1
|
Pines AR, Frandsen SB, Drew W, Meyer GM, Howard C, Palm ST, Schaper FLWVJ, Lin C, Butenko K, Ferguson MA, Friedrich MU, Grafman JH, Kappel AD, Neudorfer C, Rost NS, Sanderson LL, Taylor JJ, Wu O, Kletenik I, Vogel JW, Cohen AL, Horn A, Fox MD, Silbersweig D, Siddiqi SH. Mapping Lesions That Cause Psychosis to a Human Brain Circuit and Proposed Stimulation Target. JAMA Psychiatry 2025; 82:368-378. [PMID: 39937525 PMCID: PMC11822627 DOI: 10.1001/jamapsychiatry.2024.4534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/19/2024] [Indexed: 02/13/2025]
Abstract
Importance Identifying anatomy causally involved in psychosis could inform therapeutic neuromodulation targets for schizophrenia. Objective To assess whether lesions that cause secondary psychosis have functional connections to a common brain circuit. Design, Setting, and Participants This case-control study mapped functional connections of published cases of lesions causing secondary psychosis compared with control lesions unassociated with psychosis. Published cases of lesion-induced psychosis were analyzed in a computational laboratory. Participants had documented brain lesions associated with new-onset psychotic symptoms without a history of psychosis. Control cases included 1156 patients with lesions not associated with psychosis. Generalizability across lesional datasets was assessed using an independent cohort of 181 patients with brain lesions who subsequently underwent neurobehavioral testing. Data were analyzed from June 2022 to April 2024. Exposures Lesions causing secondary psychosis. Main Outcomes and Measures Psychosis or no psychosis. Results A total of 153 lesions from published cases were determined to be causal of psychosis, 42 of which were described as schizophrenia or schizophrenia-like (71 [46%] patients were male, 82 [54%] female; mean [SD] age, 50.0 [20.8] years). Lesions that caused secondary psychosis mapped to a common brain circuit defined by functional connectivity to the posterior subiculum of the hippocampus (84% functional overlap, family-wise error [FWE] rate corrected P < 5 × 10-5). At a lower statistical threshold (>75% overlap, FWE-corrected P < 5 × 10-4), this circuit included the ventral tegmental area, retrosplenial cortex, lobule IX and dentate nucleus of the cerebellum, and the mediodorsal and midline nuclei of the thalamus. This circuit was consistent when derived from schizophrenia-like cases (spatial r = 0.98). We repeated these analyses after excluding lesions intersecting the hippocampus (n = 47) and found a consistent functional connectivity profile (spatial r = 0.98) with the posterior subiculum remaining the center of connectivity (>75% overlap, FWE-corrected P < 5 × 10-5), demonstrating a circuit-level effect. In an independent observational cohort of patients with penetrating head trauma (n = 181), lesions associated with symptoms of psychosis exhibited significantly similar connectivity profiles to the lesion-derived psychosis circuit (suspiciousness, P = .03; unusual thought content, P = .046). Voxels in the rostromedial prefrontal cortex are highly correlated with this psychosis circuit (spatial r = 0.82), suggesting the rostromedial prefrontal cortex as a promising transcranial magnetic stimulation target for psychosis. Conclusions and Relevance Lesions that cause secondary psychosis affect a common brain circuit in the hippocampus. These results can help inform therapeutic neuromodulation targeting.
Collapse
Affiliation(s)
- Andrew R. Pines
- Department of Psychiatry, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Center for Brain Circuit Therapeutics, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Summer B. Frandsen
- Center for Brain Circuit Therapeutics, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - William Drew
- Center for Brain Circuit Therapeutics, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Garance M. Meyer
- Center for Brain Circuit Therapeutics, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurology, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Calvin Howard
- Center for Brain Circuit Therapeutics, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurology, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stephan T. Palm
- Center for Brain Circuit Therapeutics, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Frederic L. W. V. J. Schaper
- Center for Brain Circuit Therapeutics, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurology, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Christopher Lin
- Center for Brain Circuit Therapeutics, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Konstantin Butenko
- Center for Brain Circuit Therapeutics, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael A. Ferguson
- Center for Brain Circuit Therapeutics, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurology, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Maximilian U. Friedrich
- Center for Brain Circuit Therapeutics, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jordan H. Grafman
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Shirley Ryan AbilityLab, Chicago, Illinois
| | - Ari D. Kappel
- Center for Brain Circuit Therapeutics, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurosurgery, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Clemens Neudorfer
- Center for Brain Circuit Therapeutics, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston
- Brain Modulation Lab, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Natalia S. Rost
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Lauren L. Sanderson
- Center for Brain Circuit Therapeutics, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joseph J. Taylor
- Department of Psychiatry, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Center for Brain Circuit Therapeutics, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ona Wu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Isaiah Kletenik
- Center for Brain Circuit Therapeutics, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurology, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jacob W. Vogel
- SciLifeLab, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Alexander L. Cohen
- Center for Brain Circuit Therapeutics, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Computational Radiology Laboratory, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andreas Horn
- Center for Brain Circuit Therapeutics, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurology, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael D. Fox
- Center for Brain Circuit Therapeutics, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurology, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - David Silbersweig
- Department of Psychiatry, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Center for Brain Circuit Therapeutics, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurology, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shan H. Siddiqi
- Department of Psychiatry, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Center for Brain Circuit Therapeutics, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Akkouh IA, Osete JR, Szabo A, Andreassen OA, Djurovic S. Neurobiological Perturbations in Bipolar Disorder Compared With Schizophrenia: Evidence From Cell Cultures and Brain Organoids. Biol Psychiatry 2025:S0006-3223(25)00110-6. [PMID: 39983953 DOI: 10.1016/j.biopsych.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/06/2025] [Accepted: 02/13/2025] [Indexed: 02/23/2025]
Abstract
Bipolar disorder (BD) and schizophrenia (SCZ) are uniquely human disorders with a complex pathophysiology that involves adverse neuropathological events in brain development. High disease polygenicity and limited access to live human brain tissue make these disorders exceedingly challenging to study mechanistically. Cellular cultures and brain organoids generated from human-derived pluripotent stem cells preserve the genetic background of the donor cells and recapitulate some of the defining characteristics of human brain architecture and early spatiotemporal development. These model systems have already proven successful in deciphering some of the neuropathological perturbations in BD and SCZ, and methodological advancements, such as the functional integration of 2 or more region-specific organoids and organoid transplantation in animals, promise to deliver increasingly refined insights. Here, we review a selection of recent discoveries achieved by stem cell-based models, with a particular focus on patterns of cellular and molecular convergence and divergence between BD and SCZ. First, we provide a brief overview of the evidence from glial and neuronal cell cultures and brain organoids, centering our discussion on several key functional domains, including neuroinflammation, neuronal excitability, and mitochondrial function. Then, we review recent findings demonstrating the power of integrating stem cell-based systems with gene editing technologies to elucidate the functional consequences of risk variants identified through genetic association studies. We end with a discussion of current challenges and some promising avenues for future research.
Collapse
Affiliation(s)
- Ibrahim A Akkouh
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Jordi Requena Osete
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Attila Szabo
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
3
|
Haikonen J, Szrinivasan R, Ojanen S, Rhee JK, Ryazantseva M, Sulku J, Zumaraite G, Lauri SE. GluK1 kainate receptors are necessary for functional maturation of parvalbumin interneurons regulating amygdala circuit function. Mol Psychiatry 2024; 29:3752-3768. [PMID: 38942774 PMCID: PMC11609095 DOI: 10.1038/s41380-024-02641-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
Parvalbumin expressing interneurons (PV INs) are key players in the local inhibitory circuits and their developmental maturation coincides with the onset of adult-type network dynamics in the brain. Glutamatergic signaling regulates emergence of the unique PV IN phenotype, yet the receptor mechanisms involved are not fully understood. Here we show that GluK1 subunit containing kainate receptors (KARs) are necessary for development and maintenance of the neurochemical and functional properties of PV INs in the lateral and basal amygdala (BLA). Ablation of GluK1 expression specifically from PV INs resulted in low parvalbumin expression and loss of characteristic high firing rate throughout development. In addition, we observed reduced spontaneous excitatory synaptic activity at adult GluK1 lacking PV INs. Intriguingly, inactivation of GluK1 expression in adult PV INs was sufficient to abolish their high firing rate and to reduce PV expression levels, suggesting a role for GluK1 in dynamic regulation of PV IN maturation state. The PV IN dysfunction in the absence of GluK1 perturbed the balance between evoked excitatory vs. inhibitory synaptic inputs and long-term potentiation (LTP) in LA principal neurons, and resulted in aberrant development of the resting-state functional connectivity between mPFC and BLA. Behaviorally, the absence of GluK1 from PV INs associated with hyperactivity and increased fear of novelty. These results indicate a critical role for GluK1 KARs in regulation of PV IN function across development and suggest GluK1 as a potential therapeutic target for pathologies involving PV IN malfunction.
Collapse
Affiliation(s)
- Joni Haikonen
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Rakenduvadhana Szrinivasan
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Simo Ojanen
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Jun Kyu Rhee
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Maria Ryazantseva
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Janne Sulku
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Gabija Zumaraite
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Sari E Lauri
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
4
|
Sandoval KE, Witt KA. Somatostatin: Linking Cognition and Alzheimer Disease to Therapeutic Targeting. Pharmacol Rev 2024; 76:1291-1325. [PMID: 39013601 PMCID: PMC11549939 DOI: 10.1124/pharmrev.124.001117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Over 4 decades of research support the link between Alzheimer disease (AD) and somatostatin [somatotropin-releasing inhibitory factor (SRIF)]. SRIF and SRIF-expressing neurons play an essential role in brain function, modulating hippocampal activity and memory formation. Loss of SRIF and SRIF-expressing neurons in the brain rests at the center of a series of interdependent pathological events driven by amyloid-β peptide (Aβ), culminating in cognitive decline and dementia. The connection between the SRIF and AD further extends to the neuropsychiatric symptoms, seizure activity, and inflammation, whereas preclinical AD investigations show SRIF or SRIF receptor agonist administration capable of enhancing cognition. SRIF receptor subtype-4 activation in particular presents unique attributes, with the potential to mitigate learning and memory decline, reduce comorbid symptoms, and enhance enzymatic degradation of Aβ in the brain. Here, we review the links between SRIF and AD along with the therapeutic implications. SIGNIFICANCE STATEMENT: Somatostatin and somatostatin-expressing neurons in the brain are extensively involved in cognition. Loss of somatostatin and somatostatin-expressing neurons in Alzheimer disease rests at the center of a series of interdependent pathological events contributing to cognitive decline and dementia. Targeting somatostatin-mediated processes has significant therapeutic potential for the treatment of Alzheimer disease.
Collapse
Affiliation(s)
- Karin E Sandoval
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| | - Ken A Witt
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| |
Collapse
|
5
|
O’Brien JT, Jalilvand SP, Suji NA, Jupelly RK, Phensy A, Mwirigi JM, Elahi H, Price TJ, Kroener S. Elevations in the Mitochondrial Matrix Protein Cyclophilin D Correlate With Reduced Parvalbumin Expression in the Prefrontal Cortex of Patients With Schizophrenia. Schizophr Bull 2024; 50:1197-1207. [PMID: 38412332 PMCID: PMC11349014 DOI: 10.1093/schbul/sbae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
BACKGROUND AND HYPOTHESIS Cognitive deficits in schizophrenia are linked to dysfunctions of the dorsolateral prefrontal cortex (DLPFC), including alterations in parvalbumin (PV)-expressing interneurons (PVIs). Redox dysregulation and oxidative stress may represent convergence points in the pathology of schizophrenia, causing dysfunction of GABAergic interneurons and loss of PV. Here, we show that the mitochondrial matrix protein cyclophilin D (CypD), a critical initiator of the mitochondrial permeability transition pore (mPTP) and modulator of the intracellular redox state, is altered in PVIs in schizophrenia. STUDY DESIGN Western blotting was used to measure CypD protein levels in postmortem DLPFC specimens of schizophrenic patients (n = 27) and matched comparison subjects with no known history of psychiatric or neurological disorders (n = 26). In a subset of this cohort, multilabel immunofluorescent confocal microscopy with unbiased stereological sampling methods were used to quantify (1) numbers of PVI across the cortical mantle (20 unaffected comparison, 14 schizophrenia) and (2) PV and CypD protein levels from PVIs in the cortical layers 2-4 (23 unaffected comparison, 18 schizophrenia). STUDY RESULTS In schizophrenic patients, the overall number of PVIs in the DLPFC was not significantly altered, but in individual PVIs of layers 2-4 PV protein levels decreased along a superficial-to-deep gradient when compared to unaffected comparison subjects. These laminar-specific PVI alterations were reciprocally linked to significant CypD elevations both in PVIs and total DLPFC gray matter. CONCLUSIONS Our findings support previously reported PVI anomalies in schizophrenia and suggest that CypD-mediated mPTP formation could be a potential contributor to PVI dysfunction in schizophrenia.
Collapse
Affiliation(s)
- John T O’Brien
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Sophia P Jalilvand
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Neha A Suji
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Rohan K Jupelly
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Aarron Phensy
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Juliet M Mwirigi
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Hajira Elahi
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Theodore J Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Sven Kroener
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
6
|
Livingston NR, Kiemes A, Devenyi GA, Knight S, Lukow PB, Jelen LA, Reilly T, Dima A, Nettis MA, Casetta C, Agyekum T, Zelaya F, Spencer T, De Micheli A, Fusar-Poli P, Grace AA, Williams SCR, McGuire P, Egerton A, Chakravarty MM, Modinos G. Effects of diazepam on hippocampal blood flow in people at clinical high risk for psychosis. Neuropsychopharmacology 2024; 49:1448-1458. [PMID: 38658738 PMCID: PMC11250854 DOI: 10.1038/s41386-024-01864-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/11/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Elevated hippocampal perfusion has been observed in people at clinical high risk for psychosis (CHR-P). Preclinical evidence suggests that hippocampal hyperactivity is central to the pathophysiology of psychosis, and that peripubertal treatment with diazepam can prevent the development of psychosis-relevant phenotypes. The present experimental medicine study examined whether diazepam can normalize hippocampal perfusion in CHR-P individuals. Using a randomized, double-blind, placebo-controlled, crossover design, 24 CHR-P individuals were assessed with magnetic resonance imaging (MRI) on two occasions, once following a single oral dose of diazepam (5 mg) and once following placebo. Regional cerebral blood flow (rCBF) was measured using 3D pseudo-continuous arterial spin labeling and sampled in native space using participant-specific hippocampus and subfield masks (CA1, subiculum, CA4/dentate gyrus). Twenty-two healthy controls (HC) were scanned using the same MRI acquisition sequence, but without administration of diazepam or placebo. Mixed-design ANCOVAs and linear mixed-effects models were used to examine the effects of group (CHR-P placebo/diazepam vs. HC) and condition (CHR-P diazepam vs. placebo) on rCBF in the hippocampus as a whole and by subfield. Under the placebo condition, CHR-P individuals (mean [±SD] age: 24.1 [±4.8] years, 15 F) showed significantly elevated rCBF compared to HC (mean [±SD] age: 26.5 [±5.1] years, 11 F) in the hippocampus (F(1,41) = 24.7, pFDR < 0.001) and across its subfields (all pFDR < 0.001). Following diazepam, rCBF in the hippocampus (and subfields, all pFDR < 0.001) was significantly reduced (t(69) = -5.1, pFDR < 0.001) and normalized to HC levels (F(1,41) = 0.4, pFDR = 0.204). In conclusion, diazepam normalized hippocampal hyperperfusion in CHR-P individuals, consistent with evidence implicating medial temporal GABAergic dysfunction in increased vulnerability for psychosis.
Collapse
Affiliation(s)
- Nicholas R Livingston
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK.
| | - Amanda Kiemes
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Gabriel A Devenyi
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Samuel Knight
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Paulina B Lukow
- Institute of Cognitive Neuroscience, University College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Luke A Jelen
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Thomas Reilly
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Aikaterini Dima
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Maria Antonietta Nettis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Cecilia Casetta
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Tyler Agyekum
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Thomas Spencer
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Outreach and Support in South-London (OASIS) service, South London and Maudsley (SLaM) NHS Foundation Trust, London, UK
| | - Andrea De Micheli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Outreach and Support in South-London (OASIS) service, South London and Maudsley (SLaM) NHS Foundation Trust, London, UK
| | - Paolo Fusar-Poli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Outreach and Support in South-London (OASIS) service, South London and Maudsley (SLaM) NHS Foundation Trust, London, UK
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steve C R Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Philip McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - M Mallar Chakravarty
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Gemma Modinos
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
7
|
Palmisano A, Pandit S, Smeralda CL, Demchenko I, Rossi S, Battelli L, Rivolta D, Bhat V, Santarnecchi E. The Pathophysiological Underpinnings of Gamma-Band Alterations in Psychiatric Disorders. Life (Basel) 2024; 14:578. [PMID: 38792599 PMCID: PMC11122172 DOI: 10.3390/life14050578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 05/26/2024] Open
Abstract
Investigating the biophysiological substrates of psychiatric illnesses is of great interest to our understanding of disorders' etiology, the identification of reliable biomarkers, and potential new therapeutic avenues. Schizophrenia represents a consolidated model of γ alterations arising from the aberrant activity of parvalbumin-positive GABAergic interneurons, whose dysfunction is associated with perineuronal net impairment and neuroinflammation. This model of pathogenesis is supported by molecular, cellular, and functional evidence. Proof for alterations of γ oscillations and their underlying mechanisms has also been reported in bipolar disorder and represents an emerging topic for major depressive disorder. Although evidence from animal models needs to be further elucidated in humans, the pathophysiology of γ-band alteration represents a common denominator for different neuropsychiatric disorders. The purpose of this narrative review is to outline a framework of converging results in psychiatric conditions characterized by γ abnormality, from neurochemical dysfunction to alterations in brain rhythms.
Collapse
Affiliation(s)
- Annalisa Palmisano
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, TUD Dresden University of Technology, 01069 Dresden, Germany
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Siddhartha Pandit
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
| | - Carmelo L. Smeralda
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
- Siena Brain Investigation and Neuromodulation (SI-BIN) Laboratory, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, 53100 Siena, Italy;
| | - Ilya Demchenko
- Interventional Psychiatry Program, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (I.D.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Simone Rossi
- Siena Brain Investigation and Neuromodulation (SI-BIN) Laboratory, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, 53100 Siena, Italy;
| | - Lorella Battelli
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Davide Rivolta
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Venkat Bhat
- Interventional Psychiatry Program, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (I.D.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
- Department of Neurology and Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
8
|
Olkhova EA, Smith LA, Dennis BH, Ng YS, LeBeau FEN, Gorman GS. Delineating mechanisms underlying parvalbumin neuron impairment in different neurological and neurodegenerative disorders: the emerging role of mitochondrial dysfunction. Biochem Soc Trans 2024; 52:553-565. [PMID: 38563502 PMCID: PMC11088917 DOI: 10.1042/bst20230191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024]
Abstract
Given the current paucity of effective treatments in many neurological disorders, delineating pathophysiological mechanisms among the major psychiatric and neurodegenerative diseases may fuel the development of novel, potent treatments that target shared pathways. Recent evidence suggests that various pathological processes, including bioenergetic failure in mitochondria, can perturb the function of fast-spiking, parvalbumin-positive neurons (PV+). These inhibitory neurons critically influence local circuit regulation, the generation of neuronal network oscillations and complex brain functioning. Here, we survey PV+ cell vulnerability in the major neuropsychiatric, and neurodegenerative diseases and review associated cellular and molecular pathophysiological alterations purported to underlie disease aetiology.
Collapse
Affiliation(s)
- Elizaveta A. Olkhova
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | - Laura A. Smith
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | - Bethany H. Dennis
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | - Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, U.K
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, U.K
| | - Fiona E. N. LeBeau
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | - Gráinne S. Gorman
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, U.K
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, U.K
| |
Collapse
|
9
|
Dummer PD, Lee DI, Hossain S, Wang R, Evard A, Newman G, Ho C, Schneider-Mizell CM, Menon V, Au E. Multidimensional analysis of cortical interneuron synaptic features reveals underlying synaptic heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586340. [PMID: 38659827 PMCID: PMC11042224 DOI: 10.1101/2024.03.22.586340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Cortical interneurons represent a diverse set of neuronal subtypes characterized in part by their striking degree of synaptic specificity. However, little is known about the extent of synaptic diversity because of the lack of unbiased methods to extract synaptic features among interneuron subtypes. Here, we develop an approach to aggregate image features from fluorescent confocal images of interneuron synapses and their post-synaptic targets, in order to characterize the heterogeneity of synapses at fine scale. We started by training a model that recognizes pre- and post-synaptic compartments and then determines the target of each genetically-identified interneuron synapse in vitro and in vivo. Our model extracts hundreds of spatial and intensity features from each analyzed synapse, constructing a multidimensional data set, consisting of millions of synapses, which allowed us to perform an unsupervised analysis on this dataset, uncovering novel synaptic subgroups. The subgroups were spatially distributed in a highly structured manner that revealed the local underlying topology of the postsynaptic environment. Dendrite-targeting subgroups were clustered onto subdomains of the dendrite along the proximal to distal axis. Soma-targeting subgroups were enriched onto different postsynaptic cell types. We also find that the two main subclasses of interneurons, basket cells and somatostatin interneurons, utilize distinct strategies to enact inhibitory coverage. Thus, our analysis of multidimensional synaptic features establishes a conceptual framework for studying interneuron synaptic diversity.
Collapse
Affiliation(s)
- Patrick D. Dummer
- Department of Pathology and Cell Biology, Columbia Irving Medical Center, New York NY, 10032
| | - Dylan I. Lee
- Department of Neurology, Columbia Irving Medical Center, New York NY, 10032
| | - Sakib Hossain
- Department of Pathology and Cell Biology, Columbia Irving Medical Center, New York NY, 10032
| | - Runsheng Wang
- Department of Pathology and Cell Biology, Columbia Irving Medical Center, New York NY, 10032
| | - Andre Evard
- Department of Pathology and Cell Biology, Columbia Irving Medical Center, New York NY, 10032
| | - Gabriel Newman
- Department of Pathology and Cell Biology, Columbia Irving Medical Center, New York NY, 10032
| | - Claire Ho
- Department of Pathology and Cell Biology, Columbia Irving Medical Center, New York NY, 10032
| | | | - Vilas Menon
- Department of Neurology, Columbia Irving Medical Center, New York NY, 10032
| | - Edmund Au
- Department of Pathology and Cell Biology, Columbia Irving Medical Center, New York NY, 10032
- Columbia Translation Neuroscience Initiative Fellow, Columbia Irving Medical Center, New York NY, 10032
| |
Collapse
|
10
|
Bird AD, Cuntz H, Jedlicka P. Robust and consistent measures of pattern separation based on information theory and demonstrated in the dentate gyrus. PLoS Comput Biol 2024; 20:e1010706. [PMID: 38377108 PMCID: PMC10906873 DOI: 10.1371/journal.pcbi.1010706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/01/2024] [Accepted: 12/13/2023] [Indexed: 02/22/2024] Open
Abstract
Pattern separation is a valuable computational function performed by neuronal circuits, such as the dentate gyrus, where dissimilarity between inputs is increased, reducing noise and increasing the storage capacity of downstream networks. Pattern separation is studied from both in vivo experimental and computational perspectives and, a number of different measures (such as orthogonalisation, decorrelation, or spike train distance) have been applied to quantify the process of pattern separation. However, these are known to give conclusions that can differ qualitatively depending on the choice of measure and the parameters used to calculate it. We here demonstrate that arbitrarily increasing sparsity, a noticeable feature of dentate granule cell firing and one that is believed to be key to pattern separation, typically leads to improved classical measures for pattern separation even, inappropriately, up to the point where almost all information about the inputs is lost. Standard measures therefore both cannot differentiate between pattern separation and pattern destruction, and give results that may depend on arbitrary parameter choices. We propose that techniques from information theory, in particular mutual information, transfer entropy, and redundancy, should be applied to penalise the potential for lost information (often due to increased sparsity) that is neglected by existing measures. We compare five commonly-used measures of pattern separation with three novel techniques based on information theory, showing that the latter can be applied in a principled way and provide a robust and reliable measure for comparing the pattern separation performance of different neurons and networks. We demonstrate our new measures on detailed compartmental models of individual dentate granule cells and a dentate microcircuit, and show how structural changes associated with epilepsy affect pattern separation performance. We also demonstrate how our measures of pattern separation can predict pattern completion accuracy. Overall, our measures solve a widely acknowledged problem in assessing the pattern separation of neural circuits such as the dentate gyrus, as well as the cerebellum and mushroom body. Finally we provide a publicly available toolbox allowing for easy analysis of pattern separation in spike train ensembles.
Collapse
Affiliation(s)
- Alexander D. Bird
- Computer-Based Modelling in the field of 3R Animal Protection, ICAR3R, Faculty of Medicine, Justus Liebig University, Giessen, Germany
- Ernst Strüngmann Institute (ESI) for Neuroscience in cooperation with the Max Planck Society, Frankfurt-am-Main, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt-am-Main, Germany
- Translational Neuroscience Network Giessen, Germany
| | - Hermann Cuntz
- Ernst Strüngmann Institute (ESI) for Neuroscience in cooperation with the Max Planck Society, Frankfurt-am-Main, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt-am-Main, Germany
- Translational Neuroscience Network Giessen, Germany
| | - Peter Jedlicka
- Computer-Based Modelling in the field of 3R Animal Protection, ICAR3R, Faculty of Medicine, Justus Liebig University, Giessen, Germany
- Translational Neuroscience Network Giessen, Germany
| |
Collapse
|
11
|
Rabelo-da-Ponte FD, Marchionatti LE, Watts D, Roza TH, Amoretti S, Barros FC, Wehrmeister FC, Gonçalves H, B Menezes AM, Kunz M, Kapczinski F, Passos IC. Premorbid intelligence quotient and school failure as risk markers for bipolar disorder and major depressive disorder. J Psychiatr Res 2024; 169:160-165. [PMID: 38039690 DOI: 10.1016/j.jpsychires.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/16/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
Mood disorders significantly impact global health, with MDD ranking as the second leading cause of disability in the United States and BD ranking 18th. Despite their prevalence and impact, the relationship between premorbid intelligence and the subsequent development of BD and MDD remains inconclusive. This study investigates the potential of premorbid Intelligence Quotient (IQ) and school failure frequency as risk factors for Bipolar Disorder (BD) and Major Depressive Disorder (MDD) in a birth cohort setting. We analyze data from the Pelotas population-based birth cohort study, comprising 3580 participants aged 22, who had no prior mood disorder diagnoses. Utilizing regression models and accounting for potential confounders, we assess the impact of IQ and school failure, measured at age 18, on the emergence of BD and MDD diagnoses at age 22, using individuals without mood disorders as comparators. Results reveal that lower IQ (below 70) at 18 is associated with an increased risk of BD (Adjusted Odds Ratio [AOR] 1.75, 95%CI: 1.00-3.09, p < 0.05), while higher IQ (above 120) is linked to MDD (AOR 2.16, 95%CI: 1.24-3.75, p < 0.001). Moreover, an elevated number of school failures is associated with increased BD risk (AOR 1.23, 95%CI: 1.11-1.41, p < 0.001), particularly for BD type 1 (AOR 1.36, 95% CI: 1.17-1.58, p < 0.001). These findings offer insights into the distinct premorbid intellectual characteristics of BD and MDD and contribute to a deeper understanding of their developmental trajectories, potentially informing the development of risk assessment tools for mood disorders.
Collapse
Affiliation(s)
- Francisco Diego Rabelo-da-Ponte
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom.
| | - Lauro Estivalete Marchionatti
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Porto Alegre, RS, Brazil.
| | - Devon Watts
- Department of Psychiatry, Harvard Medical School, USA; Center for Precision Psychiatry, Massachusetts General Hospital, USA.
| | - Thiago Henrique Roza
- Department of Psychiatry, Universidade Federal do Paraná (UFPR), Curitiba, Brazil.
| | - Silvia Amoretti
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, Biomedical Network Research Centre on Mental Health (CIBERSAM), 170 Villarroel st, 12-0, 08036, Barcelona, Catalonia, Spain; Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, CIBERSAM, Barcelona, Catalonia, Spain.
| | - Fernando C Barros
- Postgraduate Program in Epidemiology, Universidade Federal de Pelotas, Pelotas, Brazil.
| | | | - Helen Gonçalves
- Postgraduate Program in Epidemiology, Universidade Federal de Pelotas, Pelotas, Brazil.
| | - Ana Maria B Menezes
- Postgraduate Program in Epidemiology, Universidade Federal de Pelotas, Pelotas, Brazil.
| | - Maurício Kunz
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Porto Alegre, RS, Brazil
| | - Flávio Kapczinski
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Porto Alegre, RS, Brazil; Neuroscience Graduate Program, McMaster University, Hamilton, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
| | - Ives Cavalcante Passos
- Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul, School of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Porto Alegre, RS, Brazil.
| |
Collapse
|
12
|
Cao P, Chen C, Si Q, Li Y, Ren F, Han C, Zhao J, Wang X, Xu G, Sui Y. Volumes of hippocampal subfields suggest a continuum between schizophrenia, major depressive disorder and bipolar disorder. Front Psychiatry 2023; 14:1191170. [PMID: 37547217 PMCID: PMC10400724 DOI: 10.3389/fpsyt.2023.1191170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Objective There is considerable debate as to whether the continuum of major psychiatric disorders exists and to what extent the boundaries extend. Converging evidence suggests that alterations in hippocampal volume are a common sign in psychiatric disorders; however, there is still no consensus on the nature and extent of hippocampal atrophy in schizophrenia (SZ), major depressive disorder (MDD) and bipolar disorder (BD). The aim of this study was to verify the continuum of SZ - BD - MDD at the level of hippocampal subfield volume and to compare the volume differences in hippocampal subfields in the continuum. Methods A total of 412 participants (204 SZ, 98 MDD, and 110 BD) underwent 3 T MRI scans, structured clinical interviews, and clinical scales. We segmented the hippocampal subfields with FreeSurfer 7.1.1 and compared subfields volumes across the three diagnostic groups by controlling for age, gender, education, and intracranial volumes. Results The results showed a gradual increase in hippocampal subfield volumes from SZ to MDD to BD. Significant volume differences in the total hippocampus and 13 of 26 hippocampal subfields, including CA1, CA3, CA4, GC-ML-DG, molecular layer and the whole hippocampus, bilaterally, and parasubiculum in the right hemisphere, were observed among diagnostic groups. Medication treatment had the most effect on subfields of MDD compared to SZ and BD. Subfield volumes were negatively correlated with illness duration of MDD. Positive correlations were found between subfield volumes and drug dose in SZ and MDD. There was no significant difference in laterality between diagnostic groups. Conclusion The pattern of hippocampal volume reduction in SZ, MDD and BD suggests that there may be a continuum of the three disorders at the hippocampal level. The hippocampus represents a phenotype that is distinct from traditional diagnostic strategies. Combined with illness duration and drug intervention, it may better reflect shared pathophysiology and mechanisms across psychiatric disorders.
Collapse
Affiliation(s)
- Peiyu Cao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Congxin Chen
- Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Qi Si
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
- Huai’an No. 3 People’s Hospital, Huai’an, China
| | - Yuting Li
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Fangfang Ren
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Chongyang Han
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Jingjing Zhao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Xiying Wang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Guoxin Xu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Yuxiu Sui
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| |
Collapse
|
13
|
Hirai S, Sakuma A, Kunii Y, Shimbo H, Hino M, Izumi R, Nagaoka A, Yabe H, Kojima R, Seki E, Arai N, Komori T, Okado H. Disease specific brain capillary angiopathy in schizophrenia, bipolar disorder, and Alzheimer's disease. J Psychiatr Res 2023; 163:74-79. [PMID: 37207434 DOI: 10.1016/j.jpsychires.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/26/2023] [Accepted: 04/08/2023] [Indexed: 05/21/2023]
Abstract
Schizophrenia (SZ) and bipolar disorder (BD), which are both psychiatric disorders, share some common clinical evidence. We recently discovered that brain capillary angiopathy is another common feature of these psychiatric disorders using fibrin accumulation in vascular endothelial cells as an indicator. This study aimed to characterize the similarities and differences in cerebral capillary injuries in various brain diseases to provide new diagnostic methods for SZ and BD and to develop new therapeutic strategies. We evaluated whether discrepancies exist in the degree of vascular damage among SZ and BD and other brain disorders (amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD)) using postmortem brains. Our results demonstrate that fibrin was strongly accumulated in the capillaries of the grey matter (GM) of brains of patients with SZ and AD and in the capillaries of the white matter (WM) in those of patients with SZ, BD, and AD when compared with control subjects without any psychiatric or neurological disease history. However, ALS and PD brains did not present a significant increase in the amount of accumulated fibrin, either in the capillaries of WM or GM. Furthermore, significant leakage of fibrin into the brain parenchyma, indicating a vascular physical disruption, was observed in the brains of patients with AD but not in the brains of other patients compared with control subjects. In conclusion, our work reveals that Fibrin-accumulation in the brain capillaries are observed in psychiatric disorders, such as SZ, BD, and AD. Furthermore, fibrin-accumulating, nonbreaking type angiopathy is characteristic of SZ and BD, even though there are regional differences between these diseases.
Collapse
Affiliation(s)
- Shinobu Hirai
- Brain Metabolic Regulation Group, Frontier Laboratory, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
| | - Atsuhiro Sakuma
- Brain Metabolic Regulation Group, Frontier Laboratory, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Yasuto Kunii
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, 960-1295, Japan; Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Miyagi, 980-8573, Japan
| | - Hiroko Shimbo
- Brain Metabolic Regulation Group, Frontier Laboratory, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Sleep Disorders Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Mizuki Hino
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, 960-1295, Japan; Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Miyagi, 980-8573, Japan
| | - Ryuta Izumi
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Atsuko Nagaoka
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Rika Kojima
- Laboratory of Neuropathology, Tokyo Metropolitan Institute of Medical Sciences, Tokyo, 156-8506, Japan
| | - Erika Seki
- Laboratory of Neuropathology, Tokyo Metropolitan Institute of Medical Sciences, Tokyo, 156-8506, Japan
| | - Nobutaka Arai
- Laboratory of Neuropathology, Tokyo Metropolitan Institute of Medical Sciences, Tokyo, 156-8506, Japan
| | - Takashi Komori
- Department of Pathology and Laboratory Medicine, Tokyo Metropolitan Neurological Hospital, Tokyo, 183-0042, Japan
| | - Haruo Okado
- Sleep Disorders Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
| |
Collapse
|
14
|
Farmer CB, Roach EL, Bice LR, Falgout ME, Mata KG, Roche JK, Roberts RC. Excitatory and inhibitory imbalances in the trisynaptic pathway in the hippocampus in schizophrenia: a postmortem ultrastructural study. J Neural Transm (Vienna) 2023; 130:949-965. [PMID: 37193867 DOI: 10.1007/s00702-023-02650-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND A preponderance of evidence suggests that the hippocampus is a key region of dysfunction in schizophrenia. Neuroimaging and other studies indicate a relationship between hippocampal dysfunction and the degree of psychosis. Clinical data indicate hyperactivity in the hippocampus that precedes the onset of psychosis, and is correlated with symptom severity. In this study, we sought to identify circuitry at the electron microscopic level that could contribute to region-specific imbalances in excitation and inhibition in the hippocampus in schizophrenia. We used postmortem tissue from the anterior hippocampus from patients with schizophrenia and matched controls. Using stereological techniques, we counted and measured synapses, postsynaptic densities (PSDs), and evaluated size, number and optical density of mitochondria and parvalbumin-containing interneurons in key nodes of the trisynaptic pathway. Compared to controls, the schizophrenia group had decreased numbers of inhibitory synapses in CA3 and increased numbers of excitatory synapses in CA1; together, this indicates deficits in inhibition and an increase in excitation. The thickness of the PSD was larger in excitatory synapses in CA1, suggesting greater synaptic strength. In the schizophrenia group, there were fewer mitochondria in the dentate gyrus and a decrease in the optical density, a measure of functional integrity, in CA1. The number and optical density of parvalbumin interneurons were lower in CA3. The results suggest region-specific increases in excitatory circuitry, decreases in inhibitory neurotransmission and fewer or damaged mitochondria. These results are consistent with the hyperactivity observed in the hippocampus in schizophrenia in previous studies.
Collapse
Affiliation(s)
- Charlene B Farmer
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Erica L Roach
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Lily R Bice
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Madeleine E Falgout
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Kattia G Mata
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Joy K Roche
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Rosalinda C Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA.
| |
Collapse
|
15
|
Vid Prkačin M, Banovac I, Petanjek Z, Hladnik A. Cortical interneurons in schizophrenia - cause or effect? Croat Med J 2023; 64:110-122. [PMID: 37131313 PMCID: PMC10183954 DOI: 10.3325/cmj.2023.64.110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/15/2023] [Indexed: 12/09/2024] Open
Abstract
GABAergic cortical interneurons are important components of cortical microcircuits. Their alterations are associated with a number of neurological and psychiatric disorders, and are thought to be especially important in the pathogenesis of schizophrenia. Here, we reviewed neuroanatomical and histological studies that analyzed different populations of cortical interneurons in postmortem human tissue from patients with schizophrenia and adequately matched controls. The data strongly suggests that in schizophrenia only selective interneuron populations are affected, with alterations of somatostatin and parvalbumin neurons being the most convincing. The most prominent changes are found in the prefrontal cortex, which is consistent with the impairment of higher cognitive functions characteristic of schizophrenia. In contrast, calretinin neurons, the most numerous interneuron population in primates, seem to be largely unaffected. The selective alterations of cortical interneurons are in line with the neurodevelopmental model and the multiple-hit hypothesis of schizophrenia. Nevertheless, a large number of data on interneurons in schizophrenia is still inconclusive, with different studies yielding opposing findings. Furthermore, no studies found a clear link between interneuron alterations and clinical outcomes. Future research should focus on the causes of changes in the cortical microcircuitry in order to identify potential therapeutic targets.
Collapse
Affiliation(s)
| | - Ivan Banovac
- Ivan Banovac, Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, 10 000 Zagreb, Croatia,
| | | | | |
Collapse
|
16
|
Sun Y, Hu N, Wang M, Lu L, Luo C, Tang B, Yao C, Sweeney JA, Gong Q, Qiu C, Lui S. Hippocampal subfield alterations in schizophrenia and major depressive disorder: a systematic review and network meta-analysis of anatomic MRI studies. J Psychiatry Neurosci 2023; 48:E34-E49. [PMID: 36750240 PMCID: PMC9911126 DOI: 10.1503/jpn.220086] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/28/2022] [Accepted: 10/30/2022] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Hippocampal disturbances are important in the pathophysiology of both schizophrenia and major depressive disorder (MDD). Imaging studies have shown selective volume deficits across hippocampal subfields in both disorders. We aimed to investigate whether these volumetric alterations in hippocampal subfields are shared or divergent across disorders. METHODS We searched PubMed and Embase from database inception to May 8, 2021. We identified MRI studies in patients with schizophrenia, MDD or both, in which hippocampal subfield volumes were measured. We excluded nonoriginal, animal or postmortem studies, and studies that used other imaging modalities or overlapping data. We conducted a network meta-analysis to estimate and contrast alterations in subfield volumes in the 2 disorders. RESULTS We identified 45 studies that met the initial criteria for systematic review, of which 15 were eligible for network metaanalysis. Compared to healthy controls, patients with schizophrenia had reduced volumes in the bilateral cornu ammonis (CA) 1, granule cell layer of the dentate gyrus, subiculum, parasubiculum, molecular layer, hippocampal tail and hippocampus-amygdala transition area (HATA); in the left CA4 and presubiculum; and in the right fimbria. Patients with MDD had decreased volumes in the left CA3 and CA4 and increased volumes in the right HATA compared to healthy controls. The bilateral parasubiculum and right HATA were smaller in patients with schizophrenia than in patients with MDD. LIMITATIONS We did not investigate medication effects because of limited information. Study heterogeneity was noteworthy in direct comparisons between patients with MDD and healthy controls. CONCLUSION The volumes of multiple hippocampal subfields are selectively altered in patients with schizophrenia and MDD, with overlap and differentiation in subfield alterations across disorders. Rigorous head-to-head studies are needed to validate our findings.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Changjian Qiu
- From the Huaxi MR Research Center, Department of Radiology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Sun, Lu, Tang, Yao, Sweeney, Gong, Lui); the Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Hu, Luo); the Chinese Evidence-Based Medicine Center and Cochrane China Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Wang); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); the Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Qiu); the Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China (Lui); the Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Lui)
| | - Su Lui
- From the Huaxi MR Research Center, Department of Radiology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Sun, Lu, Tang, Yao, Sweeney, Gong, Lui); the Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Hu, Luo); the Chinese Evidence-Based Medicine Center and Cochrane China Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Wang); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); the Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Qiu); the Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China (Lui); the Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Lui)
| |
Collapse
|
17
|
Low protein-induced intrauterine growth restriction as a risk factor for schizophrenia phenotype in a rat model: assessing the role of oxidative stress and neuroinflammation interaction. Transl Psychiatry 2023; 13:30. [PMID: 36720849 PMCID: PMC9889339 DOI: 10.1038/s41398-023-02322-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 02/02/2023] Open
Abstract
A large body of evidence suggests that intrauterine growth restriction (IUGR) impedes normal neurodevelopment and predisposes the offspring to cognitive and behavioral deficits later in life. A significantly higher risk rate for schizophrenia (SZ) has been reported in individuals born after IUGR. Oxidative stress and neuroinflammation are both involved in the pathophysiology of SZ, particularly affecting the structural and functional integrity of parvalbumin interneurons (PVI) and their perineuronal nets (PNN). These anomalies have been tightly linked to impaired cognition, as observed in SZ. However, these pathways remain unexplored in models of IUGR. New research has proposed the activation of the MMP9-RAGE pathway to be a cause of persisting damage to PVIs. We hypothesize that IUGR, caused by a maternal protein deficiency during gestation, will induce oxidative stress and neuroinflammation. The activation of these pathways during neurodevelopment may affect the maturation of PVIs and PNNs, leading to long-term consequences in adolescent rats, in analogy to SZ patients. The level of oxidative stress and microglia activation were significantly increased in adolescent IUGR rats at postnatal day (P)35 as compared to control rats. PVI and PNN were decreased in P35 IUGR rats when compared to the control rats. MMP9 protein level and RAGE shedding were also increased, suggesting the involvement of this mechanism in the interaction between oxidative stress and neuroinflammation. We propose that maternal diet is an important factor for proper neurodevelopment of the inhibitory circuitry, and is likely to play a crucial role in determining normal cognition later in life, thus making it a pertinent model for SZ.
Collapse
|
18
|
Fessel J. Formulating treatment of major psychiatric disorders: algorithm targets the dominantly affected brain cell-types. DISCOVER MENTAL HEALTH 2023; 3:3. [PMID: 37861813 PMCID: PMC10501034 DOI: 10.1007/s44192-022-00029-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/21/2022] [Indexed: 10/21/2023]
Abstract
BACKGROUND Pharmacotherapy for most psychiatric conditions was developed from serendipitous observations of benefit from drugs prescribed for different reasons. An algorithmic approach to formulating pharmacotherapy is proposed, based upon which combination of changed activities by brain cell-types is dominant for any particular condition, because those cell-types contain and surrogate for genetic, metabolic and environmental information, that has affected their function. The algorithm performs because functions of some or all the affected cell-types benefit from several available drugs: clemastine, dantrolene, erythropoietin, fingolimod, fluoxetine, lithium, memantine, minocycline, pioglitazone, piracetam, and riluzole PROCEDURES/FINDINGS: Bipolar disorder, major depressive disorder, schizophrenia, Alzheimer's disease, and post-traumatic stress disorder, illustrate the algorithm; for them, literature reviews show that no single combination of altered cell-types accounts for all cases; but they identify, for each condition, which combination occurs most frequently, i.e., dominates, as compared with other possible combinations. Knowing the dominant combination of altered cell-types in a particular condition, permits formulation of therapy with combinations of drugs taken from the above list. The percentage of patients who might benefit from that therapy, depends upon the frequency with which the dominant combination occurs in patients with that particular condition. CONCLUSIONS Knowing the dominant combination of changed cell types in psychiatric conditions, permits an algorithmically formulated, rationally-based treatment. Different studies of the same condition often produce discrepant results; all might be correct, because identical clinical phenotypes result from different combinations of impaired cell-types, thus producing different results. Clinical trials would validate both the proposed concept and choice of drugs.
Collapse
Affiliation(s)
- Jeffrey Fessel
- Department of Medicine, University of California, 2069 Filbert Street, San Francisco, CA, 94123, USA.
| |
Collapse
|
19
|
Wartchow KM, Scaini G, Quevedo J. Glial-Neuronal Interaction in Synapses: A Possible Mechanism of the Pathophysiology of Bipolar Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:191-208. [PMID: 36949311 DOI: 10.1007/978-981-19-7376-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Bipolar disorder (BD) is a severe and chronic psychiatric disorder that affects approximately 1-4% of the world population and is characterized by recurrent episodes of mania or hypomania and depression. BD is also associated with illnesses marked by immune activation, such as metabolic syndrome, obesity, type 2 diabetes mellitus, and cardiovascular diseases. Indeed, a connection has been suggested between neuroinflammation and peripheral inflammatory markers in the pathophysiology of BD, which can be associated with the modulation of many dysfunctional processes, including synaptic plasticity, neurotransmission, neurogenesis, neuronal survival, apoptosis, and even cognitive/behavioral functioning. Rising evidence suggests that synaptic dysregulations, especially glutamatergic system dysfunction, are directly involved in mood disorders. It is becoming clear that dysregulations in connection and structural changes of glial cells play a central role in the BD pathophysiology. This book chapter highlighted the latest findings that support the theory of synaptic dysfunction in BD, providing an overview of the alterations in neurotransmitters release, astrocytic uptake, and receptor signaling, as well as the role of inflammation on glial cells in mood disorders. Particular emphasis is given to the alterations in presynaptic and postsynaptic neurons and glial cells, all cellular elements of the "tripartite synapse," compromising the neurotransmitters system, excitatory-inhibitory balance, and neurotrophic states of local networks in mood disorders. Together, these studies provide a foundation of knowledge about the exact role of the glial-neuronal interaction in mood disorders.
Collapse
Affiliation(s)
- Krista M Wartchow
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Giselli Scaini
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - João Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
20
|
Wei Y, de Lange SC, Savage JE, Tissink E, Qi T, Repple J, Gruber M, Kircher T, Dannlowski U, Posthuma D, van den Heuvel MP. Associated Genetics and Connectomic Circuitry in Schizophrenia and Bipolar Disorder. Biol Psychiatry 2022:S0006-3223(22)01719-X. [PMID: 36803976 DOI: 10.1016/j.biopsych.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/15/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Schizophrenia (SCZ) and bipolar disorder (BD) are severe psychiatric conditions that can involve symptoms of psychosis and cognitive dysfunction. The 2 conditions share symptomatology and genetic etiology and are regularly hypothesized to share underlying neuropathology. Here, we examined how genetic liability to SCZ and BD shapes normative variations in brain connectivity. METHODS We examined the effect of the combined genetic liability for SCZ and BD on brain connectivity from two perspectives. First, we examined the association between polygenic scores for SCZ and BD for 19,778 healthy subjects from the UK Biobank and individual variation in brain structural connectivity reconstructed by means of diffusion weighted imaging data. Second, we conducted genome-wide association studies using genotypic and imaging data from the UK Biobank, taking SCZ-/BD-involved brain circuits as phenotypes of interest. RESULTS Our findings showed brain circuits of superior parietal and posterior cingulate regions to be associated with polygenic liability for SCZ and BD, circuitry that overlaps with brain networks involved in disease conditions (r = 0.239, p < .001). Genome-wide association study analysis showed 9 significant genomic loci associated with SCZ-involved circuits and 14 loci associated with BD-involved circuits. Genes related to SCZ-/BD-involved circuits were significantly enriched in gene sets previously reported in genome-wide association studies for SCZ and BD. CONCLUSIONS Our findings suggest that polygenic liability of SCZ and BD is associated with normative individual variation in brain circuitry.
Collapse
Affiliation(s)
- Yongbin Wei
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China; Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| | - Siemon C de Lange
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Jeanne E Savage
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Elleke Tissink
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Ting Qi
- Department of Neurology, School of Medicine, University of California San Francisco, San Francisco, California
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Marius Gruber
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Child and Adolescent Psychiatry and Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam UMC, Amsterdam, the Netherlands
| | - Martijn P van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Child and Adolescent Psychiatry and Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
21
|
Erickson MA, Lopez-Calderon J, Robinson B, Gold JM, Luck SJ. Gamma-band entrainment abnormalities in schizophrenia: Modality-specific or cortex-wide impairment? JOURNAL OF PSYCHOPATHOLOGY AND CLINICAL SCIENCE 2022; 131:895-905. [PMID: 36326630 PMCID: PMC9641553 DOI: 10.1037/abn0000778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A growing body of literature suggests that cognitive impairment in people with schizophrenia (PSZ) results from disrupted cortical excitatory/inhibitory (E-I) balance, which may be linked to gamma entrainment and can be measured noninvasively using electroencephalography (EEG). However, it is not yet known the degree to which these entrainment abnormalities covary within subjects across sensory modalities. Furthermore, the degree to which cross-modal gamma entrainment reflects variation in biological processes associated with cognitive performance remains unclear. We used EEG to measure entrainment to repetitive auditory and visual stimulation at beta (20 Hz) and gamma (30 and 40 Hz) frequencies in PSZ (n = 78) and healthy control subjects (HCS; n = 80). Three indices were measured for each frequency and modality: event-related spectral perturbation (ERSP), intertrial coherence (ITC), and phase-lag angle (PLA). Cognition and symptom severity were also assessed. We found little evidence that gamma entrainment covaried across sensory modalities. PSZ exhibited a modest correlation between modalities at 40 Hz for ERSP and ITC measures (r = 0.23-0.24); however, no other significant correlations between modalities emerged for either HCS or PSZ. Both univariate and multivariate analyses revealed that (a) the pattern of entrainment abnormalities in PSZ differed across modalities, and (b) modality rather than frequency band was the main source of variance. Finally, we observed a significant association between cognition and gamma entrainment in the auditory domain only in HCS. Gamma-band EEG entrainment does not reflect a unitary transcortical mechanism but is instead modality specific. To the extent that entrainment reflects the integrity of cortical E-I balance, the deficits observed in PSZ appear to be modality specific and not consistently associated with cognitive impairment. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
Affiliation(s)
- Molly A. Erickson
- University of Chicago Department of Psychiatry & Behavioral Neuroscience
| | | | - Ben Robinson
- Maryland Psychiatric Research Center, University of Maryland
| | - James M. Gold
- Maryland Psychiatric Research Center, University of Maryland
| | - Steven J. Luck
- Center for Mind & Brain and Department of Psychology, University of California, Davis
| |
Collapse
|
22
|
Xie H, Cao Y, Long X, Xiao H, Wang X, Qiu C, Jia Z. A comparative study of gray matter volumetric alterations in adults with attention deficit hyperactivity disorder and bipolar disorder type I. J Psychiatr Res 2022; 155:410-419. [PMID: 36183596 DOI: 10.1016/j.jpsychires.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/29/2022] [Accepted: 09/16/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Attention deficit hyperactivity disorder (ADHD) and bipolar disorder type I (BD-Ι) share great overlapping symptoms and are highly comorbid. We aimed to compare and obtain the common and distinct gray matter volume (GMV) patterns in adult patients. METHOD We searched four databases to include whole-brain voxel-based morphometry studies and compared the GMV patterns between ADHD and healthy controls (HCs), between BD-I and HCs, and between ADHD and BD-I using anisotropic effect-size signed differential mapping software. RESULTS We included 677 ADHD and 452 BD-Ι patients. Compared with HCs, ADHD patients showed smaller GMV in the anterior cingulate cortex (ACC) and supramarginal gyrus but a larger caudate nucleus. Compared with HCs, BD-Ι patients showed smaller GMV in the orbitofrontal cortex, parahippocampal gyrus, and amygdala. No common GMV alterations were found, whereas ADHD showed the smaller ACC and larger amygdala relative to BD-Ι. Subgroup analyses revealed the larger insula in manic patients, which was positively associated with the Young Mania Rating Scale. The decreased median cingulate cortex (MCC) was positively associated with the ages in ADHD, whereas the MCC was negatively associated with the ages in BD-Ι. LIMITATIONS All included data were cross-sectional; Potential effects of medication and disease course were not analyzed due to the limited data. CONCLUSIONS ADHD showed altered GMV in the frontal-striatal frontal-parietal circuits, and BD-Ι showed altered GMV in the prefrontal-amygdala circuit. These findings could contribute to a better understanding of the neuropathology of the two disorders.
Collapse
Affiliation(s)
- Hongsheng Xie
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China; Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yuan Cao
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China; Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xipeng Long
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China; Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Hongqi Xiao
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiuli Wang
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, 610041, China
| | - Changjian Qiu
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China; Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
23
|
Liu D, Zinski A, Mishra A, Noh H, Park GH, Qin Y, Olorife O, Park JM, Abani CP, Park JS, Fung J, Sawaqed F, Coyle JT, Stahl E, Bendl J, Fullard JF, Roussos P, Zhang X, Stanton PK, Yin C, Huang W, Kim HY, Won H, Cho JH, Chung S. Impact of schizophrenia GWAS loci converge onto distinct pathways in cortical interneurons vs glutamatergic neurons during development. Mol Psychiatry 2022; 27:4218-4233. [PMID: 35701597 DOI: 10.1038/s41380-022-01654-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 02/07/2023]
Abstract
Remarkable advances have been made in schizophrenia (SCZ) GWAS, but gleaning biological insight from these loci is challenging. Genetic influences on gene expression (e.g., eQTLs) are cell type-specific, but most studies that attempt to clarify GWAS loci's influence on gene expression have employed tissues with mixed cell compositions that can obscure cell-specific effects. Furthermore, enriched SCZ heritability in the fetal brain underscores the need to study the impact of SCZ risk loci in specific developing neurons. MGE-derived cortical interneurons (cINs) are consistently affected in SCZ brains and show enriched SCZ heritability in human fetal brains. We identified SCZ GWAS risk genes that are dysregulated in iPSC-derived homogeneous populations of developing SCZ cINs. These SCZ GWAS loci differential expression (DE) genes converge on the PKC pathway. Their disruption results in PKC hyperactivity in developing cINs, leading to arborization deficits. We show that the fine-mapped GWAS locus in the ATP2A2 gene of the PKC pathway harbors enhancer marks by ATACseq and ChIPseq, and regulates ATP2A2 expression. We also generated developing glutamatergic neurons (GNs), another population with enriched SCZ heritability, and confirmed their functionality after transplantation into the mouse brain. Then, we identified SCZ GWAS risk genes that are dysregulated in developing SCZ GNs. GN-specific SCZ GWAS loci DE genes converge on the ion transporter pathway, distinct from those for cINs. Disruption of the pathway gene CACNA1D resulted in deficits of Ca2+ currents in developing GNs, suggesting compromised neuronal function by GWAS loci pathway deficits during development. This study allows us to identify cell type-specific and developmental stage-specific mechanisms of SCZ risk gene function, and may aid in identifying mechanism-based novel therapeutic targets.
Collapse
Affiliation(s)
- Dongxin Liu
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA.
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.
| | - Amy Zinski
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Akanksha Mishra
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Haneul Noh
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
- Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA, 02478, USA
| | - Gun-Hoo Park
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Yiren Qin
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Oshoname Olorife
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - James M Park
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Chiderah P Abani
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Joy S Park
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Janice Fung
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Farah Sawaqed
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Joseph T Coyle
- Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA, 02478, USA
| | - Eli Stahl
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
| | - Jaroslav Bendl
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
| | - John F Fullard
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
| | - Panos Roussos
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Mental Illness Research Education and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Xiaolei Zhang
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Patric K Stanton
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Changhong Yin
- Department of Pathology, New York Medical College, Valhalla, NY, 10595, USA
| | - Weihua Huang
- Department of Pathology, New York Medical College, Valhalla, NY, 10595, USA
| | - Hae-Young Kim
- Department of Public Health, New York Medical College, Valhalla, NY, USA
| | - Hyejung Won
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jun-Hyeong Cho
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Sangmi Chung
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA.
- Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA, 02478, USA.
| |
Collapse
|
24
|
Knight S, McCutcheon R, Dwir D, Grace AA, O'Daly O, McGuire P, Modinos G. Hippocampal circuit dysfunction in psychosis. Transl Psychiatry 2022; 12:344. [PMID: 36008395 PMCID: PMC9411597 DOI: 10.1038/s41398-022-02115-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022] Open
Abstract
Despite strong evidence of the neurodevelopmental origins of psychosis, current pharmacological treatment is not usually initiated until after a clinical diagnosis is made, and is focussed on antagonising striatal dopamine receptors. These drugs are only partially effective, have serious side effects, fail to alleviate the negative and cognitive symptoms of the disorder, and are not useful as a preventive treatment. In recent years, attention has turned to upstream brain regions that regulate striatal dopamine function, such as the hippocampus. This review draws together these recent data to discuss why the hippocampus may be especially vulnerable in the pathophysiology of psychosis. First, we describe the neurodevelopmental trajectory of the hippocampus and its susceptibility to dysfunction, exploring this region's proneness to structural and functional imbalances, metabolic pressures, and oxidative stress. We then examine mechanisms of hippocampal dysfunction in psychosis and in individuals at high-risk for psychosis and discuss how and when hippocampal abnormalities may be targeted in these groups. We conclude with future directions for prospective studies to unlock the discovery of novel therapeutic strategies targeting hippocampal circuit imbalances to prevent or delay the onset of psychosis.
Collapse
Affiliation(s)
- Samuel Knight
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Robert McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Owen O'Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Maudsley Biomedical Research Centre, London, UK
| | - Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
25
|
Li D, Wu Q, Han X. Application of Medial Ganglionic Eminence Cell Transplantation in Diseases Associated With Interneuron Disorders. Front Cell Neurosci 2022; 16:939294. [PMID: 35865112 PMCID: PMC9294455 DOI: 10.3389/fncel.2022.939294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Excitatory projection neurons and inhibitory interneurons primarily accomplish the neural activity of the cerebral cortex, and an imbalance of excitatory-inhibitory neural networks may lead to neuropsychiatric diseases. Gamma-aminobutyric acid (GABA)ergic interneurons mediate inhibition, and the embryonic medial ganglionic eminence (MGE) is a source of GABAergic interneurons. After transplantation, MGE cells migrate to different brain regions, differentiate into multiple subtypes of GABAergic interneurons, integrate into host neural circuits, enhance synaptic inhibition, and have tremendous application value in diseases associated with interneuron disorders. In the current review, we describe the fate of MGE cells derived into specific interneurons and the related diseases caused by interneuron loss or dysfunction and explore the potential of MGE cell transplantation as a cell-based therapy for a variety of interneuron disorder-related diseases, such as epilepsy, schizophrenia, autism spectrum disorder, and Alzheimer’s disease.
Collapse
|
26
|
Somatostatin and Somatostatin-Containing Interneurons—From Plasticity to Pathology. Biomolecules 2022; 12:biom12020312. [PMID: 35204812 PMCID: PMC8869243 DOI: 10.3390/biom12020312] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/27/2022] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
Despite the obvious differences in the pathophysiology of distinct neuropsychiatric diseases or neurodegenerative disorders, some of them share some general but pivotal mechanisms, one of which is the disruption of excitation/inhibition balance. Such an imbalance can be generated by changes in the inhibitory system, very often mediated by somatostatin-containing interneurons (SOM-INs). In physiology, this group of inhibitory interneurons, as well as somatostatin itself, profoundly shapes the brain activity, thus influencing the behavior and plasticity; however, the changes in the number, density and activity of SOM-INs or levels of somatostatin are found throughout many neuropsychiatric and neurological conditions, both in patients and animal models. Here, we (1) briefly describe the brain somatostatinergic system, characterizing the neuropeptide somatostatin itself, its receptors and functions, as well the physiology and circuitry of SOM-INs; and (2) summarize the effects of the activity of somatostatin and SOM-INs in both physiological brain processes and pathological brain conditions, focusing primarily on learning-induced plasticity and encompassing selected neuropsychological and neurodegenerative disorders, respectively. The presented data indicate the somatostatinergic-system-mediated inhibition as a substantial factor in the mechanisms of neuroplasticity, often disrupted in a plethora of brain pathologies.
Collapse
|
27
|
Belardo C, Alessio N, Pagano M, De Dominicis E, Infantino R, Perrone M, Iannotta M, Galderisi U, Rinaldi B, Scuteri D, Bagetta G, Palazzo E, Maione S, Luongo L. PEA-OXA ameliorates allodynia, neuropsychiatric and adipose tissue remodeling induced by social isolation. Neuropharmacology 2022; 208:108978. [PMID: 35157898 DOI: 10.1016/j.neuropharm.2022.108978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/10/2021] [Accepted: 01/30/2022] [Indexed: 12/28/2022]
|
28
|
Okamoto H, Onitsuka T, Kuga H, Oribe N, Nakayama N, Fukushima S, Nakao T, Ueno T. Decreased BOLD signals elicited by 40-Hz auditory stimulation of the right primary auditory cortex in bipolar disorder: An fMRI study. Front Psychiatry 2022; 13:833896. [PMID: 36186861 PMCID: PMC9519862 DOI: 10.3389/fpsyt.2022.833896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND A number studies have been conducted on abnormalities in the cortical circuitry of gamma oscillations, including deficit in auditory steady-state response (ASSR) to gamma-frequency (≧ 30-Hz) stimulation, in patients with bipolar disorder (BD). In the current study, we investigated neural responses during click stimulation by blood oxygen level-dependent (BOLD) signals. We focused on Broadman 41 and 42, the main sources of ASSR. MATERIALS AND METHODS We acquired BOLD responses elicited by click trains of 80-, 40-, 30- and 20-Hz frequencies from 25 patients with BD to 27 healthy controls (HC) with normal hearing between 22 and 59 years of age assessed via a standard general linear-model-based analysis. We extracted contrast values by identifying the primary auditory cortex and Brodmann areas 41 and 42 as regions of interest (ROI)s. RESULTS BD group showed significantly decreased ASSR-BOLD signals in response to 40-Hz stimuli compared to the HC group in the right Brodmann areas 41 and 42. We found significant negative correlations between the BOLD change in the right Brodmann areas 41 and 42 and Structured Interview Guide for the Hamilton Depression Rating Scale (SIGH-D) scores, also the BOLD change in the right Brodmann areas 41 and 42 and the Positive and Negative Syndrome Scale (PANSS)-Negative scores. CONCLUSION The observed decrease in BOLD signal patterns in the right primary auditory cortex during 40-Hz ASSR may be a potential biomarker option for bipolar disorder.
Collapse
Affiliation(s)
- Hiroshi Okamoto
- Division of Clinical Research, National Hospital Organization, Hizen Psychiatric Medical Center, Saga, Japan.,Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Onitsuka
- Department of Neuroimaging Psychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hironori Kuga
- Division of Clinical Research, National Hospital Organization, Hizen Psychiatric Medical Center, Saga, Japan.,National Center for Cognitive Behavioral Therapy and Research, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Naoya Oribe
- Division of Clinical Research, National Hospital Organization, Hizen Psychiatric Medical Center, Saga, Japan.,Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naho Nakayama
- Division of Clinical Research, National Hospital Organization, Hizen Psychiatric Medical Center, Saga, Japan
| | - Shou Fukushima
- Division of Clinical Research, National Hospital Organization, Hizen Psychiatric Medical Center, Saga, Japan.,Medical Corporation Kouseikai, Michinoo Hospital, Nagasaki, Japan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takefumi Ueno
- Division of Clinical Research, National Hospital Organization, Hizen Psychiatric Medical Center, Saga, Japan.,Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
29
|
Juarez P, Martínez Cerdeño V. Parvalbumin and parvalbumin chandelier interneurons in autism and other psychiatric disorders. Front Psychiatry 2022; 13:913550. [PMID: 36311505 PMCID: PMC9597886 DOI: 10.3389/fpsyt.2022.913550] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Parvalbumin (PV) is a calcium binding protein expressed by inhibitory fast-spiking interneurons in the cerebral cortex. By generating a fast stream of action potentials, PV+ interneurons provide a quick and stable inhibitory input to pyramidal neurons and contribute to the generation of gamma oscillations in the cortex. Their fast-firing rates, while advantageous for regulating cortical signaling, also leave them vulnerable to metabolic stress. Chandelier (Ch) cells are a type of PV+ interneuron that modulate the output of pyramidal neurons and synchronize spikes within neuron populations by directly innervating the pyramidal axon initial segment. Changes in the morphology and/or function of PV+ interneurons, mostly of Ch cells, are linked to neurological disorders. In ASD, the number of PV+ Ch cells is decreased across several cortical areas. Changes in the morphology and/or function of PV+ interneurons have also been linked to schizophrenia, epilepsy, and bipolar disorder. Herein, we review the role of PV and PV+ Ch cell alterations in ASD and other psychiatric disorders.
Collapse
Affiliation(s)
- Pablo Juarez
- Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospital for Children and UC Davis School of Medicine, Sacramento, CA, United States.,Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, United States
| | - Verónica Martínez Cerdeño
- Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospital for Children and UC Davis School of Medicine, Sacramento, CA, United States.,Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, United States.,MIND Institute, UC Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
30
|
Ochoa ELM. Lithium as a Neuroprotective Agent for Bipolar Disorder: An Overview. Cell Mol Neurobiol 2022; 42:85-97. [PMID: 34357564 PMCID: PMC11441275 DOI: 10.1007/s10571-021-01129-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/14/2021] [Indexed: 11/28/2022]
Abstract
Lithium (Li+) is a first option treatment for adult acute episodes of Bipolar Disorder (BD) and for the prophylaxis of new depressed or manic episodes. It is also the preferred choice as maintenance treatment. Numerous studies have shown morphological abnormalities in the brains of BD patients, suggesting that this highly heritable disorder may exhibit progressive and deleterious changes in brain structure. Since treatment with Li+ ameliorates these abnormalities, it has been postulated that Li+ is a neuroprotective agent in the same way atypical antipsychotics are neuroprotective in patients diagnosed with schizophrenia spectrum disorders. Li+'s neuroprotective properties are related to its modulation of nerve growth factors, inflammation, mitochondrial function, oxidative stress, and programmed cell death mechanisms such as autophagy and apoptosis. Notwithstanding, it is not known whether Li+-induced neuroprotection is related to the inhibition of its putative molecular targets in a BD episode: the enzymes inositol-monophosphatase, (IMPase), glycogen-synthase-kinase 3β (GSK3), and Protein kinase C (PKC). Furthermore, it is uncertain whether these neuroprotective mechanisms are correlated with Li+'s clinical efficacy in maintaining mood stability. It is expected that in a nearby future, precision medicine approaches will improve diagnosis and expand treatment options. This will certainly contribute to ameliorating the medical and economic burden created by this devastating mood disorder.
Collapse
Affiliation(s)
- Enrique L M Ochoa
- Department of Psychiatry and Behavioral Sciences, Volunteer Clinical Faculty, University of California at Davis, 2230 Stockton Boulevard, Sacramento, CA, 95817, USA.
| |
Collapse
|
31
|
Correlation of Electrophysiological and Gene Transcriptional Dysfunctions in Single Cortical Parvalbumin Neurons After Noise Trauma. Neuroscience 2021; 482:87-99. [PMID: 34902495 DOI: 10.1016/j.neuroscience.2021.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/21/2022]
Abstract
Parvalbumin-expressing (PV+) interneurons in the sensory cortex form powerful inhibitory synapses on the perisomatic compartments and axon initial segments of excitatory principal neurons (PNs), and perform diverse computational functions. Impaired PV+ interneuron functions have been reported in neural developmental and degenerative disorders. Expression of the unique marker parvalbumin (PV) is often used as a proxy of PV+ interneuron functions. However, it is not entirely clear how PV expression is correlated with PV+ interneuron properties such as spike firing and synaptic transmission. To address this question, we characterized electrophysiological properties of PV+ interneurons in the primary auditory cortex (AI) using whole-cell patch clamp recording, and analyzed the expression of several genes in samples collected from single neurons using the patch pipettes. We found that, after noise induced hearing loss (NIHL), the spike frequency adaptation increased, and the expression of PV, glutamate decarboxylase 67 (GAD67) and Shaw-like potassium channel (KV3.1) decreased in PV+ neurons. In samples prepared from the auditory cortical tissue, the mRNA levels of the target genes were all pairwise correlated. At the single neuron level, however, the expression of PV was significantly correlated with the expression of GAD67, but not KV3.1, maximal spike frequency, or spike frequency adaptation. The expression of KV3.1 was correlated with spike frequency adaptation, but not with the expression of GAD67. These results suggest separate transcriptional regulations of PV/GAD67 vs. KV3.1, both of which are modulated by NIHL.
Collapse
|
32
|
Hirano Y, Uhlhaas PJ. Current findings and perspectives on aberrant neural oscillations in schizophrenia. Psychiatry Clin Neurosci 2021; 75:358-368. [PMID: 34558155 DOI: 10.1111/pcn.13300] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/20/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022]
Abstract
There is now consistent evidence that neural oscillation at low- and high-frequencies constitute an important aspect of the pathophysiology of schizophrenia. Specifically, impaired rhythmic activity may underlie the deficit to generate coherent cognition and behavior, leading to the characteristic symptoms of psychosis and cognitive deficits. Importantly, the generating mechanisms of neural oscillations are relatively well-understood and thus enable the targeted search for the underlying circuit impairments and novel treatment targets. In the following review, we will summarize and assess the evidence for aberrant rhythmic activity in schizophrenia through evaluating studies that have utilized Electro/Magnetoencephalography to examine neural oscillations during sensory and cognitive tasks as well as during resting-state measurements. These data will be linked to current evidence from post-mortem, neuroimaging, genetics, and animal models that have implicated deficits in GABAergic interneurons and glutamatergic neurotransmission in oscillatory deficits in schizophrenia. Finally, we will highlight methodological and analytical challenges as well as provide recommendations for future research.
Collapse
Affiliation(s)
- Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Peter J Uhlhaas
- Department of Child and Adolescent Psychiatry, Charité - Universitätsmedizin, Berlin, Germany
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| |
Collapse
|
33
|
Perlman G, Tanti A, Mechawar N. Parvalbumin interneuron alterations in stress-related mood disorders: A systematic review. Neurobiol Stress 2021; 15:100380. [PMID: 34557569 PMCID: PMC8446799 DOI: 10.1016/j.ynstr.2021.100380] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 12/23/2022] Open
Abstract
Stress-related psychiatric disorders including depression involve complex cellular and molecular changes in the brain, and GABAergic signaling dysfunction is increasingly implicated in the etiology of mood disorders. Parvalbumin (PV)-expressing neurons are fast-spiking interneurons that, among other roles, coordinate synchronous neuronal firing. Mounting evidence suggests that the PV neuron phenotype is altered by stress and in mood disorders. In this systematic review, we assessed PV interneuron alterations in psychiatric disorders as reported in human postmortem brain studies and animal models of environmental stress. This review aims to 1) comprehensively catalog evidence of PV cell function in mood disorders (humans) and stress models of mood disorders (animals); 2) analyze the strength of evidence of PV interneuron alterations in various brain regions in humans and rodents; 3) determine whether the modulating effect of antidepressant treatment, physical exercise, and environmental enrichment on stress in animals associates with particular effects on PV function; and 4) use this information to guide future research avenues. Its principal findings, derived mainly from rodent studies, are that stress-related changes in PV cells are only reported in a minority of studies, that positive findings are region-, age-, sex-, and stress recency-dependent, and that antidepressants protect from stress-induced apparent PV cell loss. These observations do not currently translate well to humans, although the postmortem literature on the topic remains limited.
Collapse
Affiliation(s)
| | - Arnaud Tanti
- Corresponding author. McGill Group for Suicide Studies, Department of Psychiaty, McGill University, Douglas Mental Health University Institute, 6875 LaSalle blvd, Verdun, Qc, H4H 1R3, Canada
| | - Naguib Mechawar
- Corresponding author. McGill Group for Suicide Studies, Department of Psychiaty, McGill University, Douglas Mental Health University Institute, 6875 LaSalle blvd, Verdun, Qc, H4H 1R3, Canada
| |
Collapse
|
34
|
Pinna A, Colasanti A. The Neurometabolic Basis of Mood Instability: The Parvalbumin Interneuron Link-A Systematic Review and Meta-Analysis. Front Pharmacol 2021; 12:689473. [PMID: 34616292 PMCID: PMC8488267 DOI: 10.3389/fphar.2021.689473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022] Open
Abstract
The neurobiological bases of mood instability are poorly understood. Neuronal network alterations and neurometabolic abnormalities have been implicated in the pathophysiology of mood and anxiety conditions associated with mood instability and hence are candidate mechanisms underlying its neurobiology. Fast-spiking parvalbumin GABAergic interneurons modulate the activity of principal excitatory neurons through their inhibitory action determining precise neuronal excitation balance. These interneurons are directly involved in generating neuronal networks activities responsible for sustaining higher cerebral functions and are especially vulnerable to metabolic stress associated with deficiency of energy substrates or mitochondrial dysfunction. Parvalbumin interneurons are therefore candidate key players involved in mechanisms underlying the pathogenesis of brain disorders associated with both neuronal networks' dysfunction and brain metabolism dysregulation. To provide empirical support to this hypothesis, we hereby report meta-analytical evidence of parvalbumin interneurons loss or dysfunction in the brain of patients with Bipolar Affective Disorder (BPAD), a condition primarily characterized by mood instability for which the pathophysiological role of mitochondrial dysfunction has recently emerged as critically important. We then present a comprehensive review of evidence from the literature illustrating the bidirectional relationship between deficiency in mitochondrial-dependent energy production and parvalbumin interneuron abnormalities. We propose a mechanistic explanation of how alterations in neuronal excitability, resulting from parvalbumin interneurons loss or dysfunction, might manifest clinically as mood instability, a poorly understood clinical phenotype typical of the most severe forms of affective disorders. The evidence we report provides insights on the broader therapeutic potential of pharmacologically targeting parvalbumin interneurons in psychiatric and neurological conditions characterized by both neurometabolic and neuroexcitability abnormalities.
Collapse
Affiliation(s)
- Antonello Pinna
- School of Life Sciences, University of Sussex, Brighton, United Kingdom.,Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Alessandro Colasanti
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
35
|
Van Derveer AB, Bastos G, Ferrell AD, Gallimore CG, Greene ML, Holmes JT, Kubricka V, Ross JM, Hamm JP. A Role for Somatostatin-Positive Interneurons in Neuro-Oscillatory and Information Processing Deficits in Schizophrenia. Schizophr Bull 2021; 47:1385-1398. [PMID: 33370434 PMCID: PMC8379548 DOI: 10.1093/schbul/sbaa184] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alterations in neocortical GABAergic interneurons (INs) have been affiliated with neuropsychiatric diseases, including schizophrenia (SZ). Significant progress has been made linking the function of a specific subtype of GABAergic cells, parvalbumin (PV) positive INs, to altered gamma-band oscillations, which, in turn, underlie perceptual and feedforward information processing in cortical circuits. Here, we review a smaller but growing volume of literature focusing on a separate subtype of neocortical GABAergic INs, somatostatin (SST) positive INs. Despite sharing similar neurodevelopmental origins, SSTs exhibit distinct morphology and physiology from PVs. Like PVs, SSTs are altered in postmortem brain samples from multiple neocortical regions in SZ, although basic and translational research into consequences of SST dysfunction has been relatively sparse. We highlight a growing body of work in rodents, which now indicates that SSTs may also underlie specific aspects of cortical circuit function, namely low-frequency oscillations, disinhibition, and mediation of cortico-cortical feedback. SSTs may thereby support the coordination of local cortical information processing with more global spatial, temporal, and behavioral context, including predictive coding and working memory. These functions are notably deficient in some cases of SZ, as well as other neuropsychiatric disorders, emphasizing the importance of focusing on SSTs in future translational studies. Finally, we highlight the challenges that remain, including subtypes within the SST class.
Collapse
Affiliation(s)
- Alice B Van Derveer
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA
| | - Georgia Bastos
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Petit Science Center, Atlanta, GA
| | - Antanovia D Ferrell
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA
| | - Connor G Gallimore
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA
| | - Michelle L Greene
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA
| | - Jacob T Holmes
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA
| | - Vivien Kubricka
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA
| | - Jordan M Ross
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA
- Center for Behavioral Neuroscience, Georgia State University, Petit Science Center, Atlanta, GA
| | - Jordan P Hamm
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Petit Science Center, Atlanta, GA
- Center for Behavioral Neuroscience, Georgia State University, Petit Science Center, Atlanta, GA
| |
Collapse
|
36
|
Roeske MJ, Konradi C, Heckers S, Lewis AS. Hippocampal volume and hippocampal neuron density, number and size in schizophrenia: a systematic review and meta-analysis of postmortem studies. Mol Psychiatry 2021; 26:3524-3535. [PMID: 32724199 PMCID: PMC7854798 DOI: 10.1038/s41380-020-0853-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
Reduced hippocampal volume is a consistent finding in neuroimaging studies of individuals with schizophrenia. While these studies have the advantage of large-sample sizes, they are unable to quantify the cellular basis of structural or functional changes. In contrast, postmortem studies are well suited to explore subfield and cellular alterations, but low sample sizes and subject heterogeneity impede establishment of statistically significant differences. Here we use a meta-analytic approach to synthesize the extant literature of hippocampal subfield volume and cellular composition in schizophrenia patients and healthy control subjects. Following pre-registration (PROSPERO CRD42019138280), PubMed, Web of Science, and PsycINFO were searched using the term: (schizophrenia OR schizoaffective) AND (post-mortem OR postmortem) AND hippocampus. Subjects were adult men and women with schizophrenia or schizoaffective disorder or non-psychiatric control subjects, and key outcomes, stratified by hippocampal hemisphere and subfield, were volume, neuron number, neuron density, and neuron size. A random effects meta-analysis was performed. Thirty-two studies were included (413 patients, 415 controls). In patients, volume and neuron number were significantly reduced in multiple hippocampal subfields in left, but not right hippocampus, whereas neuron density was not significantly different in any hippocampal subfield. Neuron size, averaged bilaterally, was also significantly reduced in all calculated subfields. Heterogeneity was minimal to moderate, with rare evidence of publication bias. Meta-regression of age and illness duration did not explain heterogeneity of total hippocampal volume effect sizes. These results extend neuroimaging findings of smaller hippocampal volume in schizophrenia patients and further our understanding of regional and cellular neuropathology in schizophrenia.
Collapse
Affiliation(s)
- Maxwell J Roeske
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
| | - Christine Konradi
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
| | - Alan S Lewis
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, 37212, USA.
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37212, USA.
- Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, 37212, USA.
| |
Collapse
|
37
|
Migratory cortical interneuron-specific transcriptome abnormalities in schizophrenia. J Psychiatr Res 2021; 137:111-116. [PMID: 33677214 DOI: 10.1016/j.jpsychires.2021.02.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/12/2021] [Accepted: 02/23/2021] [Indexed: 11/24/2022]
Abstract
Cortical interneurons (cINs) are substantially affected in Schizophrenia (SCZ) and enriched for SCZ heritability during development. To understand SCZ-specific changes in these cells during development, we isolated migratory cINs from cIN spheres derived from 5 healthy control (HC) and 5 SCZ induced pluripotent stem cell lines (iPSCs). Transcriptome analyses show dysregulation in extracellular matrix pathways as the major disturbances in SCZ migratory cINs, whereas sphere cINs show dysregulation in immune pathways. This result suggests the importance of using homogeneous cell populations to identify stage-specific abnormalities and provides a platform to further study the biology of schizophrenia pathogenesis during early development.
Collapse
|
38
|
Lintas A, Sánchez-Campusano R, Villa AEP, Gruart A, Delgado-García JM. Operant conditioning deficits and modified local field potential activities in parvalbumin-deficient mice. Sci Rep 2021; 11:2970. [PMID: 33536607 PMCID: PMC7859233 DOI: 10.1038/s41598-021-82519-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Altered functioning of GABAergic interneurons expressing parvalbumin (PV) in the basal ganglia-thalamo-cortical circuit are likely to be involved in several human psychiatric disorders characterized by deficits in attention and sensory gating with dysfunctional decision-making behavior. However, the contribution of these interneurons in the ability to acquire demanding learning tasks remains unclear. Here, we combine an operant conditioning task with local field potentials simultaneously recorded in several nuclei involved in reward circuits of wild-type (WT) and PV-deficient (PVKO) mice, which are characterized by changes in firing activity of PV-expressing interneurons. In comparison with WT mice, PVKO animals presented significant deficits in the acquisition of the selected learning task. Recordings from prefrontal cortex, nucleus accumbens (NAc) and hippocampus showed significant decreases of the spectral power in beta and gamma bands in PVKO compared with WT mice particularly during the performance of the operant conditioning task. From the first to the last session, at all frequency bands the spectral power in NAc tended to increase in WT and to decrease in PVKO. Results indicate that PV deficiency impairs signaling necessary for instrumental learning and the recognition of natural rewards.
Collapse
Affiliation(s)
- Alessandra Lintas
- Neuroheuristic Research Group & LABEX, HEC Lausanne, University of Lausanne, Quartier UNIL-Chamberonne, 1015, Lausanne, Switzerland.
| | - Raudel Sánchez-Campusano
- Division of Neurosciences, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013, Sevilla, Spain
| | - Alessandro E P Villa
- Neuroheuristic Research Group & LABEX, HEC Lausanne, University of Lausanne, Quartier UNIL-Chamberonne, 1015, Lausanne, Switzerland
| | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013, Sevilla, Spain
| | - José M Delgado-García
- Division of Neurosciences, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013, Sevilla, Spain
| |
Collapse
|
39
|
Ruden JB, Dugan LL, Konradi C. Parvalbumin interneuron vulnerability and brain disorders. Neuropsychopharmacology 2021; 46:279-287. [PMID: 32722660 PMCID: PMC7852528 DOI: 10.1038/s41386-020-0778-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/02/2020] [Accepted: 07/21/2020] [Indexed: 12/31/2022]
Abstract
Parvalbumin-expressing interneurons (PV-INs) are highly vulnerable to stressors and have been implicated in many neuro-psychiatric diseases such as schizophrenia, Alzheimer's disease, autism spectrum disorder, and bipolar disorder. We examined the literature about the current knowledge of the physiological properties of PV-INs and gathered results from diverse research areas to provide insight into their vulnerability to stressors. Among the factors that confer heightened vulnerability are the substantial energy requirements, a strong excitatory drive, and a unique developmental trajectory. Understanding these stressors and elaborating on their impact on PV-IN health is a step toward developing therapies to protect these neurons in various disease states and to retain critical brain functions.
Collapse
Affiliation(s)
- Jacob B Ruden
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Laura L Dugan
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Division of Geriatric Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christine Konradi
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
40
|
Altered GABA-mediated information processing and cognitive dysfunctions in depression and other brain disorders. Mol Psychiatry 2021; 26:151-167. [PMID: 32346158 DOI: 10.1038/s41380-020-0727-3] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/13/2020] [Accepted: 04/01/2020] [Indexed: 12/18/2022]
Abstract
Cognitive dysfunctions, including impaired attention, learning, memory, planning and problem solving, occur in depressive episodes, often persist during remission, predict relapse, worsen with recurrent episodes, and are not treated by current antidepressants or other medications. Cognitive symptoms are also present in other psychiatric disorders, are a hallmark of aging, and define several late-life disorders, including Alzheimer's disease. This pervasive occurrence suggests either a non-specific outcome of a diseased brain, or a shared underlying pathology contributing to this symptom dimension. Recent findings suggest a role for altered GABAergic inhibition in cognitive symptoms. Cellular, molecular and biochemical studies in human subjects report changes affecting the gamma-amino butyric acid (GABA) system, specifically somatostatin-expressing (SST+) GABAergic interneurons, across brain disorders and during aging. SST+ neurons gate excitatory input onto pyramidal neurons within cortical microcircuits. Experimentally reducing the function of these neurons affects excitatory signal-to-noise ratio, reduces synchronized cellular and neural activity, and leads to cognitive dysfunctions. Conversely, augmenting SST+ cell post-synaptic α5-GABA-A receptor activity has pro-cognitive efficacy in stress and aging models. Together, this suggests that reduced signaling of the SST+ neuron/α5-GABA-A receptor pathway contributes to cognitive dysfunctions, and that it represents a novel therapeutic target for remediating mood and cognitive symptoms in depression, other psychiatric disorders and during aging.
Collapse
|
41
|
Coyle JT, Ruzicka WB, Balu DT. Fifty Years of Research on Schizophrenia: The Ascendance of the Glutamatergic Synapse. Am J Psychiatry 2020; 177:1119-1128. [PMID: 33256439 PMCID: PMC8011846 DOI: 10.1176/appi.ajp.2020.20101481] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
42
|
Kenton JA, Ontiveros T, Bird CW, Valenzuela CF, Brigman JL. Moderate prenatal alcohol exposure alters the number and function of GABAergic interneurons in the murine orbitofrontal cortex. Alcohol 2020; 88:33-41. [PMID: 32540413 DOI: 10.1016/j.alcohol.2020.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/22/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022]
Abstract
Exposure to alcohol during development produces Fetal Alcohol Spectrum Disorders (FASD), characterized by a wide range of effects that include deficits in multiple cognitive domains. Early identification and treatment of individuals with FASD remain a challenge because neurobehavioral alterations do not become a significant problem until late childhood and early adolescence. Understanding the mechanisms underlying low and moderate prenatal alcohol exposure (PAE) effects on behavior and cognition is essential for improved diagnosis and treatment. Here, we examined the functional and morphological changes in an area known to be involved in executive control, the orbitofrontal cortex (OFC). We found that a moderate PAE model, previously shown to impair behavioral flexibility and to alter OFC activity in vivo, produced moderate functional and morphological changes within the OFC of mice in vitro. Specifically, slice electrophysiological recordings of spontaneous inhibitory post-synaptic currents in OFC pyramidal neurons revealed a significant increase in the amplitude and area in PAE mice relative to controls. Immunohistochemistry uncovered an increase in calretinin-, but not somatostatin- or parvalbumin-expressing cortical interneurons in the OFC of PAE mice. Together, these data suggest that moderate prenatal alcohol exposure alters the disinhibitory function in the OFC, which may contribute to the executive function deficits associated with FASD.
Collapse
Affiliation(s)
- Johnny A Kenton
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Tiahna Ontiveros
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Clark W Bird
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - C Fernando Valenzuela
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States; New Mexico Alcohol Research Center, University of New Mexico HSC, Albuquerque, NM 87131, United States
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States; New Mexico Alcohol Research Center, University of New Mexico HSC, Albuquerque, NM 87131, United States.
| |
Collapse
|
43
|
Haukvik UK, Gurholt TP, Nerland S, Elvsåshagen T, Akudjedu TN, Alda M, Alnæs D, Alonso‐Lana S, Bauer J, Baune BT, Benedetti F, Berk M, Bettella F, Bøen E, Bonnín CM, Brambilla P, Canales‐Rodríguez EJ, Cannon DM, Caseras X, Dandash O, Dannlowski U, Delvecchio G, Díaz‐Zuluaga AM, Erp TGM, Fatjó‐Vilas M, Foley SF, Förster K, Fullerton JM, Goikolea JM, Grotegerd D, Gruber O, Haarman BCM, Haatveit B, Hajek T, Hallahan B, Harris M, Hawkins EL, Howells FM, Hülsmann C, Jahanshad N, Jørgensen KN, Kircher T, Krämer B, Krug A, Kuplicki R, Lagerberg TV, Lancaster TM, Lenroot RK, Lonning V, López‐Jaramillo C, Malt UF, McDonald C, McIntosh AM, McPhilemy G, Meer D, Melle I, Melloni EMT, Mitchell PB, Nabulsi L, Nenadić I, Oertel V, Oldani L, Opel N, Otaduy MCG, Overs BJ, Pineda‐Zapata JA, Pomarol‐Clotet E, Radua J, Rauer L, Redlich R, Repple J, Rive MM, Roberts G, Ruhe HG, Salminen LE, Salvador R, Sarró S, Savitz J, Schene AH, Sim K, Soeiro‐de‐Souza MG, Stäblein M, Stein DJ, Stein F, Tamnes CK, Temmingh HS, Thomopoulos SI, Veltman DJ, Vieta E, Waltemate L, Westlye LT, Whalley HC, Sämann PG, Thompson PM, Ching CRK, Andreassen OA, Agartz I. In vivo hippocampal subfield volumes in bipolar disorder—A mega‐analysis from The Enhancing Neuro Imaging Genetics through
Meta‐Analysis
Bipolar Disorder Working Group. Hum Brain Mapp 2020; 43:385-398. [PMID: 33073925 PMCID: PMC8675404 DOI: 10.1002/hbm.25249] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/18/2020] [Accepted: 10/06/2020] [Indexed: 01/02/2023] Open
Abstract
The hippocampus consists of anatomically and functionally distinct subfields that may be differentially involved in the pathophysiology of bipolar disorder (BD). Here we, the Enhancing NeuroImaging Genetics through Meta‐Analysis Bipolar Disorder workinggroup, study hippocampal subfield volumetry in BD. T1‐weighted magnetic resonance imaging scans from 4,698 individuals (BD = 1,472, healthy controls [HC] = 3,226) from 23 sites worldwide were processed with FreeSurfer. We used linear mixed‐effects models and mega‐analysis to investigate differences in hippocampal subfield volumes between BD and HC, followed by analyses of clinical characteristics and medication use. BD showed significantly smaller volumes of the whole hippocampus (Cohen's d = −0.20), cornu ammonis (CA)1 (d = −0.18), CA2/3 (d = −0.11), CA4 (d = −0.19), molecular layer (d = −0.21), granule cell layer of dentate gyrus (d = −0.21), hippocampal tail (d = −0.10), subiculum (d = −0.15), presubiculum (d = −0.18), and hippocampal amygdala transition area (d = −0.17) compared to HC. Lithium users did not show volume differences compared to HC, while non‐users did. Antipsychotics or antiepileptic use was associated with smaller volumes. In this largest study of hippocampal subfields in BD to date, we show widespread reductions in nine of 12 subfields studied. The associations were modulated by medication use and specifically the lack of differences between lithium users and HC supports a possible protective role of lithium in BD.
Collapse
Affiliation(s)
- Unn K. Haukvik
- Department of Adult Mental Health Institute of Clinical Medicine, University of Oslo Oslo Norway
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
| | - Tiril P. Gurholt
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
- Department of Psychiatric Research Diakonhjemmet Hospital Oslo Norway
| | - Stener Nerland
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
- Department of Psychiatric Research Diakonhjemmet Hospital Oslo Norway
| | - Torbjørn Elvsåshagen
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
- Department of Neurology Oslo University Hospital Oslo Norway
- Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Theophilus N. Akudjedu
- Centre for Neuroimaging & Cognitive Genomics (NICOG) Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway Galway Ireland
- Institute of Medical Imaging & Visualisation Faculty of Health & Social Sciences, Bournemouth University Bournemouth UK
| | - Martin Alda
- Department of Psychiatry Dalhousie University Halifax Nova Scotia Canada
- National Institute of Mental Health Klecany Czech Republic
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
| | - Silvia Alonso‐Lana
- FIDMAG Germanes Hospitalàries Research Foundation CIBERSAM Barcelona Spain
| | - Jochen Bauer
- Institute of Clinical Radiology University of Münster Münster Germany
| | - Bernhard T. Baune
- Department of Psychiatry University of Münster Münster Germany
- Department of Psychiatry Melbourne Medical School, The University of Melbourne Melbourne Australia
- The Florey Institute of Neuroscience and Mental Health The University of Melbourne Parkville Australia
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology Scientific Institute Ospedale San Raffaele Milan Italy
- University Vita‐Salute San Raffaele Milan Italy
| | - Michael Berk
- Deakin University IMPACT, the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health Geelong Victoria Australia
- Orygen, The National Centre of Excellence in Youth Mental Health and Centre for Youth Mental Health, the Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health The University of Melbourne Melbourne Victoria Australia
| | - Francesco Bettella
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
| | - Erlend Bøen
- Psychosomatic and CL Psychiatry Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
| | - Caterina M. Bonnín
- Barcelona Bipolar Disorders and Depressive Unit Hospital Clinic, Institute of Neurosciences, University of Barcelona, IDIBAPS, CIBERSAM Barcelona Spain
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
- Department of Pathophysiology and Transplantation University of Milan Milan Italy
| | | | - Dara M. Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG) Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway Galway Ireland
| | - Xavier Caseras
- MRC Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Clinical Neurosciences Cardiff University Cardiff UK
| | - Orwa Dandash
- Brain, Mind and Society Research Hub, Turner Institute for Brain and Mental Health, School of Psychological Sciences Monash University Clayton Victoria Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry University of Melbourne and Melbourne Health Melbourne Victoria Australia
| | - Udo Dannlowski
- Department of Psychiatry University of Münster Münster Germany
| | - Giuseppe Delvecchio
- Department of Pathophysiology and Transplantation University of Milan Milan Italy
| | - Ana M. Díaz‐Zuluaga
- Research Group in Psychiatry, Department of Psychiatry Faculty of Medicine, Universidad de Antioquia Medellín Antioquia Colombia
| | - Theo G. M. Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior University of California Irvine Irvine California USA
- Center for the Neurobiology of Learning University of California Irvine and Memory Irvine California USA
| | - Mar Fatjó‐Vilas
- FIDMAG Germanes Hospitalàries Research Foundation CIBERSAM Barcelona Spain
| | - Sonya F. Foley
- Cardiff University Brain Research Imaging Centre (CUBRIC) Cardiff University Cardiff UK
| | | | - Janice M. Fullerton
- Neuroscience Research Australia Randwick New South Wales Australia
- School of Medical Sciences The University of New South Wales Sydney New South Wales Australia
| | - José M. Goikolea
- Barcelona Bipolar Disorders and Depressive Unit Hospital Clinic, Institute of Neurosciences, University of Barcelona, IDIBAPS, CIBERSAM Barcelona Spain
| | | | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry Heidelberg University Hospital Heidelberg Germany
| | - Bartholomeus C. M. Haarman
- Department of Psychiatry University Medical Center Groningen, University of Groningen Groningen The Netherlands
| | - Beathe Haatveit
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
| | - Tomas Hajek
- Department of Psychiatry Dalhousie University Halifax Nova Scotia Canada
- National Institute of Mental Health Klecany Czech Republic
| | - Brian Hallahan
- Centre for Neuroimaging & Cognitive Genomics (NICOG) Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway Galway Ireland
| | - Mathew Harris
- Division of Psychiatry University of Edinburgh Edinburgh UK
| | | | - Fleur M. Howells
- Department of Psychiatry and Mental Health University of Cape Town Cape Town Western Cape South Africa
- Neuroscience Institute University of Cape Town Cape Town Western Cape South Africa
| | - Carina Hülsmann
- Department of Psychiatry University of Münster Münster Germany
| | - Neda Jahanshad
- Imaging Genetics Center USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California Marina del Rey California USA
| | - Kjetil N. Jørgensen
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
- Department of Psychiatric Research Diakonhjemmet Hospital Oslo Norway
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy Philipps‐University Marburg Marburg Germany
- Center for Mind Brain and Behavior (CMBB) Marburg Germany
| | - Bernd Krämer
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry Heidelberg University Hospital Heidelberg Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy Philipps‐University Marburg Marburg Germany
- Center for Mind Brain and Behavior (CMBB) Marburg Germany
- Department of Psychiatry and Psychotherapy University of Bonn Bonn Germany
| | - Rayus Kuplicki
- Laureate Institute for Brain Research Tulsa Oklahoma USA
| | - Trine V. Lagerberg
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
| | - Thomas M. Lancaster
- Cardiff University Brain Research Imaging Centre (CUBRIC) Cardiff University Cardiff UK
- School of Psychology Bath University Bath UK
| | - Rhoshel K. Lenroot
- Neuroscience Research Australia Randwick New South Wales Australia
- School of Psychiatry University of New South Wales Sydney New South Wales Australia
- University of New Mexico Albuquerque New Mexico USA
| | - Vera Lonning
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
- Department of Psychiatric Research Diakonhjemmet Hospital Oslo Norway
| | - Carlos López‐Jaramillo
- Research Group in Psychiatry, Department of Psychiatry Faculty of Medicine, Universidad de Antioquia Medellín Antioquia Colombia
- Mood Disorders Program Hospital Universitario San Vicente Fundación Medellín Antioquia Colombia
| | - Ulrik F. Malt
- Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Colm McDonald
- Centre for Neuroimaging & Cognitive Genomics (NICOG) Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway Galway Ireland
| | | | - Genevieve McPhilemy
- Centre for Neuroimaging & Cognitive Genomics (NICOG) Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway Galway Ireland
| | - Dennis Meer
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
- School of Mental Health and Neuroscience Faculty of Health, Medicine and Life Sciences, Maastricht University Maastricht The Netherlands
| | - Ingrid Melle
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
| | - Elisa M. T. Melloni
- Psychiatry and Clinical Psychobiology Scientific Institute Ospedale San Raffaele Milan Italy
- University Vita‐Salute San Raffaele Milan Italy
| | - Philip B. Mitchell
- School of Psychiatry University of New South Wales Sydney New South Wales Australia
- Black Dog Institute Sydney New South Wales Australia
| | - Leila Nabulsi
- Centre for Neuroimaging & Cognitive Genomics (NICOG) Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway Galway Ireland
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy Philipps‐University Marburg Marburg Germany
- Center for Mind Brain and Behavior (CMBB) Marburg Germany
| | - Viola Oertel
- Department of Psychiatry Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt Frankfurt am Main Germany
| | - Lucio Oldani
- Department of Neurosciences and Mental Health Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
| | - Nils Opel
- Department of Psychiatry University of Münster Münster Germany
| | - Maria C. G. Otaduy
- LIM44, Department of Radiology and Oncology University of São Paulo São Paulo Brazil
| | - Bronwyn J. Overs
- Neuroscience Research Australia Randwick New South Wales Australia
| | - Julian A. Pineda‐Zapata
- Research Group in Psychiatry, Department of Psychiatry Faculty of Medicine, Universidad de Antioquia Medellín Antioquia Colombia
- Research Group Instituto de Alta Tecnología Médica Medellín Antioquia Colombia
| | | | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM Barcelona Spain
- Department of Psychosis Studies Institute of Psychiatry, Psychology and Neuroscience, King's College London London UK
- Department of Clinical Neuroscience Centre for Psychiatry Research, Karolinska Institutet Stockholm Sweden
| | - Lisa Rauer
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry Heidelberg University Hospital Heidelberg Germany
| | - Ronny Redlich
- Department of Psychiatry University of Münster Münster Germany
| | - Jonathan Repple
- Department of Psychiatry University of Münster Münster Germany
| | - Maria M. Rive
- Psychiatry Amsterdam UMC, Location AMC Amsterdam The Netherlands
| | - Gloria Roberts
- School of Psychiatry University of New South Wales Sydney New South Wales Australia
- Black Dog Institute Sydney New South Wales Australia
| | - Henricus G. Ruhe
- Psychiatry Amsterdam UMC, Location AMC Amsterdam The Netherlands
- Donders Institute for Brain, Cognition and Behavior Radboud University Nijmegen The Netherlands
- Department of Psychiatry Radboudumc Nijmegen The Netherlands
| | - Lauren E. Salminen
- Imaging Genetics Center USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California Marina del Rey California USA
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation CIBERSAM Barcelona Spain
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research Foundation CIBERSAM Barcelona Spain
| | - Jonathan Savitz
- Laureate Institute for Brain Research Tulsa Oklahoma USA
- Oxley College of Health Sciences The University of Tulsa Tulsa Oklahoma USA
| | - Aart H. Schene
- Donders Institute for Brain, Cognition and Behavior Radboud University Nijmegen The Netherlands
- Department of Psychiatry Radboudumc Nijmegen The Netherlands
| | - Kang Sim
- West Region/Institute of Mental Health Singapore Singapore
- Yong Loo Lin School of Medicine/National University of Singapore Singapore Singapore
- Lee Kong Chian School of Medicine/Nanyang Technological University Singapore Singapore
| | | | - Michael Stäblein
- Department of Psychiatry Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt Frankfurt am Main Germany
| | - Dan J. Stein
- Department of Psychiatry and Mental Health University of Cape Town Cape Town Western Cape South Africa
- Neuroscience Institute University of Cape Town Cape Town Western Cape South Africa
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute University of Cape Town Cape Town Western Cape South Africa
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy Philipps‐University Marburg Marburg Germany
- Center for Mind Brain and Behavior (CMBB) Marburg Germany
| | - Christian K. Tamnes
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
- Department of Psychiatric Research Diakonhjemmet Hospital Oslo Norway
- PROMENTA Research Center, Department of Psychology University of Oslo Oslo Norway
| | - Henk S. Temmingh
- Department of Psychiatry and Mental Health University of Cape Town Cape Town Western Cape South Africa
- General Adult Psychiatry Division Valkenberg Hospital Cape Town Western Cape South Africa
| | - Sophia I. Thomopoulos
- Imaging Genetics Center USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California Marina del Rey California USA
| | - Dick J. Veltman
- Department of Psychiatry Amsterdam UMC, Location VUMC Amsterdam The Netherlands
- Amsterdam Neuroscience Amsterdam UMC Amsterdam The Netherlands
| | - Eduard Vieta
- Hospital Clinic University of Barcelona, IDIBAPS, CIBERSAM Barcelona Catalonia Spain
| | - Lena Waltemate
- Department of Psychiatry University of Münster Münster Germany
| | - Lars T. Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
- Department of Psychology University of Oslo Oslo Norway
| | | | | | - Paul M. Thompson
- Imaging Genetics Center USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California Marina del Rey California USA
| | - Christopher R. K. Ching
- Imaging Genetics Center USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California Marina del Rey California USA
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
- Department of Psychiatric Research Diakonhjemmet Hospital Oslo Norway
- Department of Clinical Neuroscience Centre for Psychiatric Research, Karolinska Institutet Stockholm Sweden
| | | |
Collapse
|
44
|
Yu YJ, Liang RB, Yang QC, Ge QM, Li QY, Li B, Shi WQ, Shao Y. Altered Spontaneous Brain Activity Patterns in Patients After Lasik Surgery Using Amplitude of Low-Frequency Fluctuation: A Resting-State Functional MRI Study. Neuropsychiatr Dis Treat 2020; 16:1907-1917. [PMID: 32821107 PMCID: PMC7423348 DOI: 10.2147/ndt.s252850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/28/2020] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE Previous studies demonstrated that myopia could result in alterations of brain activity in specific areas. However, whether the visual function could improve by Lasik surgery, with the brain activity alterations also change, is still unknown. Here, we intended to use the amplitude of low-frequency fluctuation (ALFF) technique to investigate the intrinsic brain activity changes in pre-Lasik (PRL) and post-Lasik (POL) patients. METHODS A total of 15 patients with myopia (nine male and six female) were recruited in our study, who were matched according to age, weight, and height. These patients comprised both the PRL and POL groups, which is self-controlled. The patients all underwent resting-state functional magnetic resonance imaging (MRI), and the spontaneous brain activity changes were recorded by the ALFF technique. The data were recorded and arranged in the receiver operating characteristic (ROC) curve, which presented how intrinsic activities altered in different brain regions. Moreover, by Graphpad prism 8, we can analyze the linear correlation between HADS (Hospital Anxiety and Depression Scale) and ALFF values as well. RESULTS Differences in ALFF values existed in brain regions between the same patient before and after the Lasik operation. The regions with increased ALFF values after Lasik surgery were the left parahippocampal gyrus, cerebellar vermis, and left posterior cingulate cortex. The regions with decreased ALFF values after Lasik surgery were the left supramarginal gyrus and right trigonometric inferior frontal gyrus. CONCLUSION We demonstrated significant fluctuations of ALFF values in specific brain areas between the same patients before and after the Lasik surgery. The altered ALFF values reflected the hyperactivity or hypoactivity of the specific brain areas, which may help predict the recovery level of patients' vision after Lasik surgery. Furthermore, based on the experimental results that presented significant activity alterations in specific brian regions, patients could be speculated equipped with a better visual function.
Collapse
Affiliation(s)
- Ya-Jie Yu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang330006, Jiangxi, People’s Republic of China
| | - Rong-Bin Liang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang330006, Jiangxi, People’s Republic of China
| | - Qi-Chen Yang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong999077, People’s Republic of China
| | - Qian-Min Ge
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang330006, Jiangxi, People’s Republic of China
| | - Qiu-Yu Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang330006, Jiangxi, People’s Republic of China
| | - Biao Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang330006, Jiangxi, People’s Republic of China
| | - Wen-Qing Shi
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang330006, Jiangxi, People’s Republic of China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang330006, Jiangxi, People’s Republic of China
| |
Collapse
|
45
|
Harrison PJ, Colbourne L, Harrison CH. The neuropathology of bipolar disorder: systematic review and meta-analysis. Mol Psychiatry 2020; 25:1787-1808. [PMID: 30127470 PMCID: PMC6292507 DOI: 10.1038/s41380-018-0213-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/16/2018] [Accepted: 07/24/2018] [Indexed: 01/10/2023]
Abstract
Various neuropathological findings have been reported in bipolar disorder (BD). However, it is unclear which findings are well established. To address this gap, we carried out a systematic review of the literature. We searched over 5000 publications, identifying 103 data papers, of which 81 were eligible for inclusion. Our main findings can be summarised as follows. First, most studies have relied on a limited number of brain collections, and have used relatively small sample sizes (averaging 12 BD cases and 15 controls). Second, surprisingly few studies have attempted to replicate closely a previous one, precluding substantial meta-analyses, such that the latter were all limited to two studies each, and comprising 16-36 BD cases and 16-74 controls. As such, no neuropathological findings can be considered to have been established beyond reasonable doubt. Nevertheless, there are several replicated positive findings in BD, including decreased cortical thickness and glial density in subgenual anterior cingulate cortex, reduced neuronal density in some amygdalar nuclei, and decreased calbindin-positive neuron density in prefrontal cortex. Many other positive findings have also been reported, but with limited or contradictory evidence. As an important negative result, it can be concluded that gliosis is not a feature of BD; neither is there neuropathological evidence for an inflammatory process.
Collapse
Affiliation(s)
- Paul J Harrison
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK.
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK.
| | - Lucy Colbourne
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Charlotte H Harrison
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| |
Collapse
|
46
|
Ball G, Seidlitz J, Beare R, Seal M. Cortical remodelling in childhood is associated with genes enriched for neurodevelopmental disorders. Neuroimage 2020; 215:116803. [DOI: 10.1016/j.neuroimage.2020.116803] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 12/20/2022] Open
|
47
|
Hippocampal glutamate and hippocampus subfield volumes in antipsychotic-naive first episode psychosis subjects and relationships to duration of untreated psychosis. Transl Psychiatry 2020; 10:137. [PMID: 32398671 PMCID: PMC7217844 DOI: 10.1038/s41398-020-0812-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 11/08/2022] Open
Abstract
Evidence points toward a relationship between longer duration of untreated psychosis (DUP) and worse long-term outcomes in patients with first episode psychosis (FEP), but the underlying neurobiology remains poorly understood. Proton magnetic resonance spectroscopy studies have reported altered hippocampus glutamatergic neurotransmission, and structural MRI as reported hippocampal atrophy that may be associated with memory impairment in schizophrenia. Here, we quantify left hippocampus glutamate (Glx) and left hippocampus subfield volumes in 54 antipsychotic-naive FEP and 41 healthy controls (HC), matched on age, sex, and parental occupation. While there were no significant group difference in Glx levels, hippocampal Glx levels were significantly higher in those who underwent a long DUP (>12 months) compared to those with a short DUP, and compared to HC. Compared to HC, FEP had significantly reduced whole hippocampus volume, as well as of CA1, CA4, granule cell layer, subiculum, and presubiculum subfields. Smaller whole hippocampal volume, as well as CA1, molecular layer, subiculum, presubiculum, and hippocampal tail volumes were significantly associated with longer DUP. However, we found no significant association between hippocampal Glx levels and hippocampal volume or subfields, suggesting that these alterations are not related, or their relationship does not follow a linear pattern. However, our results strongly suggest that one or several pathophysiological processes underlie the DUP. Importantly, our data highlight the critical need for reducing the DUP and for early pharmacological intervention with the hope to prevent structural deficits and, hopefully, improve clinical outcomes.
Collapse
|
48
|
Bobilev AM, Perez JM, Tamminga CA. Molecular alterations in the medial temporal lobe in schizophrenia. Schizophr Res 2020; 217:71-85. [PMID: 31227207 DOI: 10.1016/j.schres.2019.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 11/30/2022]
Abstract
The medial temporal lobe (MTL) and its individual structures have been extensively implicated in schizophrenia pathophysiology, with considerable efforts aimed at identifying structural and functional differences in this brain region. The major structures of the MTL for which prominent differences have been revealed include the hippocampus, the amygdala and the superior temporal gyrus (STG). The different functions of each of these regions have been comprehensively characterized, and likely contribute differently to schizophrenia. While neuroimaging studies provide an essential framework for understanding the role of these MTL structures in various aspects of the disease, ongoing efforts have sought to employ molecular measurements in order to elucidate the biology underlying these macroscopic differences. This review provides a summary of the molecular findings in three major MTL structures, and discusses convergent findings in cellular architecture and inter-and intra-cellular networks. The findings of this effort have uncovered cell-type, network and gene-level specificity largely unique to each brain region, indicating distinct molecular origins of disease etiology. Future studies should test the functional implications of these molecular changes at the circuit level, and leverage new advances in sequencing technology to further refine our understanding of the differential contribution of MTL structures to schizophrenia.
Collapse
Affiliation(s)
- Anastasia M Bobilev
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, United States of America.
| | - Jessica M Perez
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, United States of America.
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, United States of America.
| |
Collapse
|
49
|
Ibrahim BA, Llano DA. Aging and Central Auditory Disinhibition: Is It a Reflection of Homeostatic Downregulation or Metabolic Vulnerability? Brain Sci 2019; 9:brainsci9120351. [PMID: 31805729 PMCID: PMC6955996 DOI: 10.3390/brainsci9120351] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 01/08/2023] Open
Abstract
Aging-related changes have been identified at virtually every level of the central auditory system. One of the most common findings across these nuclei is a loss of synaptic inhibition with aging, which has been proposed to be at the heart of several aging-related changes in auditory cognition, including diminished speech perception in complex environments and the presence of tinnitus. Some authors have speculated that downregulation of synaptic inhibition is a consequence of peripheral deafferentation and therefore is a homeostatic mechanism to restore excitatory/inhibitory balance. As such, disinhibition would represent a form of maladaptive plasticity. However, clinical data suggest that deafferentation-related disinhibition tends to occur primarily in the aged brain. Therefore, aging-related disinhibition may, in part, be related to the high metabolic demands of inhibitory neurons relative to their excitatory counterparts. These findings suggest that both deafferentation-related maladaptive plastic changes and aging-related metabolic factors combine to produce changes in central auditory function. Here, we explore the arguments that downregulation of inhibition may be due to homeostatic responses to diminished afferent input vs. metabolic vulnerability of inhibitory neurons in the aged brain. Understanding the relative importance of these mechanisms will be critical for the development of treatments for the underlying causes of aging-related central disinhibition.
Collapse
Affiliation(s)
- Baher A. Ibrahim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Daniel A. Llano
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence:
| |
Collapse
|
50
|
In Vitro Modeling of the Bipolar Disorder and Schizophrenia Using Patient-Derived Induced Pluripotent Stem Cells with Copy Number Variations of PCDH15 and RELN. eNeuro 2019; 6:ENEURO.0403-18.2019. [PMID: 31540999 PMCID: PMC6800292 DOI: 10.1523/eneuro.0403-18.2019] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
Bipolar disorder (BP) and schizophrenia (SCZ) are major psychiatric disorders, but the molecular mechanisms underlying the complicated pathologies of these disorders remain unclear. It is difficult to establish adequate in vitro models for pathological analysis because of the heterogeneity of these disorders. In the present study, to recapitulate the pathologies of these disorders in vitro, we established in vitro models by differentiating mature neurons from human induced pluripotent stem cells (hiPSCs) derived from BP and SCZ patient with contributive copy number variations, as follows: two BP patients with PCDH15 deletion and one SCZ patient with RELN deletion. Glutamatergic neurons and GABAergic neurons were induced from hiPSCs under optimized conditions. Both types of induced neurons from both hiPSCs exhibited similar phenotypes of MAP2 (microtubule-associated protein 2)-positive dendrite shortening and decreasing synapse numbers. Additionally, we analyzed isogenic PCDH15- or RELN-deleted cells. The dendrite and synapse phenotypes of isogenic neurons were partially similar to those of patient-derived neurons. These results suggest that the observed phenotypes are general phenotypes of psychiatric disorders, and our in vitro models using hiPSC-based technology may be suitable for analysis of the pathologies of psychiatric disorders.
Collapse
|