan
| | - Yuishin Izumi
- Department of Neurology; Mifukai Vihara Hananosato Hospital; Hiroshima Japan
- Department of Clinical Neuroscience, Institute of Biomedical Sciences; Tokushima University Graduate School; Tokushima Japan
| |
Collapse
|
15
|
Sakae N, Bieniek KF, Zhang YJ, Ross K, Gendron TF, Murray ME, Rademakers R, Petrucelli L, Dickson DW. Poly-GR dipeptide repeat polymers correlate with neurodegeneration and Clinicopathological subtypes in C9ORF72-related brain disease. Acta Neuropathol Commun 2018; 6:63. [PMID: 30029693 PMCID: PMC6054740 DOI: 10.1186/s40478-018-0564-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 06/30/2018] [Indexed: 12/13/2022] Open
Abstract
Frontotemporal lobar degeneration (FTLD) is heterogeneous in clinical presentation, neuropathological characteristics and genetics. An expanded GGGGCC hexanucleotide repeat in C9ORF72 is the most common genetic cause of both FTLD and motor neuron disease (MND). Dipeptide repeat polymers (DPR) are generated through repeat-associated non-ATG translation, and they aggregate in neuronal inclusions with a distribution distinct from that of TDP-43 pathology. Recent studies from animal and cell culture models suggest that DPR might be toxic, but that toxicity may differ for specific DPR. Arginine containing DPR (poly-GR and poly-PR) have the greatest toxicity and are less frequent than other DPR (poly-GP, poly-GA). A unique feature of arginine-containing DPR is their potential for post-translational modification by methyl-transferases, which produces methylarginine DPR. In this report, we explored the relationship of DPR and methylarginine to markers of neurodegeneration using quantitative digital microscopic methods in 40 patients with C9ORF72 mutations and one of three different clinicopathologic phenotypes, FTLD, FTLD-MND or MND. We find that density and distribution of poly-GR inclusions are different from poly-GA and poly-GP inclusions. We also demonstrate colocalization of poly-GR with asymmetrical dimethylarginine (aDMA) immunoreactivity in regions with neurodegeneration. Differences in aDMA were also noted by clinical phenotype. FTLD-MND had the highest burden of poly-GR pathology compared to FTLD and MND, while FTLD-MND had higher burden of aDMA than FTLD. The results suggest that poly-GR pathology is associated with toxicity and neurodegeneration. It remains to be determined if dimethylarginine modification of poly-GR could contribute to its toxicity.
Collapse
Affiliation(s)
- Nobutaka Sakae
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Kevin F Bieniek
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Kelly Ross
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
16
|
Tortelli R, Arcuti S, Copetti M, Barone R, Zecca C, Capozzo R, Barulli MR, Simone IL, Logroscino G. Pseudobulbar affect as a negative prognostic indicator in amyotrophic lateral sclerosis. Acta Neurol Scand 2018. [PMID: 29527672 DOI: 10.1111/ane.12918] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To evaluate whether the presence of pseudobulbar affect (PBA) in an early stage of the disease influences survival in a population-based incident cohort of amyotrophic lateral sclerosis (ALS). METHODS Incident ALS cases, diagnosed according to El Escorial criteria, were enrolled from a prospective population-based registry in Puglia, Southern Italy. The Center for Neurologic Study-Lability Scale (CNS-LS), a self-administered questionnaire, was used to evaluate PBA. Total scores range from 7 to 35. A score ≥13 was used to identify PBA. Cox proportional hazard models were used for survival analysis. The modified C-statistic for censored survival data was used for models' discrimination. RECursive Partitioning and AMalgamation (RECPAM) analysis was used to identify subgroups of patients with different patterns of risk, depending on baseline characteristics. RESULTS We enrolled 94 sporadic ALS, median age of 64 years (range: 26-80). At the censoring date, 65 of 94 (69.2%), 39 of 60 (65.0%), and 26 of 34 (76.5%) patients reached the outcome (tracheotomy/death), in the whole, non-PBA and in the PBA groups, respectively. Kaplan-Meier survival curves for the two subgroups were not significantly different (log-rank test: 1.3, P = .25). The discrimination ability of a multivariable model with demographic and clinical variables of interest was not improved by adding PBA. In the RECPAM analysis, ALSFRSr and the total score of CNS-LS scale (</≥10) were the most important variables for differentiating all risk categories. CONCLUSIONS These preliminary results underlie that the presence of PBA at entry negatively influences survival in a specific subgroup of patients with ALS characterized by less functional impairment.
Collapse
Affiliation(s)
- R. Tortelli
- Unit of Neurodegenerative Diseases; Department of Clinical Research in Neurology; University of Bari “A. Moro” at Pia Fondazione Card. G. Panico; Tricase Lecce Italy
| | - S. Arcuti
- Unit of Biostatistics; IRCCS “Casa Sollievo della Sofferenza”; San Giovanni Rotondo Foggia Italy
| | - M. Copetti
- Unit of Biostatistics; IRCCS “Casa Sollievo della Sofferenza”; San Giovanni Rotondo Foggia Italy
| | - R. Barone
- Unit of Neurodegenerative Diseases; Department of Clinical Research in Neurology; University of Bari “A. Moro” at Pia Fondazione Card. G. Panico; Tricase Lecce Italy
| | - C. Zecca
- Unit of Neurodegenerative Diseases; Department of Clinical Research in Neurology; University of Bari “A. Moro” at Pia Fondazione Card. G. Panico; Tricase Lecce Italy
| | - R. Capozzo
- Unit of Neurodegenerative Diseases; Department of Clinical Research in Neurology; University of Bari “A. Moro” at Pia Fondazione Card. G. Panico; Tricase Lecce Italy
| | - M. R. Barulli
- Unit of Neurodegenerative Diseases; Department of Clinical Research in Neurology; University of Bari “A. Moro” at Pia Fondazione Card. G. Panico; Tricase Lecce Italy
| | - I. L. Simone
- Department of Basic Medical Sciences, Neurosciences and Sense Organs; University of Bari “A. Moro”; Bari Italy
| | - G. Logroscino
- Unit of Neurodegenerative Diseases; Department of Clinical Research in Neurology; University of Bari “A. Moro” at Pia Fondazione Card. G. Panico; Tricase Lecce Italy
- Department of Basic Medical Sciences, Neurosciences and Sense Organs; University of Bari “A. Moro”; Bari Italy
| |
Collapse
|
17
|
Progressive Muscular Atrophy. Neuromuscul Disord 2018. [DOI: 10.1007/978-981-10-5361-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Platelet phosphorylated TDP-43: an exploratory study for a peripheral surrogate biomarker development for Alzheimer's disease. Future Sci OA 2017; 3:FSO238. [PMID: 29134122 PMCID: PMC5674277 DOI: 10.4155/fsoa-2017-0090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 07/28/2017] [Indexed: 12/13/2022] Open
Abstract
Aim: Alzheimer's disease (AD) and other forms of dementia create a noncurable disease population in world's societies. To develop a blood-based biomarker is important so that the remedial or disease-altering therapeutic intervention for AD patients would be available at the early stage. Materials & methods: TDP-43 levels were analyzed in postmortem brain tissue and platelets of AD and control subjects. Results: We observed an increased TDP-43 (<60%) in postmortem AD brain regions and similar trends were also observed in patient's platelets. Conclusion: Platelet TDP-43 could be used as a surrogate biomarker that is measurable, reproducible and sensitive for screening the patients with some early clinical signs of AD and can be used to monitor disease prognosis. In this study, we explore to identify an Alzheimer's disease (AD)-selective phospho-specific antibody that recognizes the diseased form of TDP-43 protein in patient's blood-derived platelets. Our results suggest that selective antiphosphorylated TDP-43 antibody discriminates AD from non-demented controls and patients with amyotrophic lateral sclerosis. Therefore, platelet screening with a selective antibody could potentially be a useful tool for diagnostic purposes for AD.
Collapse
|
19
|
Grad LI, Rouleau GA, Ravits J, Cashman NR. Clinical Spectrum of Amyotrophic Lateral Sclerosis (ALS). Cold Spring Harb Perspect Med 2017; 7:cshperspect.a024117. [PMID: 28003278 DOI: 10.1101/cshperspect.a024117] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is primarily characterized by progressive loss of motor neurons, although there is marked phenotypic heterogeneity between cases. Typical, or "classical," ALS is associated with simultaneous upper motor neuron (UMN) and lower motor neuron (LMN) involvement at disease onset, whereas atypical forms, such as primary lateral sclerosis and progressive muscular atrophy, have early and predominant involvement in the UMN and LMN, respectively. The varying phenotypes can be so distinctive that they would seem to have differing biology. Because the same phenotypes can have multiple causes, including different gene mutations, there may be multiple molecular mechanisms causing ALS, implying that the disease is a syndrome. Conversely, multiple phenotypes can be caused by a single gene mutation; thus, a single molecular mechanism could be compatible with clinical heterogeneity. The pathogenic mechanism(s) in ALS remain unknown, but active propagation of the pathology neuroanatomically is likely a primary component.
Collapse
Affiliation(s)
- Leslie I Grad
- Djavad Mowafaghian Centre for Brain Health, Department of Medicine (Neurology), University of British Columbia, Vancouver V6T 2B5, Canada
| | - Guy A Rouleau
- Montreal Neurological Institute and Hospital, McGill University, Montréal H3A 2B4, Canada
| | - John Ravits
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Neil R Cashman
- Djavad Mowafaghian Centre for Brain Health, Department of Medicine (Neurology), University of British Columbia, Vancouver V6T 2B5, Canada
| |
Collapse
|
20
|
Juntas Morales R, Pageot N, Taieb G, Camu W. Adult-onset spinal muscular atrophy: An update. Rev Neurol (Paris) 2017; 173:308-319. [DOI: 10.1016/j.neurol.2017.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 03/01/2017] [Accepted: 03/28/2017] [Indexed: 12/11/2022]
|
21
|
Bokuda K, Shimizu T, Kimura H, Yamazaki T, Kamiyama T, Watabe K, Kawata A, Hayashi M, Isozaki E. Quantitative analysis of the features of fasciculation potentials and their relation with muscle strength in amyotrophic lateral sclerosis. Neurol Sci 2016; 37:1939-1945. [PMID: 27541300 DOI: 10.1007/s10072-016-2692-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/16/2016] [Indexed: 12/26/2022]
Abstract
This study aimed to quantitatively analyze fasciculation potentials (FPs) and to investigate their relationship with muscle strength in amyotrophic lateral sclerosis (ALS). Fifty-one patients with sporadic ALS or progressive muscular atrophy (25 men, 26 women, mean age of 68 years) underwent needle EMG. We determined the duration, phase number, and amplitude of FPs from three muscles (upper trapezius, biceps brachii, and tibialis anterior) and examined their relations with muscle strength. In total, 878 FPs were analyzed. FP duration displayed a significant negative relation with the strength of all three muscles; the weaker muscles showed longer durations of FPs than the muscles with normal strength. The amplitude and phase number were not related with muscle strength, but there were significant correlations between the duration and amplitude of FPs in the trapezius and tibialis anterior muscles. The longer duration of FPs in muscles with weak strength suggests that the morphological changes of FPs were caused by temporal dispersion through progressively degenerating and/or immature reinnervating motor branches, and were observed uniformly in different muscles along with disease progression.
Collapse
Affiliation(s)
- Kota Bokuda
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042, Japan.,Mental Development Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Toshio Shimizu
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042, Japan.
| | - Hideki Kimura
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042, Japan
| | - Toshihiro Yamazaki
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042, Japan
| | - Tsutomu Kamiyama
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042, Japan
| | - Kazuhiko Watabe
- ALS and Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Medical Technology (Neuropathology), Kyorin University Faculty of Health Sciences, Tokyo, Japan
| | - Akihiro Kawata
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042, Japan
| | - Masaharu Hayashi
- Mental Development Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Eiji Isozaki
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042, Japan
| |
Collapse
|
22
|
Saberi S, Stauffer JE, Schulte DJ, Ravits J. Neuropathology of Amyotrophic Lateral Sclerosis and Its Variants. Neurol Clin 2016; 33:855-76. [PMID: 26515626 DOI: 10.1016/j.ncl.2015.07.012] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The neuropathologic molecular signature common to almost all sporadic amyotrophic lateral sclerosis (ALS) and most familial ALS is TDP-43 immunoreactive neuronal cytoplasmic inclusions. The neuropathologic and molecular neuropathologic features of ALS variants, primarily lateral sclerosis and progressive muscular atrophy, are less certain but also seem to share the primary features of ALS. Genetic causes, including mutations in SOD1, TDP-43, FUS, and C9orf72, all have distinctive molecular neuropathologic signatures. Neuropathology will continue to play an increasingly key role in solving the puzzle of ALS pathogenesis.
Collapse
Affiliation(s)
- Shahram Saberi
- Department of Neurosciences, ALS Translational Research, University of California (San Diego), 9500 Gilman Drive, MC0624, La Jolla, CA 92093, USA
| | - Jennifer E Stauffer
- Department of Neurosciences, ALS Translational Research, University of California (San Diego), 9500 Gilman Drive, MC0624, La Jolla, CA 92093, USA
| | - Derek J Schulte
- Department of Neurosciences, ALS Translational Research, University of California (San Diego), 9500 Gilman Drive, MC0624, La Jolla, CA 92093, USA
| | - John Ravits
- Department of Neurosciences, ALS Translational Research, University of California (San Diego), 9500 Gilman Drive, MC0624, La Jolla, CA 92093, USA.
| |
Collapse
|
23
|
Abstract
Progressive muscular atrophy (PMA) is a rare, sporadic, adult-onset motor neuron disease, clinically characterized by isolated lower motor neuron features; however, clinically evident upper motor neuron signs may emerge in some patients. Subclinical upper motor neuron involvement is identified pathologically, radiologically, and neurophysiologically in a substantial number of patients with PMA. Patients with subclinical upper motor neuron involvement do not fulfill the revised El Escorial criteria to participate in amyotrophic lateral sclerosis clinical trials. Intravenous immunoglobulin therapy is only marginally beneficial in a small subgroup of patients with lower motor neuron syndrome without conduction block.
Collapse
Affiliation(s)
- Teerin Liewluck
- Department of Neurology, University of Colorado School of Medicine, Anschutz Medical Campus, 12631 East 17th Avenue, Mail Stop B-185, Aurora, CO 80045, USA; Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | - David S Saperstein
- Phoenix Neurological Associates, University of Arizona College of Medicine, 5090 North 40th Street, Suite 250, Phoenix, AZ 85018, USA
| |
Collapse
|
24
|
Riku Y, Watanabe H, Yoshida M, Mimuro M, Iwasaki Y, Masuda M, Ishigaki S, Katsuno M, Sobue G. Marked Involvement of the Striatal Efferent System in TAR DNA-Binding Protein 43 kDa-Related Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. J Neuropathol Exp Neurol 2016; 75:801-811. [PMID: 27346748 DOI: 10.1093/jnen/nlw053] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Indexed: 11/14/2022] Open
Abstract
Recent pathological studies indicate that neuronal loss and/or TAR DNA-binding protein-43 kDa (TDP-43) inclusions are frequent in the striatum of patients with TDP-43-related frontotemporal lobar degeneration (FTLD-TDP) and amyotrophic lateral sclerosis (ALS-TDP). However, no investigations have clarified the impact of such pathological changes on striatal neuronal outputs in these diseases. We analyzed pathological changes in the striatal efferent system of 59 consecutively autopsied patients with sporadic FTLD-TDP or ALS-TDP. The axon terminals of striatal efferent neurons were immunohistochemically assessed in the substantia nigra pars reticulata (SNr) and globus pallidus (GP). All of the FTLD-TDP patients exhibited a marked depletion of axon terminals, irrespective of disease duration. In particular, losses of substance-P-positive projections to the SNr and internal segment of GP were consistently severe. Similar findings were also observed in 69.0% of the ALS-TDP patients, although the severity was much less than that in the FTLD-TDP patients (p < 0.001). The accumulation of phosphorylated TDP-43 was observed in the striatal efferent neurons, efferent tracts, or their axon terminals in the SNr and GP in both groups. Thus, striatal efferent projections are essentially and commonly involved in the TDP-43-related FTLD/ALS disease spectrum.
Collapse
Affiliation(s)
- Yuichi Riku
- From the Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya (YR, HW, MM, SI, MK, GS) and Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan (MY, MM, YI)
| | - Hirohisa Watanabe
- From the Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya (YR, HW, MM, SI, MK, GS) and Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan (MY, MM, YI)
| | - Mari Yoshida
- From the Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya (YR, HW, MM, SI, MK, GS) and Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan (MY, MM, YI)
| | - Maya Mimuro
- From the Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya (YR, HW, MM, SI, MK, GS) and Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan (MY, MM, YI)
| | - Yasushi Iwasaki
- From the Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya (YR, HW, MM, SI, MK, GS) and Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan (MY, MM, YI)
| | - Michihito Masuda
- From the Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya (YR, HW, MM, SI, MK, GS) and Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan (MY, MM, YI)
| | - Shinsuke Ishigaki
- From the Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya (YR, HW, MM, SI, MK, GS) and Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan (MY, MM, YI)
| | - Masahisa Katsuno
- From the Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya (YR, HW, MM, SI, MK, GS) and Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan (MY, MM, YI)
| | - Gen Sobue
- From the Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya (YR, HW, MM, SI, MK, GS) and Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan (MY, MM, YI).
| |
Collapse
|
25
|
Tortelli R, Copetti M, Panza F, Fontana A, Cortese R, Capozzo R, Introna A, D'Errico E, Zoccolella S, Arcuti S, Seripa D, Simone IL, Logroscino G. Time to generalization and prediction of survival in patients with amyotrophic lateral sclerosis: a retrospective observational study. Eur J Neurol 2016; 23:1117-25. [PMID: 27016147 DOI: 10.1111/ene.12994] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 02/02/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE A strong association between time to generalization (TTG), considered as the time of spreading of the clinical signs from spinal or bulbar localization to both, and survival was recently identified in patients with amyotrophic lateral sclerosis (ALS). Thus, TTG may be used as an early to intermediate end-point in survival studies. The aim of the present study was to test TTG as a predictor of survival in ALS. METHODS This was an observational retrospective study of ALS patients from a tertiary referral centre over a 5-year follow-up period. RESULTS In 212 ALS patients, TTG was associated with time to death/tracheostomy [R 0.62, 95% confidence interval (CI) 0.53-0.70; P < 0.001]. In a time-to-event analysis, longer TTG resulted in lower risk to reach a composite outcome (death or tracheostomy) both in univariate [hazard ratio (HR) 0.98, 95% CI 0.97-0.99] and multivariate Cox analyses (HR 0.98, 95% CI 0.96-0.99). TTG predicted death/tracheostomy at 4 years (C-statistic 0.58; 95% CI 0.53-0.63) and at 5 years (C-statistic 0.58; 95% CI 0.53-0.62). CONCLUSIONS Based on the present results from a large clinical cohort, TTG may be used as a new early to intermediate end-point to describe the ALS natural history. TTG may be potentially useful as a new primary outcome measure for clinical trials.
Collapse
Affiliation(s)
- R Tortelli
- Unit of Neurodegenerative Diseases, Department of Clinical Research in Neurology, University of Bari 'Aldo Moro', Tricase, Lecce, Italy
| | - M Copetti
- Unit of Biostatistics, IRCCS 'Casa Sollievo della Sofferenza', San Giovanni Rotondo, Foggia, Italy
| | - F Panza
- Unit of Neurodegenerative Diseases, Department of Clinical Research in Neurology, University of Bari 'Aldo Moro', Tricase, Lecce, Italy.,Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy.,Geriatric Unit and Laboratory of Gerontology and Geriatrics, Department of Medical Sciences, IRCCS 'Casa Sollievo della Sofferenza', San Giovanni Rotondo, Foggia, Italy
| | - A Fontana
- Unit of Biostatistics, IRCCS 'Casa Sollievo della Sofferenza', San Giovanni Rotondo, Foggia, Italy
| | - R Cortese
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy
| | - R Capozzo
- Unit of Neurodegenerative Diseases, Department of Clinical Research in Neurology, University of Bari 'Aldo Moro', Tricase, Lecce, Italy
| | - A Introna
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy
| | - E D'Errico
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy
| | - S Zoccolella
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy
| | - S Arcuti
- Unit of Neurodegenerative Diseases, Department of Clinical Research in Neurology, University of Bari 'Aldo Moro', Tricase, Lecce, Italy
| | - D Seripa
- Geriatric Unit and Laboratory of Gerontology and Geriatrics, Department of Medical Sciences, IRCCS 'Casa Sollievo della Sofferenza', San Giovanni Rotondo, Foggia, Italy
| | - I L Simone
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy
| | - G Logroscino
- Unit of Neurodegenerative Diseases, Department of Clinical Research in Neurology, University of Bari 'Aldo Moro', Tricase, Lecce, Italy.,Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy
| |
Collapse
|
26
|
Spinelli EG, Agosta F, Ferraro PM, Riva N, Lunetta C, Falzone YM, Comi G, Falini A, Filippi M. Brain MR Imaging in Patients with Lower Motor Neuron-Predominant Disease. Radiology 2016; 280:545-56. [PMID: 26963576 DOI: 10.1148/radiol.2016151846] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purpose To investigate the patterns of cortical thinning and white matter tract damage in patients with lower motor neuron (LMN)-predominant disease compared with healthy control subjects and those with classic amyotrophic lateral sclerosis (ALS) and to evaluate the relationship between brain structural changes and clinical and cognitive features in these patients. Materials and Methods This study was approved by the local ethical committee, and written informed consent was obtained from all subjects before enrollment. Twenty-eight patients with LMN-predominant disease were compared with 55 patients with ALS and 56 healthy control subjects. Patients underwent a clinical and neuropsychological assessment and T1-weighted and diffusion-tensor magnetic resonance (MR) imaging. Surface-based morphometry was used to assess cortical thickness. Tract-based spatial statistics and tractography were used to study white matter tract damage. Results Patients with LMN-predominant disease did not show differences compared with healthy control subjects in cortical thickness and diffusion-tensor MR imaging metrics. Patients with ALS showed cortical thinning of the motor-related cortices and a distributed involvement of the prefrontal, temporal, and parietal gyri (P < .05, false discovery rate corrected). Patients with ALS also showed white matter damage along motor and extramotor tracts compared with control subjects and patients with LMN-predominant disease (tract-based spatial statistics: P < .05, family-wise error corrected; tractography: P values < .001 to .05, false discovery rate corrected). In patients with LMN-predominant disease, cognitive deficits correlated with alterations in diffusivity in the left cingulum (r = -0.66, P = .01) and superior longitudinal fasciculus (r = -0.65, P = .05). Conclusion Motor and extramotor cortical thinning and diffusion-tensor MR imaging alterations were specific for motor neuron disease phenotypes, with clinically overt upper motor neuron involvement. However, the lack of significant differences in cortical thickness between subjects with LMN-predominant disease and those with ALS and cognitive deficits associated with alterations in diffusivity in patients with LMN-predominant disease suggest that investigating brain structural and microstructural MR imaging features may provide markers of central nervous system damage in patients with rare motor neuron disease. (©) RSNA, 2016 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Edoardo G Spinelli
- From the Neuroimaging Research Unit (E.G.S., F.A., P.M.F., M.F.), Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience (E.G.S., N.R., Y.F., G.C., M.F.), and Department of Neuroradiology and CERMAC (A.F.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy; and NEuroMuscular Omnicenter, Serena Onlus Foundation, Milan, Italy (C.L.)
| | - Federica Agosta
- From the Neuroimaging Research Unit (E.G.S., F.A., P.M.F., M.F.), Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience (E.G.S., N.R., Y.F., G.C., M.F.), and Department of Neuroradiology and CERMAC (A.F.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy; and NEuroMuscular Omnicenter, Serena Onlus Foundation, Milan, Italy (C.L.)
| | - Pilar M Ferraro
- From the Neuroimaging Research Unit (E.G.S., F.A., P.M.F., M.F.), Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience (E.G.S., N.R., Y.F., G.C., M.F.), and Department of Neuroradiology and CERMAC (A.F.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy; and NEuroMuscular Omnicenter, Serena Onlus Foundation, Milan, Italy (C.L.)
| | - Nilo Riva
- From the Neuroimaging Research Unit (E.G.S., F.A., P.M.F., M.F.), Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience (E.G.S., N.R., Y.F., G.C., M.F.), and Department of Neuroradiology and CERMAC (A.F.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy; and NEuroMuscular Omnicenter, Serena Onlus Foundation, Milan, Italy (C.L.)
| | - Christian Lunetta
- From the Neuroimaging Research Unit (E.G.S., F.A., P.M.F., M.F.), Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience (E.G.S., N.R., Y.F., G.C., M.F.), and Department of Neuroradiology and CERMAC (A.F.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy; and NEuroMuscular Omnicenter, Serena Onlus Foundation, Milan, Italy (C.L.)
| | - Yuri M Falzone
- From the Neuroimaging Research Unit (E.G.S., F.A., P.M.F., M.F.), Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience (E.G.S., N.R., Y.F., G.C., M.F.), and Department of Neuroradiology and CERMAC (A.F.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy; and NEuroMuscular Omnicenter, Serena Onlus Foundation, Milan, Italy (C.L.)
| | - Giancarlo Comi
- From the Neuroimaging Research Unit (E.G.S., F.A., P.M.F., M.F.), Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience (E.G.S., N.R., Y.F., G.C., M.F.), and Department of Neuroradiology and CERMAC (A.F.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy; and NEuroMuscular Omnicenter, Serena Onlus Foundation, Milan, Italy (C.L.)
| | - Andrea Falini
- From the Neuroimaging Research Unit (E.G.S., F.A., P.M.F., M.F.), Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience (E.G.S., N.R., Y.F., G.C., M.F.), and Department of Neuroradiology and CERMAC (A.F.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy; and NEuroMuscular Omnicenter, Serena Onlus Foundation, Milan, Italy (C.L.)
| | - Massimo Filippi
- From the Neuroimaging Research Unit (E.G.S., F.A., P.M.F., M.F.), Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience (E.G.S., N.R., Y.F., G.C., M.F.), and Department of Neuroradiology and CERMAC (A.F.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy; and NEuroMuscular Omnicenter, Serena Onlus Foundation, Milan, Italy (C.L.)
| |
Collapse
|
27
|
Smethurst P, Sidle KCL, Hardy J. Review: Prion-like mechanisms of transactive response DNA binding protein of 43 kDa (TDP-43) in amyotrophic lateral sclerosis (ALS). Neuropathol Appl Neurobiol 2015; 41:578-97. [PMID: 25487060 DOI: 10.1111/nan.12206] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/03/2014] [Indexed: 01/13/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal devastating neurodegenerative disorder which predominantly affects the motor neurons in the brain and spinal cord. The death of the motor neurons in ALS causes subsequent muscle atrophy, paralysis and eventual death. Clinical and biological evidence now demonstrates that ALS has many similarities to prion disease in terms of disease onset, phenotype variability and progressive spread. The pathognomonic ubiquitinated inclusions deposited in the neurons and glial cells in brains and spinal cords of patients with ALS and fronto-temporal lobar degeneration with ubiquitinated inclusions contain aggregated transactive response DNA binding protein of 43 kDa (TDP-43), and evidence now suggests that TDP-43 has cellular prion-like properties. The cellular mechanisms of prion protein misfolding and aggregation are thought to be responsible for the characteristics of prion disease. Therefore, there is a strong mechanistic basis for a prion-like behaviour of the TDP-43 protein being responsible for some characteristics of ALS. In this review, we compare the prion-like mechanisms of TDP-43 to the clinical and biological nature of ALS in order to investigate how this protein could be responsible for some of the characteristic properties of the disease.
Collapse
Affiliation(s)
- Phillip Smethurst
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square House, London, UK
| | | | - John Hardy
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square House, London, UK
| |
Collapse
|
28
|
Poly-A binding protein-1 localization to a subset of TDP-43 inclusions in amyotrophic lateral sclerosis occurs more frequently in patients harboring an expansion in C9orf72. J Neuropathol Exp Neurol 2014; 73:837-45. [PMID: 25111021 DOI: 10.1097/nen.0000000000000102] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset motor neuron disease in which the loss of spinal cord motor neurons leads to paralysis and death within a few years of clinical disease onset. In almost all cases of ALS, transactive response DNA binding protein of 43 kDa (TDP-43) forms cytoplasmic neuronal inclusions. A second causative gene for a subset of ALS is fused in sarcoma, an RNA binding protein that also forms cytoplasmic inclusions in spinal cord motor neurons. Poly-A binding protein-1 (PABP-1) is a marker of stress granules (i.e. accumulations of proteins and RNA indicative of translational arrest in cells under stress). We report on the colocalization of PABP-1 to both TDP-43 and fused-in-sarcoma inclusions in 4 patient cohorts: ALS without a mutation, ALS with an intermediate polyglutamine repeat expansion in ATXN2, ALS with a GGGGCC hexanucleotide repeat expansion in C9orf72, and ALS with basophilic inclusion body disease. Notably, PABP-1 colocalization to TDP-43 was twice as frequent in ALS with C9orf72 expansions compared to ALS with no mutation. This study highlights PABP-1 as a protein that is important to the pathology of ALS and indicates that the proteomic profile of TDP-43 inclusions in ALS may differ depending on the causative genetic mutation.
Collapse
|
29
|
Ravits J. Focality, stochasticity and neuroanatomic propagation in ALS pathogenesis. Exp Neurol 2014; 262 Pt B:121-6. [DOI: 10.1016/j.expneurol.2014.07.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/23/2014] [Accepted: 07/31/2014] [Indexed: 12/11/2022]
|
30
|
Riku Y, Atsuta N, Yoshida M, Tatsumi S, Iwasaki Y, Mimuro M, Watanabe H, Ito M, Senda J, Nakamura R, Koike H, Sobue G. Differential motor neuron involvement in progressive muscular atrophy: a comparative study with amyotrophic lateral sclerosis. BMJ Open 2014; 4:e005213. [PMID: 24833696 PMCID: PMC4025414 DOI: 10.1136/bmjopen-2014-005213] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE Progressive muscular atrophy (PMA) is a clinical diagnosis characterised by progressive lower motor neuron (LMN) symptoms/signs with sporadic adult onset. It is unclear whether PMA is simply a clinical phenotype of amyotrophic lateral sclerosis (ALS) in which upper motor neuron (UMN) signs are undetectable. To elucidate the clinicopathological features of patients with clinically diagnosed PMA, we studied consecutive autopsied cases. DESIGN Retrospective, observational. SETTING Autopsied patients. PARTICIPANTS We compared clinicopathological profiles of clinically diagnosed PMA and ALS using 107 consecutive autopsied patients. For clinical analysis, 14 and 103 patients were included in clinical PMA and ALS groups, respectively. For neuropathological evaluation, 13 patients with clinical PMA and 29 patients with clinical ALS were included. PRIMARY OUTCOME MEASURES Clinical features, UMN and LMN degeneration, axonal density in the corticospinal tract (CST) and immunohistochemical profiles. RESULTS Clinically, no significant difference between the prognosis of clinical PMA and ALS groups was shown. Neuropathologically, 84.6% of patients with clinical PMA displayed UMN and LMN degeneration. In the remaining 15.4% of patients with clinical PMA, neuropathological parameters that we defined as UMN degeneration were all negative or in the normal range. In contrast, all patients with clinical ALS displayed a combination of UMN and LMN system degeneration. CST axon densities were diverse in the clinical PMA group, ranging from low values to the normal range, but consistently lower in the clinical ALS group. Immunohistochemically, 85% of patients with clinical PMA displayed 43-kDa TAR DNA-binding protein (TDP-43) pathology, while 15% displayed fused-in-sarcoma (FUS)-positive basophilic inclusion bodies. All of the patients with clinical ALS displayed TDP-43 pathology. CONCLUSIONS PMA has three neuropathological background patterns. A combination of UMN and LMN degeneration with TDP-43 pathology, consistent with ALS, is the major pathological profile. The remaining patterns have LMN degeneration with TDP-43 pathology without UMN degeneration, or a combination of UMN and LMN degeneration with FUS-positive basophilic inclusion body disease.
Collapse
Affiliation(s)
- Yuichi Riku
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Atsuta
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mari Yoshida
- Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Shinsui Tatsumi
- Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Yasushi Iwasaki
- Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Maya Mimuro
- Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Hirohisa Watanabe
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mizuki Ito
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jo Senda
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryoichi Nakamura
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Haruki Koike
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
31
|
Akaishi T, Tateyama M, Kato K, Miura E, Izumi R, Endo K, Sugeno N, Suzuki N, Baba T, Misu T, Kikuchi A, Hasegawa T, Konosu-Fukaya S, Fujishima F, Suzuki H, Nakashima I, Aoki M. An autopsy case involving a 12-year history of amyotrophic lateral sclerosis with CIDP-like polyneuropathy. Intern Med 2014; 53:1371-5. [PMID: 24930660 DOI: 10.2169/internalmedicine.53.0774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Demyelinating polyneuropathy associated with amyotrophic lateral sclerosis (ALS) is quite rare. We herein present the case of a woman patient with a 12-year history of chronic inflammatory demyelinating polyneuropathy (CIDP)-like polyneuropathy who later developed bulbar palsy and respiratory failure. The autopsy findings revealed neuronal loss in the anterior horn and primary motor cortex with degeneration of the corticospinal tracts. Diffuse phosphorylated TAR DNA-binding protein of 43 kDa inclusions were observed in the anterior horn and cerebral cortices, including the temporal lobe. The final diagnosis was ALS with CIDP-like polyneuropathy. Compared with other reports of ALS with CIDP-like polyneuropathy, the present patient was younger and followed a relatively long clinical course, with no upper motor neuron signs.
Collapse
Affiliation(s)
- Tetsuya Akaishi
- Department of Neurology, Tohoku University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ravits J, Appel S, Baloh RH, Barohn R, Brooks BR, Elman L, Floeter MK, Henderson C, Lomen-Hoerth C, Macklis JD, McCluskey L, Mitsumoto H, Przedborski S, Rothstein J, Trojanowski JQ, van den Berg LH, Ringel S. Deciphering amyotrophic lateral sclerosis: what phenotype, neuropathology and genetics are telling us about pathogenesis. Amyotroph Lateral Scler Frontotemporal Degener 2013; 14 Suppl 1:5-18. [PMID: 23678876 DOI: 10.3109/21678421.2013.778548] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized phenotypically by progressive weakness and neuropathologically by loss of motor neurons. Phenotypically, there is marked heterogeneity. Typical ALS has mixed upper motor neuron (UMN) and lower motor neuron (LMN) involvement. Primary lateral sclerosis has predominant UMN involvement. Progressive muscular atrophy has predominant LMN involvement. Bulbar and limb ALS have predominant regional involvement. Frontotemporal dementia has significant cognitive and behavioral involvement. These phenotypes can be so distinctive that they would seem to have differing biology. However, they cannot be distinguished, at least neuropathologically or genetically. In sporadic ALS (SALS), they are mostly characterized by ubiquitinated cytoplasmic inclusions of TDP-43. In familial ALS (FALS), where phenotypes are indistinguishable from SALS and similarly heterogeneous, each mutated gene has its own genetic and molecular signature. Overall, since the same phenotypes can have multiple causes including different gene mutations, there must be multiple molecular mechanisms causing ALS - and ALS is a syndrome. Since, however, multiple phenotypes can be caused by one single gene mutation, a single molecular mechanism can cause heterogeneity. What the mechanisms are remain unknown, but active propagation of the pathology neuroanatomically seems to be a principal component. Leading candidate mechanisms include RNA processing, cell-cell interactions between neurons and non-neuronal neighbors, focal seeding from a misfolded protein that has prion-like propagation, and fatal errors introduced during neurodevelopment of the motor system. If fundamental mechanisms could be identified and understood, ALS therapy could rationally target progression and stop the disease - a goal that seems increasingly achievable.
Collapse
Affiliation(s)
- John Ravits
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Vucic S, Ziemann U, Eisen A, Hallett M, Kiernan MC. Transcranial magnetic stimulation and amyotrophic lateral sclerosis: pathophysiological insights. J Neurol Neurosurg Psychiatry 2013; 84:1161-70. [PMID: 23264687 PMCID: PMC3786661 DOI: 10.1136/jnnp-2012-304019] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disorder of the motor neurons in the motor cortex, brainstem and spinal cord. A combination of upper and lower motor neuron dysfunction comprises the clinical ALS phenotype. Although the ALS phenotype was first observed by Charcot over 100 years ago, the site of ALS onset and the pathophysiological mechanisms underlying the development of motor neuron degeneration remain to be elucidated. Transcranial magnetic stimulation (TMS) enables non-invasive assessment of the functional integrity of the motor cortex and its corticomotoneuronal projections. To date, TMS studies have established motor cortical and corticospinal dysfunction in ALS, with cortical hyperexcitability being an early feature in sporadic forms of ALS and preceding the clinical onset of familial ALS. Taken together, a central origin of ALS is supported by TMS studies, with an anterograde transsynaptic mechanism implicated in ALS pathogenesis. Of further relevance, TMS techniques reliably distinguish ALS from mimic disorders, despite a compatible peripheral disease burden, thereby suggesting a potential diagnostic utility of TMS in ALS. This review will focus on the mechanisms underlying the generation of TMS measures used in assessment of cortical excitability, the contribution of TMS in enhancing the understanding of ALS pathophysiology and the potential diagnostic utility of TMS techniques in ALS.
Collapse
Affiliation(s)
- Steve Vucic
- Sydney Medical School Westmead, University of Sydney, Sydney, New South Wales, Australia.
| | | | | | | | | |
Collapse
|
34
|
Teyssou E, Takeda T, Lebon V, Boillée S, Doukouré B, Bataillon G, Sazdovitch V, Cazeneuve C, Meininger V, LeGuern E, Salachas F, Seilhean D, Millecamps S. Mutations in SQSTM1 encoding p62 in amyotrophic lateral sclerosis: genetics and neuropathology. Acta Neuropathol 2013; 125:511-22. [PMID: 23417734 DOI: 10.1007/s00401-013-1090-0] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/25/2013] [Indexed: 12/26/2022]
Abstract
Mutations in SQSTM1 encoding the sequestosome 1/p62 protein have recently been identified in familial and sporadic cases of amyotrophic lateral sclerosis (ALS). p62 is a component of the ubiquitin inclusions detected in degenerating neurons in ALS patients. We sequenced SQSTM1 in 90 French patients with familial ALS (FALS) and 74 autopsied ALS cases with sporadic ALS (SALS). We identified, at the heterozygote state, one missense c.1175C>T, p.Pro392Leu (exon 8) in one of our FALS and one substitution in intron 7 (the c.1165+1G>A, previously called IVS7+1 G-A, A390X) affecting the exon 7 splicing site in one SALS. These mutations that are located in the ubiquitin-associated domain (UBA domain) of the p62 protein have already been described in Paget's disease and ALS patients carrying these mutations had both concomitant Paget's disease. However, we also identified two novel missense mutations in two SALS: the c.259A>G, p.Met87Val in exon 2 and the c.304A>G, p.Lys102Glu in exon 3. These mutations that were not detected in 360 control subjects are possibly pathogenic. Neuropathology analysis of three patients carrying SQSTM1 variants revealed the presence of large round p62 inclusions in motor neurons, and immunoblot analysis showed an increased p62 and TDP-43 protein levels in the spinal cord. Our results confirm that SQSTM1 gene mutations could be the cause or genetic susceptibility factor of ALS in some patients.
Collapse
|
35
|
Meyer M, Gonzalez Deniselle MC, Gargiulo-Monachelli G, Lima A, Roig P, Guennoun R, Schumacher M, De Nicola AF. Progesterone attenuates several hippocampal abnormalities of the Wobbler mouse. J Neuroendocrinol 2013; 25:235-43. [PMID: 23157231 DOI: 10.1111/jne.12004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 09/03/2012] [Accepted: 11/10/2012] [Indexed: 12/13/2022]
Abstract
It is now recognised that progesterone plays a protective role for diseases of the central nervous system. In the Wobbler mouse, a model of motoneurone degeneration, progesterone treatment prevents spinal cord neuropathology and clinical progression of the disease. However, neuropathological and functional abnormalities have also been discovered in the brain of Wobbler mice and patients with amyotrophic lateral sclerosis. The present study examined the hippocampus of control and afflicted Wobbler mice and the changes in response to progesterone treatment. Mice received either a single progesterone implant (20 mg for 18 days). We found that the hippocampal pathology of the untreated Wobblers involved a decreased expression of brain-derived neurotrophic factor (BDNF) mRNA, decreased astrogliosis in the stratum lucidum, stratum radiatum and stratum lacunosum-moleculare, decreased doublecortin (DCX)-positive neuroblasts in the subgranular zone of the dentate gyrus and a decreased density of GABA immunoreactive hippocampal interneurones and granule cells of the dentate gyrus. Although progesterone did not change the normal parameters of control mice, it attenuated several hippocampal abnormalities in Wobblers. Thus, progesterone increased hippocampal BDNF mRNA expression, decreased glial fibrillary acidic protein-positive astrocytes and increased the number of GABAergic interneurones and granule cells. The number of DCX expressing neuroblasts and immature neurones remained impaired in both progesterone-treated and untreated Wobblers. In conclusion, progesterone treatment exerted beneficial effects on some aspects of hippocampal neuropathology, suggesting its neuroprotective role in the brain, in agreement with previous data obtained in the spinal cord of Wobbler mice.
Collapse
Affiliation(s)
- M Meyer
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental-CONICET, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Hart MP, Brettschneider J, Lee VMY, Trojanowski JQ, Gitler AD. Distinct TDP-43 pathology in ALS patients with ataxin 2 intermediate-length polyQ expansions. Acta Neuropathol 2012; 124:221-30. [PMID: 22526021 DOI: 10.1007/s00401-012-0985-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/11/2012] [Accepted: 04/11/2012] [Indexed: 01/27/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, adult-onset neurodegenerative disease characterized by degeneration of motor neurons, resulting in paralysis and death. A pathological hallmark of the degenerating motor neurons in most ALS patients is the presence of cytoplasmic inclusions containing the protein TDP-43. The morphology and type of TDP-43 pathological inclusions is variable and can range from large round Lewy body-like inclusions to filamentous skein-like inclusions. The clinical significance of this variable pathology is unclear. Intermediate-length polyglutamine (polyQ) expansions in ataxin 2 were recently identified as a genetic risk factor for ALS. Here we have analyzed TDP-43 pathology in a series of ALS cases with or without ataxin 2 intermediate-length polyQ expansions. The motor neurons of ALS cases harboring ataxin 2 polyQ expansions (n = 6) contained primarily skein-like or filamentous TDP-43 pathology and only rarely, if ever, contained large round inclusions, whereas the ALS cases without ataxin 2 polyQ expansions (n = 13) contained abundant large round and skein-like TDP-43 pathology. The paucity of large round TDP-43 inclusions in ALS cases with ataxin 2 polyQ expansions suggests a distinct pathological subtype of ALS and highlights the possibility for distinct pathogenic mechanisms.
Collapse
|
37
|
|
38
|
Schrooten M, Robberecht W, Van Damme P. From El Escorial to Awaji: where do we go next with the amyotrophic lateral sclerosis criteria? Neurodegener Dis Manag 2012. [DOI: 10.2217/nmt.11.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Making an early and accurate diagnosis in amyotrophic lateral sclerosis is important for patients and their families and for entry in clinical trials. Amyotrophic lateral sclerosis remains a clinical diagnosis, requiring the presence of upper and lower motor neuron symptoms and signs in multiple body regions, in patients with a progressive disease course and after exclusion of other diseases that can mimic the clinical presentation. Research criteria have been developed to allow uniform diagnosis. The original El Escorial criteria have been revised twice to improve the sensitivity. In this report, the current scientific status of these criteria is reviewed and suggestions for further adaptations are made.
Collapse
Affiliation(s)
- Maarten Schrooten
- Department of Neurology & Experimental Neurology, University Hospitals Leuven, KU Leuven, Belgium
| | - Wim Robberecht
- Department of Neurology & Experimental Neurology, University Hospitals Leuven, KU Leuven, Belgium
- LIND (Leuven Institute of Neurodegenerative Disorders), KU Leuven, Belgium
- Vesalius Research Center, VIB, Leuven, Belgium
| | - Philip Van Damme
- Neurology Department, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
39
|
Ince PG, Highley JR, Kirby J, Wharton SB, Takahashi H, Strong MJ, Shaw PJ. Molecular pathology and genetic advances in amyotrophic lateral sclerosis: an emerging molecular pathway and the significance of glial pathology. Acta Neuropathol 2011; 122:657-71. [PMID: 22105541 DOI: 10.1007/s00401-011-0913-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 11/10/2011] [Accepted: 11/11/2011] [Indexed: 12/11/2022]
Abstract
Research into amyotrophic lateral sclerosis (ALS) has been stimulated by a series of genetic and molecular pathology discoveries. The hallmark neuronal cytoplasmic inclusions of sporadic ALS (sALS) predominantly comprise a nuclear RNA processing protein, TDP-43 encoded by the gene TARDBP, a discovery that emerged from high throughput analysis of human brain tissue from patients with frontotemporal dementia (FTD) who share a common molecular pathology with ALS. The link between RNA processing and ALS was further strengthened by the discovery that another genetic locus linking familial ALS (fALS) and FTD was due to mutation of the fused in sarcoma (FUS) gene. Of potentially even greater importance it emerges that TDP-43 accumulation and inclusion formation characterises not only most sALS cases but also those that arise from mutations in several genes including TARDBP (predominantly ALS cases) itself, C9ORF72 (ALS and FTD cases), progranulin (predominantly FTD phenotypes), VAPB (predominantly ALS cases) and in some ALS cases with rare genetic variants of uncertain pathogenicity (CHMP2B). "TDP-proteinopathy" therefore now represents a final common pathology associated with changes in multiple genes and opens the possibility of research by triangulation towards key common upstream molecular events. It also delivers final proof of the hypothesis that ALS and most FTD cases are disorders within a common pathology expressed as a clinico-anatomical spectrum. The emergence of TDP-proteinopathy also confirms the view that glial pathology is a crucial facet in this class of neurodegeneration, adding to the established view of non-nerve cell autonomous degeneration of the motor system from previous research on SOD1 fALS. Future research into the mechanisms of TDP-43 and FUS-related neurodegeneration, taking into account the major component of glial pathology now revealed in those disorders will significantly accelerate new discoveries in this field, including target identification for new therapy.
Collapse
Affiliation(s)
- Paul G Ince
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | | | | | | | | | | | | |
Collapse
|
40
|
Murray ME, DeJesus-Hernandez M, Rutherford NJ, Baker M, Duara R, Graff-Radford NR, Wszolek ZK, Ferman TJ, Josephs KA, Boylan KB, Rademakers R, Dickson DW. Clinical and neuropathologic heterogeneity of c9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72. Acta Neuropathol 2011; 122:673-90. [PMID: 22083254 DOI: 10.1007/s00401-011-0907-y] [Citation(s) in RCA: 237] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 12/30/2022]
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are part of a disease spectrum associated with TDP-43 pathology. Strong evidence supporting this is the existence of kindreds with family members affected by FTD, ALS or mixed features of FTD and ALS, referred to as FTD-MND. Some of these families have linkage to chromosome 9, with hexanucleotide expansion mutation in a noncoding region of C9ORF72. Discovery of the mutation defines c9FTD/ALS. Prior to discovery of mutations in C9ORF72, it was assumed that TDP-43 pathology in c9FTD/ALS was uniform. In this study, we examined the neuropathology and clinical features of 20 cases of c9FTD/ALS from a brain bank for neurodegenerative disorders. Included are six patients clinically diagnosed with ALS, eight FTD, one FTD-MND and four Alzheimer-type dementia. Clinical information was unavailable for one patient. Pathologically, the cases all had TDP-43 pathology, but there were three major pathologic groups: ALS, FTLD-MND and FTLD-TDP. The ALS cases were morphologically similar to typical sporadic ALS with almost no extramotor TDP-43 pathology; all had oligodendroglial cytoplasmic inclusions. The FTLD-MND showed predominantly Mackenzie Type 3 TDP-43 pathology, and all had ALS-like pathology in motor neurons, but more extensive extramotor pathology, with oligodendroglial cytoplasmic inclusions and infrequent hippocampal sclerosis. The FTLD-TDP cases had several features similar to FTLD-TDP due to mutations in the gene for progranulin, including Mackenzie Type 1 TDP-43 pathology with neuronal intranuclear inclusions and hippocampal sclerosis. FTLD-TDP patients were older and some were thought to have Alzheimer-type dementia. In addition to the FTD and ALS clinical presentations, the present study shows that c9FTD/ALS can have other presentations, possibly related to age of onset and the presence of hippocampal sclerosis. Moreover, there is pathologic heterogeneity not only between ALS and FTLD, but also within the FTLD group. Further studies are needed to address the molecular mechanism of clinical and pathological heterogeneity of c9FTD/ALS due to mutations in C9ORF72.
Collapse
Affiliation(s)
- Melissa E Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kosaka T, Fu YJ, Shiga A, Ishidaira H, Tan CF, Tani T, Koike R, Onodera O, Nishizawa M, Kakita A, Takahashi H. Primary lateral sclerosis: Upper-motor-predominant amyotrophic lateral sclerosis with frontotemporal lobar degeneration - immunohistochemical and biochemical analyses of TDP-43. Neuropathology 2011; 32:373-84. [DOI: 10.1111/j.1440-1789.2011.01271.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Spinal inhibitory interneuron pathology follows motor neuron degeneration independent of glial mutant superoxide dismutase 1 expression in SOD1-ALS mice. J Neuropathol Exp Neurol 2011; 70:662-77. [PMID: 21760539 DOI: 10.1097/nen.0b013e31822581ac] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Motor neuron degeneration and skeletal muscle denervation are hallmarks of amyotrophic lateral sclerosis (ALS), but other neuron populations and glial cells are also involved in ALS pathogenesis. We examined changes in inhibitory interneurons in spinal cords of the ALS model low-copy Gurney G93A-SOD1 (G1del) mice and found reduced expression of markers of glycinergic and GABAergic neurons, that is, glycine transporter 2 (GlyT2) and glutamic acid decarboxylase (GAD65/67), specifically in the ventral horns of clinically affected mice. There was also loss of GlyT2 and GAD67 messenger RNA-labeled neurons in the intermediate zone. Ubiquitinated inclusions appeared in interneurons before 20 weeks of age, that is, after their development in motor neurons but before the onset of clinical signs and major motor neuron degeneration, which starts from 25 weeks of age. Because mutant superoxide dismutase 1 (SOD1) in glia might contribute to the pathogenesis, we also examined neuron-specific G93A-SOD1 mice; they also had loss of inhibitory interneuron markers in ventral horns and ubiquitinated interneuron inclusions. These data suggest that, in mutant SOD1-associated ALS, pathological changes may spread from motor neurons to interneuronsin a relatively early phase of the disease, independent of the presence of mutant SOD1 in glia. The degeneration of spinal inhibitory interneurons may in turn facilitate degeneration of motor neurons and contribute to disease progression.
Collapse
|
43
|
On the development of markers for pathological TDP-43 in amyotrophic lateral sclerosis with and without dementia. Prog Neurobiol 2011; 95:649-62. [PMID: 21911035 DOI: 10.1016/j.pneurobio.2011.08.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 08/29/2011] [Accepted: 08/29/2011] [Indexed: 11/24/2022]
Abstract
Pathological 43-kDa transactive response sequence DNA-binding protein (TDP-43) has been recognized as the major disease protein in amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with ubiquitin positive, tau and α-synuclein negative inclusions (FTLD-U) and the transitional forms between these multisystem conditions. In order to develop TDP-43 into a successful ALS biomarker, the natural history of TDP-43 pathology needs to be characterized and the underlying pathophysiology established. Here we propose a spatial and temporal "two-axes" model of central nervous system vulnerability for TDP-43 linked degeneration and review recent studies on potential biomarkers related to pathological TDP-43 in the cerebrospinal fluid (CSF), blood, and skeletal muscle. The model includes the following two arms: Firstly, a "motor neuron disease" or "spinal cord/brainstem to motor cortex" axis (with degeneration possibly ascending from the lower motor neurons to the upper motor neurons); and secondly, a "dementia" or "corticoid/allocortex to neocortex" axis (with a probable spread of TDP-43 linked degeneration from the mediotemporal lobe to wider mesocortical and neocortical brain areas). At the cellular level, there is a gradual disappearance of normal TDP-43 in the nucleus in combination with the formation of pathological aggregates in the cell body and cellular processes, which can also be used to identify the stage of the disease process. Moreover, TDP-43 lesions in subpial/subependymal or perivascular localizations have been noted, and this might account for increased CSF and blood TDP-43 levels through mechanisms that remain to be elucidated.
Collapse
|