1
|
Donkels C, Häussler U, Huber S, Tiesmeyer N, Demerath T, Scheiwe C, Shah MJ, Heers M, Urbach H, Schulze‐Bonhage A, Prinz M, Vlachos A, Beck J, Nakagawa JM, Haas CA. Dysregulation of Myelination in Focal Cortical Dysplasia Type II of the Human Frontal Lobe. Glia 2025; 73:928-947. [PMID: 39719691 PMCID: PMC11920682 DOI: 10.1002/glia.24662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/26/2024]
Abstract
Focal cortical dysplasias (FCDs) are local malformations of the human neocortex and a leading cause of intractable epilepsy. FCDs are classified into different subtypes including FCD IIa and IIb, characterized by a blurred gray-white matter boundary or a transmantle sign indicating abnormal white matter myelination. Recently, we have shown that myelination is also compromised in the gray matter of FCD IIa of the temporal lobe. Since myelination is key for brain function, which is imbalanced in epilepsy, in the current study, we investigated myelination in the gray matter of FCD IIa and IIb from the frontal lobe on the morphological, ultrastructural, and transcriptional level. We found that FCD IIa presents with an ordinary radial myelin fiber pattern, but with a reduced thickness of myelin sheaths of 500-1000 nm thick axons in comparison to FCD IIb and with an attenuation of the myelin synthesis machinery. In contrast, FCD IIb showed an irregular and disorganized myelination pattern covering an enlarged area in comparison to FCD IIa and controls and with increased numbers of myelinating oligodendrocytes (OLs). FCD IIb had significantly thicker myelin sheaths of large caliber axons (above 1000 nm) when compared to FCD IIa. Accordingly, FCD IIb showed a significant up-regulation of myelin-associated mRNAs in comparison to FCD IIa and enhanced binding capacities of the transcription factor MYRF to target sites in myelin-associated genes. These data indicate that FCD IIa and IIb are characterized by a differential dysregulation of myelination in the gray matter of the frontal lobe.
Collapse
Affiliation(s)
- Catharina Donkels
- Faculty of Medicine, Experimental Epilepsy Research, Department of NeurosurgeryMedical Center ‐ University of FreiburgFreiburgGermany
| | - Ute Häussler
- Faculty of Medicine, Experimental Epilepsy Research, Department of NeurosurgeryMedical Center ‐ University of FreiburgFreiburgGermany
- Faculty of Medicine, Translational Epilepsy Research, Department of NeurosurgeryMedical Center ‐ University of FreiburgFreiburgGermany
- BrainLinks‐BrainTools CenterUniversity of FreiburgFreiburgGermany
| | - Susanne Huber
- Faculty of Medicine, Experimental Epilepsy Research, Department of NeurosurgeryMedical Center ‐ University of FreiburgFreiburgGermany
| | - Nina Tiesmeyer
- Faculty of Medicine, Experimental Epilepsy Research, Department of NeurosurgeryMedical Center ‐ University of FreiburgFreiburgGermany
| | - Theo Demerath
- Faculty of Medicine, Department of NeuroradiologyMedical Center‐University of FreiburgFreiburgGermany
| | - Christian Scheiwe
- Faculty of Medicine, Department of NeurosurgeryMedical Center ‐ University of FreiburgFreiburgGermany
| | - Mukesch J. Shah
- Faculty of Medicine, Department of NeurosurgeryMedical Center ‐ University of FreiburgFreiburgGermany
| | - Marcel Heers
- Faculty of Medicine, Epilepsy Center FreiburgMedical Center ‐ University of FreiburgFreiburgGermany
| | - Horst Urbach
- Faculty of Medicine, Department of NeuroradiologyMedical Center‐University of FreiburgFreiburgGermany
| | - Andreas Schulze‐Bonhage
- BrainLinks‐BrainTools CenterUniversity of FreiburgFreiburgGermany
- Faculty of Medicine, Epilepsy Center FreiburgMedical Center ‐ University of FreiburgFreiburgGermany
| | - Marco Prinz
- Faculty of Medicine, Institute of NeuropathologyMedical Center ‐ University of FreiburgFreiburgGermany
- Signalling Research Centers BIOSS and CIBSSUniversity of FreiburgFreiburgGermany
| | - Andreas Vlachos
- BrainLinks‐BrainTools CenterUniversity of FreiburgFreiburgGermany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Jürgen Beck
- Faculty of Medicine, Department of NeurosurgeryMedical Center ‐ University of FreiburgFreiburgGermany
| | - Julia M. Nakagawa
- Faculty of Medicine, Translational Epilepsy Research, Department of NeurosurgeryMedical Center ‐ University of FreiburgFreiburgGermany
- Faculty of Medicine, Department of NeurosurgeryMedical Center ‐ University of FreiburgFreiburgGermany
| | - Carola A. Haas
- Faculty of Medicine, Experimental Epilepsy Research, Department of NeurosurgeryMedical Center ‐ University of FreiburgFreiburgGermany
- BrainLinks‐BrainTools CenterUniversity of FreiburgFreiburgGermany
| |
Collapse
|
2
|
Fang Y, Zhang Y, Huang T, Yang S, Li Y, Zhou L. Focal cortical dysplasia type II: review of neuropathological manifestations and pathogenetic mechanisms. ACTA EPILEPTOLOGICA 2025; 7:12. [PMID: 40217346 PMCID: PMC11960379 DOI: 10.1186/s42494-024-00195-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/22/2024] [Indexed: 04/15/2025] Open
Abstract
Focal cortical dysplasia (FCD) is an important cause of intractable epilepsy, with FCD type II (FCD II) being the most common subtype. FCD II is characterized by cortical dyslamination accompanied by dysmorphic neurons (DNs). Identifying the molecular alterations and targetable biomarkers is pivotal for developing therapies. Here, we provide a detailed description of the neuropathological manifestations of FCD II, including morphological alterations and immunophenotypic profiles, indicating that abnormal cells exhibit a diverse spectrum of mixed differentiation states. Furthermore, we summarize current research on the pathogenetic mechanisms, indicating that gene mutations, epigenetic alterations, cortical developmental protein disturbances, inflammatory processes, and extrinsic damages may lead to abnormal neuronal proliferation and migration, thereby contributing to the emergence and progression of FCD II. These findings not only enhance our understanding of the pathogenesis of FCD II but also offer new directions for clinical diagnosis and treatment. Future research should further explore the interactions among these factors and employ multidisciplinary approaches to advance our understanding of FCD II.
Collapse
Affiliation(s)
- Yubao Fang
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yaqian Zhang
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Tiancai Huang
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Shengyu Yang
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yinchao Li
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Liemin Zhou
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
3
|
Yang B, Zhang C, Wang X, Zhao B, Mo J, Luo W, Shao X, Zhang J, Zhang K, Hu W. Laser interstitial thermal therapy in the management of bottom-of-sulcus dysplasia-related epilepsy. Ann Clin Transl Neurol 2025; 12:110-120. [PMID: 39625862 PMCID: PMC11752102 DOI: 10.1002/acn3.52258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 01/22/2025] Open
Abstract
OBJECTIVE This study assessed the efficacy and safety of magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) versus open surgery (OS) for the treatment of patients with bottom-of-sulcus dysplasia (BOSD)-related epilepsy. METHODS Twenty-two patients underwent MRgLITT, while 39 underwent OS. Postoperative seizure-free rates were analyzed using Kaplan-Meier curves. The removal ratio, which represents the extent of damage, was calculated based on preoperative lesion volume and postoperative removal volume. Other outcomes, including adverse events, operative time, and hospital stay, were also compared. RESULTS Kaplan-Meier curves indicated the seizure-free rates were comparable between the MRgLITT group (90.9%, 26.5 [23.0, 35.1] months) and OS group (89.7%, 25.2 [16.2, 34.6] months) at the final follow-up (p = 0.901, log-rank test). The removal ratio of MRgLITT (1.3 [1.1, 1.7]) was significantly lower (p = 0.007) than that of OS (5.8 [3.6, 8.5]). A comparison of postoperative neurological deficits, infection rates, and fever rates revealed no significant differences between MRgLITT and OS groups. The operative time (hours) of MRgLITT (3.0, [2.1, 4.9]) was significantly shorter (p = 0.007) than that of OS (3.5 [3.0, 4.5]). The hospital stay (days) after MRgLITT (6 [5.0, 7.5]) was significantly shorter (p < 0.001) than that of OS (11.0 [9.0, 13.5]). INTERPRETATION MRgLITT has advantages over OS, including comparable seizure control and adverse event profiles, along with reduced removal ratios, shorter operative time, and shorter hospital stays.
Collapse
Affiliation(s)
- Bowen Yang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Jiajie Mo
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Weiyuan Luo
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xiaoqiu Shao
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Wenhan Hu
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| |
Collapse
|
4
|
Rossini L, Maderna E, De Santis D, Rizzi M, Tassi L, Pastori C, Garbelli R, de Curtis M. Altered Gray Matter Myelin in Type IIb Focal Cortical Dysplasia. Neurology 2024; 103:e210057. [PMID: 39586045 DOI: 10.1212/wnl.0000000000210057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/10/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Myelin is altered in several neurologic disorders. Published data demonstrate reduced white matter myelin content and lower oligodendrocyte cell number in postsurgical brain specimens obtained from patients with focal cortical dysplasia (FCD) and temporal lobe epilepsy; a pathogenic role of dysfunctional myelin in focal epilepsies has been proposed. Based on this evidence, our study aims to investigate the myelination status in the gray matter in postsurgical brain specimens from patients with FCDIIb. METHODS We collected specimens from patients with a histopathologic diagnosis of FCDIIb who underwent surgery between 1995 and 2022 in 2 epilepsy surgery centers in Milano; we used nonlesional samples and perilesional tissue within the same FCDIIb specimen as controls. Immunohistochemistry for myelin basic protein (MBP) and electron microscopy were used to quantify myelin alterations in the lesional core of FCDIIb specimens compared with nonlesional and perilesional control areas. Olig2 and breast carcinoma amplified sequence 1 immunohistochemistry, markers of oligodendrocytes, were also evaluated. RESULTS Sixteen patients with FCDIIb (24 ± 14 mean years at surgery, 44% female) and 4 controls (3 histopathology-negative epileptic patients and 1 patient with nonepileptic tumor; 32 ± 11 mean years at surgery, 50% female) were included. The cortical myeloarchitecture was disorganized in the FCD core lesion. MBP immunostained fiber density from 11 paired samples that included both the FCD lesional core and adjacent perilesional cortex in the same tissue section did not reveal a significant difference. Ultrastructural examination performed in the gray matter of 6 specimens from FCDIIb patients (both in the core and in the adjacent perilesional areas) and 2 controls revealed that exclusively in the FCDIIb core, myelinated fiber density was reduced and axons featured thin or no myelin coating and pathologic vacuoles. These changes were associated with a reduction of Olig2-immunostained cells in the FCDIIb cortex core. DISCUSSION Our findings demonstrate that the gray matter at the core of postsurgical FCDIIb specimens contains a high number of poorly myelinated axons and less oligodendrocytes; these findings suggest a potential contribution of altered myelination in the pathogenesis of FCDIIb.
Collapse
Affiliation(s)
- Laura Rossini
- From the Epilepsy Unit (L.R., D.D.S., C.P., R.G., M.d.C.), Division of Neurology V and Neuropathology (E.M.), and Neurosurgery Unit (M.R.), Fondazione IRCCS Istituto Neurologico Carlo Besta; and Claudio Munari Epilepsy Surgery Centre (L.T.), Niguarda Hospital, Milano, Italy
| | - Emanuela Maderna
- From the Epilepsy Unit (L.R., D.D.S., C.P., R.G., M.d.C.), Division of Neurology V and Neuropathology (E.M.), and Neurosurgery Unit (M.R.), Fondazione IRCCS Istituto Neurologico Carlo Besta; and Claudio Munari Epilepsy Surgery Centre (L.T.), Niguarda Hospital, Milano, Italy
| | - Dalia De Santis
- From the Epilepsy Unit (L.R., D.D.S., C.P., R.G., M.d.C.), Division of Neurology V and Neuropathology (E.M.), and Neurosurgery Unit (M.R.), Fondazione IRCCS Istituto Neurologico Carlo Besta; and Claudio Munari Epilepsy Surgery Centre (L.T.), Niguarda Hospital, Milano, Italy
| | - Michele Rizzi
- From the Epilepsy Unit (L.R., D.D.S., C.P., R.G., M.d.C.), Division of Neurology V and Neuropathology (E.M.), and Neurosurgery Unit (M.R.), Fondazione IRCCS Istituto Neurologico Carlo Besta; and Claudio Munari Epilepsy Surgery Centre (L.T.), Niguarda Hospital, Milano, Italy
| | - Laura Tassi
- From the Epilepsy Unit (L.R., D.D.S., C.P., R.G., M.d.C.), Division of Neurology V and Neuropathology (E.M.), and Neurosurgery Unit (M.R.), Fondazione IRCCS Istituto Neurologico Carlo Besta; and Claudio Munari Epilepsy Surgery Centre (L.T.), Niguarda Hospital, Milano, Italy
| | - Chiara Pastori
- From the Epilepsy Unit (L.R., D.D.S., C.P., R.G., M.d.C.), Division of Neurology V and Neuropathology (E.M.), and Neurosurgery Unit (M.R.), Fondazione IRCCS Istituto Neurologico Carlo Besta; and Claudio Munari Epilepsy Surgery Centre (L.T.), Niguarda Hospital, Milano, Italy
| | - Rita Garbelli
- From the Epilepsy Unit (L.R., D.D.S., C.P., R.G., M.d.C.), Division of Neurology V and Neuropathology (E.M.), and Neurosurgery Unit (M.R.), Fondazione IRCCS Istituto Neurologico Carlo Besta; and Claudio Munari Epilepsy Surgery Centre (L.T.), Niguarda Hospital, Milano, Italy
| | - Marco de Curtis
- From the Epilepsy Unit (L.R., D.D.S., C.P., R.G., M.d.C.), Division of Neurology V and Neuropathology (E.M.), and Neurosurgery Unit (M.R.), Fondazione IRCCS Istituto Neurologico Carlo Besta; and Claudio Munari Epilepsy Surgery Centre (L.T.), Niguarda Hospital, Milano, Italy
| |
Collapse
|
5
|
Vorndran J, Blümcke I. A deep-learning-based histopathology classifier for focal cortical dysplasia (FCD) unravels a complex scenario of comorbid FCD subtypes. Epilepsia 2024; 65:3501-3512. [PMID: 39440630 DOI: 10.1111/epi.18161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE Recently, we developed a first artificial intelligence (AI)-based digital pathology classifier for focal cortical dysplasia (FCD) as defined by the ILAE classification. Herein, we tested the usefulness of the classifier in a retrospective histopathology workup scenario. METHODS Eighty-six new cases with histopathologically confirmed FCD ILAE type Ia (FCDIa), FCDIIa, FCDIIb, mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE), or mild malformations of cortical development were selected, 20 of which had confirmed gene mosaicism. RESULTS The classifier always recognized the correct histopathology diagnosis in four or more 1000 × 1000-μm digital tiles in all cases. Furthermore, the final diagnosis overlapped with the largest batch of tiles assigned by the algorithm to one diagnostic entity in 80.2% of all cases. However, 86.2% of all cases revealed more than one diagnostic category. As an example, FCDIIb was identified in all of the 23 patients with histopathologically assigned FCDIIb, whereas the classifier correctly recognized FCDIIa tiles in 19 of these cases (83%), that is, dysmorphic neurons but no balloon cells. In contrast, the classifier misdiagnosed FCDIIb tiles in seven of 23 cases histopathologically assigned to FCDIIa (33%). This mandates a second look by the signing histopathologist to either confirm balloon cells or differentiate from reactive astrocytes. The algorithm also recognized coexisting architectural dysplasia, for example, vertically oriented microcolumns as in FCDIa, in 22% of cases classified as FCDII and in 62% of cases with MOGHE. Microscopic review confirmed microcolumns in the majority of tiles, suggesting that vertically oriented architectural abnormalities are more common than previously anticipated. SIGNIFICANCE An AI-based diagnostic classifier will become a helpful tool in our future histopathology laboratory, in particular when large anatomical resections from epilepsy surgery require extensive resources. We also provide an open access web application allowing the histopathologist to virtually review digital tiles obtained from epilepsy surgery to corroborate their final diagnosis.
Collapse
Affiliation(s)
- Jörg Vorndran
- Department of Neuropathology, University Hospital Erlangen, member of EpiCare European Reference Network, Erlangen, Germany
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, member of EpiCare European Reference Network, Erlangen, Germany
| |
Collapse
|
6
|
Su TY, Choi JY, Hu S, Wang X, Blümcke I, Chiprean K, Krishnan B, Ding Z, Sakaie K, Murakami H, Alexopoulos A, Najm I, Jones S, Ma D, Wang ZI. Multiparametric Characterization of Focal Cortical Dysplasia Using 3D MR Fingerprinting. Ann Neurol 2024; 96:944-957. [PMID: 39096056 PMCID: PMC11496021 DOI: 10.1002/ana.27049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE To develop a multiparametric machine-learning (ML) framework using high-resolution 3 dimensional (3D) magnetic resonance (MR) fingerprinting (MRF) data for quantitative characterization of focal cortical dysplasia (FCD). MATERIALS We included 119 subjects, 33 patients with focal epilepsy and histopathologically confirmed FCD, 60 age- and gender-matched healthy controls (HCs), and 26 disease controls (DCs). Subjects underwent whole-brain 3 Tesla MRF acquisition, the reconstruction of which generated T1 and T2 relaxometry maps. A 3D region of interest was manually created for each lesion, and z-score normalization using HC data was performed. We conducted 2D classification with ensemble models using MRF T1 and T2 mean and standard deviation from gray matter and white matter for FCD versus controls. Subtype classification additionally incorporated entropy and uniformity of MRF metrics, as well as morphometric features from the morphometric analysis program (MAP). We translated 2D results to individual probabilities using the percentage of slices above an adaptive threshold. These probabilities and clinical variables were input into a support vector machine for individual-level classification. Fivefold cross-validation was performed and performance metrics were reported using receiver-operating-characteristic-curve analyses. RESULTS FCD versus HC classification yielded mean sensitivity, specificity, and accuracy of 0.945, 0.980, and 0.962, respectively; FCD versus DC classification achieved 0.918, 0.965, and 0.939. In comparison, visual review of the clinical magnetic resonance imaging (MRI) detected 48% (16/33) of the lesions by official radiology report. In the subgroup where both clinical MRI and MAP were negative, the MRF-ML models correctly distinguished FCD patients from HCs and DCs in 98.3% of cross-validation trials. Type II versus non-type-II classification exhibited mean sensitivity, specificity, and accuracy of 0.835, 0.823, and 0.83, respectively; type IIa versus IIb classification showed 0.85, 0.9, and 0.87. In comparison, the transmantle sign was present in 58% (7/12) of the IIb cases. INTERPRETATION The MRF-ML framework presented in this study demonstrated strong efficacy in noninvasively classifying FCD from normal cortex and distinguishing FCD subtypes. ANN NEUROL 2024;96:944-957.
Collapse
Affiliation(s)
- Ting-Yu Su
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH
| | - Joon Yul Choi
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH
- Biomedical Engineering, Yonsei University, Wonju, Republic of Korea
| | - Siyuan Hu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH
| | - Xiaofeng Wang
- Quantitative Health Science, Cleveland Clinic, Cleveland, OH
| | - Ingmar Blümcke
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH
- Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Katherine Chiprean
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH
| | - Balu Krishnan
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH
| | - Zheng Ding
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH
| | - Ken Sakaie
- Imaging Institute, Cleveland Clinic, Cleveland, OH
| | - Hiroatsu Murakami
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH
| | | | - Imad Najm
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH
| | | | - Dan Ma
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH
| | - Zhong Irene Wang
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
7
|
Chen SQ, Wei L, He K, Xiao YW, Zhang ZT, Dai JK, Shu T, Sun XY, Wu D, Luo Y, Gui YF, Xiao XL. A radiomics nomogram based on multiparametric MRI for diagnosing focal cortical dysplasia and initially identifying laterality. BMC Med Imaging 2024; 24:216. [PMID: 39148028 PMCID: PMC11325615 DOI: 10.1186/s12880-024-01374-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Focal cortical dysplasia (FCD) is the most common epileptogenic developmental malformation. The diagnosis of FCD is challenging. We generated a radiomics nomogram based on multiparametric magnetic resonance imaging (MRI) to diagnose FCD and identify laterality early. METHODS Forty-three patients treated between July 2017 and May 2022 with histopathologically confirmed FCD were retrospectively enrolled. The contralateral unaffected hemispheres were included as the control group. Therefore, 86 ROIs were finally included. Using January 2021 as the time cutoff, those admitted after January 2021 were included in the hold-out set (n = 20). The remaining patients were separated randomly (8:2 ratio) into training (n = 55) and validation (n = 11) sets. All preoperative and postoperative MR images, including T1-weighted (T1w), T2-weighted (T2w), fluid-attenuated inversion recovery (FLAIR), and combined (T1w + T2w + FLAIR) images, were included. The least absolute shrinkage and selection operator (LASSO) was used to select features. Multivariable logistic regression analysis was used to develop the diagnosis model. The performance of the radiomic nomogram was evaluated with an area under the curve (AUC), net reclassification improvement (NRI), integrated discrimination improvement (IDI), calibration and clinical utility. RESULTS The model-based radiomics features that were selected from combined sequences (T1w + T2w + FLAIR) had the highest performances in all models and showed better diagnostic performance than inexperienced radiologists in the training (AUCs: 0.847 VS. 0.664, p = 0.008), validation (AUC: 0.857 VS. 0.521, p = 0.155), and hold-out sets (AUCs: 0.828 VS. 0.571, p = 0.080). The positive values of NRI (0.402, 0.607, 0.424) and IDI (0.158, 0.264, 0.264) in the three sets indicated that the diagnostic performance of Model-Combined improved significantly. The radiomics nomogram fit well in calibration curves (p > 0.05), and decision curve analysis further confirmed the clinical usefulness of the nomogram. Additionally, the contrast (the radiomics feature) of the FCD lesions not only played a crucial role in the classifier but also had a significant correlation (r = -0.319, p < 0.05) with the duration of FCD. CONCLUSION The radiomics nomogram generated by logistic regression model-based multiparametric MRI represents an important advancement in FCD diagnosis and treatment.
Collapse
Affiliation(s)
- Shi-Qi Chen
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Liang Wei
- Department of Pediatrics, The Affiliated Hospital of Jinggangshan University, Jinggangshan, Jiangxi Province, China
| | - Keng He
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Ya-Wen Xiao
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhao-Tao Zhang
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Jian-Kun Dai
- GE Healthcare, MR Research China, Beijing, China
| | - Ting Shu
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Xiao-Yu Sun
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Di Wu
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yi Luo
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yi-Fei Gui
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Xin-Lan Xiao
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
8
|
Vermeulen I, Rodriguez-Alvarez N, François L, Viot D, Poosti F, Aronica E, Dedeurwaerdere S, Barton P, Cillero-Pastor B, Heeren RMA. Spatial omics reveals molecular changes in focal cortical dysplasia type II. Neurobiol Dis 2024; 195:106491. [PMID: 38575092 DOI: 10.1016/j.nbd.2024.106491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024] Open
Abstract
Focal cortical dysplasia (FCD) represents a group of diverse localized cortical lesions that are highly epileptogenic and occur due to abnormal brain development caused by genetic mutations, involving the mammalian target of rapamycin (mTOR). These somatic mutations lead to mosaicism in the affected brain, posing challenges to unravel the direct and indirect functional consequences of these mutations. To comprehensively characterize the impact of mTOR mutations on the brain, we employed here a multimodal approach in a preclinical mouse model of FCD type II (Rheb), focusing on spatial omics techniques to define the proteomic and lipidomic changes. Mass Spectrometry Imaging (MSI) combined with fluorescence imaging and label free proteomics, revealed insight into the brain's lipidome and proteome within the FCD type II affected region in the mouse model. MSI visualized disrupted neuronal migration and differential lipid distribution including a reduction in sulfatides in the FCD type II-affected region, which play a role in brain myelination. MSI-guided laser capture microdissection (LMD) was conducted on FCD type II and control regions, followed by label free proteomics, revealing changes in myelination pathways by oligodendrocytes. Surgical resections of FCD type IIb and postmortem human cortex were analyzed by bulk transcriptomics to unravel the interplay between genetic mutations and molecular changes in FCD type II. Our comparative analysis of protein pathways and enriched Gene Ontology pathways related to myelination in the FCD type II-affected mouse model and human FCD type IIb transcriptomics highlights the animal model's translational value. This dual approach, including mouse model proteomics and human transcriptomics strengthens our understanding of the functional consequences arising from somatic mutations in FCD type II, as well as the identification of pathways that may be used as therapeutic strategies in the future.
Collapse
Affiliation(s)
- Isabeau Vermeulen
- Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | | | - Liesbeth François
- UCB Pharma, Chemin du Foriest 1, 1420 Braine-l'Alleud, Walloon Region, Belgium
| | - Delphine Viot
- UCB Pharma, Chemin du Foriest 1, 1420 Braine-l'Alleud, Walloon Region, Belgium
| | - Fariba Poosti
- UCB Pharma, Chemin du Foriest 1, 1420 Braine-l'Alleud, Walloon Region, Belgium
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Department of (Neuro)Pathology, De Boelelaan 1108, 1081 HV Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 3, 2103 SW Heemstede, the Netherlands
| | | | - Patrick Barton
- UCB Pharma, 216 Bath Rd, Slough, SL1 3WE Berkshire, United Kingdom
| | - Berta Cillero-Pastor
- Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands; Cell Biology-Inspired Tissue Engineering (cBITE), MERLN, Maastricht University, Universiteitssingel 40, 6229 ET Maastricht, Netherlands
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands.
| |
Collapse
|
9
|
Arruda IL, Arruda RF, da Silveira RMB, Duarte JTC, Guaranha MSB, Guilhoto LM, Carrete Júnior H, Stavale JN, Centeno RS, Yacubian EMT, Peixoto-Santos JE. A controversial question: Can morphometry and clinical history be enough to diagnose hippocampal dysplasia? Epileptic Disord 2024; 26:382-391. [PMID: 38588048 DOI: 10.1002/epd2.20222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/12/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
The presence of dysmorphic neurons with strong cytoplasmatic accumulation of heavy non-phosphorylated neurofilament is crucial for the diagnostics of focal cortical dysplasia type II (FCDII). While ILAE's classification describes neocortical dysplasias, some groups have reported patients with mesial t abnormal neurons in the hippocampus of mesial temporal lobe epilepsy. Here we report a patient with such abnormal neurons in the hippocampus and compared it with previous reports of hippocampal dysplasia. Finally, we discuss the need for diagnostic criteria of hippocampal dysplasia.
Collapse
Affiliation(s)
- Ianne Lucena Arruda
- Epilepsy Research and Treatment Unit, Department of Neurology and Neurosurgery, Federal University of São Paulo (Unifesp), São Paulo, Brazil
- Neuroscience Sector, Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Rivus Ferreira Arruda
- Epilepsy Research and Treatment Unit, Department of Neurology and Neurosurgery, Federal University of São Paulo (Unifesp), São Paulo, Brazil
- Neuroscience Sector, Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Rayanne Maria Brandão da Silveira
- Epilepsy Research and Treatment Unit, Department of Neurology and Neurosurgery, Federal University of São Paulo (Unifesp), São Paulo, Brazil
| | - Jeana Torres Corso Duarte
- Epilepsy Research and Treatment Unit, Department of Neurology and Neurosurgery, Federal University of São Paulo (Unifesp), São Paulo, Brazil
| | - Mirian Salvadori Bittar Guaranha
- Epilepsy Research and Treatment Unit, Department of Neurology and Neurosurgery, Federal University of São Paulo (Unifesp), São Paulo, Brazil
| | - Laura Maria Guilhoto
- Epilepsy Research and Treatment Unit, Department of Neurology and Neurosurgery, Federal University of São Paulo (Unifesp), São Paulo, Brazil
| | - Henrique Carrete Júnior
- Diagnostic Imaging Sector, Department of Diagnostic Imaging, Federal University of São Paulo (Unifesp), São Paulo, Brazil
| | - Joao Norberto Stavale
- Department of Pathology, Federal University of São Paulo (Unifesp), São Paulo, Brazil
| | - Ricardo Silva Centeno
- Neurosurgery Sector, Department of Neurology and Neurosurgery, Federal University of São Paulo (Unifesp), São Paulo, Brazil
| | - Elza Marcia Targas Yacubian
- Epilepsy Research and Treatment Unit, Department of Neurology and Neurosurgery, Federal University of São Paulo (Unifesp), São Paulo, Brazil
| | - Jose Eduardo Peixoto-Santos
- Neuroscience Sector, Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
10
|
Macdonald-Laurs E, Warren AEL, Francis P, Mandelstam SA, Lee WS, Coleman M, Stephenson SEM, Barton S, D'Arcy C, Lockhart PJ, Leventer RJ, Harvey AS. The clinical, imaging, pathological and genetic landscape of bottom-of-sulcus dysplasia. Brain 2024; 147:1264-1277. [PMID: 37939785 DOI: 10.1093/brain/awad379] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/20/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023] Open
Abstract
Bottom-of-sulcus dysplasia (BOSD) is increasingly recognized as a cause of drug-resistant, surgically-remediable, focal epilepsy, often in seemingly MRI-negative patients. We describe the clinical manifestations, morphological features, localization patterns and genetics of BOSD, with the aims of improving management and understanding pathogenesis. We studied 85 patients with BOSD diagnosed between 2005-2022. Presenting seizure and EEG characteristics, clinical course, genetic findings and treatment response were obtained from medical records. MRI (3 T) and 18F-FDG-PET scans were reviewed systematically for BOSD morphology and metabolism. Histopathological analysis and tissue genetic testing were performed in 64 operated patients. BOSD locations were transposed to common imaging space to study anatomical location, functional network localization and relationship to normal MTOR gene expression. All patients presented with stereotyped focal seizures with rapidly escalating frequency, prompting hospitalization in 48%. Despite 42% patients having seizure remissions, usually with sodium channel blocking medications, most eventually became drug-resistant and underwent surgery (86% seizure-free). Prior developmental delay was uncommon but intellectual, language and executive dysfunction were present in 24%, 48% and 29% when assessed preoperatively, low intellect being associated with greater epilepsy duration. BOSDs were missed on initial MRI in 68%, being ultimately recognized following repeat MRI, 18F-FDG-PET or image postprocessing. MRI features were grey-white junction blurring (100%), cortical thickening (91%), transmantle band (62%), increased cortical T1 signal (46%) and increased subcortical FLAIR signal (26%). BOSD hypometabolism was present on 18F-FDG-PET in 99%. Additional areas of cortical malformation or grey matter heterotopia were present in eight patients. BOSDs predominated in frontal and pericentral cortex and related functional networks, mostly sparing temporal and occipital cortex, and limbic and visual networks. Genetic testing yielded pathogenic mTOR pathway variants in 63% patients, including somatic MTOR variants in 47% operated patients and germline DEPDC5 or NPRL3 variants in 73% patients with familial focal epilepsy. BOSDs tended to occur in regions where the healthy brain normally shows lower MTOR expression, suggesting these regions may be more vulnerable to upregulation of MTOR activity. Consistent with the existing literature, these results highlight (i) clinical features raising suspicion of BOSD; (ii) the role of somatic and germline mTOR pathway variants in patients with sporadic and familial focal epilepsy associated with BOSD; and (iii) the role of 18F-FDG-PET alongside high-field MRI in detecting subtle BOSD. The anatomical and functional distribution of BOSDs likely explain their seizure, EEG and cognitive manifestations and may relate to relative MTOR expression.
Collapse
Affiliation(s)
- Emma Macdonald-Laurs
- Department of Neurology, The Royal Children's Hospital, Parkville, Victoria 3052Australia
- Department of Neuroscience, Murdoch Children's Research Institute, Parkville 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
| | - Aaron E L Warren
- Department of Neuroscience, Murdoch Children's Research Institute, Parkville 3052, Australia
- Department of Medicine (Austin Health), The University of Melbourne, Heidelberg 3084, Australia
| | - Peter Francis
- Department of Medical Imaging, The Royal Children's Hospital, Parkville 3052, Australia
| | - Simone A Mandelstam
- Department of Neuroscience, Murdoch Children's Research Institute, Parkville 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
- Department of Medical Imaging, The Royal Children's Hospital, Parkville 3052, Australia
| | - Wei Shern Lee
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
- Department of Genomic Medicine, Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville 3052, Australia
| | - Matthew Coleman
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
- Department of Genomic Medicine, Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville 3052, Australia
| | - Sarah E M Stephenson
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
- Department of Genomic Medicine, Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville 3052, Australia
| | - Sarah Barton
- Department of Neurology, The Royal Children's Hospital, Parkville, Victoria 3052Australia
- Department of Neuroscience, Murdoch Children's Research Institute, Parkville 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
| | - Colleen D'Arcy
- Department of Pathology, The Royal Children's Hospital, Parkville 3052, Australia
| | - Paul J Lockhart
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
- Department of Genomic Medicine, Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville 3052, Australia
| | - Richard J Leventer
- Department of Neurology, The Royal Children's Hospital, Parkville, Victoria 3052Australia
- Department of Neuroscience, Murdoch Children's Research Institute, Parkville 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
| | - A Simon Harvey
- Department of Neurology, The Royal Children's Hospital, Parkville, Victoria 3052Australia
- Department of Neuroscience, Murdoch Children's Research Institute, Parkville 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
| |
Collapse
|
11
|
Rodrigo Marinowic D, Bottega Pazzin D, Prates da Cunha de Azevedo S, Pinzetta G, Victor Machado de Souza J, Tonon Schneider F, Thor Ramos Previato T, Jean Varella de Oliveira F, Costa Da Costa J. Epileptogenesis and drug-resistant in focal cortical dysplasias: Update on clinical, cellular, and molecular markers. Epilepsy Behav 2024; 150:109565. [PMID: 38070410 DOI: 10.1016/j.yebeh.2023.109565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 01/14/2024]
Abstract
Focal cortical dysplasia (FCD) is a cortical malformation in brain development and is considered as one of the major causes of drug-resistant epilepsiesin children and adults. The pathogenesis of FCD is yet to be fully understood. Imaging markers such as MRI are currently the surgeons major obstacle due to the difficulty in delimiting the precise dysplasic area and a mosaic brain where there is epileptogenic tissue invisible to MRI. Also increased gene expression and activity may be responsible for the alterations in cell proliferation, migration, growth, and survival. Altered expressions were found, particularly in the PI3K/AKT/mTOR pathway. Surgery is still considered the most effective treatment option, due to drug-resistance, and up to 60 % of patients experience complete seizure control, varying according to the type and location of FCD. Both genetic and epigenetic factors may be involved in the pathogenesis of FCD, and there is no conclusive evidence whether these alterations are inherited or have an environmental origin.
Collapse
Affiliation(s)
- Daniel Rodrigo Marinowic
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.
| | - Douglas Bottega Pazzin
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Giulia Pinzetta
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - João Victor Machado de Souza
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernando Tonon Schneider
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Thales Thor Ramos Previato
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fábio Jean Varella de Oliveira
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Jaderson Costa Da Costa
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
12
|
Winczewska-Wiktor A, Braszka M, Harada-Laszlo M, Badura-Stronka M, Kaczmarek I, Starczewska M, Wencel-Warot A, Steinborn B, Jamsheer A. Evaluating the efficacy of a ketogenic diet in managing drug resistant paediatric DEDPC5-related epilepsy. Epilepsy Behav 2024; 150:109535. [PMID: 38118233 DOI: 10.1016/j.yebeh.2023.109535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 12/22/2023]
Abstract
AIM To evaluate the effectiveness of the ketogenic diet treatment in a cohort of patients with drug-resistant epilepsy with a mutation in the DEPDC5 gene. MATERIALS AND METHODS We followed four paediatric patients with drug resistant DEPDC5-related epilepsy through a ketogenic diet (KD) treatment course. We analyzed the following parameters of their clinical profiles: past medical history, clinical characteristics of seizure morphology, EEG records pre- and post-KD treatment, the results of MRI head and neurological and psychological examinations (pre-treatment and throughout treatment course). We evaluated the effectiveness of previous therapeutic approaches and the current treatment with ketogenic diet alongside results of neuroimaging studies. Effect of KD on co-morbid behavioural and psychiatric symptoms, as well as adverse effects from KD were also assessed. RESULTS In three patients, the introduction of the ketogenic diet resulted in the cessation of seizures, while in 1 patient with co-morbid cortical dysplasia, epileptic seizures of lesser severity returned after an initial seizure-free period of several weeks. Further, 1 patient was able to transition to a KD-only treatment regimen. The remaining patients were able to reduce the number of antiseizure medicine (ASM) to a monotherapy. In all cases we observed improvements in EEG results. Our cohort included one patient whose MRI head showed cortical dysplasia. However, no patients demonstrated any neurological signs in neurological examination. Psychological examination showed normal intellectual development in all patients, although behavioral disorders and difficulties at school were observed. The introduction of KD treatment correlated with improvement in school performance and improved behavioral regulation. No clinically significant adverse events were observed. CONCLUSIONS KD seems to be both effective and well tolerated in young patients with DEPDC5-related epilepsy, both as a monotherapy and as an adjunct to ASM. We recommend an early adoption of this therapeutic approach in this patient demographic. Our results demonstrate that the positive effects of KD treatment encompass improvements in general functioning, particularly in the context of school performance and behavior, in addition to the achievement of good seizure control.
Collapse
Affiliation(s)
| | - Małgorzata Braszka
- University College London Medical School, 74 Huntly School WC1E6DE, London, United Kingdom
| | - Mia Harada-Laszlo
- University College London Medical School, 74 Huntly School WC1E6DE, London, United Kingdom
| | | | - Izabela Kaczmarek
- Department of Developmental Neurology, Poznan University of Medical Sciences, Poland
| | - Monika Starczewska
- Department of Developmental Neurology, Poznan University of Medical Sciences, Poland
| | | | - Barbara Steinborn
- Department of Developmental Neurology, Poznan University of Medical Sciences, Poland
| | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Poland.
| |
Collapse
|
13
|
Salomone G, Comella M, Portale A, Pecora G, Costanza G, Lo Bianco M, Sciuto S, Praticò ER, Falsaperla R. The Spectrum of DEPDC5-Related Epilepsy. JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:248-255. [DOI: 10.1055/s-0041-1727139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractDisheveled EGL-10 and pleckstrin domain-containing protein 5 (DEPDC5) is a key member of the GAP activity toward rags complex 1 complex, which inhibits the mammalian target of rapamycin complex 1 (mTORC1) pathway. DEPDC5 loss-of-function mutations lead to an aberrant activation of the mTOR signaling. At neuronal level, the increased mTOR cascade causes the generation of epileptogenic dysplastic neuronal circuits and it is often associated with malformation of cortical development. The DEPDC5 phenotypic spectrum ranges from sporadic early-onset epilepsies with poor neurodevelopmental outcomes to familial focal epilepsies and sudden unexpected death in epilepsy; a high rate of inter- and intrafamilial variability has been reported. To date, clear genotype–phenotype correlations have not been proven. More studies are required to elucidate the significance of likely pathogenic/variants of uncertain significance. The pursuit of a molecular targeted antiepileptic therapy is a future challenge.
Collapse
Affiliation(s)
- Giulia Salomone
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Mattia Comella
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Anna Portale
- Unit of Pediatrics, Avola Hospital, Siracusa, Italy
| | - Giulia Pecora
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giuseppe Costanza
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Manuela Lo Bianco
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sarah Sciuto
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | | |
Collapse
|
14
|
Guo Z, Zhang C, Wang X, Liu C, Zhao B, Mo J, Zheng Z, Shao X, Zhang J, Zhang K, Hu W. Is intracranial electroencephalography mandatory for MRI-negative neocortical epilepsy surgery? J Neurosurg 2023; 138:1720-1730. [PMID: 36242573 DOI: 10.3171/2022.8.jns22995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/18/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE MRI-negative focal epilepsy is one of the most challenging cases in surgical epilepsy treatment. Many epilepsy centers recommend intracranial electroencephalography (EEG) for MRI-negative cases, especially neocortical epilepsy. This retrospective study aimed to explore whether intracranial monitoring is mandatory in MRI-negative neocortical epilepsy surgery and the factors that significantly influence the decision on whether to perform intracranial recording. METHODS In this study, consecutive surgical patients with focal MRI-negative neocortical epilepsy were recruited. All patients underwent routine preoperative evaluation according to the dedicated protocol of the authors' epilepsy center to determine the treatment strategy. Patients were divided into two groups according to the surgical strategy, i.e., a direct group and a stereo-EEG (SEEG)-guided group. History of epilepsy, seizure frequency, interictal and ictal EEG data, PET data, PET/MRI coregistration data, neuropathological findings, and surgical outcomes were compared between the two groups. Multivariate analysis was performed to identify factors influencing the decision to perform SEEG monitoring. RESULTS Sixty-four patients were included in this study, 19 and 45 of whom underwent direct and SEEG-guided cortical resection, respectively. At an average follow-up of 3.9 years postoperatively, 56 patients (87.5%) had Engel class I results without permanent neurological deficits. Surgical outcomes were not significantly different between the direct and SEEG-guided groups (94.7% vs 84.4%). PET hypometabolic abnormalities were detected in all patients. There were significant differences between the two groups in the extent of hypometabolism (focal vs nonfocal, p < 0.01) and pathological subtype (focal cortical dysplasia type II vs others, p = 0.03). Multivariate analysis revealed that the extent of hypometabolism (OR 0.01, 95% CI 0.00-0.15; p = 0.001) was the only independent factor affecting the treatment strategy. CONCLUSIONS Careful selection of patients with MRI-negative neocortical epilepsy may yield favorable outcomes after direct cortical resection without intracranial monitoring. PET/MRI coregistration plays an essential role in the preoperative evaluation and subsequent resection of these patients. Intracranial monitoring is not a mandatory requirement for surgery if the focal hypometabolic areas are consistent with the findings of semiology and scalp EEG.
Collapse
Affiliation(s)
| | | | - Xiu Wang
- 1Departments of Neurosurgery and
| | | | | | | | - Zhong Zheng
- 4Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Xiaoqiu Shao
- 5Neurology, Beijing Tiantan Hospital, Capital Medical University
| | - Jianguo Zhang
- 1Departments of Neurosurgery and
- 3Beijing Key Laboratory of Neurostimulation; and
| | - Kai Zhang
- 1Departments of Neurosurgery and
- 3Beijing Key Laboratory of Neurostimulation; and
| | - Wenhan Hu
- 1Departments of Neurosurgery and
- 3Beijing Key Laboratory of Neurostimulation; and
| |
Collapse
|
15
|
Balestrini S, Barba C, Thom M, Guerrini R. Focal cortical dysplasia: a practical guide for neurologists. Pract Neurol 2023:pn-2022-003404. [PMID: 36823117 DOI: 10.1136/pn-2022-003404] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2023] [Indexed: 02/25/2023]
Abstract
Focal cortical dysplasia (FCD) is a malformation of cortical development characterised by disruption of cortical cytoarchitecture. Classification of FCDs subtypes has initially been based on correlation of the histopathology with relevant clinical, electroencephalographic and neuroimaging features. A recently proposed classification update recommends a multilayered, genotype-phenotype approach, integrating findings from histopathology, genetic analysis of resected tissue and presurgical MRI. FCDs are caused either by single somatic activating mutations in MTOR pathway genes or by double-hit inactivating mutations with a constitutional and a somatic loss-of-function mutation in repressors of the signalling pathway. Mild malformation with oligodendroglial hyperplasia in epilepsy is caused by somatic pathogenic SLC35A2 mutations. FCDs most often present with drug-resistant focal epilepsy or epileptic encephalopathy. Most patients respond to surgical treatment. The use of mechanistic target of rapamycin inhibitors may complement the surgical approach. Treatment approaches and outcomes have improved with advances in neuroimaging, neurophysiology and genetics, although predictors of treatment response have only been determined in part.
Collapse
Affiliation(s)
- Simona Balestrini
- Pediatric Neurology Unit and Laboratories, Meyer Children's Hospital IRCCS, Florence, Italy .,University of Florence, Florence, Italy.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Carmen Barba
- Pediatric Neurology Unit and Laboratories, Meyer Children's Hospital IRCCS, Florence, Italy.,University of Florence, Florence, Italy
| | - Maria Thom
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Renzo Guerrini
- Pediatric Neurology Unit and Laboratories, Meyer Children's Hospital IRCCS, Florence, Italy.,University of Florence, Florence, Italy
| |
Collapse
|
16
|
Rossini L, De Santis D, Cecchini E, Cagnoli C, Maderna E, Cartelli D, Morgan BP, Torvell M, Spreafico R, di Giacomo R, Tassi L, de Curtis M, Garbelli R. Dendritic spine loss in epileptogenic Type II focal cortical dysplasia: Role of enhanced classical complement pathway activation. Brain Pathol 2022; 33:e13141. [PMID: 36564349 PMCID: PMC10154370 DOI: 10.1111/bpa.13141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022] Open
Abstract
Dendritic spines are the postsynaptic sites for most excitatory glutamatergic synapses. We previously demonstrated a severe spine loss and synaptic reorganization in human neocortices presenting Type II focal cortical dysplasia (FCD), a developmental malformation and frequent cause of drug-resistant focal epilepsy. We extend the findings, investigating the potential role of complement components C1q and C3 in synaptic pruning imbalance. Data from Type II FCD were compared with those obtained in focal epilepsies with different etiologies. Neocortical tissues were collected from 20 subjects, mainly adults with a mean age at surgery of 31 years, admitted to epilepsy surgery with a neuropathological diagnosis of: cryptogenic, temporal lobe epilepsy with hippocampal sclerosis, and Type IIa/b FCD. Dendritic spine density quantitation, evaluated in a previous paper using Golgi impregnation, was available in a subgroup. Immunohistochemistry, in situ hybridization, electron microscopy, and organotypic cultures were utilized to study complement/microglial activation patterns. FCD Type II samples presenting dendritic spine loss were characterized by an activation of the classical complement pathway and microglial reactivity. In the same samples, a close relationship between microglial cells and dendritic segments/synapses was found. These features were consistently observed in Type IIb FCD and in 1 of 3 Type IIa cases. In other patient groups and in perilesional areas outside the dysplasia, not presenting spine loss, these features were not observed. In vitro treatment with complement proteins of organotypic slices of cortical tissue with no sign of FCD induced a reduction in dendritic spine density. These data suggest that dysregulation of the complement system plays a role in microglia-mediated spine loss. This mechanism, known to be involved in the removal of redundant synapses during development, is likely reactivated in Type II FCD, particularly in Type IIb; local treatment with anticomplement drugs could in principle modify the course of disease in these patients.
Collapse
Affiliation(s)
- Laura Rossini
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Dalia De Santis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Erica Cecchini
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cinzia Cagnoli
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Emanuela Maderna
- Division of Neurology V and Neuropathology, Fondazione IRCCS, Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniele Cartelli
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | | | - Megan Torvell
- UK Dementia Research Institute, Cardiff University, Cardiff, UK
| | - Roberto Spreafico
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Roberta di Giacomo
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Tassi
- "Claudio Munari" Epilepsy Surgery Center, GOM Niguarda Hospital, Milan, Italy
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Rita Garbelli
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
17
|
Najm I, Lal D, Alonso Vanegas M, Cendes F, Lopes-Cendes I, Palmini A, Paglioli E, Sarnat HB, Walsh CA, Wiebe S, Aronica E, Baulac S, Coras R, Kobow K, Cross JH, Garbelli R, Holthausen H, Rössler K, Thom M, El-Osta A, Lee JH, Miyata H, Guerrini R, Piao YS, Zhou D, Blümcke I. The ILAE consensus classification of focal cortical dysplasia: An update proposed by an ad hoc task force of the ILAE diagnostic methods commission. Epilepsia 2022; 63:1899-1919. [PMID: 35706131 PMCID: PMC9545778 DOI: 10.1111/epi.17301] [Citation(s) in RCA: 180] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/24/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023]
Abstract
Ongoing challenges in diagnosing focal cortical dysplasia (FCD) mandate continuous research and consensus agreement to improve disease definition and classification. An International League Against Epilepsy (ILAE) Task Force (TF) reviewed the FCD classification of 2011 to identify existing gaps and provide a timely update. The following methodology was applied to achieve this goal: a survey of published literature indexed with ((Focal Cortical Dysplasia) AND (epilepsy)) between 01/01/2012 and 06/30/2021 (n = 1349) in PubMed identified the knowledge gained since 2012 and new developments in the field. An online survey consulted the ILAE community about the current use of the FCD classification scheme with 367 people answering. The TF performed an iterative clinico-pathological and genetic agreement study to objectively measure the diagnostic gap in blood/brain samples from 22 patients suspicious for FCD and submitted to epilepsy surgery. The literature confirmed new molecular-genetic characterizations involving the mechanistic Target Of Rapamycin (mTOR) pathway in FCD type II (FCDII), and SLC35A2 in mild malformations of cortical development (mMCDs) with oligodendroglial hyperplasia (MOGHE). The electro-clinical-imaging phenotypes and surgical outcomes were better defined and validated for FCDII. Little new information was acquired on clinical, histopathological, or genetic characteristics of FCD type I (FCDI) and FCD type III (FCDIII). The survey identified mMCDs, FCDI, and genetic characterization as fields for improvement in an updated classification. Our iterative clinico-pathological and genetic agreement study confirmed the importance of immunohistochemical staining, neuroimaging, and genetic tests to improve the diagnostic yield. The TF proposes to include mMCDs, MOGHE, and "no definite FCD on histopathology" as new categories in the updated FCD classification. The histopathological classification can be further augmented by advanced neuroimaging and genetic studies to comprehensively diagnose FCD subtypes; these different levels should then be integrated into a multi-layered diagnostic scheme. This update may help to foster multidisciplinary efforts toward a better understanding of FCD and the development of novel targeted treatment options.
Collapse
Affiliation(s)
- Imad Najm
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland, Ohio, USA
| | - Dennis Lal
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland, Ohio, USA.,Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Fernando Cendes
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil.,Department of Neurology, University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil
| | - Iscia Lopes-Cendes
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil.,Department of Translational Medicine, University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil
| | - Andre Palmini
- Department of Clinical Neurosciences, School of Medicine, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Porto Alegre Epilepsy Surgery Program, Hospital São Lucas PUCRS, Porto Alegre, Brazil
| | - Eliseu Paglioli
- Department of Surgery, School of Medicine, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Harvey B Sarnat
- Department of Paediatrics, Department of Pathology (Neuropathology) and Department of Clinical Neurosciences, University of Calgary Faculty of Medicine, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Christopher A Walsh
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA.,Departments of Pediatrics and Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Samuel Wiebe
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - Stéphanie Baulac
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Roland Coras
- Department of Neuropathology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katja Kobow
- Developmental Neurosciences Programme, UCL NIHR BRC Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - J Helen Cross
- Developmental Neurosciences Programme, UCL NIHR BRC Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Rita Garbelli
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Hans Holthausen
- Center for Pediatric Neurology, Neurorehabilitation and Epileptology, Schoen-Clinic, Vogtareuth, Germany
| | - Karl Rössler
- Department of Neurosurgery, Allgemeines Krankenhaus Wien, Vienna Medical University, Wien, Austria
| | - Maria Thom
- Department of Neuropathology, Institute of Neurology, University College London, UK
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, KAIST and SoVarGen, Daejeon, South Korea
| | - Hajime Miyata
- Department of Neuropathology, Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, Akita, Japan
| | - Renzo Guerrini
- Neuroscience Department, Children's Hospital Anna Meyer- University of Florence, Florence, Italy
| | - Yue-Shan Piao
- National Center for Neurological Disorders, Department of Pathology, Xuanwu Hospital, Capital Medical University, and Clinical Research Center for Epilepsy, Capital Medical University, Beijing, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Ingmar Blümcke
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland, Ohio, USA.,Department of Neuropathology, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
18
|
Achiriloaie A, Deisch J, Boling W, Bannout F. Striking MRI Changes of Focal Cortical Dysplasia Over Time: A Case Series and Literature Review. Neurol Clin Pract 2021; 11:445-451. [PMID: 34840871 DOI: 10.1212/cpj.0000000000001019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/28/2020] [Indexed: 11/15/2022]
Abstract
Purpose of Review Brain MRI findings of focal cortical dysplasia (FCD) can undergo dramatic changes over time, which may be related to long-term epilepsy or a combination of histopathologic changes that necessitate further investigation. Recent Findings We describe 2 cases of FCD type IIb that initially displayed inconspicuous findings on MRI, however progressed to obvious signal changes on subsequent MRI 10-17 years later. Pathologic analysis indicates that the interval changes are likely attributed to reactive astrogliosis and diffuse parenchymal rarefaction. A few case reports and case series showing similar MRI changes have been described in the literature, the majority in pediatric patients. The adult cases we present add to the scientific evidence of these changes occurring in the adult population. Summary Our observations lead to several clinical suggestions, including closer interval follow-up imaging for nonlesional cases, the addition of postprocessing imaging methods, earlier surgical intervention, and meticulous surgical planning.
Collapse
Affiliation(s)
- Adina Achiriloaie
- Loma Linda University Medical Center (AA), Department of Radiology, Loma Linda, CA; Loma Linda University Medical Center (JD), Department of Pathology, Loma Linda, CA; Loma Linda University Medical Center (WB), Department of Neurosurgery, Loma Linda, CA; and Loma Linda University Medical Center (FB), Department of Neurology, Loma Linda, CA
| | - Jeremy Deisch
- Loma Linda University Medical Center (AA), Department of Radiology, Loma Linda, CA; Loma Linda University Medical Center (JD), Department of Pathology, Loma Linda, CA; Loma Linda University Medical Center (WB), Department of Neurosurgery, Loma Linda, CA; and Loma Linda University Medical Center (FB), Department of Neurology, Loma Linda, CA
| | - Warren Boling
- Loma Linda University Medical Center (AA), Department of Radiology, Loma Linda, CA; Loma Linda University Medical Center (JD), Department of Pathology, Loma Linda, CA; Loma Linda University Medical Center (WB), Department of Neurosurgery, Loma Linda, CA; and Loma Linda University Medical Center (FB), Department of Neurology, Loma Linda, CA
| | - Firas Bannout
- Loma Linda University Medical Center (AA), Department of Radiology, Loma Linda, CA; Loma Linda University Medical Center (JD), Department of Pathology, Loma Linda, CA; Loma Linda University Medical Center (WB), Department of Neurosurgery, Loma Linda, CA; and Loma Linda University Medical Center (FB), Department of Neurology, Loma Linda, CA
| |
Collapse
|
19
|
Holthausen H, Coras R, Tang Y, Bai L, Wang I, Pieper T, Kudernatsch M, Hartlieb T, Staudt M, Winkler P, Hofer W, Jabari S, Kobow K, Blumcke I. Multilobar unilateral hypoplasia with emphasis on the posterior quadrant and severe epilepsy in children with FCD ILAE Type 1A. Epilepsia 2021; 63:42-60. [PMID: 34741301 DOI: 10.1111/epi.17114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Focal cortical dysplasia (FCD) Type 1 and its three subtypes have yet not been fully characterized at the clinical, anatomopathological, and molecular level (International League Against Epilepsy [ILAE] FCD classification from 2011). We aimed to describe the clinical phenotype of patients with histopathologically confirmed FCD1A obtained from a single epilepsy center between 2002 and 2016. METHODS Medical records were retrieved from the hospital's archive. Results from electroencephalography (EEG) video recordings, neuroimaging, and histopathology were reevaluated. Magnetic resonance imaging (MRI) post-processing was retrospectively performed in nine patients. DNA methylation studies were carried out from archival surgical brain tissue in 11 patients. RESULTS Nineteen children with a histopathological diagnosis of FCD1A were included. The average onset of epilepsy was 0.9 years (range 0.2-10 years). All children had severe cognitive impairment and one third had mild motor deficits, yet fine finger movements were preserved in all patients. All patients had daily seizures, being drug resistant from disease onset. Interictal electroencephalography revealed bilateral multi-regional epileptiform discharges. Interictal status epilepticus was observed in 8 and countless subclinical seizures in 11 patients. Regional continuous irregular slow waves were of higher lateralizing and localizing yield than spikes. Posterior background rhythms were normal in 16 of 19 children. Neuroimaging showed unilateral multilobar hypoplasia and increased T2-FLAIR signals of the white matter in 18 of 19 patients. All children underwent tailored multilobar resections, with seizure freedom achieved in 47% (Engel class I). There was no case with frontal involvement without involvement of the posterior quadrant by MRI and histopathology. DNA methylation profiling distinguished FCD1A samples from all other epilepsy specimens and controls. SIGNIFICANCE We identified a cohort of young children with drug resistance from seizure onset, bad EEG with posterior emphasis, lack of any focal neurological deficits but severe cognitive impairment, subtle hypoplasia of the epileptogenic area on MRI, and histopathologically defined and molecularly confirmed by DNA methylation analysis as FCD ILAE Type 1A.
Collapse
Affiliation(s)
- Hans Holthausen
- Center for Pediatric Neurology, Neurorehabilitation, and Epileptology, Schoen-Clinic, Vogtareuth, Germany
| | - Roland Coras
- Department of Neuropathology, University Hospitals Erlangen, Erlangen, Germany
| | - Yingying Tang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Epilepsy Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Lily Bai
- Epilepsy Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Irene Wang
- Epilepsy Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Tom Pieper
- Center for Pediatric Neurology, Neurorehabilitation, and Epileptology, Schoen-Clinic, Vogtareuth, Germany
| | - Manfred Kudernatsch
- Center for Pediatric Neurology, Neurorehabilitation, and Epileptology, Schoen-Clinic, Vogtareuth, Germany.,Paracelsus Private Medical University, Salzburg, Austria
| | - Till Hartlieb
- Center for Pediatric Neurology, Neurorehabilitation, and Epileptology, Schoen-Clinic, Vogtareuth, Germany.,Paracelsus Private Medical University, Salzburg, Austria
| | - Martin Staudt
- Center for Pediatric Neurology, Neurorehabilitation, and Epileptology, Schoen-Clinic, Vogtareuth, Germany
| | - Peter Winkler
- Center for Pediatric Neurology, Neurorehabilitation, and Epileptology, Schoen-Clinic, Vogtareuth, Germany
| | - Wiebke Hofer
- Center for Pediatric Neurology, Neurorehabilitation, and Epileptology, Schoen-Clinic, Vogtareuth, Germany
| | - Samir Jabari
- Department of Neuropathology, University Hospitals Erlangen, Erlangen, Germany
| | - Katja Kobow
- Department of Neuropathology, University Hospitals Erlangen, Erlangen, Germany
| | - Ingmar Blumcke
- Department of Neuropathology, University Hospitals Erlangen, Erlangen, Germany.,Epilepsy Center, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
20
|
Gruber V, Lang J, Endmayr V, Diehm R, Pimpel B, Glatter S, Anink JJ, Bongaarts A, Luinenburg MJ, Reinten RJ, van der Wel N, Larsen P, Hainfellner JA, Rössler K, Aronica E, Scholl T, Mühlebner A, Feucht M. Impaired myelin production due to an intrinsic failure of oligodendrocytes in mTORpathies. Neuropathol Appl Neurobiol 2021; 47:812-825. [PMID: 34173252 PMCID: PMC8518586 DOI: 10.1111/nan.12744] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/24/2021] [Indexed: 12/22/2022]
Abstract
AIMS We aim to evaluate if the myelin pathology observed in epilepsy-associated focal cortical dysplasia type 2B (FCD2B) and-histologically indistinguishable-cortical tubers of tuberous sclerosis complex (TSC) is primarily related to the underlying malformation or constitutes a secondary phenomenon due to the toxic microenvironment created by epileptic seizures. We also aim to investigate the possible beneficial effect of the mTOR pathway regulator everolimus on white matter pathology. METHODS Primary mixed glial cell cultures derived from epilepsy surgery specimens of one TSC and seven FCD2B patients were grown on polycaprolactone fibre matrices and analysed using immunofluorescence and electron microscopy. Unaffected white matter from three age-matched epilepsy patients with mild malformations of cortical development (mMCD) and one with FCD3D served as controls. Additionally, TSC2 knock-out was performed using an oligodendroglial cell line. Myelination capacities of nanofibre grown cells in an inflammatory environment after mTOR-inhibitor treatment with everolimus were further investigated. RESULTS Reduced oligodendroglial turnover, directly related to a lower myelin content was found in the patients' primary cells. In our culture model of myelination dynamics, primary cells grown under 'inflammatory condition' showed decreased myelination, that was repaired by treatment with everolimus. CONCLUSIONS Results obtained in patient-derived primary oligodendroglial and TSC2 knock-out cells suggest that maturation of oligodendroglia and production of a proper myelin sheath seem to be impaired as a result of mTOR pathway disturbance. Hence, oligodendroglial pathology may reflect a more direct effect of the abnormal genetic programme rather than to be an inactive bystander of chronic epilepsy.
Collapse
Affiliation(s)
- Victoria‐Elisabeth Gruber
- Department of Pediatrics and Adolescent MedicineMedical University of Vienna – Affiliated Partner of the ERN EpiCAREViennaAustria
| | - Judith Lang
- Department of Pediatrics and Adolescent MedicineMedical University of Vienna – Affiliated Partner of the ERN EpiCAREViennaAustria
| | - Verena Endmayr
- Division of Neuropathology and Neurochemistry, Department of NeurologyMedical University of ViennaViennaAustria
| | - Robert Diehm
- Department of Pediatrics and Adolescent MedicineMedical University of Vienna – Affiliated Partner of the ERN EpiCAREViennaAustria
| | - Birgit Pimpel
- Department of Pediatrics and Adolescent MedicineMedical University of Vienna – Affiliated Partner of the ERN EpiCAREViennaAustria
| | - Sarah Glatter
- Department of Pediatrics and Adolescent MedicineMedical University of Vienna – Affiliated Partner of the ERN EpiCAREViennaAustria
| | - Jasper J. Anink
- Department of (Neuro)Pathology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Anika Bongaarts
- Department of (Neuro)Pathology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Mark J. Luinenburg
- Department of (Neuro)Pathology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Roy J. Reinten
- Department of (Neuro)Pathology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Nicole van der Wel
- Department of (Neuro)Pathology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Per Larsen
- Department of (Neuro)Pathology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Johannes A. Hainfellner
- Division of Neuropathology and Neurochemistry, Department of NeurologyMedical University of ViennaViennaAustria
| | - Karl Rössler
- Department of NeurosurgeryMedical University of ViennaViennaAustria
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN)HeemstedeThe Netherlands
| | - Theresa Scholl
- Department of Pediatrics and Adolescent MedicineMedical University of Vienna – Affiliated Partner of the ERN EpiCAREViennaAustria
| | - Angelika Mühlebner
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Martha Feucht
- Department of Pediatrics and Adolescent MedicineMedical University of Vienna – Affiliated Partner of the ERN EpiCAREViennaAustria
| |
Collapse
|
21
|
Leite JP, Peixoto-Santos JE. Glia and extracellular matrix molecules: What are their importance for the electrographic and MRI changes in the epileptogenic zone? Epilepsy Behav 2021; 121:106542. [PMID: 31884121 DOI: 10.1016/j.yebeh.2019.106542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/22/2022]
Abstract
Glial cells and extracellular matrix (ECM) molecules are crucial for the maintenance of brain homeostasis. Especially because of their actions regarding neurotransmitter and ionic control, and synaptic function, these cells can potentially contribute to the hyperexcitability seen in the epileptogenic, while ECM changes are linked to synaptic reorganization. The present review will explore glial and ECM homeostatic roles and their potential contribution to tissue plasticity. Finally, we will address how glial, and ECM changes in the epileptogenic zone can be seen in magnetic resonance imaging (MRI), pointing out their importance as markers for the extension of the epileptogenic area. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Joao Pereira Leite
- Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.
| | - Jose Eduardo Peixoto-Santos
- Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil; Department of Neurology and Neurosurgery, Paulista School of Medicine, UNIFESP, Sao Paulo, Brazil
| |
Collapse
|
22
|
Saute RL, Peixoto-Santos JE, Velasco TR, Leite JP. Improving surgical outcome with electric source imaging and high field magnetic resonance imaging. Seizure 2021; 90:145-154. [PMID: 33608134 DOI: 10.1016/j.seizure.2021.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
While most patients with focal epilepsy present with clear structural abnormalities on standard, 1.5 or 3 T MRI, some patients are MRI-negative. For those, quantitative MRI techniques, such as volumetry, voxel-based morphometry, and relaxation time measurements can aid in finding the epileptogenic focus. High-field MRI, just recently approved for clinical use by the FDA, increases the resolution and, in several publications, was shown to improve the detection of focal cortical dysplasias and mild cortical malformations. For those cases without any tissue abnormality in neuroimaging, even at 7 T, scalp EEG alone is insufficient to delimitate the epileptogenic zone. They may benefit from the use of high-density EEG, in which the increased number of electrodes helps improve spatial sampling. The spatial resolution of even low-density EEG can benefit from electric source imaging techniques, which map the source of the recorded abnormal activity, such as interictal epileptiform discharges, focal slowing, and ictal rhythm. These EEG techniques help localize the irritative, functional deficit, and seizure-onset zone, to better estimate the epileptogenic zone. Combining those technologies allows several drug-resistant cases to be submitted to surgery, increasing the odds of seizure freedom and providing a must needed hope for patients with epilepsy.
Collapse
Affiliation(s)
- Ricardo Lutzky Saute
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | - Jose Eduardo Peixoto-Santos
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Paulista School of Medicine, Unifesp, Brazil
| | - Tonicarlo R Velasco
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | - Joao Pereira Leite
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Brazil.
| |
Collapse
|
23
|
Srivastava A, Kumar K, Banerjee J, Tripathi M, Dubey V, Sharma D, Yadav N, Sharma MC, Lalwani S, Doddamani R, Chandra PS, Dixit AB. Transcriptomic profiling of high- and low-spiking regions reveals novel epileptogenic mechanisms in focal cortical dysplasia type II patients. Mol Brain 2021; 14:120. [PMID: 34301297 PMCID: PMC8305866 DOI: 10.1186/s13041-021-00832-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/14/2021] [Indexed: 11/15/2022] Open
Abstract
Focal cortical dysplasia (FCD) is a malformation of the cerebral cortex with poorly-defined epileptogenic zones (EZs), and poor surgical outcome in FCD is associated with inaccurate localization of the EZ. Hence, identifying novel epileptogenic markers to aid in the localization of EZ in patients with FCD is very much needed. High-throughput gene expression studies of FCD samples have the potential to uncover molecular changes underlying the epileptogenic process and identify novel markers for delineating the EZ. For this purpose, we, for the first time performed RNA sequencing of surgically resected paired tissue samples obtained from electrocorticographically graded high (MAX) and low spiking (MIN) regions of FCD type II patients and autopsy controls. We identified significant changes in the MAX samples of the FCD type II patients when compared to non-epileptic controls, but not in the case of MIN samples. We found significant enrichment for myelination, oligodendrocyte development and differentiation, neuronal and axon ensheathment, phospholipid metabolism, cell adhesion and cytoskeleton, semaphorins, and ion channels in the MAX region. Through the integration of both MAX vs non-epileptic control and MAX vs MIN RNA sequencing (RNA Seq) data, PLP1, PLLP, UGT8, KLK6, SOX10, MOG, MAG, MOBP, ANLN, ERMN, SPP1, CLDN11, TNC, GPR37, SLC12A2, ABCA2, ABCA8, ASPA, P2RX7, CERS2, MAP4K4, TF, CTGF, Semaphorins, Opalin, FGFs, CALB2, and TNC were identified as potential key regulators of multiple pathways related to FCD type II pathology. We have identified novel epileptogenic marker elements that may contribute to epileptogenicity in patients with FCD and could be possible markers for the localization of EZ.
Collapse
Affiliation(s)
| | - Krishan Kumar
- Dr B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India
| | | | | | - Vivek Dubey
- Department of Biophysics, AIIMS, New Delhi, India
| | - Devina Sharma
- Department of Neurosurgery, AIIMS, New Delhi, 110029, India
| | - Nitin Yadav
- Dr B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - M C Sharma
- Department of Pathology, AIIMS, New Delhi, India
| | - Sanjeev Lalwani
- Department of Forensic Medicine and Toxicology, AIIMS, New Delhi, India
| | | | - P Sarat Chandra
- Department of Neurosurgery, AIIMS, New Delhi, 110029, India.
| | - Aparna Banerjee Dixit
- Dr B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
24
|
Zimmer TS, Broekaart DWM, Luinenburg M, Mijnsbergen C, Anink JJ, Sim NS, Michailidou I, Jansen FE, van Rijen PC, Lee JH, François L, van Eyll J, Dedeurwaerdere S, van Vliet EA, Mühlebner A, Mills JD, Aronica E. Balloon cells promote immune system activation in focal cortical dysplasia type 2b. Neuropathol Appl Neurobiol 2021; 47:826-839. [PMID: 34003514 PMCID: PMC8518746 DOI: 10.1111/nan.12736] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/12/2021] [Indexed: 11/29/2022]
Abstract
Aims Focal cortical dysplasia (FCD) type 2 is an epileptogenic malformation of the neocortex associated with somatic mutations in the mammalian target of rapamycin (mTOR) pathway. Histopathologically, FCD 2 is subdivided into FCD 2a and FCD 2b, the only discriminator being the presence of balloon cells (BCs) in FCD 2b. While pro‐epileptogenic immune system activation and inflammatory responses are commonly detected in both subtypes, it is unknown what contextual role BCs play. Methods The present study employed RNA sequencing of surgically resected brain tissue from FCD 2a (n = 11) and FCD 2b (n = 20) patients compared to autopsy control (n = 9) focusing on three immune system processes: adaptive immunity, innate immunity and cytokine production. This analysis was followed by immunohistochemistry on a clinically well‐characterised FCD 2 cohort. Results Differential expression analysis revealed stronger expression of components of innate immunity, adaptive immunity and cytokine production in FCD 2b than in FCD 2a, particularly complement activation and antigen presentation. Immunohistochemical analysis confirmed these findings, with strong expression of leukocyte antigen I and II in FCD 2b as compared to FCD 2a. Moreover, T‐lymphocyte tissue infiltration was elevated in FCD 2b. Expression of markers of immune system activation in FCD 2b was concentrated in subcortical white matter. Lastly, antigen presentation was strongly correlated with BC load in FCD 2b lesions. Conclusion We conclude that, next to mutation‐driven mTOR activation and seizure activity, BCs are crucial drivers of inflammation in FCD 2b. Our findings indicate that therapies targeting inflammation may be beneficial in FCD 2b.
Collapse
Affiliation(s)
- Till S Zimmer
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Diede W M Broekaart
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Mark Luinenburg
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Caroline Mijnsbergen
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jasper J Anink
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Nam Suk Sim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Iliana Michailidou
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Floor E Jansen
- Department of Paediatric Neurology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter C van Rijen
- Department of Neurosurgery, Brain Center, Rudolf Magnus Institute for Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,SoVarGen, Inc, Daejeon, Republic of Korea
| | - Liesbeth François
- Neurosciences Therapeutic Area, UCB Pharma, Braine-l'Alleud, Belgium
| | - Jonathan van Eyll
- Neurosciences Therapeutic Area, UCB Pharma, Braine-l'Alleud, Belgium
| | - Stefanie Dedeurwaerdere
- Neurosciences Therapeutic Area, UCB Pharma, Braine-l'Alleud, Belgium.,Department of Translational Neuroscience, University of Antwerp, Wilrijk, Belgium
| | - Erwin A van Vliet
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Angelika Mühlebner
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - James D Mills
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Department of Clinical and Experimental Epilepsy, UCL, London, UK.,Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| |
Collapse
|
25
|
Blümcke I, Coras R, Busch RM, Morita-Sherman M, Lal D, Prayson R, Cendes F, Lopes-Cendes I, Rogerio F, Almeida VS, Rocha CS, Sim NS, Lee JH, Kim SH, Baulac S, Baldassari S, Adle-Biassette H, Walsh CA, Bizzotto S, Doan RN, Morillo KS, Aronica E, Mühlebner A, Becker A, Cienfuegos J, Garbelli R, Giannini C, Honavar M, Jacques TS, Thom M, Mahadevan A, Miyata H, Niehusmann P, Sarnat HB, Söylemezoglu F, Najm I. Toward a better definition of focal cortical dysplasia: An iterative histopathological and genetic agreement trial. Epilepsia 2021; 62:1416-1428. [PMID: 33949696 DOI: 10.1111/epi.16899] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Focal cortical dysplasia (FCD) is a major cause of difficult-to-treat epilepsy in children and young adults, and the diagnosis is currently based on microscopic review of surgical brain tissue using the International League Against Epilepsy classification scheme of 2011. We developed an iterative histopathological agreement trial with genetic testing to identify areas of diagnostic challenges in this widely used classification scheme. METHODS Four web-based digital pathology trials were completed by 20 neuropathologists from 15 countries using a consecutive series of 196 surgical tissue blocks obtained from 22 epilepsy patients at a single center. Five independent genetic laboratories performed screening or validation sequencing of FCD-relevant genes in paired brain and blood samples from the same 22 epilepsy patients. RESULTS Histopathology agreement based solely on hematoxylin and eosin stainings was low in Round 1, and gradually increased by adding a panel of immunostainings in Round 2 and the Delphi consensus method in Round 3. Interobserver agreement was good in Round 4 (kappa = .65), when the results of genetic tests were disclosed, namely, MTOR, AKT3, and SLC35A2 brain somatic mutations in five cases and germline mutations in DEPDC5 and NPRL3 in two cases. SIGNIFICANCE The diagnoses of FCD 1 and 3 subtypes remained most challenging and were often difficult to differentiate from a normal homotypic or heterotypic cortical architecture. Immunohistochemistry was helpful, however, to confirm the diagnosis of FCD or no lesion. We observed a genotype-phenotype association for brain somatic mutations in SLC35A2 in two cases with mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy. Our results suggest that the current FCD classification should recognize a panel of immunohistochemical stainings for a better histopathological workup and definition of FCD subtypes. We also propose adding the level of genetic findings to obtain a comprehensive, reliable, and integrative genotype-phenotype diagnosis in the near future.
Collapse
Affiliation(s)
- Ingmar Blümcke
- Department of Neuropathology, University Hospital, Erlangen, Germany.,Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | - Roland Coras
- Department of Neuropathology, University Hospital, Erlangen, Germany
| | - Robyn M Busch
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA.,Department of Neurology, Cleveland Clinic, Cleveland, OH, USA.,Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Dennis Lal
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA.,Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Richard Prayson
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - Fernando Cendes
- Department of Neurology, University of Campinas, Sao Paulo, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology, Sao Paulo, Brazil
| | - Iscia Lopes-Cendes
- Brazilian Institute of Neuroscience and Neurotechnology, Sao Paulo, Brazil.,Department of Medical Genetics and Genomic Medicine, University of Campinas, Sao Paulo, Brazil
| | - Fabio Rogerio
- Brazilian Institute of Neuroscience and Neurotechnology, Sao Paulo, Brazil.,Department of Pathology, University of Campinas, Sao Paulo, Brazil
| | - Vanessa S Almeida
- Brazilian Institute of Neuroscience and Neurotechnology, Sao Paulo, Brazil.,Department of Medical Genetics and Genomic Medicine, University of Campinas, Sao Paulo, Brazil
| | - Cristiane S Rocha
- Brazilian Institute of Neuroscience and Neurotechnology, Sao Paulo, Brazil.,Department of Medical Genetics and Genomic Medicine, University of Campinas, Sao Paulo, Brazil
| | - Nam Suk Sim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,SoVarGen, Inc., Daejeon, Korea
| | - Se Hoon Kim
- Department of Pathology, College of Medicine, Yonsei University, Seoul, South Korea
| | - Stephanie Baulac
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Sara Baldassari
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Homa Adle-Biassette
- Pathological Anatomy Service, Public Hospital Network of Paris, Paris, France.,NeuroDiderot, Inserm U1141, University of Paris, Paris, France
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.,Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | - Sara Bizzotto
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.,Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | - Ryan N Doan
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.,Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | - Katherine S Morillo
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.,Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, location Academic Medical Center, Amsterdam, the Netherlands.,Epilepsy Institutes of the Netherlands Foundation, Heemstede, the Netherlands
| | - Angelika Mühlebner
- Department of (Neuro)Pathology, Amsterdam UMC, location Academic Medical Center, Amsterdam, the Netherlands.,Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Albert Becker
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Jesus Cienfuegos
- Department of Anatomic Pathology, International Center for Epilepsy Surgery, Humanitas Medical Group Hospital, Mexico City, Mexico.,Department of Anatomic Pathology, Angels Mexico Hospital, Mexico City, Mexico
| | - Rita Garbelli
- Epilepsy Unit, Carlo Besta Neurological Institute, Scientific Institute for Research and Health Care Foundation, Milan, Italy
| | - Caterina Giannini
- Anatomic Pathology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Biomedical and Neuromotor Science,, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Mrinalini Honavar
- Department of Anatomic Pathology, Pedro Hispano Hospital, Matosinhos, Portugal
| | - Thomas S Jacques
- Developmental Biology and Cancer Research and Teaching Programme, University College London Great Ormond Street Institute of Child Health, London, UK.,Department of Histopathology, Great Ormond Street Hospital for Children, National Health Service Foundation Trust, London, UK
| | - Maria Thom
- Department of Neuropathology, Institute of Neurology, University College London, London, UK
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Hajime Miyata
- Department of Neuropathology, Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, Akita, Japan
| | - Pitt Niehusmann
- Department of Neuro-/Pathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Harvey B Sarnat
- Department of Paediatrics, University of Calgary Faculty of Medicine, Alberta Children's Hospital Research Institute, Calgary, AB, Canada.,Department of Pathology (Neuropathology),, University of Calgary Faculty of Medicine, Alberta Children's Hospital Research Institute, Calgary, AB, Canada.,Department of Clinical Neurosciences, University of Calgary Faculty of Medicine, Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Figen Söylemezoglu
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Imad Najm
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA.,Department of Neurology, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
26
|
Macdonald-Laurs E, Maixner WJ, Bailey CA, Barton SM, Mandelstam SA, Yuan-Mou Yang J, Warren AEL, Kean MJ, Francis P, MacGregor D, D'Arcy C, Wrennall JA, Davidson A, Pope K, Leventer RJ, Freeman JL, Wray A, Jackson GD, Harvey AS. One-Stage, Limited-Resection Epilepsy Surgery for Bottom-of-Sulcus Dysplasia. Neurology 2021; 97:e178-e190. [PMID: 33947776 DOI: 10.1212/wnl.0000000000012147] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/31/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine whether 1-stage, limited corticectomy controls seizures in patients with MRI-positive, bottom-of-sulcus dysplasia (BOSD). METHODS We reviewed clinical, neuroimaging, electrocorticography (ECoG), operative, and histopathology findings in consecutively operated patients with drug-resistant focal epilepsy and MRI-positive BOSD, all of whom underwent corticectomy guided by MRI and ECoG. RESULTS Thirty-eight patients with a median age at surgery of 10.2 (interquartile range [IQR] 6.0-14.1) years were included. BOSDs involved eloquent cortex in 15 patients. Eighty-seven percent of patients had rhythmic spiking on preresection ECoG. Rhythmic spiking was present in 22 of 24 patients studied with combined depth and surface electrodes, being limited to the dysplastic sulcus in 7 and involving the dysplastic sulcus and gyral crown in 15. Sixty-eight percent of resections were limited to the dysplastic sulcus, leaving the gyral crown. Histopathology was focal cortical dysplasia (FCD) type IIb in 29 patients and FCDIIa in 9. Dysmorphic neurons were present in the bottom of the sulcus but not the top or the gyral crown in 17 of 22 patients. Six (16%) patients required reoperation for postoperative seizures and residual dysplasia; reoperation was not correlated with ECoG, neuroimaging, or histologic abnormalities in the gyral crown. At a median 6.3 (IQR 4.8-9.9) years of follow-up, 33 (87%) patients are seizure-free, 31 off antiseizure medication. CONCLUSION BOSD can be safely and effectively resected with MRI and ECoG guidance, corticectomy potentially being limited to the dysplastic sulcus, without need for intracranial EEG monitoring and functional mapping. CLASSIFICATION OF EVIDENCE This study provides Class IV evidence that 1-stage, limited corticectomy for BOSD is safe and effective for control of seizures.
Collapse
Affiliation(s)
- Emma Macdonald-Laurs
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia
| | - Wirginia J Maixner
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia
| | - Catherine A Bailey
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia
| | - Sarah M Barton
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia
| | - Simone A Mandelstam
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia
| | - Joseph Yuan-Mou Yang
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia
| | - Aaron E L Warren
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia
| | - Michael J Kean
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia
| | - Peter Francis
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia
| | - Duncan MacGregor
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia
| | - Colleen D'Arcy
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia
| | - Jacquie A Wrennall
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia
| | - Andrew Davidson
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia
| | - Kate Pope
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia
| | - Richard J Leventer
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia
| | - Jeremy L Freeman
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia
| | - Alison Wray
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia
| | - Graeme D Jackson
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia
| | - A Simon Harvey
- From the Departments of Neurology (E.M.-L., C.A.B., S.M.B., R.J.L., J.L.F., A.S.H.), Neurosurgery (W.J.M., J.Y.-M.Y., A.E.L.W., A.W.), Medical Imaging (S.A.M., M.J.K., P.F.), Anatomical Pathology (D.M., C.D.), Psychology (J.A.W.), and Anaesthesia (A.D.), The Royal Children's Hospital; Murdoch Children's Research Institute (E.M.-L., W.J.M., S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., C.D., A.D., K.P., R.J.L., A.W., A.S.H.); University of Melbourne (E.M.-L., W.J.M, S.M.B., S.A.M., J.Y.-M.Y., A.E.L.W., M.J.K., C.D., A.D., R.J.L., A.S.H.); and Florey Institute of Neuroscience and Mental Health (A.E.L.W., G.D.J., A.S.H.), Parkville, Victoria, Australia.
| |
Collapse
|
27
|
Mühlebner A, van Scheppingen J, de Neef A, Bongaarts A, Zimmer TS, Mills JD, Jansen FE, Spliet WGM, Krsek P, Zamecnik J, Coras R, Blumcke I, Feucht M, Scholl T, Gruber VE, Hainfellner JA, Söylemezoğlu F, Kotulska K, Lagae L, Jansen AC, Kwiatkowski DJ, Jozwiak S, Curatolo P, Aronica E. Myelin Pathology Beyond White Matter in Tuberous Sclerosis Complex (TSC) Cortical Tubers. J Neuropathol Exp Neurol 2021; 79:1054-1064. [PMID: 32954437 PMCID: PMC7559237 DOI: 10.1093/jnen/nlaa090] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a monogenetic disease that arises due to mutations in either the TSC1 or TSC2 gene and affects multiple organ systems. One of the hallmark manifestations of TSC are cortical malformations referred to as cortical tubers. These tubers are frequently associated with treatment-resistant epilepsy. Some of these patients are candidates for epilepsy surgery. White matter abnormalities, such as loss of myelin and oligodendroglia, have been described in a small subset of resected tubers but mechanisms underlying this phenomenon are unclear. Herein, we analyzed a variety of neuropathologic and immunohistochemical features in gray and white matter areas of resected cortical tubers from 46 TSC patients using semi-automated quantitative image analysis. We observed divergent amounts of myelin basic protein as well as numbers of oligodendroglia in both gray and white matter when compared with matched controls. Analyses of clinical data indicated that reduced numbers of oligodendroglia were associated with lower numbers on the intelligence quotient scale and that lower amounts of myelin-associated oligodendrocyte basic protein were associated with the presence of autism-spectrum disorder. In conclusion, myelin pathology in cortical tubers extends beyond the white matter and may be linked to cognitive dysfunction in TSC patients.
Collapse
Affiliation(s)
- Angelika Mühlebner
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jackelien van Scheppingen
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Andrew de Neef
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anika Bongaarts
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Till S Zimmer
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - James D Mills
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Floor E Jansen
- Department of Pediatric Neurology, Brain Center University Medical Center
| | - Wim G M Spliet
- Department of Pathology, University Medical Center Utrecht (WGMS) Utrecht, The Netherlands
| | | | | | - Roland Coras
- Second Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic; Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Ingmar Blumcke
- Second Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic; Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | | | | | | | | | - Figen Söylemezoğlu
- Medical University of Vienna, Vienna, Austria; Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Lieven Lagae
- Department of Development and Regeneration-Section Pediatric Neurology, University Hospitals KU Leuven, Leuven
| | - Anna C Jansen
- Pediatric Neurology Unit-UZ Brussel, Brussels Belgium
| | | | - Sergiusz Jozwiak
- Department of Neurology and Epileptology, The Children's Memorial Health Institute.,Department of Child Neurology, Medical University of Warsaw Warsaw, Poland
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| |
Collapse
|
28
|
de Curtis M, Garbelli R, Uva L. A hypothesis for the role of axon demyelination in seizure generation. Epilepsia 2021; 62:583-595. [PMID: 33493363 DOI: 10.1111/epi.16824] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 01/06/2023]
Abstract
Loss of myelin and altered oligodendrocyte distribution in the cerebral cortex are commonly observed both in postsurgical tissue derived from different focal epilepsies (such as focal cortical dysplasias and tuberous sclerosis) and in animal models of focal epilepsy. Moreover, seizures are a frequent symptom in demyelinating diseases, such as multiple sclerosis, and in animal models of demyelination and oligodendrocyte dysfunction. Finally, the excessive activity reported in demyelinated axons may promote hyperexcitability. We hypothesize that the extracellular potassium rise generated during epileptiform activity may be amplified by the presence of axons without appropriate myelin coating and by alterations in oligodendrocyte function. This process could facilitate the triggering of recurrent spontaneous seizures in areas of altered myelination and could result in further demyelination, thus promoting epileptogenesis.
Collapse
Affiliation(s)
- Marco de Curtis
- Epilepsy Unit, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Rita Garbelli
- Epilepsy Unit, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Laura Uva
- Epilepsy Unit, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
| |
Collapse
|
29
|
Rampp S, Rössler K, Hamer H, Illek M, Buchfelder M, Doerfler A, Pieper T, Hartlieb T, Kudernatsch M, Koelble K, Peixoto-Santos JE, Blümcke I, Coras R. Dysmorphic neurons as cellular source for phase-amplitude coupling in Focal Cortical Dysplasia Type II. Clin Neurophysiol 2021; 132:782-792. [PMID: 33571886 DOI: 10.1016/j.clinph.2021.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Reliable localization of the epileptogenic zone is necessary for successful epilepsy surgery. Neurophysiological biomarkers include ictal onsets and interictal spikes. Furthermore, the epileptic network shows oscillations with potential localization value and pathomechanistic implications. The cellular origin of such markers in invasive EEG in vivo remains to be clarified. METHODS In the presented pilot study, surgical brain samples and invasive EEG recordings of seven patients with surgically treated Focal Cortical Dysplasia (FCD) type II were coregistered using a novel protocol. Dysmorphic neurons and balloon cells were immunohistochemically quantified. Evaluated markers included seizure onset, spikes, and oscillatory activity in delta, theta, gamma and ripple frequency bands, as well as sample entropy and phase-amplitude coupling between delta, theta, alpha and beta phase and gamma amplitude. RESULTS Correlations between histopathology and neurophysiology provided evidence for a contribution of dysmorphic neurons to interictal spikes, fast gamma activity and ripples. Furthermore, seizure onset and phase-amplitude coupling in areas with dysmorphic neurons suggests preserved connectivity is related to seizure initiation. Balloon cells showed no association. CONCLUSIONS Phase-amplitude coupling, spikes, fast gamma and ripples are related to the density of dysmorphic neurons and localize the seizure onset zone. SIGNIFICANCE The results of our pilot study provide a new powerful tool to address the cellular source of abnormal neurophysiology signals to leverage current and novel biomarkers for the localization of epileptic activity in the human brain.
Collapse
Affiliation(s)
- Stefan Rampp
- Department of Neurosurgery, University Hospital Erlangen, Germany; Department of Neurosurgery, University Hospital Halle, Germany.
| | - Karl Rössler
- Department of Neurosurgery, University Hospital Erlangen, Germany; Department of Neurosurgery, University Hospital Vienna, Austria
| | - Hajo Hamer
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, Germany
| | - Margit Illek
- Department of Neurosurgery, University Hospital Erlangen, Germany
| | | | - Arnd Doerfler
- Department of Neuroradiology, University Hospital Erlangen, Germany
| | - Tom Pieper
- Hospital for Neuropediatrics and Neurological Rehabilitation, Epilepsy Center for Children and Adolescents, Schön Klinik Vogtareuth, Germany
| | - Till Hartlieb
- Hospital for Neuropediatrics and Neurological Rehabilitation, Epilepsy Center for Children and Adolescents, Schön Klinik Vogtareuth, Germany
| | - Manfred Kudernatsch
- Epilepsy Center and Department of Neurosurgery, Schön Klinik Vogtareuth, Germany; Research Institute, Rehabilitation, Transition, Palliation, PMU Salzburg, Salzburg, Austria
| | - Konrad Koelble
- Department of Neuropathology, University Hospital Erlangen, Germany
| | - Jose Eduardo Peixoto-Santos
- Department of Neuropathology, University Hospital Erlangen, Germany; Department of Neurology and Neurosurgery, Paulista School of Medicine, UNIFESP, Brazil
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Germany
| | - Roland Coras
- Department of Neuropathology, University Hospital Erlangen, Germany
| |
Collapse
|
30
|
Bonduelle T, Hartlieb T, Baldassari S, Sim NS, Kim SH, Kang HC, Kobow K, Coras R, Chipaux M, Dorfmüller G, Adle-Biassette H, Aronica E, Lee JH, Blumcke I, Baulac S. Frequent SLC35A2 brain mosaicism in mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE). Acta Neuropathol Commun 2021; 9:3. [PMID: 33407896 PMCID: PMC7788938 DOI: 10.1186/s40478-020-01085-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
Focal malformations of cortical development (MCD) are linked to somatic brain mutations occurring during neurodevelopment. Mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE) is a newly recognized clinico-pathological entity associated with pediatric drug-resistant focal epilepsy, and amenable to neurosurgical treatment. MOGHE is histopathologically characterized by clusters of increased oligodendroglial cell densities, patchy zones of hypomyelination, and heterotopic neurons in the white matter. The molecular etiology of MOGHE remained unknown so far. We hypothesized a contribution of mosaic brain variants and performed deep targeted gene sequencing on 20 surgical MOGHE brain samples from a single-center cohort of pediatric patients. We identified somatic pathogenic SLC35A2 variants in 9/20 (45%) patients with mosaic rates ranging from 7 to 52%. SLC35A2 encodes a UDP-galactose transporter, previously implicated in other malformations of cortical development (MCD) and a rare type of congenital disorder of glycosylation. To further clarify the histological features of SLC35A2-brain tissues, we then collected 17 samples with pathogenic SLC35A2 variants from a multicenter cohort of MCD cases. Histopathological reassessment including anti-Olig2 staining confirmed a MOGHE diagnosis in all cases. Analysis by droplet digital PCR of pools of microdissected cells from one MOGHE tissue revealed a variant enrichment in clustered oligodendroglial cells and heterotopic neurons. Through an international consortium, we assembled an unprecedented series of 26 SLC35A2-MOGHE cases providing evidence that mosaic SLC35A2 variants, likely occurred in a neuroglial progenitor cell during brain development, are a genetic marker for MOGHE.
Collapse
|
31
|
Lee HM, Gill RS, Fadaie F, Cho KH, Guiot MC, Hong SJ, Bernasconi N, Bernasconi A. Unsupervised machine learning reveals lesional variability in focal cortical dysplasia at mesoscopic scale. NEUROIMAGE-CLINICAL 2020; 28:102438. [PMID: 32987299 PMCID: PMC7520429 DOI: 10.1016/j.nicl.2020.102438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 02/03/2023]
Abstract
Consensus clustering of MRI contrasts maps focal cortical dysplasia lesional variability. Lesions were parcellated into four classes with distinct structural profiles. FCD classes reflected typical functional and histopathological characteristics. Class membership was replicated in two independent datasets. Class-informed detection algorithm outperformed a class-naïve paradigm.
Objective Focal cortical dysplasia (FCD) is the most common epileptogenic developmental malformation and a prevalent cause of surgically amenable epilepsy. While cellular and molecular biology data suggest that FCD lesional characteristics lie along a spectrum, this notion remains to be verified in vivo. We tested the hypothesis that machine learning applied to MRI captures FCD lesional variability at a mesoscopic scale. Methods We studied 46 patients with histologically verified FCD Type II and 35 age- and sex-matched healthy controls. We applied consensus clustering, an unsupervised learning technique that identifies stable clusters based on bootstrap-aggregation, to 3 T multicontrast MRI (T1-weighted MRI and FLAIR) features of FCD normalized with respect to distributions in controls. Results Lesions were parcellated into four classes with distinct structural profiles variably expressed within and across patients: Class-1 with isolated white matter (WM) damage; Class-2 combining grey matter (GM) and WM alterations; Class-3 with isolated GM damage; Class-4 with GM-WM interface anomalies. Class membership was replicated in two independent datasets. Classes with GM anomalies impacted local function (resting-state fMRI derived ALFF), while those with abnormal WM affected large-scale connectivity (assessed by degree centrality). Overall, MRI classes reflected typical histopathological FCD characteristics: Class-1 was associated with severe WM gliosis and interface blurring, Class-2 with severe GM dyslamination and moderate WM gliosis, Class-3 with moderate GM gliosis, Class-4 with mild interface blurring. A detection algorithm trained on class-informed data outperformed a class-naïve paradigm. Significance Machine learning applied to widely available MRI contrasts uncovers FCD Type II variability at a mesoscopic scale and identifies tissue classes with distinct structural dimensions, functional and histopathological profiles. Integrating in vivo staging of FCD traits with automated lesion detection is likely to inform the development of novel personalized treatments.
Collapse
Affiliation(s)
- Hyo M Lee
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Ravnoor S Gill
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Fatemeh Fadaie
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Kyoo H Cho
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Marie C Guiot
- Department of Pathology, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Seok-Jun Hong
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
32
|
Donkels C, Peters M, Fariña Núñez MT, Nakagawa JM, Kirsch M, Vlachos A, Scheiwe C, Schulze-Bonhage A, Prinz M, Beck J, Haas CA. Oligodendrocyte lineage and myelination are compromised in the gray matter of focal cortical dysplasia type IIa. Epilepsia 2019; 61:171-184. [PMID: 31872870 DOI: 10.1111/epi.16415] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Focal cortical dysplasias (FCDs) are local malformations of the human neocortex and a leading cause of medically intractable epilepsy. FCDs are characterized by local architectural disturbances of the neocortex and often by a blurred gray-white matter boundary indicating abnormal white matter myelination. We have recently shown that myelination is also compromised in the gray matter of dysplastic areas, since transcripts encoding factors for oligodendrocyte differentiation and myelination are downregulated and myelin fibers appear fractured and disorganized. METHODS Here, we characterized the gray matter-associated myelination pathology in detail by in situ hybridization, immunohistochemistry, and electron microscopy with markers for myelin, mature oligodendrocytes, and oligodendrocyte precursor cells in tissue sections of FCD IIa and control cortices. In addition, we isolated oligodendrocyte precursor cells from resected dysplastic tissue and performed proliferation assays. RESULTS We show that the proportion of myelinated gray matter is similar in the dysplastic cortex to that in controls and myelinated fibers extend up to layer III. On the ultrastructural level, however, we found that the myelin sheaths of layer V axons are thinner in dysplastic specimens than in controls. In addition, the density of oligodendrocyte precursor cells and of mature oligodendrocytes was reduced. Finally, we show for the first time that oligodendrocyte precursor cells isolated from resected dysplastic cortex have a reduced proliferation capacity in comparison to controls. SIGNIFICANCE These results indicate that proliferation and differentiation of oligodendrocyte precursor cells and the formation of myelin sheaths are compromised in FCD and might contribute to the epileptogenicity of this cortical malformation.
Collapse
Affiliation(s)
- Catharina Donkels
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Myriam Peters
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mateo T Fariña Núñez
- Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julia M Nakagawa
- Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias Kirsch
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Scheiwe
- Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Schulze-Bonhage
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Epilepsy Center Freiburg, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BrainLinks-BrainTools, Cluster of Excellence, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BrainLinks-BrainTools, Cluster of Excellence, University of Freiburg, Freiburg, Germany
| |
Collapse
|
33
|
Bartolini E, Cosottini M, Costagli M, Barba C, Tassi L, Spreafico R, Garbelli R, Biagi L, Buccoliero A, Giordano F, Guerrini R. Ultra-High-Field Targeted Imaging of Focal Cortical Dysplasia: The Intracortical Black Line Sign in Type IIb. AJNR Am J Neuroradiol 2019; 40:2137-2142. [PMID: 31727747 DOI: 10.3174/ajnr.a6298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE Conventional MR imaging has limitations in detecting focal cortical dysplasia. We assessed the added value of 7T in patients with histologically proved focal cortical dysplasia to highlight correlations between neuropathology and ultra-high-field imaging. MATERIALS AND METHODS Between 2013 and 2019, we performed a standardized 7T MR imaging protocol in patients with drug-resistant focal epilepsy. We focused on 12 patients in whom postsurgical histopathology revealed focal cortical dysplasia and explored the diagnostic yield of preoperative 7T versus 1.5/3T MR imaging and the correlations of imaging findings with histopathology. We also assessed the relationship between epilepsy surgery outcome and the completeness of surgical removal of the MR imaging-visible structural abnormality. RESULTS We observed clear abnormalities in 10/12 patients using 7T versus 9/12 revealed by 1.5/3T MR imaging. In patients with focal cortical dysplasia I, 7T MR imaging did not disclose morphologic abnormalities (n = 0/2). In patients with focal cortical dysplasia II, 7T uncovered morphologic signs that were not visible on clinical imaging in 1 patient with focal cortical dysplasia IIa (n = 1/4) and in all those with focal cortical dysplasia IIb (n = 6/6). T2*WI provided the highest added value, disclosing a peculiar intracortical hypointense band (black line) in 5/6 patients with focal cortical dysplasia IIb. The complete removal of the black line was associated with good postsurgical outcome (n = 4/5), while its incomplete removal yielded unsatisfactory results (n = 1/5). CONCLUSIONS The high sensitivity of 7T T2*-weighted images provides an additional tool in defining potential morphologic markers of high epileptogenicity within the dysplastic tissue of focal cortical dysplasia IIb and will likely help to more precisely plan epilepsy surgery and explain surgical failures.
Collapse
Affiliation(s)
- E Bartolini
- From the Department of Pediatric Neurology (E.B., C.B., A.B., R. Guerrini).,Neurology Unit (E.B.), USL Centro Toscana, Nuovo Ospedale Santo Stefano, Prato, Italy
| | - M Cosottini
- Department of Translational Research and New Technologies in Medicine and Surgery (M. Cosottini), University of Pisa, Pisa, Italy
| | - M Costagli
- IMAGO7 Research Foundation (M. Costagli), Pisa, Italy
| | - C Barba
- From the Department of Pediatric Neurology (E.B., C.B., A.B., R. Guerrini)
| | - L Tassi
- Epilepsy Surgery Centre C. Munari (L.T.), Ospedale Niguarda, Milano, Italy
| | - R Spreafico
- Clinical Epileptology and Experimental Neurophysiology Unit (R.S., R. Garbelli), Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Neurologico C. Besta, Milano, Italy
| | - R Garbelli
- Clinical Epileptology and Experimental Neurophysiology Unit (R.S., R. Garbelli), Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Neurologico C. Besta, Milano, Italy
| | - L Biagi
- Istituto Di Ricovero e Cura a Carattere Scientifico Fondazione Stella Maris (L.B., R. Guerrini), Pisa, Italy
| | - A Buccoliero
- From the Department of Pediatric Neurology (E.B., C.B., A.B., R. Guerrini)
| | - F Giordano
- Neurogenetics and Neurobiology Unit and Laboratories, and Pediatric Neurosurgery Unit (F.G.), Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - R Guerrini
- From the Department of Pediatric Neurology (E.B., C.B., A.B., R. Guerrini) .,Istituto Di Ricovero e Cura a Carattere Scientifico Fondazione Stella Maris (L.B., R. Guerrini), Pisa, Italy
| |
Collapse
|
34
|
Blackmon K, Barr WB, Morrison C, MacAllister W, Kruse M, Pressl C, Wang X, Dugan P, Liu AA, Halgren E, Devinsky O, Thesen T. Cortical gray-white matter blurring and declarative memory impairment in MRI-negative temporal lobe epilepsy. Epilepsy Behav 2019; 97:34-43. [PMID: 31181427 PMCID: PMC8162756 DOI: 10.1016/j.yebeh.2019.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/06/2019] [Accepted: 05/08/2019] [Indexed: 11/26/2022]
Abstract
Magnetic resonance imaging (MRI)-negative temporal lobe epilepsy (TLE) may be a distinct syndrome from TLE with mesial temporal sclerosis (TLE-MTS). Imaging and neuropsychological features of TLE-MTS are well-known; yet, these features are only beginning to be described in MRI-negative TLE. This study examined whether a quantitative measure of cortical gray and white matter blurring (GWB) was elevated in the temporal lobes ipsilateral to the seizure onset zone of individuals with MRI-negative TLE relative to TLE-MTS and healthy controls (HCs) and whether GWB elevations were associated with neuropsychological comorbidity. Gray-white matter blurring from 34 cortical regions and hippocampal volumes were quantified and compared across 28 people with MRI-negative TLE, 15 people with TLE-MTS, and 51 HCs. Declarative memory was assessed with standard neuropsychological tests and the intracarotid amobarbital procedure (IAP). In the group with MRI-negative TLE (left and right onsets combined), hippocampal volumes were within normal range but GWB was elevated, relative to HCs, across several mesial and lateral temporal lobe regions ipsilateral to the seizure onset zone. Gray-white matter blurring did not differ between the groups with TLE-MTS and HC or between the groups with TLE-MTS and MRI-negative TLE. The group with MRI-negative TLE could not be distinguished from the group with TLE-MTS on any of the standard neuropsychological tests; however, ipsilateral hippocampal volumes and IAP memory scores were lower in the group with TLE-MTS than in the group with MRI-negative TLE. The group with left MRI-negative TLE had lower general cognitive abilities and verbal fluency relative to the HC group, which adds to the characterization of neuropsychological comorbidities in left MRI-negative TLE. In addition, ipsilateral IAP memory performance was reduced relative to contralateral memory performance in MRI-negative TLE, indicating some degree of ipsilateral memory dysfunction. There was no relationship between hippocampal volume and IAP memory scores in MRI-negative TLE; however, decreased ipsilateral IAP memory scores were correlated with elevated GWB in the ipsilateral superior temporal sulcus of people with left MRI-negative TLE. In sum, GWB elevations in the ipsilateral temporal lobe of people with MRI-negative TLE suggest that GWB may serve as a marker for reduced structural integrity in regions in or near the seizure onset zone. Although mesial temporal abnormalities might be the major driver of memory dysfunction in TLE-MTS, a loss of structural integrity in lateral temporal lobe regions may contribute to IAP memory dysfunction in MRI-negative TLE.
Collapse
Affiliation(s)
- Karen Blackmon
- New York University School of Medicine, Department of Neurology, Epilepsy Division, New York, NY 10016, United States of America; St. George's University School of Medicine, Department of Physiology, Neuroscience, and Behavioral Sciences, West Indies, Grenada.
| | - William B. Barr
- New York University School of Medicine, Department of Neurology, Epilepsy Division, New York, NY 10016, United States of America
| | - Chris Morrison
- New York University School of Medicine, Department of Neurology, Epilepsy Division, New York, NY 10016, United States of America
| | - William MacAllister
- New York University School of Medicine, Department of Neurology, Epilepsy Division, New York, NY 10016, United States of America,University of Calgary, Alberta Children’s Hospital, Calgary, Alberta, Canada
| | - Michelle Kruse
- St. George’s University School of Medicine, Department of Physiology, Neuroscience, and Behavioral Sciences, West Indies, Grenada
| | - Christina Pressl
- New York University School of Medicine, Department of Neurology, Epilepsy Division, New York, NY 10016, United States of America,The Rockefeller University, Laboratory of Neural Systems, New York, NY 10065, United States of America
| | - Xiuyuan Wang
- New York University School of Medicine, Department of Neurology, Epilepsy Division, New York, NY 10016, United States of America,New York University School of Medicine, Department of Radiology, New York, NY 10016, United States of America
| | - Patricia Dugan
- New York University School of Medicine, Department of Neurology, Epilepsy Division, New York, NY 10016, United States of America
| | - Anli A. Liu
- New York University School of Medicine, Department of Neurology, Epilepsy Division, New York, NY 10016, United States of America
| | - Eric Halgren
- University of California San Diego, Multimodal Imaging Laboratory, San Diego, CA 92093, United States of America
| | - Orrin Devinsky
- New York University School of Medicine, Department of Neurology, Epilepsy Division, New York, NY 10016, United States of America
| | - Thomas Thesen
- New York University School of Medicine, Department of Neurology, Epilepsy Division, New York, NY 10016, United States of America,St. George’s University School of Medicine, Department of Physiology, Neuroscience, and Behavioral Sciences, West Indies, Grenada
| |
Collapse
|
35
|
Peters JM, Struyven RR, Prohl AK, Vasung L, Stajduhar A, Taquet M, Bushman JJ, Lidov H, Singh JM, Scherrer B, Madsen JR, Prabhu SP, Sahin M, Afacan O, Warfield SK. White matter mean diffusivity correlates with myelination in tuberous sclerosis complex. Ann Clin Transl Neurol 2019; 6:1178-1190. [PMID: 31353853 PMCID: PMC6649396 DOI: 10.1002/acn3.793] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 11/26/2022] Open
Abstract
Objective Diffusion tensor imaging (DTI) of the white matter is a biomarker for neurological disease burden in tuberous sclerosis complex (TSC). To clarify the basis of abnormal diffusion in TSC, we correlated ex vivo high‐resolution diffusion imaging with histopathology in four tissue types: cortex, tuber, perituber, and white matter. Methods Surgical specimens of three children with TSC were scanned in a 3T or 7T MRI with a structural image isotropic resolution of 137–300 micron, and diffusion image isotropic resolution of 270‐1,000 micron. We stained for myelin (luxol fast blue, LFB), gliosis (glial fibrillary acidic protein, GFAP), and neurons (NeuN) and registered the digitized histopathology slides (0.686 micron resolution) to MRI for visual comparison. We then performed colocalization analysis in four tissue types in each specimen. Finally, we applied a linear mixed model (LMM) for pooled analysis across the three specimens. Results In white matter and perituber regions, LFB optical density measures correlated with fractional anisotropy (FA) and inversely with mean diffusivity (MD). In white matter only, GFAP correlated with MD, and inversely with FA. In tubers and in the cortex, there was little variation in mean LFB and GFAP signal intensity, and no correlation with MRI metrics. Neuronal density correlated with MD. In the analysis of the combined specimens, the most robust correlation was between white matter MD and LFB metrics. Interpretation In TSC, diffusion imaging abnormalities in microscopic tissue types correspond to specific histopathological markers. Across all specimens, white matter diffusivity correlates with myelination.
Collapse
Affiliation(s)
- Jurriaan M Peters
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.,Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Robbert R Struyven
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Anna K Prohl
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lana Vasung
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrija Stajduhar
- Croatian Institute for Brain Research and Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| | - Maxime Taquet
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - John J Bushman
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hart Lidov
- Division of Neuropathology, Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jolene M Singh
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Benoit Scherrer
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Joseph R Madsen
- Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sanjay P Prabhu
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mustafa Sahin
- Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Onur Afacan
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Simon K Warfield
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
36
|
Kimura Y, Shioya A, Saito Y, Oitani Y, Shigemoto Y, Morimoto E, Suzuki F, Ikegaya N, Kimura Y, Iijima K, Takayama Y, Iwasaki M, Sasaki M, Sato N. Radiologic and Pathologic Features of the Transmantle Sign in Focal Cortical Dysplasia: The T1 Signal Is Useful for Differentiating Subtypes. AJNR Am J Neuroradiol 2019; 40:1060-1066. [PMID: 31097427 DOI: 10.3174/ajnr.a6067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 03/27/2019] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The transmantle sign is a characteristic MR imaging finding often seen in focal cortical dysplasia type IIb. The transmantle sign is typically hyperintense on T2WI and FLAIR and hypointense on T1WI. However, in some cases, it shows T1 high signal. We evaluated the imaging and pathologic findings to identify the causes of the T1 high signal in the transmantle sign. MATERIALS AND METHODS We retrospectively reviewed the preoperative imaging data of 141 consecutive patients with histologically proved focal cortical dysplasia. We selected 25 patients with focal cortical dysplasia with the transmantle sign and divided them into groups based on the pathologic focal cortical dysplasia subtype and T1 signal of the transmantle sign. We evaluated the clinical, radiologic, and pathologic findings, including the number of balloon cells and dysmorphic neurons and the severity of gliosis or calcifications and compared them among the groups. RESULTS Nine of the 25 patients had a T1-high-signal transmantle sign; the other 16 patients did not. All 9 patients with a T1-high-signal transmantle sign were diagnosed as type IIb (group A). Of the 16 patients with no T1-high-signal transmantle sign, 13 were diagnosed as having type IIb (group B), and the other 3 patients, as type IIa (group C). The number of balloon cells was significantly higher in group A than in the other groups, but there were no differences regarding dysmorphic neurons, the severity of gliosis, or calcifications. CONCLUSIONS Approximately 6% (9/141) of this patient series had a T1-high-signal transmantle sign, and all were type IIb. The signal may reflect a rich density of balloon cells. This finding could support the differentiation of subtypes, especially type IIb.
Collapse
Affiliation(s)
- Yukio Kimura
- From the Department of Radiology (Yukio K., Y. Shigemoto, E.M., F.S., N.S.), National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - A Shioya
- Departments of Pathology and Laboratory Medicine (A.S., Y. Saito)
- Department of Neurology (A.S.), Mito Kyodo General Hospital, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Y Saito
- Departments of Pathology and Laboratory Medicine (A.S., Y. Saito)
| | - Y Oitani
- Child Neurology (Y.O., M.S.)
- Department of Pediatrics (Y.O.), Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Y Shigemoto
- From the Department of Radiology (Yukio K., Y. Shigemoto, E.M., F.S., N.S.), National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - E Morimoto
- From the Department of Radiology (Yukio K., Y. Shigemoto, E.M., F.S., N.S.), National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - F Suzuki
- From the Department of Radiology (Yukio K., Y. Shigemoto, E.M., F.S., N.S.), National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - N Ikegaya
- Neurosurgery (N.I., Yuiko K., K.I., Y.T., M.I.), National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
- Department of Neurosurgery (N.I.), Yokohama City University, Yokohama, Kangawa, Japan
| | - Yuiko Kimura
- Neurosurgery (N.I., Yuiko K., K.I., Y.T., M.I.), National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - K Iijima
- Neurosurgery (N.I., Yuiko K., K.I., Y.T., M.I.), National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Y Takayama
- Neurosurgery (N.I., Yuiko K., K.I., Y.T., M.I.), National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - M Iwasaki
- Neurosurgery (N.I., Yuiko K., K.I., Y.T., M.I.), National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | | | - N Sato
- From the Department of Radiology (Yukio K., Y. Shigemoto, E.M., F.S., N.S.), National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| |
Collapse
|
37
|
Chen J, Chen X, Huang C, Zhu H, Hou Z, An N, Liu SY, Yang H, Zhang CQ. Predictors of seizure recurrence in patients with surgery for focal cortical dysplasia: pairwise and network meta-analysis and trial sequential analysis. Childs Nerv Syst 2019; 35:753-767. [PMID: 30911833 DOI: 10.1007/s00381-019-04124-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/05/2019] [Indexed: 12/17/2022]
Abstract
OBJECT The aim of this study was to determine the predictors of seizure recurrence in surgery for focal cortical dysplasia (FCD) by conducting a meta-analysis. METHODS Publications that met the pre-stated inclusion criteria were selected from PubMed and CNKI databases. Two authors extracted data independently about prognostic factors, surgical outcome, and clinical characteristics of participants. A fixed-effects model was used to calculate the summary of odds ratio (OR) with 95% confidence interval (CI). RESULTS Forty-eight studies were included in our meta-analysis. Three predictors of seizure recurrence (Engel class III/IV)-histological FCD type I, incomplete resection, and extratemporal location were determined; combined OR with 95% CI were 1.94 (95%CI 1.53-2.46), 12.06 (95%CI 7.32-19.88), and 1.91 (95%CI 1.06-3.44), respectively. Trial sequential analysis revealed that the outcomes had a sufficient sample size to reach firm conclusions. Furthermore, seizure location was not substantially modified by geographic region, while histological FCD type I and incomplete resection showed a significant association with seizure recurrence in different continents except Asia for incomplete resection. Sensitivity analyses restricted to studies for each variable yielded robust results. Little evidence of publication bias was observed. Meanwhile, the difference in the standard for outcome failed to influence the results for prognosis. Network meta-analysis including 13 trials comparing subtypes of FCD found the FCD IIb had the lowest seizure recurrence rate. CONCLUSIONS This meta-analysis suggests that histological FCD type I, incomplete resection, and extratemporal location are recurrence factors in patients with epilepsy surgery for FCD. In addition, FCD IIb is associated with the highest rates of postoperative seizure control among the subtypes of FCD, type I and type II.
Collapse
Affiliation(s)
- Jie Chen
- Department of Neurosurgery, Chongqing University CancerHospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030, China
| | - Xin Chen
- Department of Neurosurgery, General Hospital of the People's Liberation Army Chengdu Military Region, Chengdu, 610083, Sichuan, China
| | - Chen Huang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - He Zhu
- Department of Internal Medicine St. Luke's Hospital, Chesterfield, MO, 63017, USA
| | - Zhi Hou
- Epilepsy research center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Ning An
- Epilepsy research center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Shi-Yong Liu
- Epilepsy research center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Hui Yang
- Epilepsy research center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Chun-Qing Zhang
- Epilepsy research center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
38
|
Tavakol S, Royer J, Lowe AJ, Bonilha L, Tracy JI, Jackson GD, Duncan JS, Bernasconi A, Bernasconi N, Bernhardt BC. Neuroimaging and connectomics of drug-resistant epilepsy at multiple scales: From focal lesions to macroscale networks. Epilepsia 2019; 60:593-604. [PMID: 30889276 PMCID: PMC6447443 DOI: 10.1111/epi.14688] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 01/03/2023]
Abstract
Epilepsy is among the most common chronic neurologic disorders, with 30%-40% of patients having seizures despite antiepileptic drug treatment. The advent of brain imaging and network analyses has greatly improved the understanding of this condition. In particular, developments in magnetic resonance imaging (MRI) have provided measures for the noninvasive characterization and detection of lesions causing epilepsy. MRI techniques can probe structural and functional connectivity, and network analyses have shaped our understanding of whole-brain anomalies associated with focal epilepsies. This review considers the progress made by neuroimaging and connectomics in the study of drug-resistant epilepsies due to focal substrates, particularly temporal lobe epilepsy related to mesiotemporal sclerosis and extratemporal lobe epilepsies associated with malformations of cortical development. In these disorders, there is evidence of widespread disturbances of structural and functional connectivity that may contribute to the clinical and cognitive prognosis of individual patients. It is hoped that studying the interplay between macroscale network anomalies and lesional profiles will improve our understanding of focal epilepsies and assist treatment choices.
Collapse
Affiliation(s)
- Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Alexander J Lowe
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, Charleston, South Carolina
| | - Joseph I Tracy
- Cognitive Neuroscience and Brain Mapping Laboratory, Thomas Jefferson University Hospitals/Sidney Kimmel Medical College, Philadelphia, Pennsylvania
| | - Graeme D Jackson
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
39
|
Mühlebner A, Bongaarts A, Sarnat HB, Scholl T, Aronica E. New insights into a spectrum of developmental malformations related to mTOR dysregulations: challenges and perspectives. J Anat 2019; 235:521-542. [PMID: 30901081 DOI: 10.1111/joa.12956] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2019] [Indexed: 12/20/2022] Open
Abstract
In recent years the role of the mammalian target of rapamycin (mTOR) pathway has emerged as crucial for normal cortical development. Therefore, it is not surprising that aberrant activation of mTOR is associated with developmental malformations and epileptogenesis. A broad spectrum of malformations of cortical development, such as focal cortical dysplasia (FCD) and tuberous sclerosis complex (TSC), have been linked to either germline or somatic mutations in mTOR pathway-related genes, commonly summarised under the umbrella term 'mTORopathies'. However, there are still a number of unanswered questions regarding the involvement of mTOR in the pathophysiology of these abnormalities. Therefore, a monogenetic disease, such as TSC, can be more easily applied as a model to study the mechanisms of epileptogenesis and identify potential new targets of therapy. Developmental neuropathology and genetics demonstrate that FCD IIb and hemimegalencephaly are the same diseases. Constitutive activation of mTOR signalling represents a shared pathogenic mechanism in a group of developmental malformations that have histopathological and clinical features in common, such as epilepsy, autism and other comorbidities. We seek to understand the effect of mTOR dysregulation in a developing cortex with the propensity to generate seizures as well as the aftermath of the surrounding environment, including the white matter.
Collapse
Affiliation(s)
- A Mühlebner
- Department of Neuropathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - A Bongaarts
- Department of Neuropathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - H B Sarnat
- Departments of Paediatrics, Pathology (Neuropathology) and Clinical Neurosciences, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute (Owerko Centre), Calgary, AB, Canada
| | - T Scholl
- Department of Paediatric and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - E Aronica
- Department of Neuropathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Amsterdam, The Netherlands
| |
Collapse
|
40
|
Veersema TJ, Swampillai B, Ferrier CH, van Eijsden P, Gosselaar PH, van Rijen PC, Spliet WGM, Mühlebner A, Aronica E, Braun KPJ. Long-term seizure outcome after epilepsy surgery in patients with mild malformation of cortical development and focal cortical dysplasia. Epilepsia Open 2019; 4:170-175. [PMID: 30868127 PMCID: PMC6398095 DOI: 10.1002/epi4.12289] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 12/26/2022] Open
Abstract
Focal cortical dysplasia (FCD) and mild malformation of cortical development (mMCD) are frequent histopathologic diagnoses in patients who undergo surgery for refractory epilepsy. Literature concerning surgical outcome in patients with mMCD, as well as its contrast with FCD, has been scarce. We studied 88 patients with a histopathologic diagnosis of isolated FCD (n = 57) or mMCD (n = 31), revised according to the latest International League Against Epilepsy (ILAE) guidelines, who underwent resective or disconnective surgery. Our findings suggest differences between mMCD and FCD in clinical presentation and surgical outcome after surgery. Patients with mMCD developed seizures later in life, and their lesions had a predilection for location in the temporal lobe and remained undetected by magnetic resonance imaging (MRI) more frequently. A diagnosis of mMCD has a less favorable surgical outcome. Still, 32% of these patients reached continuous seizure freedom (Engel class 1A) at a latest median follow-up duration of 8 years, compared to 59% in FCD. A histopathologic diagnosis of mMCD, extratemporal surgery, and indication of an incomplete resection each were independent predictors of poor outcome.
Collapse
Affiliation(s)
- Tim J. Veersema
- Department of Neurology and NeurosurgeryBrain Center Rudolf MagnusUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Banu Swampillai
- Department of Neurology and NeurosurgeryBrain Center Rudolf MagnusUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Cyrille H. Ferrier
- Department of Neurology and NeurosurgeryBrain Center Rudolf MagnusUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Pieter van Eijsden
- Department of Neurology and NeurosurgeryBrain Center Rudolf MagnusUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Peter H. Gosselaar
- Department of Neurology and NeurosurgeryBrain Center Rudolf MagnusUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Peter C. van Rijen
- Department of Neurology and NeurosurgeryBrain Center Rudolf MagnusUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Wim G. M. Spliet
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Angelika Mühlebner
- Department of (Neuro) PathologyAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Eleonora Aronica
- Department of (Neuro) PathologyAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Kees P. J. Braun
- Department of Neurology and NeurosurgeryBrain Center Rudolf MagnusUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
41
|
Mata-Mbemba D, Iimura Y, Hazrati LN, Ochi A, Otsubo H, Snead OC, Rutka J, Widjaja E. MRI, Magnetoencephalography, and Surgical Outcome of Oligodendrocytosis versus Focal Cortical Dysplasia Type I. AJNR Am J Neuroradiol 2018; 39:2371-2377. [PMID: 30442696 DOI: 10.3174/ajnr.a5877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/19/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND PURPOSE Abnormalities of oligodendrocytes have been reported in surgical specimens of patients with medically intractable epilepsy. The aim of this study was to compare the MR imaging, magnetoencephalography, and surgical outcome of children with oligodendrocytosis relative to focal cortical dysplasia I. MATERIALS AND METHODS Oligodendrocytosis included oligodendroglial hyperplasia, oligodendrogliosis, and oligodendroglial-like cells in the white matter, gray matter, or both from children with medically intractable epilepsy. Focal cortical dysplasia I included radial and tangential cortical dyslamination. The MR imaging, magnetoencephalography, type of operation, location, and seizure outcome of oligodendrocytosis, focal cortical dysplasia I, and oligodendrocytosis + focal cortical dysplasia I were compared. RESULTS Eighteen subjects (39.1%) had oligodendrocytosis, 21 (45.7%) had focal cortical dysplasia I, and 7 (15.2%) had oligodendrocytosis + focal cortical dysplasia I. There were no significant differences in the type of seizures, focal or nonfocal epileptiform discharges, magnetoencephalography, and MR imaging features, including high T1 signal in the cortex, high T2/FLAIR signal in the cortex or subcortical white matter, increased cortical thickness, blurring of the gray-white junction, or abnormal sulcation and gyration among those with oligodendrocytosis, focal cortical dysplasia I, or oligodendrocytosis + focal cortical dysplasia I (P > .01). There were no significant differences in the extent of resection (unilobar versus multilobar versus hemispherectomy), location of the operation (temporal versus extratemporal versus both), or seizure-free outcome of oligodendrocytosis, focal cortical dysplasia I, and oligodendrocytosis + focal cortical dysplasia I (P > .05). CONCLUSIONS Oligodendrocytosis shared MR imaging and magnetoencephalography features with focal cortical dysplasia I, and multilobar resection was frequently required to achieve seizure freedom. In 15% of cases, concurrent oligodendrocytosis and focal cortical dysplasia I were identified. The findings suggest that oligodendrocytosis may represent a mild spectrum of malformations of cortical development.
Collapse
Affiliation(s)
- D Mata-Mbemba
- From the Department of Diagnostic Imaging (D.M.-M., E.W.)
| | - Y Iimura
- Division of Neurology (Y.I., A.O., H.O., O.C.S., E.W.)
| | | | - A Ochi
- Division of Neurology (Y.I., A.O., H.O., O.C.S., E.W.)
| | - H Otsubo
- Division of Neurology (Y.I., A.O., H.O., O.C.S., E.W.)
| | - O C Snead
- Division of Neurology (Y.I., A.O., H.O., O.C.S., E.W.)
| | - J Rutka
- Neurosurgery (J.R.), The Hospital for Sick Children, University of Toronto, Ontario, Canada
| | - E Widjaja
- From the Department of Diagnostic Imaging (D.M.-M., E.W.) .,Division of Neurology (Y.I., A.O., H.O., O.C.S., E.W.)
| |
Collapse
|
42
|
McClung-Smith C. Editorial. Utility of intraoperative ultrasound for the resection of focal cortical dysplasia. Neurosurg Focus 2018; 45:E6. [PMID: 30173611 DOI: 10.3171/2018.6.focus18329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
Chen X, Qian T, Kober T, Zhang G, Ren Z, Yu T, Piao Y, Chen N, Li K. Gray-matter-specific MR imaging improves the detection of epileptogenic zones in focal cortical dysplasia: A new sequence called fluid and white matter suppression (FLAWS). NEUROIMAGE-CLINICAL 2018; 20:388-397. [PMID: 30128277 PMCID: PMC6095948 DOI: 10.1016/j.nicl.2018.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 06/09/2018] [Accepted: 08/07/2018] [Indexed: 11/25/2022]
Abstract
Objectives To evaluate the diagnostic value and characteristic features of FCD epileptogenic zones using a novel sequence called fluid and white matter suppression (FLAWS). Materials and methods Thirty-nine patients with pathologically confirmed FCD and good surgery outcomes (class I or II, according to the Engel Epilepsy Surgery Outcome Scale) were retrospectively included in the study. All the patients underwent a preoperative whole-brain MRI examination that included conventional sequences (T2WI, T1WI, two-dimensional (2D) axial, coronal fluid-attenuated inversion recovery [FLAIR]) and FLAWS. An additional 3D-FLAIR MRI sequence was performed in 17 patients. To evaluate the sensitivity and specificity of FLAWS and investigate the cause of false-positives, 36 healthy volunteers were recruited as normal controls. Two radiologists evaluated all the image data. The detection rates of the FCD epileptogenic zone on different sequences were compared based on five criteria: abnormal cortical morphology (thickening, thinning, or abnormally deep sulcus); abnormal cortical signal intensity; blurred gray-white matter junction; abnormal signal intensity of the subcortical white matter, and the transmantle sign. The sensitivity and specificity of FLAWS for detecting the FCD lesions were calculated with the reviewers blinded to all the clinical information, i.e. to the patient identity and the location of the resected regions. To explore how many features were sufficient for the diagnosis of the epileptogenic zones, the frequency of each criterion in the resected regions and their combinations were assessed on FLAWS, according to the results of the assessment when the reviewers were aware of the location of the resected regions. Based on the findings of the 17 patients with an additional 3D-FLAIR scan when the reviewers were aware of the location of the resected regions, quantitative analysis of the regions of interest was used to compare the tissue contrast among 2D-axial FLAIR, 3D-FLAIR, and the FLAWS sequence. Visualization score analysis was used to evaluate the visualization of the five features on conventional, 3D-FLAIR, and FLAWS images. Finally, to explore the reason for false-positive results, a further evaluation of the whole brain FLAWS images was conducted for all the subjects. Results The sensitivity and specificity for detecting the FCD lesions on the FLAWS sequence were 71.9% and 71.1%, respectively. When the reviewers were blinded to the location of the resected regions, the detection rate of the FLAWS sequence was significantly higher than that of the conventional sequences (P = 0.00). In the 17 patients who underwent an additional 3D FLAIR scan, no statistically significant difference was found between the FLAWS and the 3D-FLAIR (P = 0.25). All the patients had at least two imaging features, one of which was “the blurred junction of the gray-white matter.” The transmantle sign, which is widely believed to be a specific feature of FCD type II, could also be observed in type I on the FLAWS sequence. The relative tissue contrast of FLAWS was higher than that of the 2D-FLAIR with respect to lesion/white matter (WM), deep gray matter (GM)/WM, and cortex/WM (P = 0.00 for all three measures) and higher than that of the 3D-FLAIR with respect to the lesion/WM (P = 0.01). The visualization score analysis showed that the visualization of FLAWS was more enhanced than that of the conventional and 3D-FLAIR images with respect to the blurred junction (P = 0.00 for both comparisons) and the abnormal signal intensity of the subcortical white matter (P = 0.01 for both comparisons). The thin-threadlike signal and individual FCD features outside the epileptogenic regions were considered the primary cause of the false-positive results of FLAWS. Conclusions FLAWS can help in the detection of FCD epileptogenic zones. It is recommended that epileptogenic zone on FLAWS be diagnosed based on a combination of two features, one of which should be the “blurred junction of the gray-white matter” in types I and II. In type III, the combination of “the blurred junction of the gray-white matter” with “abnormal signal intensity of subcortical white matter” is recommended. FLAWS can help in the detection of FCD epileptogenic zones. Diagnosis of FCD lesions should be based on a combination of two features. The transmantle sign is not specific for FCD type II on FLAWS.
Collapse
Affiliation(s)
- Xin Chen
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, PR China
| | - Tianyi Qian
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, PR China; MR Collaborations NE Asia, Siemens Healthcare, Beijing, PR China
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthcare HC CEMEA SUI DI PI, Lausanne, Switzerland; Department of Radiology, University Hospital (CHUV), Lausanne, Switzerland; LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Guojun Zhang
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, PR China
| | - Zhiwei Ren
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, PR China
| | - Tao Yu
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, PR China
| | - Yueshan Piao
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, PR China
| | - Nan Chen
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, PR China.
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, PR China
| |
Collapse
|
44
|
Nakajima M, Wong S, Widjaja E, Baba S, Okanishi T, Takada L, Sato Y, Iwata H, Sogabe M, Morooka H, Whitney R, Ueda Y, Ito T, Yagyu K, Ochi A, Carter Snead O, Rutka JT, Drake JM, Doesburg S, Takeuchi F, Shiraishi H, Otsubo H. Advanced dynamic statistical parametric mapping with MEG in localizing epileptogenicity of the bottom of sulcus dysplasia. Clin Neurophysiol 2018; 129:1182-1191. [DOI: 10.1016/j.clinph.2018.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/22/2018] [Accepted: 03/06/2018] [Indexed: 10/17/2022]
|
45
|
Rezayev A, Feldman HA, Levman J, Takahashi E. Bilateral thalamocortical abnormalities in focal cortical dysplasia. Brain Res 2018; 1694:38-45. [PMID: 29738718 DOI: 10.1016/j.brainres.2018.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND PURPOSE Focal cortical dysplasia (FCD), a congenital malformation of the neocortex and one of the most common causes of medication resistant epilepsy in pediatric populations, can be studied noninvasively by diffusion tensor imaging (DTI). The present study aimed to quantify changes in the thalamus and thalamocortical pathways with respect to fractional anisotropy (FA), apparent diffusion coefficient (ADC), volume, and other common measures. MATERIALS AND METHODS The study quantified data collected from pediatric patients with a prior diagnosis of FCD; 75 patients (35 females, 10.1 ± 6.5 years) for analysis of thalamic volume and 68 patients (32 females, 10.2 ± 6.4 years) for DTI analysis. DTI scans were taken at 3 Tesla MRI scanners (30 diffusion gradient directions; b = 1000 s/mm2 and 5 non diffusion-weighted measurements). DTI tractography was performed using the FACT algorithm with an angle threshold of 45 degrees. Manually delineated ROIs were used to compare the hemisphere containing the dysplasia to the contralateral hemisphere and controls. RESULTS A significant decrease in the volume of the FCD hemisphere thalamus was detected as compared to the contralateral hemisphere. In comparison to controls, there was an observed reduction in tract volume, length, count, FA of thalami, and FA of thalamocortical pathways in FCD patients. FCD patients had higher odds of exhibiting high ADC in both the thalamus and thalamocortical pathways. CONCLUSION The data implied a widespread reduction in structural connectivity of the thalamocortical network. MRI analysis suggests a potential influence of FCD on thalamic volume.
Collapse
Affiliation(s)
- Arthur Rezayev
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA; Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Henry A Feldman
- Clinical Research Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Jacob Levman
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charelestown, MA 02219, USA
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charelestown, MA 02219, USA.
| |
Collapse
|
46
|
Deleo F, Thom M, Concha L, Bernasconi A, Bernhardt BC, Bernasconi N. Histological and MRI markers of white matter damage in focal epilepsy. Epilepsy Res 2017; 140:29-38. [PMID: 29227798 DOI: 10.1016/j.eplepsyres.2017.11.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/10/2017] [Accepted: 11/20/2017] [Indexed: 12/21/2022]
Abstract
Growing evidence highlights the importance of white matter in the pathogenesis of focal epilepsy. Ex vivo and post-mortem studies show pathological changes in epileptic patients in white matter myelination, axonal integrity, and cellular composition. Diffusion-weighted MRI and its analytical extensions, particularly diffusion tensor imaging (DTI), have been the most widely used technique to image the white matter in vivo for the last two decades, and have shown microstructural alterations in multiple tracts both in the vicinity and at distance from the epileptogenic focus. These techniques have also shown promising ability to predict cognitive status and response to pharmacological or surgical treatments. More recently, the hypothesis that focal epilepsy may be more adequately described as a system-level disorder has motivated a shift towards the study of macroscale brain connectivity. This review will cover emerging findings contributing to our understanding of white matter alterations in focal epilepsy, studied by means of histological and ultrastructural analyses, diffusion MRI, and large-scale network analysis. Focus is put on temporal lobe epilepsy and focal cortical dysplasia. This topic was addressed in a special interest group on neuroimaging at the 70th annual meeting of the American Epilepsy Society, held in Houston December 2-6, 2016.
Collapse
Affiliation(s)
- Francesco Deleo
- NeuroImaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill University, Canada
| | - Maria Thom
- Division of Neuropathology and Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Luis Concha
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Andrea Bernasconi
- NeuroImaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill University, Canada
| | - Boris C Bernhardt
- NeuroImaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill University, Canada; Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute, McGill University, Canada
| | - Neda Bernasconi
- NeuroImaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill University, Canada.
| |
Collapse
|
47
|
Rossini L, Garbelli R, Gnatkovsky V, Didato G, Villani F, Spreafico R, Deleo F, Lo Russo G, Tringali G, Gozzo F, Tassi L, de Curtis M. Seizure activity per se does not induce tissue damage markers in human neocortical focal epilepsy. Ann Neurol 2017; 82:331-341. [PMID: 28749594 DOI: 10.1002/ana.25005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/10/2017] [Accepted: 07/17/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The contribution of recurring seizures to the progression of epileptogenesis is debated. Seizure-induced brain damage is not conclusively demonstrated either in humans or in animal models of epilepsy. We evaluated the expression of brain injury biomarkers on postsurgical brain tissue obtained from 20 patients with frequent seizures and a long history of drug-resistant focal epilepsy. METHODS The expression patterns of specific glial, neuronal, and inflammatory molecules were evaluated by immunohistochemistry in the core of type II focal cortical dysplasias (FCD-II), at the FCD boundary (perilesion), and in the adjacent normal-appearing area included in the epileptogenic region. We also analyzed surgical specimens from cryptogenic patients not presenting structural alterations at imaging. RESULTS Astroglial and microglial activation, reduced neuronal density, perivascular CD3-positive T-lymphocyte clustering, and fibrinogen extravasation were demonstrated in the core of FCD-II lesions. No pathological immunoreactivity was observed outside the FCD-II or in cryptogenetic specimens, where the occurrence of interictal and ictal epileptiform activity was confirmed by either stereo-electroencephalography or intraoperative electrocorticography. INTERPRETATION Recurrent seizures do not induce the expression of brain damage markers in nonlesional epileptogenic cortex studied in postsurgical tissue from cryptogenic and FCD patients. This evidence argues against the hypothesis that epileptiform activity per se contributes to focal brain injury, at least in the neocortical epilepsies considered here. Ann Neurol 2017;82:331-341.
Collapse
Affiliation(s)
- Laura Rossini
- Epilepsy Unit, C. Besta Neurological Institute Foundation
| | - Rita Garbelli
- Epilepsy Unit, C. Besta Neurological Institute Foundation
| | | | | | - Flavio Villani
- Epilepsy Unit, C. Besta Neurological Institute Foundation
| | | | | | | | - Giovanni Tringali
- Neurosurgery Unit, C. Besta Neurological Institute Foundation, Milan, Italy
| | | | - Laura Tassi
- C. Munari Epilepsy Surgery Center, Niguarda Hospital
| | | |
Collapse
|
48
|
Isler C, Kucukyuruk B, Ozkara C, Gunduz A, Is M, Tanriverdi T, Comunoglu N, Oz B, Uzan M. Comparison of clinical features and surgical outcome in focal cortical dysplasia type 1 and type 2. Epilepsy Res 2017; 136:130-136. [PMID: 28850830 DOI: 10.1016/j.eplepsyres.2017.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/09/2017] [Accepted: 08/16/2017] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Recent ILAE classification defined focal cortical dysplasia (FCD) patients with accompanying epileptic lesions as a separate group. We investigated data of patients with sole FCD lesions regarding long-term seizure outcome and different characteristics of FCD type 1 and type 2 patients. METHODS Eighty children and adult patients underwent surgery for FCD were included to the analysis of factors differentiating FCD type 1 and type 2 groups and their effect on long-term outcome. RESULTS FCD type 2 patients had earlier epilepsy onset (8.1 vs. 6.1 years. p=0.019) and underwent surgery younger than type 1 (18.2 vs. 23.7 years. p=0.034). FCD type 2 patients were more prominently MR positive (77.8% vs. 53.8%. p=0.029), which increased within FCD type 2 group as patients become younger (p=0.028). FCD Type 1 lesions showed mostly multilobar extension and FCD type 2 mostly located in frontal lobe. Seizure freedom was achieved in 65.4% of FCD type 1 patients and 70.4% of FCD type 2 patients. Seven patients had permanent de novo neurological deficits. Mean follow-up time was 5.5 years (Range: 1-11 years). CONCLUSION Surgical intervention in carefully selected patients may facilitate favorable seizure outcome leading to better quality of life. FCD type 1 and type 2 groups present with evident differences, which may promote medical and surgical management of these pathologies.
Collapse
Affiliation(s)
- Cihan Isler
- Department of Neurosurgery, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Baris Kucukyuruk
- Department of Neurosurgery, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Cigdem Ozkara
- Department of Neurology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Aysegul Gunduz
- Department of Neurology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Merih Is
- Department of Neurosurgery, Fatih Sultan Mehmet Research and Education Hospital, Health Sciences University, Istanbul, Turkey
| | - Taner Tanriverdi
- Department of Neurosurgery, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nil Comunoglu
- Department of Pathology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Buge Oz
- Department of Pathology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mustafa Uzan
- Department of Neurosurgery, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
49
|
Huang C, Zhang H, Chi XS, Chen N, Gong J, Zhou Q, Blümcke I, Zhou D, Li JM. Putting the new ILAE classification of focal cortical dysplasia into practice in western China. Seizure 2017; 51:133-138. [PMID: 28843774 DOI: 10.1016/j.seizure.2017.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 02/05/2023] Open
Abstract
PURPOSE To re-examine drug-resistant epilepsy cases using the revised 2011 ILAE classification of focal cortical dysplasia (FCD). METHODS Patients with drug-resistant epilepsy who have undergone epilepsy surgery in West China Hospital between July 2012 and Jun 2014 were included. Clinical histories, pathological diagnoses, and surgical outcomes were reviewed. A questionnaire was developed to investigate the clinical practice of the new classification. A short-term training program on FCD was carried out to improve pathological diagnosis accuracy. RESULTS 260 consecutive cases (177 male and 83 female) were included. Pathological diagnosis was changed in 70 cases (26.9%) after re-examination. The five most common pathological types were hippocampal sclerosis (19.2%, 50/260), brain tumors (17.7%, 46/260), vascular malformations (16.2%, 42/260), glial scars (11.2%, 29/260) and FCD (10.0%, 26/260). The most common subtype of isolated FCD was FCD IIb (53.8%, 14/26), followed by FCD IIa (42.3%, 11/26) and FCD Ib (3.8%, 1/26). In addition, forty-five cases were diagnosed as associated FCD type III (17.3%, 45/260). Half of patients with FCD achieved Engel class I at two-year follow-up. Questionnaire investigation suggested most participant pathologists lack sufficient knowledge on the new classification. The diagnostic sensitivity for different FCD subtypes was significantly improved by two to six folds after short-term training. CONCLUSIONS FCD is an important etiology of drug-resistant epilepsy in western China. It is essential to provide continuing trainings to improve diagnostic precision of FCD in developing countries.
Collapse
Affiliation(s)
- Cheng Huang
- Rehabilitation Medicine Center, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China; Department of Neurology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Heng Zhang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiao-Sa Chi
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ni Chen
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, 610041,Sichuan, People's Republic of China
| | - Jing Gong
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, 610041,Sichuan, People's Republic of China
| | - Qiao Zhou
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, 610041,Sichuan, People's Republic of China
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, 91054, Erlangen, Germany
| | - Dong Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jin-Mei Li
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
50
|
Adler S, Lorio S, Jacques TS, Benova B, Gunny R, Cross JH, Baldeweg T, Carmichael DW. Towards in vivo focal cortical dysplasia phenotyping using quantitative MRI. Neuroimage Clin 2017; 15:95-105. [PMID: 28491496 PMCID: PMC5413300 DOI: 10.1016/j.nicl.2017.04.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/10/2017] [Accepted: 04/18/2017] [Indexed: 12/31/2022]
Abstract
Focal cortical dysplasias (FCDs) are a range of malformations of cortical development each with specific histopathological features. Conventional radiological assessment of standard structural MRI is useful for the localization of lesions but is unable to accurately predict the histopathological features. Quantitative MRI offers the possibility to probe tissue biophysical properties in vivo and may bridge the gap between radiological assessment and ex-vivo histology. This review will cover histological, genetic and radiological features of FCD following the ILAE classification and will explain how quantitative voxel- and surface-based techniques can characterise these features. We will provide an overview of the quantitative MRI measures available, their link with biophysical properties and finally the potential application of quantitative MRI to the problem of FCD subtyping. Future research linking quantitative MRI to FCD histological properties should improve clinical protocols, allow better characterisation of lesions in vivo and tailored surgical planning to the individual.
Collapse
Affiliation(s)
- Sophie Adler
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Sara Lorio
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - Thomas S Jacques
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Barbora Benova
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK; Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic; 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Roxana Gunny
- Department of Radiology, Great Ormond Street Hospital for Children, London, UK
| | - J Helen Cross
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Torsten Baldeweg
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - David W Carmichael
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|