1
|
Kovacs GG, Katsumata Y, Wu X, Aung KZ, Fardo DW, Forrest SL, Nelson PT. Amyloid-β predominant Alzheimer's disease neuropathologic change. Brain 2025; 148:401-407. [PMID: 39417691 PMCID: PMC11788189 DOI: 10.1093/brain/awae325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/22/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Different subsets of Alzheimer's disease neuropathologic change (ADNC), including the intriguing set of individuals with severe/widespread amyloid-β (Aβ) plaques but no/mild tau tangles [Aβ-predominant (AP)-ADNC], may have distinct genetic and clinical features. Analysing National Alzheimer's Coordinating Center data, we stratified 1187 participants into AP-ADNC (n = 95), low Braak primary age-related tauopathy (PART; n = 185), typical-ADNC (n = 832) and high-Braak PART (n = 75). AP-ADNC differed in some clinical features and genetic polymorphisms in the APOE, SNX1, WNT3/MAPT and IGH genes. We conclude that AP-ADNC differs from classical ADNC with implications for in vivo studies.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5T 0S8, Canada
- Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Yuriko Katsumata
- Department of Biostatistics, University of Kentucky, Lexington, KY 40536-0679, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Xian Wu
- Department of Biostatistics, University of Kentucky, Lexington, KY 40536-0679, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Khine Zin Aung
- Department of Biostatistics, University of Kentucky, Lexington, KY 40536-0679, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - David W Fardo
- Department of Biostatistics, University of Kentucky, Lexington, KY 40536-0679, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Shelley L Forrest
- Tanz Centre for Research in Neurodegenerative Disease and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5T 0S8, Canada
- Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
- Department of Pathology, Division of Neuropathology, University of Kentucky, Lexington, KY 40536-0679, USA
| |
Collapse
|
2
|
Ressler HW, Humphrey J, Vialle RA, Babrowicz B, Kandoi S, Raj T, Dickson DW, Ertekin-Taner N, Crary JF, Farrell K. MAPT haplotype-associated transcriptomic changes in progressive supranuclear palsy. Acta Neuropathol Commun 2024; 12:135. [PMID: 39154163 PMCID: PMC11330133 DOI: 10.1186/s40478-024-01839-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/28/2024] [Indexed: 08/19/2024] Open
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative movement and cognitive disorder characterized by abnormal accumulation of the microtubule-associated protein tau in the brain. Biochemically, inclusions in PSP are enriched for tau proteoforms with four microtubule-binding domain repeats (4R), an isoform that arises from alternative tau pre-mRNA splicing. While preferential aggregation and reduced degradation of 4R tau protein is thought to play a role in inclusion formation and toxicity, an alternative hypothesis is that altered expression of tau mRNA isoforms plays a causal role. This stems from the observation that PSP is associated with common variation in the tau gene (MAPT) at the 17q21.31 locus which contains low copy number repeats flanking a large recurrent genomic inversion. The complex genomic structural changes at the locus give rise to two dominant haplotypes, termed H1 and H2, that have the potential to markedly influence gene expression. Here, we explored haplotype-dependent differences in gene expression using a bulk RNA-seq dataset derived from human post-mortem brain tissue from PSP (n = 84) and controls (n = 77) using a rigorous computational pipeline, including alternative pre-mRNA splicing. We found 3579 differentially expressed genes in the temporal cortex and 10,011 in the cerebellum. We also found 7214 differential splicing events in the temporal cortex and 18,802 in the cerebellum. In the cerebellum, total tau mRNA levels and the proportion of transcripts encoding 4R tau were significantly increased in PSP compared to controls. In the temporal cortex, the proportion of reads that expressed 4R tau was increased in cases compared to controls. 4R tau mRNA levels were significantly associated with the H1 haplotype in the temporal cortex. Further, we observed a marked haplotype-dependent difference in KANSL1 expression that was strongly associated with H1 in both brain regions. These findings support the hypothesis that sporadic PSP is associated with haplotype-dependent increases in 4R tau mRNA that might play a causal role in this disorder.
Collapse
Affiliation(s)
- Hadley W Ressler
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jack Humphrey
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ricardo A Vialle
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bergan Babrowicz
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shrishtee Kandoi
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Towfique Raj
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - John F Crary
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA.
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Kurt Farrell
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA.
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
3
|
Yoshida K, Hata Y, Ichimata S, Tanaka R, Nishida N. Prevalence and clinicopathological features of primary age-related tauopathy (PART): A large forensic autopsy study. Alzheimers Dement 2024; 20:5411-5420. [PMID: 38938196 PMCID: PMC11350034 DOI: 10.1002/alz.14037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/15/2024] [Accepted: 05/06/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION Primary age-related tauopathy (PART), often regarded as a minimally symptomatic pathology of old age, lacks comprehensive cohorts across various age groups. METHODS We examined PART prevalence and clinicopathologic features in 1589 forensic autopsy cases (≥40 years old, mean age ± SD 70.2 ± 14.2 years). RESULTS PART cases meeting criteria for argyrophilic grain diseases (AGD) were AGD+PART (n = 181). The remaining PART cases (n = 719, 45.2%) were classified as comorbid conditions (PART-C, n = 90) or no comorbid conditions (pure PART, n = 629). Compared to controls (n = 208), Alzheimer's disease (n = 133), and AGD+PART, PART prevalence peaked in the individuals in their 60s (65.5%) and declined in the 80s (21.5%). No significant clinical background differences were found (excluding controls). However, PART-C in patients inclusive of age 80 had a higher suicide rate than pure PART (p < 0.05), and AGD+PART showed more dementia (p < 0.01) and suicide (p < 0.05) than pure PART. DISCUSSION Our results advocate a reevaluation of the PART concept and its diagnostic criteria. HIGHLIGHTS We investigated 1589 forensic autopsy cases to investigate the features of primary age-related tauopathy (PART). PART peaked in people in their 60s in our study. Many PART cases over 80s had comorbid pathologies in addition to neurofibrillary tangles pathology. Argyrophilic grain disease and Lewy pathology significantly affected dementia and suicide rates in PART. Our results suggest that the diagnostic criteria of PART need to be reconsidered.
Collapse
Affiliation(s)
- Koji Yoshida
- Department of Legal MedicineFaculty of MedicineUniversity of ToyamaToyamaJapan
- Tanz Centre for Research in Neurodegenerative DiseaseKrembil Discovery TowerUniversity of TorontoTorontoOntarioCanada
- Department of Laboratory Medicine and Pathobiology and Department of MedicineUniversity of TorontoTorontoOntarioCanada
| | - Yukiko Hata
- Department of Legal MedicineFaculty of MedicineUniversity of ToyamaToyamaJapan
| | - Shojiro Ichimata
- Department of Legal MedicineFaculty of MedicineUniversity of ToyamaToyamaJapan
| | - Ryo Tanaka
- Department of NeurologyToyama University HospitalToyamaJapan
| | - Naoki Nishida
- Department of Legal MedicineFaculty of MedicineUniversity of ToyamaToyamaJapan
| |
Collapse
|
4
|
Langerscheidt F, Wied T, Al Kabbani MA, van Eimeren T, Wunderlich G, Zempel H. Genetic forms of tauopathies: inherited causes and implications of Alzheimer's disease-like TAU pathology in primary and secondary tauopathies. J Neurol 2024; 271:2992-3018. [PMID: 38554150 PMCID: PMC11136742 DOI: 10.1007/s00415-024-12314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024]
Abstract
Tauopathies are a heterogeneous group of neurologic diseases characterized by pathological axodendritic distribution, ectopic expression, and/or phosphorylation and aggregation of the microtubule-associated protein TAU, encoded by the gene MAPT. Neuronal dysfunction, dementia, and neurodegeneration are common features of these often detrimental diseases. A neurodegenerative disease is considered a primary tauopathy when MAPT mutations/haplotypes are its primary cause and/or TAU is the main pathological feature. In case TAU pathology is observed but superimposed by another pathological hallmark, the condition is classified as a secondary tauopathy. In some tauopathies (e.g. MAPT-associated frontotemporal dementia (FTD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Alzheimer's disease (AD)) TAU is recognized as a significant pathogenic driver of the disease. In many secondary tauopathies, including Parkinson's disease (PD) and Huntington's disease (HD), TAU is suggested to contribute to the development of dementia, but in others (e.g. Niemann-Pick disease (NPC)) TAU may only be a bystander. The genetic and pathological mechanisms underlying TAU pathology are often not fully understood. In this review, the genetic predispositions and variants associated with both primary and secondary tauopathies are examined in detail, assessing evidence for the role of TAU in these conditions. We highlight less common genetic forms of tauopathies to increase awareness for these disorders and the involvement of TAU in their pathology. This approach not only contributes to a deeper understanding of these conditions but may also lay the groundwork for potential TAU-based therapeutic interventions for various tauopathies.
Collapse
Affiliation(s)
- Felix Langerscheidt
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Tamara Wied
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, Von-Liebig-Str. 20, 53359, Rheinbach, Germany
| | - Mohamed Aghyad Al Kabbani
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Thilo van Eimeren
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
| | - Gilbert Wunderlich
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Hans Zempel
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
5
|
Vos SJB, Delvenne A, Jack CR, Thal DR, Visser PJ. The clinical importance of suspected non-Alzheimer disease pathophysiology. Nat Rev Neurol 2024; 20:337-346. [PMID: 38724589 DOI: 10.1038/s41582-024-00962-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 06/06/2024]
Abstract
The development of biomarkers for Alzheimer disease (AD) has led to the origin of suspected non-AD pathophysiology (SNAP) - a heterogeneous biomarker-based concept that describes individuals with normal amyloid and abnormal tau and/or neurodegeneration biomarker status. In this Review, we describe the origins of the SNAP construct, along with its prevalence, diagnostic and prognostic implications, and underlying neuropathology. As we discuss, SNAP can be operationalized using different biomarker modalities, which could affect prevalence estimates and reported characteristics of SNAP in ways that are not yet fully understood. Moreover, the underlying aetiologies that lead to a SNAP biomarker profile, and whether SNAP is the same in people with and without cognitive impairment, remains unclear. Improved insight into the clinical characteristics and pathophysiology of SNAP is of major importance for research and clinical practice, as well as for trial design to optimize care and treatment of individuals with SNAP.
Collapse
Affiliation(s)
- Stephanie J B Vos
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands.
| | - Aurore Delvenne
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic and Foundation, Rochester, MN, USA
| | - Dietmar R Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
6
|
Kim YA, Mellen M, Kizil C, Santa-Maria I. Mechanisms linking cerebrovascular dysfunction and tauopathy: Adding a layer of epiregulatory complexity. Br J Pharmacol 2024; 181:879-895. [PMID: 37926507 DOI: 10.1111/bph.16280] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 11/07/2023] Open
Abstract
Intracellular accumulation of hyperphosphorylated misfolded tau proteins are found in many neurodegenerative tauopathies, including Alzheimer's disease (AD). Tau pathology can impact cerebrovascular physiology and function through multiple mechanisms. In vitro and in vivo studies have shown that alterations in the blood-brain barrier (BBB) integrity and function can result in synaptic abnormalities and neuronal damage. In the present review, we will summarize how tau proteostasis dysregulation contributes to vascular dysfunction and, conversely, we will examine the factors and pathways leading to tau pathological alterations triggered by cerebrovascular dysfunction. Finally, we will highlight the role epigenetic and epitranscriptomic factors play in regulating the integrity of the cerebrovascular system and the progression of tauopathy including a few observartions on potential therapeutic interventions. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.
Collapse
Affiliation(s)
- Yoon A Kim
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Marian Mellen
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcon, Madrid, Spain
| | - Caghan Kizil
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Ismael Santa-Maria
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcon, Madrid, Spain
| |
Collapse
|
7
|
Del Tredici K, Schön M, Feldengut S, Ghebremedhin E, Kaufman SK, Wiesner D, Roselli F, Mayer B, Amunts K, Braak H. Early CA2 Tau Inclusions Do Not Distinguish an Age-Related Tauopathy from Early Alzheimer's Disease. J Alzheimers Dis 2024; 101:1333-1353. [PMID: 39302368 DOI: 10.3233/jad-240483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Background Neuropathologic studies of brains from autopsy series show tau inclusions (pretangles, neuropils threads, neurofibrillary tangles) are detectable more than a decade before amyloid-β (Aβ) deposition in Alzheimer's disease (AD) and develop in a characteristic manner that forms the basis for AD staging. An alternative position views pathological tau without Aβ deposition as a 'primary age-related tauopathy' (PART) rather than prodromal AD. Recently, an early focus of tau inclusions in the Ammon's horn second sector (CA2) with relative sparing of CA1 that occurs before tau inclusions develop in the entorhinal cortex (EC) was proposed as an additional feature of PART. Objective To test the 'definite PART' hypothesis. Methods We used AT8-immunohistochemistry in 100μm sections to examine the EC, transentorhinal cortex (TRE), and Ammon's horn in 325 brains with tau inclusions lacking Aβ deposits (average age at death 66.7 years for females, 66.4 years for males). Results 100% of cases displayed tau inclusions in the TRE. In 89% of cases, the CA1 tau rating was greater than or equal to that in CA2. In 25%, CA2 was devoid of tau inclusions. Only 4% displayed a higher tau score in CA2 than in the TRE, EC, and CA1. The perforant path also displayed early tau changes. APOE genotyping was available for 199/325 individuals. Of these, 44% had an ɛ4 allele that placed them at greater risk for developing later NFT stages and, therefore, clinical AD. Conclusions Our new findings call into question the PART hypothesis and are consistent with the idea that our cases represent prodromal AD.
Collapse
Affiliation(s)
- Kelly Del Tredici
- Clinical Neuroanatomy/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Michael Schön
- Institute for Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| | - Simone Feldengut
- Clinical Neuroanatomy/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Estifanos Ghebremedhin
- Institute of Clinical Neuroanatomy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sarah K Kaufman
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Diana Wiesner
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Heiko Braak
- Clinical Neuroanatomy/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| |
Collapse
|
8
|
Marx GA, Kauffman J, McKenzie AT, Koenigsberg DG, McMillan CT, Morgello S, Karlovich E, Insausti R, Richardson TE, Walker JM, White CL, Babrowicz BM, Shen L, McKee AC, Stein TD, Farrell K, Crary JF. Histopathologic brain age estimation via multiple instance learning. Acta Neuropathol 2023; 146:785-802. [PMID: 37815677 PMCID: PMC10627911 DOI: 10.1007/s00401-023-02636-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023]
Abstract
Understanding age acceleration, the discordance between biological and chronological age, in the brain can reveal mechanistic insights into normal physiology as well as elucidate pathological determinants of age-related functional decline and identify early disease changes in the context of Alzheimer's and other disorders. Histopathological whole slide images provide a wealth of pathologic data on the cellular level that can be leveraged to build deep learning models to assess age acceleration. Here, we used a collection of digitized human post-mortem hippocampal sections to develop a histological brain age estimation model. Our model predicted brain age within a mean absolute error of 5.45 ± 0.22 years, with attention weights corresponding to neuroanatomical regions vulnerable to age-related changes. We found that histopathologic brain age acceleration had significant associations with clinical and pathologic outcomes that were not found with epigenetic based measures. Our results indicate that histopathologic brain age is a powerful, independent metric for understanding factors that contribute to brain aging.
Collapse
Affiliation(s)
- Gabriel A Marx
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
| | - Justin Kauffman
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
| | - Andrew T McKenzie
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel G Koenigsberg
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
| | - Cory T McMillan
- Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan Morgello
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, USA
| | - Esma Karlovich
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
| | - Ricardo Insausti
- Human Neuroanatomy Laboratory, School of Medicine, University of Castilla-La Mancha, Albacete, Spain
| | - Timothy E Richardson
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
| | - Jamie M Walker
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
| | - Charles L White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bergan M Babrowicz
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, USA
| | - Ann C McKee
- Department of Pathology, Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Thor D Stein
- Department of Pathology, Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Kurt Farrell
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA.
- Department of Artificial Intelligence and Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA.
| | - John F Crary
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA.
- Department of Artificial Intelligence and Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA.
| |
Collapse
|
9
|
Walker JM, Goette W, Farrell K, Iida MA, Karlovich E, White CL, Crary JF, Richardson TE. The relationship between hippocampal amyloid beta burden and spatial distribution of neurofibrillary degeneration. Alzheimers Dement 2023; 19:3158-3170. [PMID: 36738450 PMCID: PMC11100308 DOI: 10.1002/alz.12966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Neurofibrillary degeneration in Alzheimer's disease (AD) typically involves the entorhinal cortex and CA1 subregion of the hippocampus early in the disease process, whereas in primary age-related tauopathy (PART), there is an early selective vulnerability of the CA2 subregion. METHODS Image analysis-based quantitative pixel assessments were used to objectively evaluate amyloid beta (Aβ) burden in the medial temporal lobe in relation to the distribution of hyperphosphorylated-tau (p-tau) in 142 cases of PART and AD. RESULTS Entorhinal, CA1, CA3, and CA4 p-tau deposition levels are significantly correlated with Aβ burden, while CA2 p-tau is not. Furthermore, the CA2/CA1 p-tau ratio is inversely correlated with Aβ burden and distribution. In addition, cognitive impairment is correlated with overall p-tau burden. DISCUSSION These data indicate that the presence and extent of medial temporal lobe Aβ may determine the distribution and spread of neurofibrillary degeneration. The resulting p-tau distribution patterns may discriminate between PART and AD. HIGHLIGHTS Subregional hyperphosphorylated-tau (p-tau) distribution is influenced by hippocampal amyloid beta burden. Higher CA2/CA1 p-tau ratio is predictive of primary age-related tauopathy-like neuropathology. Cognitive function is correlated with the overall hippocampal p-tau burden.
Collapse
Affiliation(s)
- Jamie M. Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - William Goette
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kurt Farrell
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Megan A. Iida
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Esma Karlovich
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - The PART Working Group
- The PART working group is a multi-institutional collaboration. PART working group investigators are listed in the acknowledgments section
| | - Charles L. White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John F. Crary
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Timothy E. Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
10
|
Abbate C. The Adult Neurogenesis Theory of Alzheimer's Disease. J Alzheimers Dis 2023:JAD221279. [PMID: 37182879 DOI: 10.3233/jad-221279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Alzheimer's disease starts in neural stem cells (NSCs) in the niches of adult neurogenesis. All primary factors responsible for pathological tau hyperphosphorylation are inherent to adult neurogenesis and migration. However, when amyloid pathology is present, it strongly amplifies tau pathogenesis. Indeed, the progressive accumulation of extracellular amyloid-β deposits in the brain triggers a state of chronic inflammation by microglia. Microglial activation has a significant pro-neurogenic effect that fosters the process of adult neurogenesis and supports neuronal migration. Unfortunately, this "reactive" pro-neurogenic activity ultimately perturbs homeostatic equilibrium in the niches of adult neurogenesis by amplifying tau pathogenesis in AD. This scenario involves NSCs in the subgranular zone of the hippocampal dentate gyrus in late-onset AD (LOAD) and NSCs in the ventricular-subventricular zone along the lateral ventricles in early-onset AD (EOAD), including familial AD (FAD). Neuroblasts carrying the initial seed of tau pathology travel throughout the brain via neuronal migration driven by complex signals and convey the disease from the niches of adult neurogenesis to near (LOAD) or distant (EOAD) brain regions. In these locations, or in close proximity, a focus of degeneration begins to develop. Then, tau pathology spreads from the initial foci to large neuronal networks along neural connections through neuron-to-neuron transmission.
Collapse
Affiliation(s)
- Carlo Abbate
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| |
Collapse
|
11
|
Senkevich K, Bandres-Ciga S, Cisterna-García A, Yu E, Bustos BI, Krohn L, Lubbe SJ, Botía JA, Gan-Or Z. Genome-wide association study stratified by MAPT haplotypes identifies potential novel loci in Parkinson's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.14.23288478. [PMID: 37292720 PMCID: PMC10246147 DOI: 10.1101/2023.04.14.23288478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Objective To identify genetic factors that may modify the effects of the MAPT locus in Parkinson's disease (PD). Methods We used data from the International Parkinson's Disease Genomics Consortium (IPDGC) and the UK biobank (UKBB). We stratified the IPDGC cohort for carriers of the H1/H1 genotype (PD patients n=8,492 and controls n=6,765) and carriers of the H2 haplotype (with either H1/H2 or H2/H2 genotypes, patients n=4,779 and controls n=4,849) to perform genome-wide association studies (GWASs). Then, we performed replication analyses in the UKBB data. To study the association of rare variants in the new nominated genes, we performed burden analyses in two cohorts (Accelerating Medicines Partnership - Parkinson Disease and UKBB) with a total sample size PD patients n=2,943 and controls n=18,486. Results We identified a novel locus associated with PD among MAPT H1/H1 carriers near EMP1 (rs56312722, OR=0.88, 95%CI= 0.84-0.92, p= 1.80E-08), and a novel locus associated with PD among MAPT H2 carriers near VANGL1 (rs11590278, OR=1.69 95%CI=1.40-2.03, p=2.72E-08). Similar analysis of the UKBB data did not replicate these results and rs11590278 near VANGL1 did have similar effect size and direction in carriers of H2 haplotype, albeit not statistically significant (OR= 1.32, 95%CI= 0.94-1.86, p=0.17). Rare EMP1 variants with high CADD scores were associated with PD in the MAPT H2 stratified analysis (p=9.46E-05), mainly driven by the p.V11G variant. Interpretation We identified several loci potentially associated with PD stratified by MAPT haplotype and larger replication studies are required to confirm these associations.
Collapse
Affiliation(s)
- Konstantin Senkevich
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Data Tecnica International LLC, Washington DC, USA
| | - Alejandro Cisterna-García
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - Eric Yu
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Bernabe I. Bustos
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lynne Krohn
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Steven J. Lubbe
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Juan A. Botía
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | | | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| |
Collapse
|
12
|
Avila J, Santa-Maria I, Sotiropulos I. Editorial Special Issue Neuroscience "Tauopathies". Neuroscience 2023; 518:1-3. [PMID: 36963653 DOI: 10.1016/j.neuroscience.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Affiliation(s)
- Jesús Avila
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain; Networking Research Centre on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Ismael Santa-Maria
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Edificio E, 28223, Pozuelo de Alarcon, Madrid, Spain; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA, Department of Pathology and Cell Biology, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Ioannis Sotiropulos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Institute of Biosciences and Applications NCSR "Demokritos", Athens, Greece
| |
Collapse
|
13
|
Walker JM, Gonzales MM, Goette W, Farrell K, White CL, Crary JF, Richardson TE. Cognitive and Neuropsychological Profiles in Alzheimer's Disease and Primary Age-Related Tauopathy and the Influence of Comorbid Neuropathologies. J Alzheimers Dis 2023; 92:1037-1049. [PMID: 36847012 PMCID: PMC11138480 DOI: 10.3233/jad-230022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
BACKGROUND Alzheimer's disease neuropathologic change (ADNC) is defined by the progression of both hyperphosphorylated-tau (p-tau) and amyloid-β (Aβ) and is the most common underlying cause of dementia worldwide. Primary age-related tauopathy (PART), an Aβ-negative tauopathy largely confined to the medial temporal lobe, is increasingly being recognized as an entity separate from ADNC with diverging clinical, genetic, neuroanatomic, and radiologic profiles. OBJECTIVE The specific clinical correlates of PART are largely unknown; we aimed to identify cognitive and neuropsychological differences between PART, ADNC, and subjects with no tauopathy (NT). METHODS We compared 2,884 subjects with autopsy-confirmed intermediate-high stage ADNC to 208 subjects with definite PART (Braak stage I-IV, Thal phase 0, CERAD NP score "absent") and 178 NT subjects from the National Alzheimer's Coordinating Center dataset. RESULTS PART subjects were older than either ADNC or NT patients. The ADNC cohort had more frequent neuropathological comorbidities as well as APOE ɛ4 alleles than the PART or NT cohort, and less frequent APOE ɛ2 alleles than either group. Clinically, ADNC patients performed significantly worse than NT or PART subjects across cognitive measures, but PART subjects had selective deficits in measures of processing speed, executive function, and visuospatial function, although additional cognitive measures were further impaired in the presence of neuropathologic comorbidities. In isolated cases of PART with Braak stage III-IV, there are additional deficits in measures of language. CONCLUSION Overall, these findings demonstrate underlying cognitive features specifically associated with PART, and reinforce the concept that PART is a distinct entity from ADNC.
Collapse
Affiliation(s)
- Jamie M. Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mitzi M. Gonzales
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - William Goette
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kurt Farrell
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles L. White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John F. Crary
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Timothy E. Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
14
|
Kawakami I, Iga J, Takahashi S, Lin Y, Fujishiro H. Towards an understanding of the pathological basis of senile depression and incident dementia: Implications for treatment. Psychiatry Clin Neurosci 2022; 76:620-632. [PMID: 36183356 PMCID: PMC10092575 DOI: 10.1111/pcn.13485] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/15/2022] [Accepted: 09/24/2022] [Indexed: 11/30/2022]
Abstract
Senile depression (SD) is a heterogeneous syndrome. Several clinical profiles are more likely to appear in SD than in early-life depression, but it remains unclear whether the pathophysiology is different. The prevalence of dementia increases with aging, and the underlying pathophysiological processes in the preclinical phase begin even before cognitive deficits or neurological signs appear. SD may be either a risk factor for developing dementia or a prodromal stage of dementia. The inconsistent findings regarding the association between SD and incident dementia may be attributable to the neuropathological heterogeneity underlying SD. Most studies have focused on patients with the clinical diagnosis of Alzheimer disease (AD) as an outcome, but several clinicopathological studies suggest that primary age-related tauopathy and argyrophilic grain disease may account for a proportion of cases clinically misdiagnosed as AD in the elderly population. Furthermore, most AD cases have additional neuropathologic changes such as cerebrovascular disease and Lewy body disease. Here, we review the neuropathological findings linking SD to incident dementia, focusing on common age-related neuropathologies. In particular, the roles of disturbance of neural circuity, imbalance of monoaminergic systems, dysregulation of the hypothalamic-pituitary-adrenal axis, and elevated neuroinflammatory status are discussed. Finally, we review the current treatment of SD in the context of age-related neuropathological changes.
Collapse
Affiliation(s)
- Ito Kawakami
- Department of PsychiatryJuntendo University School of MedicineTokyoJapan
- Dementia Research ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Jun‐ichi Iga
- Department of NeuropsychiatryEhime University Graduate School of MedicineMatsuyamaJapan
| | - Sho Takahashi
- Department of Disaster and Community Psychiatry, Division of Clinical Medicine, Faculty of MedicineUniversity of TsukubaTsukubaJapan
- Department of Community and Disaster Assistance, Ibaraki Prefectural Medical Research Center of PsychiatryUniversity of TsukubaTsukubaJapan
| | - Yi‐Ting Lin
- Department of PsychiatryNational Taiwan University HospitalTaipeiTaiwan
| | - Hiroshige Fujishiro
- Department of PsychiatryNagoya University Graduate School of MedicineAichiJapan
| |
Collapse
|
15
|
Farrell K, Iida MA, Cherry JD, Casella A, Stein TD, Bieniek KF, Walker JM, Richardson TE, White CL, Alvarez VE, Huber BR, Dickson DW, Insausti R, Dams-O'Connor K, McKee AC, Crary JF. Differential Vulnerability of Hippocampal Subfields in Primary Age-Related Tauopathy and Chronic Traumatic Encephalopathy. J Neuropathol Exp Neurol 2022; 81:781-789. [PMID: 36004533 PMCID: PMC9487677 DOI: 10.1093/jnen/nlac066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a tauopathy associated with repetitive mild head impacts characterized by perivascular hyperphosphorylated tau (p-tau) in neurofibrillary tangles (NFTs) and neurites in the depths of the neocortical sulci. In moderate to advanced CTE, NFTs accumulate in the hippocampus, potentially overlapping neuroanatomically with primary age-related tauopathy (PART), an age-related tauopathy characterized by Alzheimer disease-like tau pathology in the hippocampus devoid of amyloid plaques. We measured p-tau burden using positive-pixel counts on immunohistochemically stained and neuroanatomically segmented hippocampal tissue. Subjects with CTE had a higher total p-tau burden than PART subjects in all sectors (p = 0.005). Within groups, PART had significantly higher total p-tau burden in CA1/subiculum compared to CA3 (p = 0.02) and CA4 (p = 0.01) and total p-tau burden in CA2 trended higher than CA4 (p = 0.06). In CTE, total p-tau burden in CA1/subiculum was significantly higher than in the dentate gyrus; and CA2 also trended higher than dentate gyrus (p = 0.01, p = 0.06). When controlling for p-tau burden across the entire hippocampus, CA3 and CA4 had significantly higher p-tau burden in CTE than PART (p < 0.0001). These data demonstrate differences in hippocampal p-tau burden and regional distribution in CTE compared to PART that might be helpful in differential diagnosis and reveal insights into disease pathogenesis.
Collapse
Affiliation(s)
- Kurt Farrell
- Departments of Pathology, Artificial Intelligence & Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Megan A Iida
- Departments of Pathology, Artificial Intelligence & Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jonathan D Cherry
- Department of Pathology, Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Veterans Affairs Medical Center, Bedford, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Alicia Casella
- Departments of Pathology, Artificial Intelligence & Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thor D Stein
- Department of Pathology, Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Veterans Affairs Medical Center, Bedford, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Kevin F Bieniek
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas, USA
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Jamie M Walker
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas, USA
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Timothy E Richardson
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas, USA
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Charles L White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Victor E Alvarez
- Department of Pathology, Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Veterans Affairs Medical Center, Bedford, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Bertrand R Huber
- Department of Pathology, Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Veterans Affairs Medical Center, Bedford, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Dennis W Dickson
- Departments of Pathology and Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Ricardo Insausti
- Human Neuroanatomy Laboratory, School of Medicine, University of Castilla-La Mancha, Albacete, Spain
| | - Kristen Dams-O'Connor
- Department of Rehabilitation and Human Performance, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ann C McKee
- Department of Pathology, Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Veterans Affairs Medical Center, Bedford, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - John F Crary
- Departments of Pathology, Artificial Intelligence & Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
16
|
Wuli W, Lin SZ, Chen SP, Tannous BA, Huang WS, Woon PY, Wu YC, Yang HH, Chen YC, Fleming RL, Rogers JT, Cahill CM, Ho TJ, Chiou TW, Harn HJ. Targeting PSEN1 by lnc-CYP3A43-2/miR-29b-2-5p to Reduce β Amyloid Plaque Formation and Improve Cognition Function. Int J Mol Sci 2022; 23:10554. [PMID: 36142465 PMCID: PMC9506169 DOI: 10.3390/ijms231810554] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Presenilin-1 (PSEN1) is a crucial subunit within the γ-secretase complex and regulates β-amyloid (Aβ) production. Accumulated evidence indicates that n-butylidenephthalide (BP) acts effectively to reduce Aβ levels in neuronal cells that are derived from trisomy 21 (Ts21) induced pluripotent stem cells (iPSCs). However, the mechanism underlying this effect remains unclear. This article aims to investigate the possible mechanisms through which BP ameliorates the development of Alzheimer's disease (AD) and verify the effectiveness of BP through animal experiments. Results from RNA microarray analysis showed that BP treatment in Ts21 iPSC-derived neuronal cells reduced long noncoding RNA (lncRNA) CYP3A43-2 levels and increased microRNA (miR)-29b-2-5p levels. Bioinformatics tool prediction analysis, biotin-labeled miR-29b-2-5p pull-down assay, and dual-luciferase reporter assay confirmed a direct negative regulatory effect for miRNA29b-2-5p on lnc-RNA-CYP3A43-2 and PSEN1. Moreover, BP administration improved short-term memory and significantly reduced Aβ accumulation in the hippocampus and cortex of 3xTg-AD mice but failed in miR-29b-2-5p mutant mice generated by CRISP/Cas9 technology. In addition, analysis of brain samples from patients with AD showed a decrease in microRNA-29b-2-5p expression in the frontal cortex region. Our results provide evidence that the LncCYP3A43-2/miR29-2-5p/PSEN1 network might be involved in the molecular mechanisms underlying BP-induced Aβ reduction.
Collapse
Affiliation(s)
- Wei Wuli
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
- Department of Life Science, National Dong Hwa University, Hualien 974301, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
- Department of Neurology, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan
| | - Shee-Ping Chen
- Buddhist Tzu Chi Stem Cells Centre, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan
| | - Bakhos A. Tannous
- Neurochemistry Laboratory, Department of Psychiatry-Neuroscience, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, Boston, MA 02129, USA
| | - Wen-Sheng Huang
- Department of Nuclear Medicine, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Peng Yeong Woon
- Taiwan Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan
| | - Yang-Chang Wu
- Graduate Institute of Integrated Medicine, China Medical University, Taichung City 404, Taiwan
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung City 404, Taiwan
- The Biotechnology Department, College of Medical and Health Science, Asia University, Taichung City 404, Taiwan
| | - Hsueh-Hui Yang
- Department of Medical Research, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan
| | - Yi-Cheng Chen
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Renata Lopes Fleming
- Neurochemistry Laboratory, Department of Psychiatry-Neuroscience, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, Boston, MA 02129, USA
| | - Jack T. Rogers
- Neurochemistry Laboratory, Department of Psychiatry-Neuroscience, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, Boston, MA 02129, USA
| | - Catherine M. Cahill
- Neurochemistry Laboratory, Department of Psychiatry-Neuroscience, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, Boston, MA 02129, USA
| | - Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Tzyy-Wen Chiou
- Department of Life Science, National Dong Hwa University, Hualien 974301, Taiwan
| | - Horng-Jyh Harn
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
- Department of Pathology, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan
| |
Collapse
|
17
|
Tarozzi M, Bartoletti-Stella A, Dall'Olio D, Matteuzzi T, Baiardi S, Parchi P, Castellani G, Capellari S. Identification of recurrent genetic patterns from targeted sequencing panels with advanced data science: a case-study on sporadic and genetic neurodegenerative diseases. BMC Med Genomics 2022; 15:26. [PMID: 35144616 PMCID: PMC8830183 DOI: 10.1186/s12920-022-01173-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/02/2022] [Indexed: 11/10/2022] Open
Abstract
Background Targeted Next Generation Sequencing is a common and powerful approach used in both clinical and research settings. However, at present, a large fraction of the acquired genetic information is not used since pathogenicity cannot be assessed for most variants. Further complicating this scenario is the increasingly frequent description of a poli/oligogenic pattern of inheritance showing the contribution of multiple variants in increasing disease risk. We present an approach in which the entire genetic information provided by target sequencing is transformed into binary data on which we performed statistical, machine learning, and network analyses to extract all valuable information from the entire genetic profile. To test this approach and unbiasedly explore the presence of recurrent genetic patterns, we studied a cohort of 112 patients affected either by genetic Creutzfeldt–Jakob (CJD) disease caused by two mutations in the PRNP gene (p.E200K and p.V210I) with different penetrance or by sporadic Alzheimer disease (sAD). Results Unsupervised methods can identify functionally relevant sources of variation in the data, like haplogroups and polymorphisms that do not follow Hardy–Weinberg equilibrium, such as the NOTCH3 rs11670823 (c.3837 + 21 T > A). Supervised classifiers can recognize clinical phenotypes with high accuracy based on the mutational profile of patients. In addition, we found a similar alteration of allele frequencies compared the European population in sporadic patients and in V210I-CJD, a poorly penetrant PRNP mutation, and sAD, suggesting shared oligogenic patterns in different types of dementia. Pathway enrichment and protein–protein interaction network revealed different altered pathways between the two PRNP mutations. Conclusions We propose this workflow as a possible approach to gain deeper insights into the genetic information derived from target sequencing, to identify recurrent genetic patterns and improve the understanding of complex diseases. This work could also represent a possible starting point of a predictive tool for personalized medicine and advanced diagnostic applications. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01173-4.
Collapse
Affiliation(s)
- M Tarozzi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - A Bartoletti-Stella
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - D Dall'Olio
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - T Matteuzzi
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - S Baiardi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - P Parchi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - G Castellani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.
| | - S Capellari
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
18
|
Ferrer I. Alzheimer's disease is an inherent, natural part of human brain aging: an integrated perspective. FREE NEUROPATHOLOGY 2022; 3:17. [PMID: 37284149 PMCID: PMC10209894 DOI: 10.17879/freeneuropathology-2022-3806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/21/2022] [Indexed: 06/08/2023]
Abstract
Alzheimer disease is one of the most challenging demons in our society due to its very high prevalence and its clinical manifestations which cause deterioration of cognition, intelligence, and emotions - the very capacities that distinguish Homo sapiens from other animal species. Besides the personal, social, and economical costs, late stages of AD are vivid experiences for the family, relatives, friends, and general observers of the progressive ruin of an individual who turns into a being with lower mental and physical capacities than less evolved species. A human brain with healthy cognition, conscience, and emotions can succeed in dealing with most difficulties that life may pose. Without these capacities, the same person probably cannot. Due, in part, to this emotional impact, the absorbing study of AD has generated, over the years, a fascinating and complex story of theories, hypotheses, controversies, fashion swings, and passionate clashes, together with tremendous efforts and achievements geared to improve understanding of the pathogenesis and treatment of the disorder. Familal AD is rare and linked to altered genetic information associated with three genes. Sporadic AD (sAD) is much more common and multifactorial. A major point of clinical discussion has been, and still is, establishing the differences between brain aging and sAD. This is not a trivial question, as the neuropathological and molecular characteristics of normal brain aging and the first appearance of early stages of sAD-related pathology are not easily distinguishable in most individuals. Another important point is confidence in assigning responsibility for the beginning of sAD to a few triggering molecules, without considering the wide number of alterations that converge in the pathogenesis of aging and sAD. Genetic risk factors covering multiple molecular signals are increasing in number. In the same line, molecular pathways are altered at early stages of sAD pathology, currently grouped under the aegis of normal brain aging, only to increase massively at advanced stages of the process. Sporadic AD is here considered an inherent, natural part of human brain aging, which is prevalent in all humans, and variably present or not in a few individuals in other species. The progression of the process has devastating effects in a relatively low percentage of human beings eventually evolving to dementia. The continuum of brain aging and sAD implies the search for a different approach in the study of human brain aging at the first stages of the biological process, and advances in the use of new technologies aimed at slowing down the molecular defects underlying human brain aging and sAD at the outset, and transfering information and tasks to AI and coordinated devices.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona; Emeritus Researcher of the Bellvitge Institute of Biomedical Research (IDIBELL); Biomedical Research Network of Neurodegenerative Diseases (CIBERNED); Institute of Neurosciences, University of Barcelona; Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
19
|
Farrell K, Kim S, Han N, Iida MA, Gonzalez EM, Otero-Garcia M, Walker JM, Richardson TE, Renton AE, Andrews SJ, Fulton-Howard B, Humphrey J, Vialle RA, Bowles KR, de Paiva Lopes K, Whitney K, Dangoor DK, Walsh H, Marcora E, Hefti MM, Casella A, Sissoko CT, Kapoor M, Novikova G, Udine E, Wong G, Tang W, Bhangale T, Hunkapiller J, Ayalon G, Graham RR, Cherry JD, Cortes EP, Borukov VY, McKee AC, Stein TD, Vonsattel JP, Teich AF, Gearing M, Glass J, Troncoso JC, Frosch MP, Hyman BT, Dickson DW, Murray ME, Attems J, Flanagan ME, Mao Q, Mesulam MM, Weintraub S, Woltjer RL, Pham T, Kofler J, Schneider JA, Yu L, Purohit DP, Haroutunian V, Hof PR, Gandy S, Sano M, Beach TG, Poon W, Kawas CH, Corrada MM, Rissman RA, Metcalf J, Shuldberg S, Salehi B, Nelson PT, Trojanowski JQ, Lee EB, Wolk DA, McMillan CT, Keene CD, Latimer CS, Montine TJ, Kovacs GG, Lutz MI, Fischer P, Perrin RJ, Cairns NJ, Franklin EE, Cohen HT, Raj T, Cobos I, Frost B, Goate A, White Iii CL, Crary JF. Genome-wide association study and functional validation implicates JADE1 in tauopathy. Acta Neuropathol 2022; 143:33-53. [PMID: 34719765 PMCID: PMC8786260 DOI: 10.1007/s00401-021-02379-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/13/2021] [Accepted: 10/24/2021] [Indexed: 01/07/2023]
Abstract
Primary age-related tauopathy (PART) is a neurodegenerative pathology with features distinct from but also overlapping with Alzheimer disease (AD). While both exhibit Alzheimer-type temporal lobe neurofibrillary degeneration alongside amnestic cognitive impairment, PART develops independently of amyloid-β (Aβ) plaques. The pathogenesis of PART is not known, but evidence suggests an association with genes that promote tau pathology and others that protect from Aβ toxicity. Here, we performed a genetic association study in an autopsy cohort of individuals with PART (n = 647) using Braak neurofibrillary tangle stage as a quantitative trait. We found some significant associations with candidate loci associated with AD (SLC24A4, MS4A6A, HS3ST1) and progressive supranuclear palsy (MAPT and EIF2AK3). Genome-wide association analysis revealed a novel significant association with a single nucleotide polymorphism on chromosome 4 (rs56405341) in a locus containing three genes, including JADE1 which was significantly upregulated in tangle-bearing neurons by single-soma RNA-seq. Immunohistochemical studies using antisera targeting JADE1 protein revealed localization within tau aggregates in autopsy brains with four microtubule-binding domain repeats (4R) isoforms and mixed 3R/4R, but not with 3R exclusively. Co-immunoprecipitation in post-mortem human PART brain tissue revealed a specific binding of JADE1 protein to four repeat tau lacking N-terminal inserts (0N4R). Finally, knockdown of the Drosophila JADE1 homolog rhinoceros (rno) enhanced tau-induced toxicity and apoptosis in vivo in a humanized 0N4R mutant tau knock-in model, as quantified by rough eye phenotype and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) in the fly brain. Together, these findings indicate that PART has a genetic architecture that partially overlaps with AD and other tauopathies and suggests a novel role for JADE1 as a modifier of neurofibrillary degeneration.
Collapse
Affiliation(s)
- Kurt Farrell
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - SoongHo Kim
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Natalia Han
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Megan A Iida
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elias M Gonzalez
- Department of Cell Systems and Anatomy, Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, the Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Marcos Otero-Garcia
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, University of California, Los Angeles, CA, USA
| | - Jamie M Walker
- Department of Pathology and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Timothy E Richardson
- Department of Pathology and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Alan E Renton
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shea J Andrews
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian Fulton-Howard
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jack Humphrey
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ricardo A Vialle
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kathryn R Bowles
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katia de Paiva Lopes
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristen Whitney
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diana K Dangoor
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hadley Walsh
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edoardo Marcora
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marco M Hefti
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Alicia Casella
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cheick T Sissoko
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manav Kapoor
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gloriia Novikova
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evan Udine
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Garrett Wong
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Weijing Tang
- Department of Pathology, Stanford University, Palo Alto, USA
| | - Tushar Bhangale
- Department of Human Genetics, Genentech, South San Francisco, CA, USA
| | - Julie Hunkapiller
- Department of Human Genetics, Genentech, South San Francisco, CA, USA
| | - Gai Ayalon
- Neumora Therapeutics, South San Francisco, CA, USA
| | | | - Jonathan D Cherry
- Department of Pathology (Neuropathology), VA Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Etty P Cortes
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Valeriy Y Borukov
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ann C McKee
- Department of Pathology (Neuropathology), VA Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Department of Pathology (Neuropathology), VA Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Jean-Paul Vonsattel
- Department of Pathology and Cell Biology, Department of Neurology, and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Andy F Teich
- Department of Pathology and Cell Biology, Department of Neurology, and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine (Neuropathology) and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathan Glass
- Department of Pathology and Laboratory Medicine (Neuropathology) and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Juan C Troncoso
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew P Frosch
- Department of Neurology and Pathology, Harvard Medical School and Massachusetts General Hospital, Charlestown, MA, USA
| | - Bradley T Hyman
- Department of Neurology and Pathology, Harvard Medical School and Massachusetts General Hospital, Charlestown, MA, USA
| | | | | | - Johannes Attems
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Margaret E Flanagan
- Department of Pathology (Neuropathology), Northwestern Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qinwen Mao
- Department of Pathology (Neuropathology), Northwestern Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - M-Marsel Mesulam
- Department of Pathology (Neuropathology), Northwestern Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sandra Weintraub
- Department of Pathology (Neuropathology), Northwestern Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Randy L Woltjer
- Department of Pathology, Oregon Health Sciences University, Portland, OR, USA
| | - Thao Pham
- Department of Pathology, Oregon Health Sciences University, Portland, OR, USA
| | - Julia Kofler
- Department of Pathology (Neuropathology), University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Julie A Schneider
- Departments of Pathology (Neuropathology) and Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Lei Yu
- Departments of Pathology (Neuropathology) and Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Dushyant P Purohit
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Department of Psychiatry, Alzheimer's Disease Research Center, James J. Peters VA Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vahram Haroutunian
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Alzheimer's Disease Research Center, James J. Peters VA Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patrick R Hof
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sam Gandy
- Department of Psychiatry, Alzheimer's Disease Research Center, James J. Peters VA Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Center for Cognitive Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mary Sano
- Department of Psychiatry, Alzheimer's Disease Research Center, James J. Peters VA Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas G Beach
- Department of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Wayne Poon
- Department of Neurology, Department of Epidemiology, Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA, USA
| | - Claudia H Kawas
- Department of Neurology, Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA, USA
| | - María M Corrada
- Department of Neurology, Department of Epidemiology, Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA, USA
| | - Robert A Rissman
- Department of Neurosciences University of California and the Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, California, USA
| | - Jeff Metcalf
- Department of Neurosciences University of California and the Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, California, USA
| | - Sara Shuldberg
- Department of Neurosciences University of California and the Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, California, USA
| | - Bahar Salehi
- Department of Neurosciences University of California and the Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, California, USA
| | - Peter T Nelson
- Department of Pathology (Neuropathology) and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David A Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Corey T McMillan
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of f Medicine, Seattle, WA, USA
| | - Caitlin S Latimer
- Department of Laboratory Medicine and Pathology, University of f Medicine, Seattle, WA, USA
| | - Thomas J Montine
- Department of Laboratory Medicine and Pathology, University of f Medicine, Seattle, WA, USA
- Department of Pathology, Stanford University, Palo Alto, USA
| | - Gabor G Kovacs
- Laboratory Medicine Program, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Disease and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Mirjam I Lutz
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Peter Fischer
- Department of Psychiatry, Danube Hospital, Vienna, Austria
| | - Richard J Perrin
- Department of Pathology and Immunology, Department of Neurology, Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Nigel J Cairns
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - Erin E Franklin
- Department of Pathology and Immunology, Department of Neurology, Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Herbert T Cohen
- Departments of Medicine, Pathology, and Pharmacology, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Towfique Raj
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Inma Cobos
- Department of Pathology, Stanford University, Palo Alto, USA
| | - Bess Frost
- Department of Cell Systems and Anatomy, Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, the Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Alison Goate
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles L White Iii
- Department of Pathology (Neuropathology), University of Texas Southwestern Medical School, Dallas, TX, USA
| | - John F Crary
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA.
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
20
|
Savola S, Kaivola K, Raunio A, Kero M, Mäkelä M, Pärn K, Palta P, Tanskanen M, Tuimala J, Polvikoski T, Tienari PJ, Paetau A, Myllykangas L. Primary Age‐Related Tauopathy (PART) in a Finnish Population‐Based Study of the Oldest Old (Vantaa 85+). Neuropathol Appl Neurobiol 2021; 48:e12788. [PMID: 34927275 PMCID: PMC9305229 DOI: 10.1111/nan.12788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/16/2021] [Accepted: 12/12/2021] [Indexed: 11/26/2022]
Abstract
Aims Few studies have investigated primary age‐related tauopathy (PART) in a population‐based setting. Here, we assessed its prevalence, genetic background, comorbidities and features of cognitive decline in an unselected elderly population. Methods The population‐based Vantaa 85+ study includes all 601 inhabitants of Vantaa aged ≥ 85 years in 1991. Neuropathological assessment was possible in 301. Dementia (DSM IIIR criteria) and Mini‐Mental State Examination (MMSE) scores were assessed at the baseline of the study and follow‐ups. PART subjects were identified according to the criteria by Crary et al and were compared with subjects with mild and severe Alzheimer's disease (AD) neuropathological changes. The effects of other neuropathologies were taken into account using multivariate and sensitivity assays. Genetic analyses included APOE genotypes and 29 polymorphisms of the MAPT 3′ untranslated region (3′UTR region). Results The frequency of PART was 20% (n = 61/301, definite PART 5%). When PART subjects were compared with those with severe AD pathology, dementia was less common, its age at onset was higher and duration shorter. No such differences were seen when compared with those with milder AD pathology. However, both AD groups showed a steeper decline in MMSE scores in follow‐ups compared with PART. APOE ε4 frequency was lower, and APOE ε2 frequency higher in the PART group compared with each AD group. The detected nominally significant associations between PART and two MAPT 3′UTR polymorphisms and haplotypes did not survive Bonferroni correction. Conclusions PART is common among very elderly. PART subjects differ from individuals with AD‐type changes in the pattern of cognitive decline, associated genetic and neuropathological features.
Collapse
Affiliation(s)
- Sara Savola
- Department of Pathology University of Helsinki Helsinki Finland
- Department of Pathology, HUS Diagnostic Center Helsinki University Hospital Helsinki Finland
| | - Karri Kaivola
- Translational Immunology, Research Programs Unit University of Helsinki Helsinki Finland
- Department of Neurology University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Anna Raunio
- Department of Pathology University of Helsinki Helsinki Finland
- Department of Pathology, HUS Diagnostic Center Helsinki University Hospital Helsinki Finland
| | - Mia Kero
- Department of Pathology University of Helsinki Helsinki Finland
- Department of Pathology, HUS Diagnostic Center Helsinki University Hospital Helsinki Finland
| | - Mira Mäkelä
- Department of Pathology University of Helsinki Helsinki Finland
- Department of Pathology, HUS Diagnostic Center Helsinki University Hospital Helsinki Finland
| | - Kalle Pärn
- Institute for Molecular Medicine Finland (FIMM), HiLIFE University of Helsinki Helsinki Finland
| | - Priit Palta
- Institute for Molecular Medicine Finland (FIMM), HiLIFE University of Helsinki Helsinki Finland
| | - Maarit Tanskanen
- Department of Pathology University of Helsinki Helsinki Finland
- Department of Pathology, HUS Diagnostic Center Helsinki University Hospital Helsinki Finland
| | - Jarno Tuimala
- Department of Pathology University of Helsinki Helsinki Finland
| | - Tuomo Polvikoski
- Translational and Clinical Research Institute Newcastle University Newcastle upon Tyne United Kingdom
| | - Pentti J. Tienari
- Translational Immunology, Research Programs Unit University of Helsinki Helsinki Finland
- Department of Neurology University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Anders Paetau
- Department of Pathology University of Helsinki Helsinki Finland
- Department of Pathology, HUS Diagnostic Center Helsinki University Hospital Helsinki Finland
| | - Liisa Myllykangas
- Department of Pathology University of Helsinki Helsinki Finland
- Department of Pathology, HUS Diagnostic Center Helsinki University Hospital Helsinki Finland
| |
Collapse
|
21
|
Leveille E, Ross OA, Gan-Or Z. Tau and MAPT genetics in tauopathies and synucleinopathies. Parkinsonism Relat Disord 2021; 90:142-154. [PMID: 34593302 PMCID: PMC9310195 DOI: 10.1016/j.parkreldis.2021.09.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/25/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
MAPT encodes the microtubule-associated protein tau, which is the main component of neurofibrillary tangles (NFTs) and found in other protein aggregates. These aggregates are among the pathological hallmarks of primary tauopathies such as frontotemporal dementia (FTD). Abnormal tau can also be observed in secondary tauopathies such as Alzheimer's disease (AD) and synucleinopathies such as Parkinson's disease (PD). On top of pathological findings, genetic data also links MAPT to these disorders. MAPT variations are a cause or risk factors for many tauopathies and synucleinopathies and are associated with certain clinical and pathological features in affected individuals. In addition to clinical, pathological, and genetic overlap, evidence also suggests that tau and alpha-synuclein may interact on the molecular level, and thus might collaborate in the neurodegenerative process. Understanding the role of MAPT variations in tauopathies and synucleinopathies is therefore essential to elucidate the role of tau in the pathogenesis and phenotype of those disorders, and ultimately to develop targeted therapies. In this review, we describe the role of MAPT genetic variations in tauopathies and synucleinopathies, several genotype-phenotype and pathological features, and discuss their implications for the classification and treatment of those disorders.
Collapse
Affiliation(s)
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA; Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-hospital), McGill University, Montréal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada.
| |
Collapse
|
22
|
Schwerin SC, Chatterjee M, Hutchinson EB, Djankpa FT, Armstrong RC, McCabe JT, Perl DP, Juliano SL. Expression of GFAP and Tau Following Blast Exposure in the Cerebral Cortex of Ferrets. J Neuropathol Exp Neurol 2021; 80:112-128. [PMID: 33421075 DOI: 10.1093/jnen/nlaa157] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Blast exposures are a hallmark of contemporary military conflicts. We need improved preclinical models of blast traumatic brain injury for translation of pharmaceutical and therapeutic protocols. Compared with rodents, the ferret brain is larger, has substantial sulci, gyri, a higher white to gray matter ratio, and the hippocampus in a ventral position; these attributes facilitate comparison with the human brain. In this study, ferrets received compressed air shock waves and subsequent evaluation of glia and forms of tau following survival of up to 12 weeks. Immunohistochemistry and Western blot demonstrated altered distributions of astrogliosis and tau expression after blast exposure. Many aspects of the astrogliosis corresponded to human pathology: increased subpial reactivity, gliosis at gray-white matter interfaces, and extensive outlining of blood vessels. MRI analysis showed numerous hypointensities occurring in the 12-week survival animals, appearing to correspond to luminal expansions of blood vessels. Changes in forms of tau, including phosphorylated tau, and the isoforms 3R and 4R were noted using immunohistochemistry and Western blot in specific regions of the cerebral cortex. Of particular interest were the 3R and 4R isoforms, which modified their ratio after blast. Our data strongly support the ferret as an animal model with highly translational features to study blast injury.
Collapse
Affiliation(s)
- Susan C Schwerin
- From the Department of Anatomy Physiology and Genetics, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | | | - Elizabeth B Hutchinson
- Quantitative Medical Imaging Section, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | - Francis T Djankpa
- From the Department of Anatomy Physiology and Genetics, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA.,Program in Neuroscience, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA.,Department of Physiology, School of Medical Sciences, University of Cape Coast, Ghana
| | - Regina C Armstrong
- From the Department of Anatomy Physiology and Genetics, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA.,Program in Neuroscience, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Joseph T McCabe
- From the Department of Anatomy Physiology and Genetics, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA.,Program in Neuroscience, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Daniel P Perl
- Program in Neuroscience, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA.,Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Sharon L Juliano
- From the Department of Anatomy Physiology and Genetics, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA.,Program in Neuroscience, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
23
|
Sakurai K, Kaneda D, Inui S, Uchida Y, Morimoto S, Nihashi T, Kato T, Ito K, Hashizume Y. Simple Quantitative Indices for the Differentiation of Advanced-Stage Alzheimer's Disease and Other Limbic Tauopathies. J Alzheimers Dis 2021; 81:1093-1102. [PMID: 33843680 DOI: 10.3233/jad-210043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The differentiation of Alzheimer's disease (AD) from age-related limbic tauopathies (LT), including argyrophilic grain disease (AGD) and senile dementia of the neurofibrillary tangle type (SD-NFT), is often challenging because specific clinical diagnostic criteria have not yet been established. Despite the utility of specific biomarkers evaluating amyloid and tau to detect the AD-related pathophysiological changes, the expense and associated invasiveness preclude their use as first-line diagnostic tools for all demented patients. Therefore, less invasive and costly biomarkers would be valuable in routine clinical practice for the differentiation of AD and LT. OBJECTIVE The purpose of this study is to develop a simple reproducible method on magnetic resonance imaging (MRI) that could be adopted in daily clinical practice for the differentiation of AD and other forms of LT. METHODS Our newly proposed three quantitative indices and well-known medial temporal atrophy (MTA) score were evaluated using MRI of pathologically-proven advanced-stage 21 AD, 10 AGD, and 2 SD-NFT patients. RESULTS Contrary to MTA score, hippocampal angle (HPA), inferior horn area (IHA), and ratio between HPA and IHA (i.e., IHPA index) demonstrated higher diagnostic performance and reproducibility, especially to differentiate advanced-stage AD patients with Braak neurofibrillary tangle stage V/VI from LT patients (the area under the receiver-operating-characteristic curve of 0.83, 089, and 0.91; intraclass correlation coefficients of 0.930, 0.998, and 0.995, respectively). CONCLUSION Quantitative indices reflecting hippocampal deformation with ventricular enlargement are useful to differentiate advanced-stage AD from LT. This simple and convenient method could be useful in daily clinical practice.
Collapse
Affiliation(s)
- Keita Sakurai
- Department of Radiology, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Daita Kaneda
- Choju Medical Institute, Fukushimura Hospital, Toyohashi, Japan
| | - Shohei Inui
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuto Uchida
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Satoru Morimoto
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Takashi Nihashi
- Department of Radiology, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Takashi Kato
- Department of Radiology, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kengo Ito
- Department of Radiology, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | | |
Collapse
|
24
|
Walker JM, Fudym Y, Farrell K, Iida MA, Bieniek KF, Seshadri S, White CL, Crary JF, Richardson TE. Asymmetry of Hippocampal Tau Pathology in Primary Age-Related Tauopathy and Alzheimer Disease. J Neuropathol Exp Neurol 2021; 80:436-445. [PMID: 33860327 PMCID: PMC8054137 DOI: 10.1093/jnen/nlab032] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Primary age-related tauopathy (PART) is a neurodegenerative entity defined as neurofibrillary degeneration generally restricted to the medial temporal region (Braak stage I-IV) with complete or near absence of diffuse and neuritic plaques. Symptoms range in severity but are generally milder and later in onset than in Alzheimer disease (AD). Recently, an early predilection for neurofibrillary degeneration in the hippocampal CA2 subregion has been demonstrated in PART, whereas AD neuropathologic change (ADNC) typically displays relative sparing of CA2 until later stages. In this study, we utilized a semiquantitative scoring system to evaluate asymmetry of neurofibrillary degeneration between left and right hippocampi in 67 PART cases and 17 ADNC cases. 49% of PART cases demonstrated asymmetric findings in at least one hippocampal subregion, and 79% of the asymmetric cases displayed some degree of CA2 asymmetry. Additionally, 19% of cases revealed a difference in Braak score between the right and left hippocampi. There was a significant difference in CA2 neurofibrillary degeneration (p = 0.0006) and CA2/CA1 ratio (p < 0.0001) when comparing the contralateral sides, but neither right nor left was more consistently affected. These data show the importance of analyzing bilateral hippocampi in the diagnostic evaluation of PART and potentially of other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jamie M Walker
- From the Department of Pathology and Laboratory Medicine, Upstate Medical University, Syracuse, New York, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Yelena Fudym
- Department of Pathology, State University of New York, Upstate Medical University, Syracuse, New York, USA
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kurt Farrell
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Megan A Iida
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kevin F Bieniek
- From the Department of Pathology and Laboratory Medicine, Upstate Medical University, Syracuse, New York, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas, USA
- Department of Neurology, University of Texas Health Science Center, San Antonio, Texas, USA
- The Framingham Heart Study, Framingham, Massachusetts, USA
| | - Charles L White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John F Crary
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Timothy E Richardson
- From the Department of Pathology and Laboratory Medicine, Upstate Medical University, Syracuse, New York, USA
- Department of Pathology, State University of New York, Upstate Medical University, Syracuse, New York, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas, USA
| |
Collapse
|
25
|
Humphrey WO, Martindale R, Pendlebury WW, DeWitt JC. Primary age-related tauopathy (PART) in the general autopsy setting: Not just a disease of the elderly. Brain Pathol 2021; 31:381-384. [PMID: 33147361 PMCID: PMC8018030 DOI: 10.1111/bpa.12919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/20/2020] [Accepted: 10/29/2020] [Indexed: 11/29/2022] Open
Affiliation(s)
- William O Humphrey
- Department of Pathology and Laboratory Medicine, The University of Vermont Medical Center, Burlington, VT, USA
| | - Rachel Martindale
- Department of Pathology and Laboratory Medicine, The University of Vermont Medical Center, Burlington, VT, USA
| | - William W Pendlebury
- Department of Pathology and Laboratory Medicine, The University of Vermont Medical Center, Burlington, VT, USA
| | - John C DeWitt
- Department of Pathology and Laboratory Medicine, The University of Vermont Medical Center, Burlington, VT, USA
| |
Collapse
|
26
|
Koriath CAM, Kenny J, Ryan NS, Rohrer JD, Schott JM, Houlden H, Fox NC, Tabrizi SJ, Mead S. Genetic testing in dementia - utility and clinical strategies. Nat Rev Neurol 2021; 17:23-36. [PMID: 33168964 DOI: 10.1038/s41582-020-00416-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2020] [Indexed: 02/07/2023]
Abstract
Techniques for clinical genetic testing in dementia disorders have advanced rapidly but remain to be more widely implemented in practice. A positive genetic test offers a precise molecular diagnosis, can help members of an affected family to determine personal risk, provides a basis for reproductive choices and can offer options for clinical trials. The likelihood of identifying a specific genetic cause of dementia depends on the clinical condition, the age at onset and family history. Attempts to match phenotypes to single genes are mostly inadvisable owing to clinical overlap between the dementias, genetic heterogeneity, pleiotropy and concurrent mutations. Currently, the appropriate genetic test in most cases of dementia is a next-generation sequencing gene panel, though some conditions necessitate specific types of test such as repeat expansion testing. Whole-exome and whole-genome sequencing are becoming financially feasible but raise or exacerbate complex issues such as variants of uncertain significance, secondary findings and the potential for re-analysis in light of new information. However, the capacity for data analysis and counselling is already restricting the provision of genetic testing. Patients and their relatives need to be given reliable information to enable them to make informed choices about tests, treatments and data sharing; the ability of patients with dementia to make decisions must be considered when providing this information.
Collapse
Affiliation(s)
| | - Joanna Kenny
- South West Thames Regional Genetics Service, London, UK
| | - Natalie S Ryan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute, UCL Queen Square Institute of Neurology, London, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Jonathan M Schott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Henry Houlden
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London, UK
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute, UCL Queen Square Institute of Neurology, London, UK
| | - Sarah J Tabrizi
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Simon Mead
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK.
| |
Collapse
|
27
|
Tang X, Liu S, Cai J, Chen Q, Xu X, Mo CB, Xu M, Mai T, Li S, He H, Qin J, Zhang Z. Effects of Gene and Plasma Tau on Cognitive Impairment in Rural Chinese Population. Curr Alzheimer Res 2021; 18:56-66. [PMID: 33761861 DOI: 10.2174/1567205018666210324122840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 01/13/2021] [Accepted: 03/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Sufficient attention was not paid to the effects of microtubule-associated protein tau (MAPT) and plasma tau protein on cognition. OBJECTIVE A total of 3072 people in rural China were recruited. They were provided with questionnaires, and blood samples were obtained. METHODS The MMSE score was used to divide the population into cognitive impairment group and control group. First, logistic regression analysis was used to explore the possible factors influencing cognitive function. Second, 1837 samples were selected for SNP detection through stratified sampling. Third, 288 samples were selected to test three plasma biomarkers (tau, phosphorylated tau, and Aβ-42). RESULTS For the MAPT rs242557, people with AG genotypes were 1.32 times more likely to develop cognitive impairment than those with AA genotypes, and people with GG genotypes were 1.47 times more likely to develop cognitive impairment than those with AG phenotypes. The plasma tau protein concentration was also increased in the population carrying G (P = 0.020). The plasma tau protein was negatively correlated with the MMSE score (P = 0.004). CONCLUSION The mutation of MAPT rs242557 (A > G) increased the risk of cognitive impairment and the concentration of plasma tau protein.
Collapse
Affiliation(s)
- Xu Tang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021,China
| | - Shuzhen Liu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021,China
| | - Jiansheng Cai
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021,China
| | - Quanhui Chen
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021,China
| | - Xia Xu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021,China
| | - Chun B Mo
- Guilin Medical University, No. 109, North Second Huancheng Road, Guilin 541004,China
| | - Min Xu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021,China
| | - Tingyu Mai
- Guilin Medical University, No. 109, North Second Huancheng Road, Guilin 541004,China
| | - Shengle Li
- Guilin Medical University, No. 109, North Second Huancheng Road, Guilin 541004,China
| | - Haoyu He
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021,China
| | - Jian Qin
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021,China
| | - Zhiyong Zhang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021,China
| |
Collapse
|
28
|
Influence of APOE genotype in primary age-related tauopathy. Acta Neuropathol Commun 2020; 8:215. [PMID: 33287896 PMCID: PMC7720601 DOI: 10.1186/s40478-020-01095-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
The term “Primary age-related tauopathy” (PART) was coined in 2014 to describe the common neuropathological observation of neurofibrillary tangles without associated beta-amyloid (Aβ) pathology. It is possible for PART pathology to be present in both cognitively normal and cognitively impaired individuals. Genetically, Apolipoprotein E (APOE) ε4 has been shown to occur less commonly in PART than in Alzheimer’s disease (AD). Here, we investigate the relationships between PART, AD and those pathologically normal for age, with an emphasis on APOE and cognition, using 152 selected participants from The University of Manchester Longitudinal Study of Cognition in Normal Healthy Old Age and the Manchester arm of the Brains for Dementia Research cohort. APOE genotype differed between PART and AD with APOE ε2 more common in the former and APOE ε4 more common in the latter. Individuals with definite PART were less likely to be cognitively impaired than those with AD and those with pathology considered pathologically normal for age. We postulate that the lack of Aβ in definite PART cases may be due either to an increased frequency of APOE ε2 or decreased frequency of APOE ε4 as their resulting protein isoforms have differing binding properties in relation to Aβ. Similarly, an increased frequency of APOE ε2 or decreased frequency of APOE ε4 may lead to decreased levels of cognitive impairment, which raises questions regarding the impact of Aβ pathology on overall cognition in elderly subjects. We suggest that it may be possible to use the increased frequency of APOE ε2 in definite PART to assist neuropathological diagnosis.
Collapse
|
29
|
Alyenbaawi H, Allison WT, Mok SA. Prion-Like Propagation Mechanisms in Tauopathies and Traumatic Brain Injury: Challenges and Prospects. Biomolecules 2020; 10:E1487. [PMID: 33121065 PMCID: PMC7692808 DOI: 10.3390/biom10111487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/23/2022] Open
Abstract
The accumulation of tau protein in the form of filamentous aggregates is a hallmark of many neurodegenerative diseases such as Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). These dementias share traumatic brain injury (TBI) as a prominent risk factor. Tau aggregates can transfer between cells and tissues in a "prion-like" manner, where they initiate the templated misfolding of normal tau molecules. This enables the spread of tau pathology to distinct parts of the brain. The evidence that tauopathies spread via prion-like mechanisms is considerable, but work detailing the mechanisms of spread has mostly used in vitro platforms that cannot fully reveal the tissue-level vectors or etiology of progression. We review these issues and then briefly use TBI and CTE as a case study to illustrate aspects of tauopathy that warrant further attention in vivo. These include seizures and sleep/wake disturbances, emphasizing the urgent need for improved animal models. Dissecting these mechanisms of tauopathy progression continues to provide fresh inspiration for the design of diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Hadeel Alyenbaawi
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; (H.A.); (W.T.A.)
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Medical Laboratories, Majmaah University, Majmaah 11952, Saudi Arabia
| | - W. Ted Allison
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; (H.A.); (W.T.A.)
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Sue-Ann Mok
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; (H.A.); (W.T.A.)
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
30
|
Boscher E, Hernandez-Rapp J, Petry S, Keraudren R, Rainone S, Loiselle A, Goupil C, Turgeon A, St-Amour I, Planel E, Hébert SS. Advances and Challenges in Understanding MicroRNA Function in Tauopathies: A Case Study of miR-132/212. Front Neurol 2020; 11:578720. [PMID: 33117266 PMCID: PMC7553085 DOI: 10.3389/fneur.2020.578720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/01/2020] [Indexed: 01/08/2023] Open
Abstract
In the past decade, several groups have reported that microRNAs (miRNAs) can participate in the regulation of tau protein at different levels, including its expression, alternative splicing, phosphorylation, and aggregation. These observations are significant, since the abnormal regulation and deposition of tau is associated with nearly 30 neurodegenerative disorders. Interestingly, miRNA profiles go awry in tauopathies such as Alzheimer's disease, progressive supranuclear palsy, and frontotemporal dementia. Understanding the role and impact of miRNAs on tau biology could therefore provide important insights into disease risk, diagnostics, and perhaps therapeutics. In this Perspective article, we discuss recent advances in miRNA research related to tau. While proof-of-principle studies hold promise, physiological validation remains limited. To help fill this gap, we describe herein a pure tauopathy mouse model deficient for the miR-132/212 cluster. This miRNA family is strongly downregulated in human tauopathies and shown to regulate tau in vitro and in vivo. No significant differences in survival, motor deficits or body weight were observed in PS19 mice lacking miR-132/212. Age-specific effects were seen on tau expression and phosphorylation but not aggregation. Moreover, various miR-132/212 targets previously implicated in tau modulation were unaffected (GSK-3β, Foxo3a, Mapk1, p300) or, unexpectedly, reduced (Mapk3, Foxo1, p300, Calpain 2) in miR-132/212-deficient PS19 mice. These observations highlight the challenges of miRNA research in living models, and current limitations of transgenic tau mouse models lacking functional miRNA binding sites. Based on these findings, we finally recommend different strategies to better understand the role of miRNAs in tau physiology and pathology.
Collapse
Affiliation(s)
- Emmanuelle Boscher
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Julia Hernandez-Rapp
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Serena Petry
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Remi Keraudren
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Sara Rainone
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Andréanne Loiselle
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Claudia Goupil
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Andréanne Turgeon
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Isabelle St-Amour
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Emmanuel Planel
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Sébastien S Hébert
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| |
Collapse
|
31
|
Abstract
With age, the presence of multiple neuropathologies in a single individual becomes increasingly common. Given that traumatic brain injury and the repetitive head impacts (RHIs) that occur in contact sports have been associated with the development of many neurodegenerative diseases, including chronic traumatic encephalopathy (CTE), Alzheimer's disease, Lewy body disease, and amyotrophic lateral sclerosis, it is becoming critical to understand the relationship and interactions between these pathologies. In fact, comorbid pathology is common in CTE and likely influenced by both age and the severity and type of exposure to RHI as well as underlying genetic predisposition. Here, we review the major comorbid pathologies seen with CTE and in former contact sports athletes and discuss what is known about the associations between RHI, age, and the development of neuropathologies. In addition, we examine the distinction between CTE and age-related pathology including primary age-related tauopathy and age-related tau astrogliopathy.
Collapse
Affiliation(s)
- Thor D. Stein
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts,Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts,Departments of Research and Pathology & Laboratory Medicine, VA Boston Healthcare System, Boston, Massachusetts,Department of Veterans Affairs Medical Center, Bedford, Massachusetts
| | - John F. Crary
- Department of Pathology, Neuropathology Brain Bank & Research Core, Ronald M. Loeb Center for Alzheimer’s Disease, Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York
| |
Collapse
|
32
|
Abdolmohammadi B, Dupre A, Evers L, Mez J. Genetics of Chronic Traumatic Encephalopathy. Semin Neurol 2020; 40:420-429. [DOI: 10.1055/s-0040-1713631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractAlthough chronic traumatic encephalopathy (CTE) garners substantial attention in the media and there have been marked scientific advances in the last few years, much remains unclear about the role of genetic risk in CTE. Two athletes with comparable contact-sport exposure may have varying amounts of CTE neuropathology, suggesting that other factors, including genetics, may contribute to CTE risk and severity. In this review, we explore reasons why genetics may be important for CTE, concepts in genetic study design for CTE (including choosing controls, endophenotypes, gene by environment interaction, and epigenetics), implicated genes in CTE (including APOE, MAPT, and TMEM106B), and whether predictive genetic testing for CTE should be considered.
Collapse
Affiliation(s)
- Bobak Abdolmohammadi
- Boston University Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA
- Boston University Chronic Traumatic Encephalopathy Center, Boston University School of Medicine, Boston, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
| | - Alicia Dupre
- Boston University Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA
- Boston University Chronic Traumatic Encephalopathy Center, Boston University School of Medicine, Boston, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
| | - Laney Evers
- Boston University Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA
- Boston University Chronic Traumatic Encephalopathy Center, Boston University School of Medicine, Boston, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
| | - Jesse Mez
- Boston University Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA
- Boston University Chronic Traumatic Encephalopathy Center, Boston University School of Medicine, Boston, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
| |
Collapse
|
33
|
Hickman RA, Flowers XE, Wisniewski T. Primary Age-Related Tauopathy (PART): Addressing the Spectrum of Neuronal Tauopathic Changes in the Aging Brain. Curr Neurol Neurosci Rep 2020; 20:39. [PMID: 32666342 DOI: 10.1007/s11910-020-01063-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Primary age-related tauopathy (PART) was recently proposed as a pathologic diagnosis for brains that harbor neurofibrillary tangles (Braak stage ≤ 4) with little, if any, amyloid burden. We sought to review the clinicopathologic findings related to PART. RECENT FINDINGS Most adult human brains show at least focal tauopathic changes, and the majority of individuals with PART do not progress to dementia. Older age and cognitive impairment correlate with increased Braak stage, and multivariate analyses suggest that the rate of cognitive decline is less than matched patients with Alzheimer disease (AD). It remains unclear whether PART is a distinct tauopathic entity separate from AD or rather represents an earlier histologic stage of AD. Cognitive decline in PART is usually milder than AD and correlates with tauopathic burden. Biomarker and ligand-based radiologic studies will be important to define PART antemortem and prospectively follow its natural history.
Collapse
Affiliation(s)
- Richard A Hickman
- Department of Pathology and Cell Biology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, 630 West 168th Street, PH 15-124, New York, NY, 10032, USA.
| | - Xena E Flowers
- Department of Pathology and Cell Biology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, 630 West 168th Street, PH 15-124, New York, NY, 10032, USA
| | - Thomas Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, NYU School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
| |
Collapse
|
34
|
Arena JD, Smith DH, Lee EB, Gibbons GS, Irwin DJ, Robinson JL, Lee VMY, Trojanowski JQ, Stewart W, Johnson VE. Tau immunophenotypes in chronic traumatic encephalopathy recapitulate those of ageing and Alzheimer's disease. Brain 2020; 143:1572-1587. [PMID: 32390044 PMCID: PMC7241956 DOI: 10.1093/brain/awaa071] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/21/2020] [Accepted: 02/02/2020] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a risk factor for neurodegenerative disease, including chronic traumatic encephalopathy (CTE). Preliminary consensus criteria define the pathognomonic lesion of CTE as patchy tau pathology within neurons and astrocytes at the depths of cortical sulci. However, the specific tau isoform composition and post-translational modifications in CTE remain largely unexplored. Using immunohistochemistry, we performed tau phenotyping of CTE neuropathologies and compared this to a range of tau pathologies, including Alzheimer's disease, primary age-related tauopathy, ageing-related tau astrogliopathy and multiple subtypes of frontotemporal lobar degeneration with tau inclusions. Cases satisfying preliminary consensus diagnostic criteria for CTE neuropathological change (CTE-NC) were identified (athletes, n = 10; long-term survivors of moderate or severe TBI, n = 4) from the Glasgow TBI Archive and Penn Neurodegenerative Disease Brain Bank. In addition, material from a range of autopsy-proven ageing-associated and primary tauopathies in which there was no known history of exposure to TBI was selected as non-injured controls (n = 32). Each case was then stained with a panel of tau antibodies specific for phospho-epitopes (PHF1, CP13, AT100, pS262), microtubule-binding repeat domains (3R, 4R), truncation (Tau-C3) or conformation (GT-7, GT-38) and the extent and distribution of staining assessed. Cell types were confirmed with double immunofluorescent labelling. Results demonstrate that astroglial tau pathology in CTE is composed of 4R-immunoreactive thorn-shaped astrocytes, echoing the morphology and immunophenotype of astrocytes encountered in ageing-related tau astrogliopathy. In contrast, neurofibrillary tangles of CTE contain both 3R and 4R tau, with post-translational modifications and conformations consistent with Alzheimer's disease and primary age-related tauopathy. Our observations establish that the astroglial and neurofibrillary tau pathologies of CTE are phenotypically distinct from each other and recapitulate the tau immunophenotypes encountered in ageing and Alzheimer's disease. As such, the immunohistochemical distinction of CTE neuropathology from other mixed 3R/4R tauopathies of Alzheimer's disease and ageing may rest solely on the pattern and distribution of pathology.
Collapse
Affiliation(s)
- John D Arena
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas H Smith
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Translational Neuropathology Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Garrett S Gibbons
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - David J Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John L Robinson
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Virginia M -Y Lee
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - William Stewart
- Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Victoria E Johnson
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
35
|
Jicha GA, Nelson PT. Hippocampal Sclerosis, Argyrophilic Grain Disease, and Primary Age-Related Tauopathy. Continuum (Minneap Minn) 2020; 25:208-233. [PMID: 30707194 DOI: 10.1212/con.0000000000000697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Hippocampal sclerosis, argyrophilic grain disease, and primary age-related tauopathy are common Alzheimer disease mimics that currently lack clinical diagnostic criteria. Increased understanding of these pathologic entities is important for the neurologist who may encounter patients with an unusually slowly progressive degenerative dementia that may appear to meet criteria for Alzheimer disease but who progress to develop symptoms that are unusual for classic Alzheimer disease RECENT FINDINGS: Hippocampal sclerosis has traditionally been associated with hypoxic/ischemic injury and poorly controlled epilepsy, but it is now recognized that hippocampal sclerosis may also be associated with a unique degenerative disease of aging or may be an associated pathologic finding in many cases of frontotemporal lobar degeneration. Argyrophilic grain disease has been recognized as an enigma in the field of pathology for over 30 years, but recent discoveries suggest that it may overlap with other tau-related disorders within the spectrum of frontotemporal lobar degeneration. Primary age-related tauopathy has long been recognized as a distinct clinical entity that lies on the Alzheimer pathologic spectrum, with the presence of neurofibrillary tangles that lack the coexistent Alzheimer plaque development; thus, it is thought to represent a distinct pathologic entity. SUMMARY Despite advances in dementia diagnosis that suggest that we have identified and unlocked the mysteries of the major degenerative disease states responsible for cognitive decline and dementia in the elderly, diseases such as hippocampal sclerosis, argyrophilic grain disease, and primary age-related tauopathy demonstrate that we remain on the frontier of discovery and that our diagnostic repertoire of diseases responsible for such clinical symptoms remains in its infancy. Understanding such diagnostic confounds is important for the neurologist in assigning appropriate diagnoses and selecting appropriate therapeutic management strategies for patients with mild cognitive impairment and dementia.
Collapse
|
36
|
Wharton SB, Wang D, Parikh C, Matthews FE, Brayne C, Ince PG. Epidemiological pathology of Aβ deposition in the ageing brain in CFAS: addition of multiple Aβ-derived measures does not improve dementia assessment using logistic regression and machine learning approaches. Acta Neuropathol Commun 2019; 7:198. [PMID: 31806014 PMCID: PMC6896261 DOI: 10.1186/s40478-019-0858-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 02/03/2023] Open
Abstract
Aβ-amyloid deposition is a key feature of Alzheimer’s disease, but Consortium to Establish a Registry for Alzheimer's Disease (CERAD) assessment, based on neuritic plaque density, shows a limited relationships to dementia. Thal phase is based on a neuroanatomical hierarchy of Aβ-deposition, and in combination with Braak neurofibrillary tangle staging also allows derivation of primary age-related tauopathy (PART). We sought to determine whether Thal Aβ phase predicts dementia better than CERAD in a population-representative cohort (n = 186) derived from the Cognitive Function and Ageing Study (CFAS). Cerebral amyloid angiopathy (CAA) was quantitied as the number of neuroanatomical areas involved and cases meeting criteria for PART were defined to determine if they are a distinct pathological group within the ageing population. Agreement with the Thal scheme was excellent. In univariate analysis Thal phase performed less well as a predictor of dementia than CERAD, Braak or CAA. Logistic regression, decision tree and linear discriminant analysis were performed for multivariable analysis, with similar results. Thal phase did not provide a better explanation of dementia than CERAD, and there was no additional benefit to including more than one assessment of Aβ in the model. Number of areas involved by CAA was highly correlated with assessment based on a severity score (p < 0.001). The presence of capillary involvement (CAA type I) was associated with higher Thal phase and Braak stage (p < 0.001). CAA was not associated with microinfarcts (p = 0.1). Cases satisfying pathological criteria for PART were present at a frequency of 10.2% but were not older and did not have a higher likelihood of dementia than a comparison group of individuals with similar Braak stage but with more Aβ. They also did not have higher hippocampal-tau stage, although PART was weakly associated with increased presence of thorn-shaped astrocytes (p = 0.048), suggesting common age-related mechanisms. Thal phase is highly applicable in a population-representative setting and allows definition of pathological subgroups, such as PART. Thal phase, plaque density, and extent and type of CAA measure different aspects of Aβ pathology, but addition of more than one Aβ measure does not improve dementia prediction, probably because these variables are highly correlated. Machine learning predictions reveal the importance of combining neuropathological measurements for the assessment of dementia.
Collapse
|
37
|
Forrest SL, Kril JJ, Halliday GM. Cellular and regional vulnerability in frontotemporal tauopathies. Acta Neuropathol 2019; 138:705-727. [PMID: 31203391 DOI: 10.1007/s00401-019-02035-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/04/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022]
Abstract
The frontotemporal tauopathies all deposit abnormal tau protein aggregates, but often of only certain isoforms and in distinguishing pathologies of five main types (neuronal Pick bodies, neurofibrillary tangles, astrocytic plaques, tufted astrocytes, globular glial inclusions and argyrophilic grains). In those with isoform specific tau aggregates glial pathologies are substantial, even though there is limited evidence that these cells normally produce tau protein. This review will assess the differentiating features and clinicopathological correlations of the frontotemporal tauopathies, the genetic predisposition for these different pathologies, their neuroanatomical selectivity, current observations on how they spread through the brain, and any potential contributing cellular and molecular changes. The findings show that diverse clinical phenotypes relate most to the brain region degenerating rather than the type of pathology involved, that different regions on the MAPT gene and novel risk genes are associated with specific tau pathologies, that the 4-repeat glial tauopathies do not follow individual patterns of spreading as identified for neuronal pathologies, and that genetic and pathological data indicate that neuroinflammatory mechanisms are involved. Each pathological frontotemporal tauopathy subtype with their distinct pathological features differ substantially in the cell type affected, morphology, biochemical and anatomical distribution of inclusions, a fundamental concept central to future success in understanding the disease mechanisms required for developing therapeutic interventions. Tau directed therapies targeting genetic mechanisms, tau aggregation and pathological spread are being trialled, although biomarkers that differentiate these diseases are required. Suggested areas of future research to address the regional and cellular vulnerabilities in frontotemporal tauopathies are discussed.
Collapse
|
38
|
Gibbons GS, Banks RA, Kim B, Changolkar L, Riddle DM, Leight SN, Irwin DJ, Trojanowski JQ, Lee VMY. Detection of Alzheimer Disease (AD)-Specific Tau Pathology in AD and NonAD Tauopathies by Immunohistochemistry With Novel Conformation-Selective Tau Antibodies. J Neuropathol Exp Neurol 2019; 77:216-228. [PMID: 29415231 DOI: 10.1093/jnen/nly010] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aggregation of tau into fibrillar structures within the CNS is a pathological hallmark of a clinically heterogeneous set of neurodegenerative diseases termed tauopathies. Unique misfolded conformations of tau, referred to as strains, are hypothesized to underlie the distinct neuroanatomical and cellular distribution of pathological tau aggregates. Here, we report the identification of novel tau monoclonal antibodies (mAbs) that selectively bind to an Alzheimer disease (AD)-specific conformation of pathological tau. Immunohistochemical analysis of tissue from various AD and nonAD tauopathies demonstrate selective binding of mAbs GT-7 and GT-38 to AD tau pathologies and absence of immunoreactivity for tau aggregates that are diagnostic of corticobasal degenerations (CBD), progressive supranuclear palsy (PSP), and Pick's disease (PiD). In cases with co-occurring AD tauopathy, GT-7 and GT-38 distinguish comorbid AD tau from pathological tau in frontotemporal lobar degeneration characterized by tau inclusions (FTLD-Tau), as confirmed by the presence of both 3 versus 4 microtubule-binding repeat isoforms (3R and 4R tau isoforms, respectively), in AD neurofibrillary tangles but not in the tau aggregates of CBD, PSP, or PiD. These findings support the concept of an AD-specific tau strain. The mAbs described here enable the selective detection of AD tau pathology in nonAD tauopathies.
Collapse
Affiliation(s)
- Garrett S Gibbons
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Rachel A Banks
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Bumjin Kim
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Lakshmi Changolkar
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Dawn M Riddle
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Susan N Leight
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - David J Irwin
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Virginia M Y Lee
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
39
|
Tau and TDP-43 proteinopathies: kindred pathologic cascades and genetic pleiotropy. J Transl Med 2019; 99:993-1007. [PMID: 30742063 PMCID: PMC6609463 DOI: 10.1038/s41374-019-0196-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 12/11/2022] Open
Abstract
We review the literature on Tau and TDP-43 proteinopathies in aged human brains and the relevant underlying pathogenetic cascades. Complex interacting pathways are implicated in Alzheimer's disease and related dementias (ADRD), wherein multiple proteins tend to misfold in a manner that is "reactive," but, subsequently, each proteinopathy may contribute strongly to the clinical symptoms. Tau proteinopathy exists in brains of individuals across a broad spectrum of primary underlying conditions-e.g., developmental, traumatic, and inflammatory/infectious diseases. TDP-43 proteinopathy is also expressed in a wide range of clinical disorders. Although TDP-43 proteinopathy was first described in the central nervous system of patients with amyotrophic lateral sclerosis (ALS) and in subtypes of frontotemporal dementia (FTD/FTLD), TDP-43 proteinopathy is also present in chronic traumatic encephalopathy, cognitively impaired persons in advanced age with hippocampal sclerosis, Huntington's disease, and other diseases. We list known Tau and TDP-43 proteinopathies. There is also evidence of cellular co-localization between Tau and TDP-43 misfolded proteins, suggesting common pathways or protein interactions facilitating misfolding in one protein by the other. Multiple pleiotropic gene variants can alter risk for Tau or TDP-43 pathologies, and certain gene variants (e.g., APOE ε4, Huntingtin triplet repeats) are associated with increases of both Tau and TDP-43 proteinopathies. Studies of genetic risk factors have provided insights into multiple nodes of the pathologic cascades involved in Tau and TDP-43 proteinopathies. Variants from a specific gene can be either a low-penetrant risk factor for a group of diseases, or alternatively, a different variant of the same gene may be a disease-driving allele that is associated with a relatively aggressive and early-onset version of a clinically and pathologically specific disease type. Overall, a complex but enlightening paradigm has emerged, wherein both Tau and TDP-43 proteinopathies are linked to numerous overlapping upstream influences, and both are associated with multiple downstream pathologically- and clinically-defined deleterious effects.
Collapse
|
40
|
Takeuchi J, Kikukawa T, Saito H, Hasegawa I, Takeda A, Hatsuta H, Kawabe J, Wada Y, Mawatari A, Igesaka A, Doi H, Watanabe Y, Shimada H, Kitamura S, Higuchi M, Suhara T, Itoh Y. Amyloid-Negative Dementia in the Elderly is Associated with High Accumulation of Tau in the Temporal Lobes. Open Biomed Eng J 2019. [DOI: 10.2174/1874120701913010055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background:
We previously reported that among cases clinically diagnosed with Alzheimer’s disease, the proportion of amyloid beta (Aβ) -negative case increases in the elderly population. Tauopathy including Argyrophilic Grain Disease (AGD) and Neurofibrillary Tangle-Predominant Dementia (NFTPD), may be the leading causes of such dementia.
Objective:
To evaluate the involvement of tau, we studied tau accumulation in Amyloid-Negative Dementia Cases in the Elderly (ANDE) with Positron Emission Tomography (PET).
Methods:
Seven cases with slowly progressive dementia who were older than 80 years and were negative for Aβ were studied. In one case, autopsy obtained 2 years after the PET examination revealed neurofibrillary tangles limited around the parahippocampal gyrus. Four cases showed strong laterality in magnetic resonance imaging atrophy (clinical AGD), while the other three cases had no significant laterality in atrophy (clinical NFTPD). Age-corrected PET data of healthy controls (HC; n = 12) were used as control. Tau accumulation was evaluated with [11C]PBB3-PET.
Results:
High accumulation was found in the lateral temporal cortex in ANDE. In autopsy case, scattered neurofibrillary tangles were found in the parahippocampal gyrus. In addition, there was a very high accumulation of PBB3 in the large area of bilateral parietal lobes, although no corresponding tau component was found in the autopsied case.
Conclusion:
Relatively high burden of tau deposition was commonly observed in the lateral temporal cortex and parietal cortex of ANDE, part of which may explain dementia in these subjects. [11C]PBB3 may be useful in detecting tauopathy in ANDE.
Collapse
|
41
|
Bell WR, An Y, Kageyama Y, English C, Rudow GL, Pletnikova O, Thambisetty M, O'Brien R, Moghekar AR, Albert MS, Rabins PV, Resnick SM, Troncoso JC. Neuropathologic, genetic, and longitudinal cognitive profiles in primary age-related tauopathy (PART) and Alzheimer's disease. Alzheimers Dement 2018; 15:8-16. [PMID: 30465754 DOI: 10.1016/j.jalz.2018.07.215] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 07/16/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Primary age-related tauopathy (PART) is a recently described entity that can cause cognitive impairment in the absence of Alzheimer's disease (AD). Here, we compared neuropathological features, tau haplotypes, apolipoprotein E (APOE) genotypes, and cognitive profiles in age-matched subjects with PART and AD pathology. METHODS Brain autopsies (n = 183) were conducted on participants 85 years and older from the Baltimore Longitudinal Study of Aging and Johns Hopkins Alzheimer's Disease Research Center. Participants, normal at enrollment, were followed with periodic cognitive evaluations until death. RESULTS Compared with AD, PART subjects showed significantly slower rates of decline on measures of memory, language, and visuospatial performance. They also showed lower APOE ε4 allele frequency (4.1% vs. 17.6%, P = .0046). DISCUSSION Our observations suggest that PART is separate from AD and its distinction will be important for the clinical management of patients with cognitive impairment and for public health care planning.
Collapse
Affiliation(s)
- W Robert Bell
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yusuke Kageyama
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Collin English
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gay L Rudow
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olga Pletnikova
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Madhav Thambisetty
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Richard O'Brien
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - Abhay R Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marilyn S Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter V Rabins
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Juan C Troncoso
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
42
|
Jellinger KA. Different patterns of hippocampal tau pathology in Alzheimer's disease and PART. Acta Neuropathol 2018; 136:811-813. [PMID: 30088091 DOI: 10.1007/s00401-018-1894-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
|
43
|
Shigemoto Y, Sone D, Imabayashi E, Maikusa N, Okamura N, Furumoto S, Kudo Y, Ogawa M, Takano H, Yokoi Y, Sakata M, Tsukamoto T, Kato K, Sato N, Matsuda H. Dissociation of Tau Deposits and Brain Atrophy in Early Alzheimer's Disease: A Combined Positron Emission Tomography/Magnetic Resonance Imaging Study. Front Aging Neurosci 2018; 10:223. [PMID: 30072890 PMCID: PMC6058018 DOI: 10.3389/fnagi.2018.00223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 06/29/2018] [Indexed: 11/13/2022] Open
Abstract
The recent advent of tau-specific positron emission tomography (PET) has enabled in vivo assessment of tau pathology in Alzheimer’s disease (AD). However, because PET scanners have limited spatial resolution, the measured signals of small brain structures or atrophied areas are underestimated by partial volume effects (PVEs). The aim of this study was to determine whether partial volume correction (PVC) improves the precision of measures of tau deposits in early AD. We investigated tau deposits in 18 patients with amyloid-positive early AD and in 36 amyloid-negative healthy controls using 18F-THK5351 PET. For PVC, we applied the SPM toolbox PETPVE12. The PET images were then spatially normalized and subjected to voxel-based group analysis using SPM12 for comparison between the early AD patients and healthy controls. We also compared these two groups in terms of brain atrophy using voxel-based morphometry of MRI. We found widespread neocortical tracer retention predominantly in the posterior cingulate and precuneus areas, but also in the inferior temporal lobes, inferior parietal lobes, frontal lobes, and occipital lobes in the AD patients compared with the controls. The pattern of tracer retention was similar between before and after PVC, suggesting that PVC had little effect on the precision of tau load measures. Gray matter atrophy was detected in the medial/lateral temporal lobes and basal frontal lobes in the AD patients. Interestingly, only a few associations were found between atrophy and tau deposits, even after PVC. In conclusion, PVC did not significantly affect 18F-THK5351 PET measures of tau deposits. This discrepancy between tau deposits and atrophy suggests that tau load precedes atrophy.
Collapse
Affiliation(s)
- Yoko Shigemoto
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Daichi Sone
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Psychiatry, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Etsuko Imabayashi
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Norihide Maikusa
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan.,Division of Neuro-imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Shozo Furumoto
- Division of Radiopharmaceutical Chemistry, Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Yukitsuka Kudo
- Division of Neuro-imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Masayo Ogawa
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Harumasa Takano
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Psychiatry, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuma Yokoi
- Department of Psychiatry, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Masuhiro Sakata
- Department of Psychiatry, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tadashi Tsukamoto
- Department of Neurology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Koichi Kato
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Noriko Sato
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroshi Matsuda
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
44
|
McMillan CT, Lee EB, Jefferson-George K, Naj A, Van Deerlin VM, Trojanowski JQ, Wolk DA. Alzheimer's genetic risk is reduced in primary age-related tauopathy: a potential model of resistance? Ann Clin Transl Neurol 2018; 5:927-934. [PMID: 30128317 PMCID: PMC6093846 DOI: 10.1002/acn3.581] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/18/2018] [Accepted: 04/25/2018] [Indexed: 11/30/2022] Open
Abstract
Objective Nearly all adults >50 years of age have evidence for neurofibrillary tau tangles (NFTs) and a significant proportion of individuals additionally develop amyloid plaques (Aβ) consistent with Alzheimer's disease (AD). In an effort to identify the independent genetic risk factors for NFTs and Aβ, we investigated genotypic frequencies of AD susceptibility loci between autopsy‐confirmed AD and primary age‐related tauopathy (PART), a neuropathological condition defined by characteristic neurofibrillary tau tangles (NFTs) with minimal or absent Aβ. Methods General linear models assessed the odds of AD (N = 1190) relative to PART (N = 376) neuropathologically confirmed cases from two independent series: the Penn Brain Bank (PENN; AD N = 312; PART N = 65) and National Alzheimer's Coordinating Center (NACC; AD N = 878; PART N = 311). We also evaluated the odds of Braak stage NFT burden. Results Three genotypes significantly associated with reduced AD risk relative to PART in the PENN (N = 377) and NACC (N = 1189) cohorts including APOE ε4, APOE ε2, and rs6656401 in the CR1 gene. The genotypes rs6733839 in the BIN1 gene and rs28834970 in the PTK2B gene approached significance in the PENN cohort and were significantly associated with reduced AD risk in the NACC cohort. In a combined cohort analysis (N = 1566), APOE ε4 dosage was highly associated with higher Braak stage of NFT burden in Probable PART and AD, but not Definite PART. Interpretation The presence of genotypic differences between PART and AD suggest that PART can provide a genetic model of NFT risk and potential Aβ resistance to inform disease‐modifying therapies.
Collapse
Affiliation(s)
- Corey T McMillan
- Department of Neurology Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania
| | - Edward B Lee
- Department of Pathology & Laboratory Medicine Perelman School of Medicine at the University of Pennsylvania Philadelphia Pennsylvania
| | - Kyra Jefferson-George
- Department of Neurology Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania
| | - Adam Naj
- Department of Biostatistics & Epidemiology University of Pennsylvania Philadelphia Pennsylvania
| | - Vivianna M Van Deerlin
- Department of Pathology & Laboratory Medicine Perelman School of Medicine at the University of Pennsylvania Philadelphia Pennsylvania
| | - John Q Trojanowski
- Department of Pathology & Laboratory Medicine Perelman School of Medicine at the University of Pennsylvania Philadelphia Pennsylvania
| | - David A Wolk
- Department of Neurology Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania
| |
Collapse
|
45
|
DeVos SL, Miller RL, Schoch KM, Holmes BB, Kebodeaux CS, Wegener AJ, Chen G, Shen T, Tran H, Nichols B, Zanardi TA, Kordasiewicz HB, Swayze EE, Bennett CF, Diamond MI, Miller TM. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci Transl Med 2018; 9:9/374/eaag0481. [PMID: 28123067 DOI: 10.1126/scitranslmed.aag0481] [Citation(s) in RCA: 333] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 05/13/2016] [Accepted: 11/17/2016] [Indexed: 12/14/2022]
Abstract
Accumulation of hyperphosphorylated tau directly correlates with cognitive decline in Alzheimer's disease and other primary tauopathies. One therapeutic strategy may be to reduce total tau expression. We identified antisense oligonucleotides (ASOs) that selectively decreased human tau mRNA and protein in mice expressing mutant P301S human tau. After reduction of human tau in this mouse model of tauopathy, fewer tau inclusions developed, and preexisting phosphorylated tau and Thioflavin S pathology were reversed. The resolution of tau pathology was accompanied by the prevention of hippocampal volume loss, neuronal death, and nesting deficits. In addition, mouse survival was extended, and pathological tau seeding was reversed. In nonhuman primates, tau ASOs distributed throughout the brain and spinal cord and reduced tau mRNA and protein in the brain, spinal cord, and cerebrospinal fluid. These data support investigation of a tau-lowering therapy in human patients who have tau-positive inclusions even after pathological tau deposition has begun.
Collapse
Affiliation(s)
- Sarah L DeVos
- Department of Neurology, Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Rebecca L Miller
- Department of Neurology, Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kathleen M Schoch
- Department of Neurology, Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Brandon B Holmes
- Department of Neurology, Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Carey S Kebodeaux
- Department of Neurology, Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Amy J Wegener
- Department of Neurology, Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Guo Chen
- Department of Neurology, Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Tao Shen
- Department of Neurology, Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Hien Tran
- Ionis Pharmaceuticals, Carlsbad, CA 90201, USA
| | | | | | | | | | | | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Timothy M Miller
- Department of Neurology, Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
46
|
Morihara R, Yamashita T, Deguchi K, Kurata T, Nomura E, Sato K, Nakano Y, Ohta Y, Hishikawa N, Ikeuchi T, Kitaguchi M, Abe K. Familial and sporadic chronic progressive degenerative parietal ataxia. J Neurol Sci 2018; 387:70-74. [PMID: 29571875 DOI: 10.1016/j.jns.2018.01.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND & OBJECTIVE Parietal ataxia has been mainly reported as a consequence of acute ischemic stroke, while degenerative parietal ataxia has not been reported. METHODS We investigated clinical characteristics, neuroimaging data, and genetic analysis of patients with cerebellar ataxia plus parietal atrophy. RESULTS We identified seven patients, including five patients from two families, with chronic progressive cerebellar ataxia due to degenerative parietal atrophy but not stroke. Age at onset of ataxia was 57.6 ± 6.9 years. All patients showed chronic progressive cerebellar ataxia with severity of ataxic gait > limb ataxia > dysarthria. Patients showed no cognitive dysfunction, muscle weakness, or parkinsonism, and only two patients showed mild sensory disturbances. The seven patients showed lateralized limb ataxia with greater contralateral parietal lobe atrophy by magnetic resonance imaging, and hypoperfusion by single photon emission computed tomography, without any abnormal cerebellar pathology (i.e., crossed cerebellar diaschisis). Pathogenic mutations in the microtubule-associated protein tau gene were not found using two single nucleotide polymorphisms. CONCLUSIONS This is the first description showing unique clinical features of familial and sporadic chronic progressive degenerative parietal ataxia.
Collapse
Affiliation(s)
- Ryuta Morihara
- Department of Neurology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho Kita-ku, Okayama 700-8558, Japan
| | - Toru Yamashita
- Department of Neurology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho Kita-ku, Okayama 700-8558, Japan
| | - Kentaro Deguchi
- Department of Neurology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho Kita-ku, Okayama 700-8558, Japan
| | - Tomoko Kurata
- Department of Neurology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho Kita-ku, Okayama 700-8558, Japan
| | - Emi Nomura
- Department of Neurology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho Kita-ku, Okayama 700-8558, Japan
| | - Kota Sato
- Department of Neurology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho Kita-ku, Okayama 700-8558, Japan
| | - Yumiko Nakano
- Department of Neurology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho Kita-ku, Okayama 700-8558, Japan
| | - Yasuyuki Ohta
- Department of Neurology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho Kita-ku, Okayama 700-8558, Japan
| | - Nozomi Hishikawa
- Department of Neurology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho Kita-ku, Okayama 700-8558, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Bioresource Science Branch, Center of Bioresource, Brain Research Institute Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata 951-8585, Japan
| | - Masataka Kitaguchi
- Department of Neurology, Baba Memorial Hospital, 4-244 Hamaderahunao-cho Higashi nishi-ku, Sakai 592-8555, Japan
| | - Koji Abe
- Department of Neurology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho Kita-ku, Okayama 700-8558, Japan.
| |
Collapse
|
47
|
Abstract
Tauopathies are neurodegenerative disorders characterized by the deposition of abnormal tau protein in the brain. The spectrum of tau pathologies expands beyond the traditionally discussed disease forms like Pick disease, progressive supranuclear palsy, corticobasal degeneration, and argyrophilic grain disease. Emerging entities and pathologies include globular glial tauopathies, primary age-related tauopathy, which includes neurofibrillary tangle dementia, chronic traumatic encephalopathy (CTE), and aging-related tau astrogliopathy. Clinical symptoms include frontotemporal dementia, corticobasal syndrome, Richardson syndrome, parkinsonism, pure akinesia with gait freezing and, rarely, motor neuron symptoms or cerebellar ataxia. Some disorders show specific neuroimaging features, while examination of the cerebrospinal fluid awaits markers for in vivo stratification of cases. The possibility of cell-to-cell propagation is a novel aspect of the pathogenesis of tauopathies, which is partly reflected by the hierarchic involvement of anatomic regions. This concept might have relevance for the development of therapies. For cost-effective screening for tau pathologies in neuropathologic practice, examination of the hippocampus, amygdala, and basal ganglia is recommended. Uncommon morphologies or unusually extensive forms of tau pathologies should raise the suspicion of a genetic background. Ongoing multidisciplinary studies are needed to understand the whole spectrum and significance of tau pathologies.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
48
|
Besser LM, Crary JF, Mock C, Kukull WA. Comparison of symptomatic and asymptomatic persons with primary age-related tauopathy. Neurology 2017; 89:1707-1715. [PMID: 28916532 DOI: 10.1212/wnl.0000000000004521] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/26/2017] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To conduct a clinicopathologic study to characterize clinical and neuropathologic features associated with cognitive impairment in participants with no neuritic amyloid plaques (primary age-related tauopathy [PART] definite) and sparse neuritic plaques (amyloid sparse). METHODS Using the National Alzheimer's Coordinating Center database, we identified 377 individuals who were PART definite (n = 170) or amyloid sparse (n = 207), clinically examined within 1 year of death, and autopsied at 1 of 26 National Institute on Aging-funded Alzheimer's Disease Centers. Factors associated with the odds of being symptomatic (global Clinical Dementia Rating [CDR] score >0) were identified with multivariable logistic regression. RESULTS PART-definite participants less often had a high Braak neurofibrillary tangle stage V or VI (4%) compared to amyloid sparse participants (28%, p < 0.001). Of the PART-definite participants, 98 were symptomatic and 72 asymptomatic according to their global CDR scores. PART-definite participants were less often symptomatic (58%) compared with amyloid sparse participants (80%, p < 0.001). Within the PART-definite group, independent predictors of symptomatic status included depression (adjusted odds ratio [aOR] 4.20, 95% confidence interval [CI] 2.15-8.19), Braak stage (aOR 1.42, 95% CI 1.04-1.95), and history of stroke (aOR 8.09, 95% CI 2.63-24.82). Within the amyloid sparse group, independent predictors of symptomatic status included education (aOR 0.80, 95% CI 0.65-0.99), Braak stage (aOR 1.91, 95% CI 1.07-3.43), and amyloid angiopathy (aOR 2.75, 95% CI 1.14-6.64). CONCLUSIONS These findings support the hypothesis that participants with PART have an amyloid-independent dementing Alzheimer disease-like temporal lobe tauopathy.
Collapse
Affiliation(s)
- Lilah M Besser
- From the National Alzheimer's Coordinating Center (L.M.B., C.M., W.A.K.), Department of Epidemiology, University of Washington, Seattle; and Department of Pathology (J.F.C.), Fishberg Department of Neuroscience, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - John F Crary
- From the National Alzheimer's Coordinating Center (L.M.B., C.M., W.A.K.), Department of Epidemiology, University of Washington, Seattle; and Department of Pathology (J.F.C.), Fishberg Department of Neuroscience, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Charles Mock
- From the National Alzheimer's Coordinating Center (L.M.B., C.M., W.A.K.), Department of Epidemiology, University of Washington, Seattle; and Department of Pathology (J.F.C.), Fishberg Department of Neuroscience, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Walter A Kukull
- From the National Alzheimer's Coordinating Center (L.M.B., C.M., W.A.K.), Department of Epidemiology, University of Washington, Seattle; and Department of Pathology (J.F.C.), Fishberg Department of Neuroscience, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
49
|
Crary JF. Primary age-related tauopathy and the amyloid cascade hypothesis: the exception that proves the rule? ACTA ACUST UNITED AC 2016; 1:53-57. [PMID: 27819070 PMCID: PMC5094182 DOI: 10.29245/2572.942x/2016/6.1059] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Extensive data supports the amyloid cascade hypothesis, which states that Alzheimer’s disease (AD) stems from neurotoxic forms of the amyloid-beta (Aβ) peptide. But the poor correlation between Aβ plaques and neurodegeneration/cognitive impairment, the spaciotemporal disparity between Aβ and tau pathology, and the disappointing results following several large clinical trials using Aβ-targeting agents are inconsistent with this explanation. The most perplexing inconsistency is the existence of AD-type dementia patients that develop abundant neurofibrillary tangles that are indistinguishable from those in early to moderate-stage AD in the absence of compelling evidence of amyloid toxicity. This neuropathological phenotype, which is distinct from other diseases with tangles, represents a conceptual disconnect, because it does not fall within any previously established category of tauopathy and ostensibly invalidates the amyloid cascade hypothesis. Instead, recent efforts have led to consensus criteria for a new alternative diagnostic category, which presupposes that these tangle-only dementia patients represent extreme examples of a distinct primary age-related tauopathy (PART) that is universally observed, albeit to varying degrees, in the aging brain. The cause of PART is unknown, but sufficient evidence exists to hypothesize that it stems from an Aβ-independent mechanism, such as mechanical injury. Should the PART hypothesis withstand further experimental testing, it would represent a shift in the way a subset of subjects with AD neuropathological change are classified and has the potential to focus and reaffirm the amyloid cascade hypothesis.
Collapse
Affiliation(s)
- John F Crary
- Department of Pathology, Fishberg Department of Neuroscience, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, USA
| |
Collapse
|
50
|
Ikeda C, Yokota O, Nagao S, Ishizu H, Oshima E, Hasegawa M, Okahisa Y, Terada S, Yamada N. The Relationship Between Development of Neuronal and Astrocytic Tau Pathologies in Subcortical Nuclei and Progression of Argyrophilic Grain Disease. Brain Pathol 2016; 26:488-505. [PMID: 26439704 PMCID: PMC8029468 DOI: 10.1111/bpa.12319] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/03/2015] [Indexed: 01/26/2023] Open
Abstract
Progressive supranuclear palsy (PSP) cases frequently have argyrophilic grain disease (AGD). However, the PSP-like tau pathology in AGD cases has not been fully clarified. To address this, we examined tau pathologies in the subcortical nuclei and frontal cortex in 19 AGD cases that did not meet the pathological criteria of PSP or corticobasal degeneration, nine PSP cases and 20 Braak NFT stage-matched controls. Of the 19 AGD cases, five (26.3%) had a few Gallyas-positive tau-positive tufted astrocytes (TAs) and Gallyas-negative tau-positive TA-like astrocytic inclusions (TAIs), and six (31.6%) had only TAIs in the striatum and/or frontal cortex. Subcortical tau pathology was sequentially and significantly greater in AGD cases lacking these tau-positive astrocytic lesions, AGD cases having them, and PSP cases than in controls. There was a significant correlation between three histologic factors, including the AGD stage and the quantities of subcortical neuronal and astrocytic tau pathologies. Tau immunoblotting demonstrated 68- and 64-kDa bands and 33-kDa low-molecular mass tau fragments in PSP cases, and although with lesser intensity, in AGD cases with and without TAs and TAIs also. Given these findings, the progression of AGD may be associated with development of the neuronal and astrocytic tau pathologies characteristic of PSP.
Collapse
Affiliation(s)
- Chikako Ikeda
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Osamu Yokota
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
- Department of PsychiatryKinoko Espoir HospitalOkayamaJapan
- Department of Laboratory Medicine and PathologyZikei Institute of PsychiatryOkayamaJapan
| | - Shigeto Nagao
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Hideki Ishizu
- Department of Laboratory Medicine and PathologyZikei Institute of PsychiatryOkayamaJapan
| | - Etsuko Oshima
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Masato Hasegawa
- Dementia Research ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Yuko Okahisa
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Seishi Terada
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Norihito Yamada
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
- Department of PsychiatryKawasaki Medical SchoolOkayamaJapan
| |
Collapse
|