1
|
Jamal R, Shaikh MA, Taleuzzaman M, Haque Z, Albratty M, Alam MS, Makeen HA, Zoghebi K, Saleh SF. Key biomarkers in Alzheimer's disease: Insights for diagnosis and treatment strategies. J Alzheimers Dis 2025:13872877251330500. [PMID: 40255041 DOI: 10.1177/13872877251330500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Alzheimer's disease (AD) remains a significant global health challenge, characterized by its progressive neurodegeneration and cognitive decline. The urgent need for early diagnosis and effective treatment necessitates the identification of reliable biomarkers that can illuminate the underlying pathophysiology of AD. This review provides a comprehensive overview of the latest advancements in biomarker research, focusing on their applications in diagnosis, prognosis, and therapeutic development. We delve into the multifaceted landscape of AD biomarkers, encompassing molecular, imaging, and fluid-based markers. The integration of these biomarkers, including amyloid-β and tau proteins, neuroimaging modalities, cerebrospinal fluid analysis, and genetic risk factors, offers a more nuanced understanding of AD's complex etiology. By leveraging the power of precision medicine, biomarker-driven approaches can enable personalized treatment strategies and enhance diagnostic accuracy. Moreover, this review highlights the potential of biomarker research to accelerate drug discovery and development. By identifying novel therapeutic targets and monitoring disease progression, biomarkers can facilitate the evaluation of experimental treatments and ultimately improve patient outcomes. In conclusion, this review underscores the critical role of biomarkers in advancing our comprehension of AD and driving the development of effective interventions. By providing a comprehensive overview of the current state-of-the-art, this work aims to inspire future research and contribute to the goal of conquering AD.
Collapse
Affiliation(s)
- Ruqaiya Jamal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Maulana Azad University, Jodhpur, Rajasthan, India
| | | | - Mohamad Taleuzzaman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Maulana Azad University, Jodhpur, Rajasthan, India
| | - Ziyaul Haque
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Maulana Azad University, Jodhpur, Rajasthan, India
- Department of Pharmaceutical Chemistry, AIKTC School of Pharmacy, Mumbai, India
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Md Shamsher Alam
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Safaa Fathy Saleh
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
2
|
Raj V, Raorane CJ, Shastri D, Kim JH, Lee S. Sulfonic acid functionalized β-amyloid peptide aggregation inhibitors and antioxidant agents for the treatment of Alzheimer's disease: Combining machine learning, computational, in vitro and in vivo approaches. Int J Biol Macromol 2025; 299:140142. [PMID: 39842570 DOI: 10.1016/j.ijbiomac.2025.140142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/01/2024] [Accepted: 01/20/2025] [Indexed: 01/24/2025]
Abstract
Alzheimer's disease (AD) is characterized as a neurodegenerative disorder that is caused by plaque formation by accumulating β-amyloid (Aβ), leading to neurocognitive function and impaired mental development. Thus, targeting Aβ represents a promising target for the development of therapeutics in AD management. Several functionalized sulfonic acid molecules have been reported, including tramiprosate prodrug, which is currently in clinical trial III and exhibits a good response in mild to moderate AD patients. Therefore, expanding upon this approach, we hypothesized that the sulfonic acid functionalized aromatic class molecule might demonstrate a good inhibitory effect against β-amyloid aggregation, leading to a decrease in the progression burden of AD. We used computational and in vitro approaches to establish effective compounds. As a result, three potent hit molecules were selected based on binding score as well as availability. In the case of safety profile of compounds, in vitro using human neuroblastoma SH-SY5Y cells and in vivo using C. elegans was performed at doses up to 500 μM; no difference in viability was exhibited between control and treatment groups. However, H2O2-induced ROS stress was significantly reduced in neuroblastoma cells after treatment. The AFM and ThT-embedded β-amyloid1-42 kinetic studies confirmed B-PEA-MBSA and H-HPA-NSA potency. H-HPA-NSA arrested elongation phase of Aβ aggregation in kinetic study at a lower concentration (10 μM), while B-PEA-MBSA reduced the intensity of stationary phase at a dose of 100 μM. Thus, based on the outcomes, it can be suggested that B-PEA-MBSA and H-HPA-NSA can prevent β-amyloid aggregation with mild to moderate AD.
Collapse
Affiliation(s)
- Vinit Raj
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea
| | | | - Divya Shastri
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea; College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea
| | - Jae Hyun Kim
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Kim BS, Hwang I, Ko HR, Kim YK, Kim HJ, Seo SW, Choi Y, Lim S, Kim YK, Nie S, Ye K, Park JC, Lee Y, Jo DG, Lee SE, Kim D, Cho SW, Ahn JY. EBP1 potentiates amyloid β pathology by regulating γ-secretase. NATURE AGING 2025; 5:486-503. [PMID: 39779912 DOI: 10.1038/s43587-024-00790-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
The abnormal deposition of amyloid β (Aβ), produced by proteolytic cleavage events of amyloid precursor protein involving the protease γ-secretase and subsequent polymerization into amyloid plaques, plays a key role in the neuropathology of Alzheimer's disease (AD). Here we show that ErbB3 binding protein 1 (EBP1)/proliferation-associated 2G4 (PA2G4) interacts with presenilin, a catalytic subunit of γ-secretase, inhibiting Aβ production. Mice lacking forebrain Ebp1/Pa2g4 recapitulate the representative phenotypes of late-onset sporadic AD, displaying an age-dependent increase in Aβ deposition, amyloid plaques and cognitive dysfunction. In postmortem brains of patients with AD and 5x-FAD mice, we found that EBP1 is proteolytically cleaved by asparagine endopeptidase at N84 and N204 residues, compromising its inhibitory effect on γ-secretase, increasing Aβ aggregation and neurodegeneration. Accordingly, injection of AAV2-Ebp1 wild-type or an asparagine endopeptidase-uncleavable mutant into the brains of 5x-FAD mice decreased Aβ generation and alleviated the behavioral impairments. Thus, our study suggests that EBP1 acts as an inhibitor of γ-secretase on amyloid precursor protein cleavage and preservation of functional EBP1 could be a therapeutic strategy for AD.
Collapse
Affiliation(s)
- Byeong-Seong Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Inwoo Hwang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Hyo Rim Ko
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Young Kwan Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yujung Choi
- Center for Brain Disorders, Brain Science Institute Korea Institute of Science and Technology (KIST), Seoul, Korea
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Sungsu Lim
- Center for Brain Disorders, Brain Science Institute Korea Institute of Science and Technology (KIST), Seoul, Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Korea
| | - Yun Kyung Kim
- Center for Brain Disorders, Brain Science Institute Korea Institute of Science and Technology (KIST), Seoul, Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Korea
| | - Shuke Nie
- Faculty of Life and Health Sciences, and Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Keqiang Ye
- Faculty of Life and Health Sciences, and Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jong-Chan Park
- Department of Biophysics, Sungkyunkwan University, Suwon, Korea
| | - Yunjong Lee
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Seung Eun Lee
- Research Animal Resources Center, Korea Institute of Science and Technology (KIST), Seoul, Korea
| | - Daesik Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan, College of Medicine, Seoul, Korea
| | - Jee-Yin Ahn
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea.
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea.
| |
Collapse
|
4
|
Nystuen KL, McNamee SM, Akula M, Holton KM, DeAngelis MM, Haider NB. Alzheimer's Disease: Models and Molecular Mechanisms Informing Disease and Treatments. Bioengineering (Basel) 2024; 11:45. [PMID: 38247923 PMCID: PMC10813760 DOI: 10.3390/bioengineering11010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Alzheimer's Disease (AD) is a complex neurodegenerative disease resulting in progressive loss of memory, language and motor abilities caused by cortical and hippocampal degeneration. This review captures the landscape of understanding of AD pathology, diagnostics, and current therapies. Two major mechanisms direct AD pathology: (1) accumulation of amyloid β (Aβ) plaque and (2) tau-derived neurofibrillary tangles (NFT). The most common variants in the Aβ pathway in APP, PSEN1, and PSEN2 are largely responsible for early-onset AD (EOAD), while MAPT, APOE, TREM2 and ABCA7 have a modifying effect on late-onset AD (LOAD). More recent studies implicate chaperone proteins and Aβ degrading proteins in AD. Several tests, such as cognitive function, brain imaging, and cerebral spinal fluid (CSF) and blood tests, are used for AD diagnosis. Additionally, several biomarkers seem to have a unique AD specific combination of expression and could potentially be used in improved, less invasive diagnostics. In addition to genetic perturbations, environmental influences, such as altered gut microbiome signatures, affect AD. Effective AD treatments have been challenging to develop. Currently, there are several FDA approved drugs (cholinesterase inhibitors, Aß-targeting antibodies and an NMDA antagonist) that could mitigate AD rate of decline and symptoms of distress.
Collapse
Affiliation(s)
- Kaden L. Nystuen
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Shannon M. McNamee
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Monica Akula
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Kristina M. Holton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Margaret M. DeAngelis
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Neena B. Haider
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Li X, Quan M, Wei Y, Wang W, Xu L, Wang Q, Jia J. Critical thinking of Alzheimer's transgenic mouse model: current research and future perspective. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2711-2754. [PMID: 37480469 DOI: 10.1007/s11427-022-2357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/23/2023] [Indexed: 07/24/2023]
Abstract
Transgenic models are useful tools for studying the pathogenesis of and drug development for Alzheimer's Disease (AD). AD models are constructed usually using overexpression or knock-in of multiple pathogenic gene mutations from familial AD. Each transgenic model has its unique behavioral and pathological features. This review summarizes the research progress of transgenic mouse models, and their progress in the unique mechanism of amyloid-β oligomers, including the first transgenic mouse model built in China based on a single gene mutation (PSEN1 V97L) found in Chinese familial AD. We further summarized the preclinical findings of drugs using the models, and their future application in exploring the upstream mechanisms and multitarget drug development in AD.
Collapse
Affiliation(s)
- Xinyue Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Yiping Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Wei Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Lingzhi Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, 100053, China.
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, 100053, China.
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100053, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China.
| |
Collapse
|
6
|
Moussa N, Dayoub N. Exploring the role of COX-2 in Alzheimer's disease: Potential therapeutic implications of COX-2 inhibitors. Saudi Pharm J 2023; 31:101729. [PMID: 37638222 PMCID: PMC10448476 DOI: 10.1016/j.jsps.2023.101729] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
This review highlights the potential role of cyclooxygenase-2 enzyme (COX-2) in the pathogenesis of Alzheimer's disease (AD) and the potential therapeutic use of non-steroidal anti-inflammatory drugs (NSAIDs) in the management of AD. In addition to COX-2 enzymes role in inflammation, the formation of amyloid plaques and neurofibrillary tangles in the brain, the review emphasizes that COXs-2 have a crucial role in normal synaptic activity and plasticity, and have a relationship with acetylcholine, tau protein, and beta-amyloid (Aβ) which are the main causes of Alzheimer's disease. Furthermore, the review points out that COX-2 enzymes have a relationship with kinase enzymes, including Cyclin Dependent Kinase 5 (CDK5) and Glycogen Synthase Kinase 3β (GSK3β), which are known to play a role in tau phosphorylation and are strongly associated with Alzheimer's disease. Therefore, the use of drugs like NSAIDs may be a hopeful approach for managing AD. However, results from studies examining the effectiveness of NSAIDs in treating AD have been mixed and further research is needed to fully understand the mechanisms by which COX-2 and NSAIDs may be involved in the development and progression of AD and to identify new therapeutic strategies.
Collapse
Affiliation(s)
- Nathalie Moussa
- Department of Pharmaceutical Chemistry and Drug Control, University of Manara, Latakia, Syria
| | - Ninar Dayoub
- Faculty of Pharmacy, University of AL Andalus for Medical Science, Tartus, Syria
| |
Collapse
|
7
|
Ulaganathan S, Pitchaimani A. Spontaneous and familial models of Alzheimer's disease: Challenges and advances in preclinical research. Life Sci 2023:121918. [PMID: 37422070 DOI: 10.1016/j.lfs.2023.121918] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disorder that is progressive and irreversible in nature. Even after decades of dedicated research and paradigm-shifting hypotheses of AD etiology, very few well-founded credible improvements have been foreseen in understanding the actual underlying mechanisms involved in the development of the disorder. As for any disease to be well-comprehended, AD also requires optimal modelling strategies, which will then pave way for effective therapeutic interventions. Most of the clinical trials and research towards better treatment of AD fail in translation, due to the inefficacy of explored animal models to mimic the actual AD pathology, precisely. The majority of the existing AD models are developed based on the mutations found in the familial form of AD (fAD) which accounts for less than 5 % of the incidence of AD. Further, the investigations also face more challenges due to the additional complexities and lacunae found in etiology of sporadic form of AD (sAD), which accounts for 95 % of total AD. This review illustrates the gaps found in different models of AD, both sporadic and familial variants with additional focus on recent avenues for accurate simulation of AD pathology using in vitro and chimeric AD models.
Collapse
Affiliation(s)
- Suryapriya Ulaganathan
- Precision Nanomedicine and Microfluidic Lab, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, TN, India; School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, TN, India
| | - Arunkumar Pitchaimani
- Precision Nanomedicine and Microfluidic Lab, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, TN, India; School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, TN, India.
| |
Collapse
|
8
|
Kotari V, Southekal S, Navitsky M, Kennedy IA, Lu M, Morris A, Zimmer JA, Fleisher AS, Mintun MA, Devous MD, Pontecorvo MJ. Early tau detection in flortaucipir images: validation in autopsy-confirmed data and implications for disease progression. Alzheimers Res Ther 2023; 15:41. [PMID: 36855201 PMCID: PMC9972744 DOI: 10.1186/s13195-023-01160-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/01/2023] [Indexed: 03/02/2023]
Abstract
BACKGROUND There is an increasing interest in utilizing tau PET to identify patients early in Alzheimer's disease (AD). In this work, a temporal lobe composite (Eτ) volume of interest (VOI) was evaluated in a longitudinal flortaucipir cohort and compared to a previously described global neocortical VOI. In a separate autopsy-confirmed study, the sensitivity of the Eτ VOI for identifying intermediate (B2) neurofibrillary tangle (NFT) pathology was evaluated. METHODS A total of 427 subjects received flortaucipir, florbetapir, MRI, and cognitive evaluation at baseline and 18 months. In a separate autopsy study, 67 subjects received ante-mortem flortaucipir scans, and neuropathological findings were recorded according to NIA-AA recommendations by two experts. Two VOIs: Eτ comprising FreeSurfer volumes (bilateral entorhinal cortex, fusiform, parahippocampal, and inferior temporal gyri) transformed to MNI space and a previously published global AD signature-weighted neocortical VOI (ADsignature) (Devous et al., J Nucl Med 59:937-43, 2018), were used to calculate SUVr relative to a white matter reference region (PERSI) (Southekal et al., J Nucl Med Off Publ Soc Nucl Med 59:944-51, 2018). SUVr cutoffs for positivity were determined based on a cohort of young, cognitively normal subjects. Subjects were grouped based on positivity on both VOIs (Eτ+/ADsignature+; Eτ+/ADsignature-; Eτ-/ADsignature-). Groupwise comparisons were performed for baseline SUVr, 18-month changes in SUVr, neurodegeneration, and cognition. For the autopsy study, the sensitivity of Eτ in identifying intermediate Braak pathology (B2) subjects was compared to that of AD signature-weighted neocortical VOI. The average surface maps of subjects in the Eτ+/ADsignature- group and B2 NFT scores were created for visual evaluation of uptake. RESULTS Sixty-four out of 390 analyzable subjects were identified as Eτ+/ADsignature-: 84% were Aβ+, 100% were diagnosed as MCI or AD, and 59% were APOE ε4 carriers. Consistent with the hypothesis that Eτ+/ADsignature- status reflects an early stage of AD, Eτ+/ADsignature- subjects deteriorated significantly faster than Eτ-/ADsignature- subjects, but significantly slower than Eτ+/ADsignature+ subjects, on most measures (i.e., change in ADsignature SUVr, Eτ ROI cortical thickness, and MMSE). The ADsignature VOI was selective for subjects who came to autopsy with a B3 NFT score. In the autopsy study, 12/15 B2 subjects (including 10/11 Braak IV) were Eτ+/ADsignature-. Surface maps showed that flortaucipir uptake was largely captured by the Eτ VOI regions in B2 subjects. CONCLUSION The Eτ VOI identified subjects with elevated temporal but not global tau (Eτ+/ADsignature-) that were primarily Aβ+, APOE ε4 carriers, and diagnosed as MCI or AD. Eτ+/ADsignature- subjects had greater accumulation of tau, greater atrophy, and higher decline on MMSE in 18 months compared to Eτ-/ADsignature- subjects. Finally, the Eτ VOI identified the majority of the intermediate NFT score subjects in an autopsy-confirmed study. As far as we know, this is the first study that presents a visualization of ante-mortem FTP retention patterns that at a group level agree with the neurofibrillary tangle staging scheme proposed by Braak. These findings suggest that the Eτ VOI may be sensitive for detecting impaired subjects early in the course of Alzheimer's disease.
Collapse
Affiliation(s)
- Vikas Kotari
- Eli Lilly and Company, Indianapolis, IN, 46285, USA.
| | - Sudeepti Southekal
- grid.417540.30000 0000 2220 2544Eli Lilly and Company, Indianapolis, IN 46285 USA
| | - Michael Navitsky
- grid.417540.30000 0000 2220 2544Eli Lilly and Company, Indianapolis, IN 46285 USA
| | - Ian A. Kennedy
- grid.417540.30000 0000 2220 2544Eli Lilly and Company, Indianapolis, IN 46285 USA
| | - Ming Lu
- grid.417540.30000 0000 2220 2544Eli Lilly and Company, Indianapolis, IN 46285 USA
| | - Amanda Morris
- grid.417540.30000 0000 2220 2544Eli Lilly and Company, Indianapolis, IN 46285 USA
| | - Jennifer Ann Zimmer
- grid.417540.30000 0000 2220 2544Eli Lilly and Company, Indianapolis, IN 46285 USA
| | - Adam S. Fleisher
- grid.417540.30000 0000 2220 2544Eli Lilly and Company, Indianapolis, IN 46285 USA
| | - Mark A. Mintun
- grid.417540.30000 0000 2220 2544Eli Lilly and Company, Indianapolis, IN 46285 USA
| | - Michael D. Devous
- grid.417540.30000 0000 2220 2544Eli Lilly and Company, Indianapolis, IN 46285 USA
| | | |
Collapse
|
9
|
Panda SP, Prasanth D, Gorla US, Dewanjee S. Interlinked role of ASN, TDP-43 and Miro1 with parkinopathy: Focus on targeted approach against neuropathy in parkinsonism. Ageing Res Rev 2023; 83:101783. [PMID: 36371014 DOI: 10.1016/j.arr.2022.101783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
Parkinsonism is a complex neurodegenerative disease that is difficult to differentiate because of its idiopathic and unknown origins. The hereditary parkinsonism known as autosomal recessive-juvenile parkinsonism (AR-JP) is marked by tremors, dyskinesias, dystonic characteristics, and manifestations that improve sleep but do not include dementia. This was caused by deletions and point mutations in PARK2 (chromosome 6q25.2-27). Diminished or unusual sensations (paresthesias), loss of neuron strength both in the CNS and peripheral nerves, and lack of motor coordination are the hallmarks of neuropathy in parkinsonism. The incidence of parkinsonism during oxidative stress and ageing is associated with parkinopathy. Parkinopathy is hypothesized to be triggered by mutation of the parkin (PRKN) gene and loss of normal physiological functions of PRKN proteins, which triggers their pathogenic aggregation due to conformational changes. Two important genes that control mitochondrial health are PRKN and phosphatase and tensin homologue deleted on chromosome 10-induced putative kinase 1 (PINK1). Overexpression of TAR DNA-binding protein-43 (TDP-43) increases the aggregation of insoluble PRKN proteins in OMM. Foreign α-synuclein (ASN) promotes parkinopathy via S-nitrosylation and hence has a neurotoxic effect on dopaminergic nerves. Miro1 (Miro GTPase1), a member of the RAS superfamily, is expressed in nerve cells. Due to PINK1/PRKN and Miro1's functional relationship, an excess of mitochondrial calcium culminates in the destruction of dopaminergic neurons. An interlinked understanding of TDP-43, PINK1/PRKN, ASN, and Miro1 signalling in the communication among astrocytes, microglia, neurons, and immune cells within the brain explored the pathway of neuronal death and shed light on novel strategies for the diagnosis and treatment of parkinsonism.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Pharmacology Research Division, Institute of Pharmaceutical Research, GLA University, Mathura, India.
| | - Dsnbk Prasanth
- Department of Pharmacognosy, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, AP, India
| | - Uma Sankar Gorla
- College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhrapradesh, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
10
|
Ahat E, Bui S, Zhang J, da Veiga Leprevost F, Sharkey L, Reid W, Nesvizhskii AI, Paulson HL, Wang Y. GRASP55 regulates the unconventional secretion and aggregation of mutant huntingtin. J Biol Chem 2022; 298:102219. [PMID: 35780830 PMCID: PMC9352920 DOI: 10.1016/j.jbc.2022.102219] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Recent studies demonstrated that the Golgi reassembly stacking proteins (GRASPs), especially GRASP55, regulate Golgi-independent unconventional secretion of certain cytosolic and transmembrane cargoes; however, the underlying mechanism remains unknown. Here, we surveyed several neurodegenerative disease-related proteins, including mutant huntingtin (Htt-Q74), superoxide dismutase 1 (SOD1), tau, and TAR DNA-binding protein 43 (TDP-43), for unconventional secretion; our results show that Htt-Q74 is most robustly secreted in a GRASP55-dependent manner. Using Htt-Q74 as a model system, we demonstrate that unconventional secretion of Htt is GRASP55 and autophagy dependent and is enhanced under stress conditions such as starvation and endoplasmic reticulum stress. Mechanistically, we show that GRASP55 facilitates Htt secretion by tethering autophagosomes to lysosomes to promote autophagosome maturation and subsequent lysosome secretion and by stabilizing p23/TMED10, a channel for translocation of cytoplasmic proteins into the lumen of the endoplasmic reticulum-Golgi intermediate compartment. Moreover, we found that GRASP55 levels are upregulated by various stresses to facilitate unconventional secretion, whereas inhibition of Htt-Q74 secretion by GRASP55 KO enhances Htt aggregation and toxicity. Finally, comprehensive secretomic analysis identified novel cytosolic cargoes secreted by the same unconventional pathway, including transgelin (TAGLN), multifunctional protein ADE2 (PAICS), and peroxiredoxin-1 (PRDX1). In conclusion, this study defines the pathway of GRASP55-mediated unconventional protein secretion and provides important insights into the progression of Huntington's disease.
Collapse
Affiliation(s)
- Erpan Ahat
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sarah Bui
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jianchao Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Lisa Sharkey
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Whitney Reid
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexey I. Nesvizhskii
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Henry L. Paulson
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA; Department of Neurology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA.
| |
Collapse
|
11
|
Sanchez-Varo R, Mejias-Ortega M, Fernandez-Valenzuela JJ, Nuñez-Diaz C, Caceres-Palomo L, Vegas-Gomez L, Sanchez-Mejias E, Trujillo-Estrada L, Garcia-Leon JA, Moreno-Gonzalez I, Vizuete M, Vitorica J, Baglietto-Vargas D, Gutierrez A. Transgenic Mouse Models of Alzheimer's Disease: An Integrative Analysis. Int J Mol Sci 2022; 23:5404. [PMID: 35628216 PMCID: PMC9142061 DOI: 10.3390/ijms23105404] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/10/2022] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) constitutes the most prominent form of dementia among elderly individuals worldwide. Disease modeling using murine transgenic mice was first initiated thanks to the discovery of heritable mutations in amyloid precursor protein (APP) and presenilins (PS) genes. However, due to the repeated failure of translational applications from animal models to human patients, along with the recent advances in genetic susceptibility and our current understanding on disease biology, these models have evolved over time in an attempt to better reproduce the complexity of this devastating disease and improve their applicability. In this review, we provide a comprehensive overview about the major pathological elements of human AD (plaques, tauopathy, synaptic damage, neuronal death, neuroinflammation and glial dysfunction), discussing the knowledge that available mouse models have provided about the mechanisms underlying human disease. Moreover, we highlight the pros and cons of current models, and the revolution offered by the concomitant use of transgenic mice and omics technologies that may lead to a more rapid improvement of the present modeling battery.
Collapse
Affiliation(s)
- Raquel Sanchez-Varo
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
| | - Marina Mejias-Ortega
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Juan Jose Fernandez-Valenzuela
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Cristina Nuñez-Diaz
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Laura Caceres-Palomo
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Laura Vegas-Gomez
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Elisabeth Sanchez-Mejias
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Laura Trujillo-Estrada
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Juan Antonio Garcia-Leon
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Ines Moreno-Gonzalez
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Marisa Vizuete
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBIS)-Hospital Universitario Virgen del Rocio/CSIC, 41012 Seville, Spain
| | - Javier Vitorica
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBIS)-Hospital Universitario Virgen del Rocio/CSIC, 41012 Seville, Spain
| | - David Baglietto-Vargas
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Antonia Gutierrez
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| |
Collapse
|
12
|
Tashima T. Delivery of Intravenously Administered Antibodies Targeting Alzheimer's Disease-Relevant Tau Species into the Brain Based on Receptor-Mediated Transcytosis. Pharmaceutics 2022; 14:411. [PMID: 35214143 PMCID: PMC8876001 DOI: 10.3390/pharmaceutics14020411] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 01/23/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that causes memory loss, cognitive decline, and eventually dementia. The etiology of AD and its pathological mechanisms remain unclear due to its complex pathobiology. At the same time, the number of patients with AD is increasing worldwide. However, no therapeutic agents for AD are currently available for definitive care. Several phase 3 clinical trials using agents targeting amyloid β (Aβ) and its related molecules have failed, with the exception of aducanumab, an anti-Aβ monoclonal antibody (mAb), clinically approved by the US Food and Drug Administration in 2021, which could be modified for AD drug development due to controversial approval. Neurofibrillary tangles (NFTs) composed of tau rather than senile plaques composed of Aβ are correlated with AD pathogenesis. Moreover, Aβ and tau pathologies initially proceed independently. At a certain point in the progression of AD symptoms, the Aβ pathology is involved in the alteration and spreading of the tau pathology. Therefore, tau-targeting therapies have attracted the attention of pharmaceutical scientists, as well as Aβ-targeting therapies. In this review, I introduce the implementations and potential of AD immunotherapy using intravenously administered anti-tau and anti-receptor bispecific mAbs. These cross the blood-brain barrier (BBB) based on receptor-mediated transcytosis and are subsequently cleared by microglia based on Fc-mediated endocytosis after binding to tau and lysosomal degradation.
Collapse
Affiliation(s)
- Toshihiko Tashima
- Tashima Laboratories of Arts and Sciences, 1239-5 Toriyama-cho, Kohoku-ku, Yokohama 222-0035, Japan
| |
Collapse
|
13
|
Umeda T, Uekado R, Shigemori K, Eguchi H, Tomiyama T. Nasal Rifampicin Halts the Progression of Tauopathy by Inhibiting Tau Oligomer Propagation in Alzheimer Brain Extract-Injected Mice. Biomedicines 2022; 10:biomedicines10020297. [PMID: 35203506 PMCID: PMC8869211 DOI: 10.3390/biomedicines10020297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
The cell-to-cell transmission of tau aggregates is considered a mechanism underlying the intracerebral spreading of tau pathology in Alzheimer’s disease (AD) and other tauopathies. Recent studies suggest that tau oligomers, rather than fibrils, participate in this process. We previously showed that intranasal rifampicin inhibits tau oligomer accumulation and improves cognition in tauopathy mice. In the present study, we examined the effects of nasal rifampicin on tau propagation in a new mouse model of tauopathy. A tau oligomer-rich fraction prepared from the brain of an AD patient was injected into a unilateral hippocampus of tau264 mice that express both 3-repeat and 4-repeat wild-type human tau. Rifampicin administration was started one week after the injection and performed three times a week for 24 weeks. Cognitive function and tau pathology were assessed by the Morris water maze test and brain section staining. Rifampicin treatment inhibited the spreading of tau oligomers from the injection site to other brain regions and neurofibrillary tangle formation in the entorhinal cortex. Synapse and neuronal loss in the hippocampus were also prevented, and cognitive function remained normal. These results suggest that intranasal rifampicin could be a promising remedy that halts the progression of tauopathy by inhibiting tau oligomer propagation.
Collapse
Affiliation(s)
- Tomohiro Umeda
- Department of Translational Neuroscience, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; (T.U.); (R.U.); (K.S.)
| | - Rumi Uekado
- Department of Translational Neuroscience, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; (T.U.); (R.U.); (K.S.)
| | - Keiko Shigemori
- Department of Translational Neuroscience, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; (T.U.); (R.U.); (K.S.)
| | - Hiroshi Eguchi
- Pharmaceutical Discovery Research Laboratories, Teijin Pharma Ltd., 4-3-2 Asahigaoka, Hino 191-8512, Japan;
| | - Takami Tomiyama
- Department of Translational Neuroscience, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; (T.U.); (R.U.); (K.S.)
- Correspondence: ; Tel.: +81-6-6645-3921
| |
Collapse
|
14
|
Xia L, Pang Y, Li J, Wu B, Du Y, Chen Y, Luo M, Wang Y, Dong Z. Dihydroartemisinin Induces O-GlcNAcylation and Improves Cognitive Function in a Mouse Model of Tauopathy. J Alzheimers Dis 2021; 84:239-248. [PMID: 34511503 DOI: 10.3233/jad-210643] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Tauopathies are a group of neurodegenerative disorders, including Alzheimer's disease (AD) and frontotemporal lobar degeneration with tau pathology. Hyperphosphorylation modification promotes tau protein misfolding and aggregation into neurofibrillary tangles, leading to impairments of synaptic plasticity and learning and memory. However, very limited therapeutic strategies are available. OBJECTIVE In the present study, we wanted to investigate the potential effects of Dihydroartemisinin (DHA) on tauopathies. METHODS We constructed adeno-associated virus carrying hTau cDNA (AAVhTau) to establish a mouse model of tauopathy through intrahippocampal microinjection. Using a combination of behavioral test, electrophysiological recording, and western blotting assay, we examined the neuroprotective effects of DHA on learning and memory deficits in mice with tauopathy. RESULTS DHA improved learning and memory and increased hippocampal CA1 long-term potentiation (LTP) in mice overexpressed human tau (hTau) in the hippocampus. More importantly, further study revealed that DHA could induce protein O-GlcNAcylation modification and reduce protein phosphorylation. O-GlcNAc transferase inhibitor alloxan could suppress DHA-induced protein O-GlcNAcylation, and subsequently prevent therapeutic effect of DHA on the deficits of learning and memory as well as synaptic plasticity in hTau mice. CONCLUSION These results indicate that DHA may exert neuroprotective role in tauopathy through a crosstalk between O-GlcNAcylation and phosphorylation, suggesting a potential therapeutic for learning and memory deficits associated with tau pathology.
Collapse
Affiliation(s)
- Lei Xia
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yayan Pang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Junjie Li
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Wu
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yehong Du
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxin Chen
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Man Luo
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Wang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhifang Dong
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Koinuma S, Shimozawa N, Yasutomi Y, Kimura N. Aging induces abnormal accumulation of Aβ in extracellular vesicle and/or intraluminal membrane vesicle-rich fractions in nonhuman primate brain. Neurobiol Aging 2021; 106:268-281. [PMID: 34329965 DOI: 10.1016/j.neurobiolaging.2021.06.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 06/10/2021] [Accepted: 06/28/2021] [Indexed: 12/30/2022]
Abstract
Aβ metabolism in the brain is mediated by endocytosis, one part of the intracellular membrane trafficking system. We previously showed that aging attenuates the interaction of dynein with dynactin, which disrupts the endosomal/lysosomal trafficking pathway involved in Aβ metabolism, resulting in intracellular accumulation of Aβ. Several studies have shown that in Alzheimer's disease (AD), intraneuronal accumulation of Aβ precedes extracellular Aβ depositions. However, it is unclear what accounts for this transition from intracellular to extracellular depositions. Accumulating evidence suggest that autophagy has an important role in AD pathology, and we observed that autophagy-related protein levels began to decrease before amyloid plaque formation in cynomolgus monkey brains. Surprisingly, experimental induction of autophagosome formation in Neuro2a cells significantly increased intracellular Aβ and decreased extracellular release of Aβ, accompanied by the prominent reduction of extracellular vesicle (EV) secretion. RNAi study confirmed that EV secretion affected intracellular and extracellular Aβ levels, and siRNA-induced downregulation of autophagosome formation enhanced EV secretion to ameliorate intracellular Aβ accumulation induced by dynein knockdown. In aged cynomolgus monkeys, Aβ levels in EV/intraluminal membrane vesicle (ILV)-rich fractions isolated from temporal lobe parenchyma were drastically increased. Moreover, EV/ILV marker proteins overlapped spatially with amyloid plaques. These findings suggest that EV would be an important carrier of Aβ in brain and abnormal accumulation of Aβ in EVs/ILVs may be involved in the transition of age-dependent Aβ pathology.
Collapse
Affiliation(s)
- Shingo Koinuma
- Section of Cell Biology and Pathology, Department of Alzheimer's Disease Research, Center for Development of Advanced Medicine for Dementia, Obu, Aichi, Japan; Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Nobuhiro Shimozawa
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki, Japan
| | - Yasuhiro Yasutomi
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki, Japan
| | - Nobuyuki Kimura
- Section of Cell Biology and Pathology, Department of Alzheimer's Disease Research, Center for Development of Advanced Medicine for Dementia, Obu, Aichi, Japan; Laboratory of Experimental Animals, Research and Development Management Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan; Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
16
|
Sarkar S. Shaggy functions downstream of dMyc and their concurrent downregulation confers additive rescue against tau toxicity in Drosophila. Biofactors 2021; 47:461-477. [PMID: 33651466 DOI: 10.1002/biof.1721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/15/2021] [Indexed: 12/16/2022]
Abstract
Neurodegenerative tauopathies such as Alzheimer's and Parkinson's diseases are characterized by hyperphosphorylation of tau protein and their subsequent aggregation in the forms of paired helical filaments and/or neurofibrillary tangles in specific areas of the brain. Despite several attempts, it remains a challenge to develop reliable biomarkers or effective drugs against tauopathies. It is increasingly evident now that due to the involvement of multiple cellular cascades affected by the pathogenic tau molecules, a single genetic modifier or a molecule is unlikely to be efficient enough to provide an inclusive rescue. Hence, multitargets based combinatorial approach(s) have been suggested to provide an efficient rescue against tauopathies. We have reported earlier that targeted downregulation of dmyc (a Drosophila homolog of human cmyc proto-oncogene) restricts tau etiology by limiting tau hyperphosphorylation and heterochromatin loss. Although, dmyc generates a significant rescue; however, it is not proficient enough to provide a complete alleviation against tauopathies. Here, we report that tissue-specific concurrent downregulation of dmyc and gsk3β conveys a near-complete rescue against tau toxicity in Drosophila. We noted that combinatorial downregulation of dmyc and gsk3β reduces tau hyperphosphorylation, restricts the formation of neurofibrillary tangles, and restores heterochromatin loss to the physiological level. Our subsequent investigations revealed that dmyc regulates gsk3β via protein phosphatase 2A (dPP2A) in a dose-dependent manner to regulate tau pathogenesis. We propose that dmyc and gsk3β candidates can be utilized in a synergistic manner for the development of an efficient combinatorial therapeutic approach against the devastating human tauopathies.
Collapse
Affiliation(s)
- Surajit Sarkar
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
17
|
Futamura A, Hieda S, Mori Y, Kasuga K, Sugimoto A, Kasai H, Kuroda T, Yano S, Tsuji M, Ikeuchi T, Irie K, Ono K. Toxic Amyloid-β42 Conformer May Accelerate the Onset of Alzheimer's Disease in the Preclinical Stage. J Alzheimers Dis 2021; 80:639-646. [PMID: 33579852 DOI: 10.3233/jad-201407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Toxic amyloid-β protein (Aβ) conformers play an important role in the progression of Alzheimer's disease (AD). The ratio of toxic conformer to total Aβ42 in cerebrospinal fluid (CSF) was significantly high in AD and mild cognitive impairment (MCI) due to AD using an enzyme-linked immunosorbent assay kit with a 24B3 antibody. OBJECTIVE We compared the toxic Aβ42, conformer at different stages of AD to identify its contribution to AD pathogenesis. METHODS We compared 5 patients with preclinical AD, 11 patients with MCI due to AD, 21 patients with AD, and 5 healthy controls to measure CSF levels of total Aβ42, total tau, tau phosphorylated at threonine 181 (p-tau), and toxic Aβ conformers. All were classified using the Clinical Dementia Rating. Cognitive function was assessed using the Japanese version of the Mini-Mental State Examination (MMSE-J). RESULTS Toxic Aβ conformer level was insignificant between groups, but its ratio to Aβ42 was significantly higher in AD than in preclinical AD (p < 0.05). Toxic Aβ42 conformer correlated positively with p-tau (r = 0.67, p < 0.01) and p-tau correlated negatively with MMSE-J (r = -0.38, p < 0.05). CONCLUSION Toxic Aβ conformer triggers tau accumulation leading to neuronal impairment in AD pathogenesis.
Collapse
Affiliation(s)
- Akinori Futamura
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Sotaro Hieda
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Yukiko Mori
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Kensaku Kasuga
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Chuo-ku, Niigata, Japan
| | - Azusa Sugimoto
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Hideyo Kasai
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Takeshi Kuroda
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Satoshi Yano
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Mayumi Tsuji
- Pharmacological Research Center, Showa University, Shinagawa-ku, Tokyo, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Chuo-ku, Niigata, Japan
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kenjiro Ono
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| |
Collapse
|
18
|
Yanagisawa D, Kato T, Taguchi H, Shirai N, Hirao K, Sogabe T, Tomiyama T, Gamo K, Hirahara Y, Kitada M, Tooyama I. Keto form of curcumin derivatives strongly binds to Aβ oligomers but not fibrils. Biomaterials 2021; 270:120686. [PMID: 33540171 DOI: 10.1016/j.biomaterials.2021.120686] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 12/20/2020] [Accepted: 01/17/2021] [Indexed: 12/17/2022]
Abstract
The accumulation of β-amyloid (Aβ) aggregates in the brain occurs early in the progression of Alzheimer's disease (AD), and non-fibrillar soluble Aβ oligomers are particularly neurotoxic. During binding to Aβ fibrils, curcumin, which can exist in an equilibrium state between its keto and enol tautomers, exists predominantly in the enol form, and binding activity of the keto form to Aβ fibrils is much weaker. Here we described the strong binding activity the keto form of curcumin derivative Shiga-Y51 shows for Aβ oligomers and its scant affinity for Aβ fibrils. Furthermore, with imaging mass spectrometry we revealed the blood-brain barrier permeability of Shiga-Y51 and its accumulation in the cerebral cortex and the hippocampus, where Aβ oligomers were mainly localized, in a mouse model of AD. The keto form of curcumin derivatives like Shiga-Y51 could be promising seed compounds to develop imaging probes and therapeutic agents targeting Aβ oligomers in the brain.
Collapse
Affiliation(s)
- Daijiro Yanagisawa
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, 520-2192, Japan
| | - Tomoko Kato
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, 520-2192, Japan
| | - Hiroyasu Taguchi
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, 520-2192, Japan
| | - Nobuaki Shirai
- Industrial Research Center of Shiga Prefecture, 232 Kamitoyama, Ritto, 520-3004, Japan
| | - Koichi Hirao
- Shiga Prefecture Industrial Support Center, 2-1 Uchidehama, Otsu, 520-0806, Japan
| | - Takayuki Sogabe
- Otsuka Pharmaceutical Co., Ltd, 224-18 Hiraishi Ebisuno, Kawauchi-cho, Tokushima, 771-0182, Japan
| | - Takami Tomiyama
- Department of Translational Neuroscience, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Keizo Gamo
- Department of Anatomy, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, 573-1010, Japan
| | - Yukie Hirahara
- Department of Anatomy, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, 573-1010, Japan
| | - Masaaki Kitada
- Department of Anatomy, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, 573-1010, Japan
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, 520-2192, Japan.
| |
Collapse
|
19
|
Wang X, Yin Z, Cao P, Zheng S, Chen Y, Yu M, Liao C, Zhang Z, Duan Y, Han J, Zhang S, Yang X. NaoXinTong Capsule ameliorates memory deficit in APP/PS1 mice by regulating inflammatory cytokines. Biomed Pharmacother 2021; 133:110964. [PMID: 33197761 DOI: 10.1016/j.biopha.2020.110964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/18/2020] [Accepted: 11/01/2020] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in aging population. Neuroinflammation, hyperphosphorylated Tau (p-Tau) and the imbalance between production and clearance of β-amyloid peptide (Aβ) are the major causes for AD development. NaoXinTong Capsule (NXT), a traditional Chinese medicine, is wildly used for treatment of cardiovascular and cerebrovascular diseases. Hence, we used the double transgenic mice expressing chimeric human amyloid precursor protein and mutant human presenilin 1 (APP/PS1) and HT-22 cells to determine the neuroprotective effects of NXT in AD development and the involved mechanisms. The 3-month-old APP/PS1 mice were randomly divided into 3 groups and received following treatment: Control group, mice were fed normal chow; NXT groups, mice were fed normal chow containing NXT at a normal and a high dose, respectively. While the age-matched C57BL/6J mice fed normal chow were used as the normal control. The NXT treatment was lasted for 5 months. We found that NXT treatment improved spatial memory impairment and cognitive decline in APP/PS1 mice by decreasing p-Tau levels and Aβ accumulation in the brain. Mechanistically, we observed that NXT inhibited neuron atrophy and apoptosis by downregulating inflammatory cytokines, interleukin 1β (IL-1β), IL-6 and tumor necrosis factor α (TNF-α), and inflammation mediators, nuclear factor κB (NF-κB) and toll-like receptor 4 (TLR4) in the brain. Consistently, NXT blocked l-glutamic acid-induced reactive oxygen species production, inflammation and apoptosis in HT-22 cells partially by inhibiting TLR4/NF-κB/IL-1β signaling pathway. Our study demonstrates that NXT ameliorates AD by reducing p-Tau, Aβ accumulation, inflammation and neuron apoptosis via regulation of TLR4-mediated inflammatory system. It also suggests the potential application of NXT for AD treatment.
Collapse
Affiliation(s)
- Xuerui Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zequn Yin
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Peichang Cao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Shihong Zheng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Maoyun Yu
- School of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China
| | - Chenzhong Liao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | | | - Yajun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jihong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China; College of Life Sciences, Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Shuang Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
20
|
Colnaghi L, Rondelli D, Muzi-Falconi M, Sertic S. Tau and DNA Damage in Neurodegeneration. Brain Sci 2020; 10:E946. [PMID: 33297375 PMCID: PMC7762255 DOI: 10.3390/brainsci10120946] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders are a family of incurable conditions. Among them, Alzheimer's disease and tauopathies are the most common. Pathological features of these two disorders are synaptic loss, neuronal cell death and increased DNA damage. A key pathological protein for the onset and progression of the conditions is the protein tau, a microtubule-binding protein highly expressed in neurons and encoded by the MAPT (microtubule-associated protein tau) gene. Tau is predominantly a cytosolic protein that interacts with numerous other proteins and molecules. Recent findings, however, have highlighted new and unexpected roles for tau in the nucleus of neuronal cells. This review summarizes the functions of tau in the metabolism of DNA, describing them in the context of the disorders.
Collapse
Affiliation(s)
- Luca Colnaghi
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Negri 2, 20156 Milan, Italy
| | - Diego Rondelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (D.R.); (M.M.-F.)
| | - Marco Muzi-Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (D.R.); (M.M.-F.)
| | - Sarah Sertic
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (D.R.); (M.M.-F.)
| |
Collapse
|
21
|
Sadeghmousavi S, Eskian M, Rahmani F, Rezaei N. The effect of insomnia on development of Alzheimer's disease. J Neuroinflammation 2020; 17:289. [PMID: 33023629 PMCID: PMC7542374 DOI: 10.1186/s12974-020-01960-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia and a neurodegenerative disorder characterized by memory deficits especially forgetting recent information, recall ability impairment, and loss of time tracking, problem-solving, language, and recognition difficulties. AD is also a globally important health issue but despite all scientific efforts, the treatment of AD is still a challenge. Sleep has important roles in learning and memory consolidation. Studies have shown that sleep deprivation (SD) and insomnia are associated with the pathogenesis of Alzheimer's disease and may have an impact on the symptoms and development. Thus, sleep disorders have decisive effects on AD; this association deserves more attention in research, diagnostics, and treatment, and knowing this relation also can help to prevent AD through screening and proper management of sleep disorders. This study aimed to show the potential role of SD and insomnia in the pathogenesis and progression of AD.
Collapse
Affiliation(s)
- Shaghayegh Sadeghmousavi
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Eskian
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farzaneh Rahmani
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Nima Rezaei
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Busche MA, Hyman BT. Synergy between amyloid-β and tau in Alzheimer's disease. Nat Neurosci 2020; 23:1183-1193. [PMID: 32778792 PMCID: PMC11831977 DOI: 10.1038/s41593-020-0687-6] [Citation(s) in RCA: 715] [Impact Index Per Article: 143.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 07/06/2020] [Indexed: 12/24/2022]
Abstract
Patients with Alzheimer's disease (AD) present with both extracellular amyloid-β (Aβ) plaques and intracellular tau-containing neurofibrillary tangles in the brain. For many years, the prevailing view of AD pathogenesis has been that changes in Aβ precipitate the disease process and initiate a deleterious cascade involving tau pathology and neurodegeneration. Beyond this 'triggering' function, it has been typically presumed that Aβ and tau act independently and in the absence of specific interaction. However, accumulating evidence now suggests otherwise and contends that both pathologies have synergistic effects. This could not only help explain negative results from anti-Aβ clinical trials but also suggest that trials directed solely at tau may need to be reconsidered. Here, drawing from extensive human and disease model data, we highlight the latest evidence base pertaining to the complex Aβ-tau interaction and underscore its crucial importance to elucidating disease pathogenesis and the design of next-generation AD therapeutic trials.
Collapse
Affiliation(s)
- Marc Aurel Busche
- UK Dementia Research Institute at UCL, University College London, London, UK.
| | - Bradley T Hyman
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
23
|
Tackenberg C, Kulic L, Nitsch RM. Familial Alzheimer's disease mutations at position 22 of the amyloid β-peptide sequence differentially affect synaptic loss, tau phosphorylation and neuronal cell death in an ex vivo system. PLoS One 2020; 15:e0239584. [PMID: 32966331 PMCID: PMC7510992 DOI: 10.1371/journal.pone.0239584] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/10/2020] [Indexed: 11/19/2022] Open
Abstract
Familial forms of Alzheimer’s disease (AD) are caused by mutations in the presenilin genes or in the gene encoding for the amyloid precursor protein (APP). Proteolytic cleavage of APP generates the β-amyloid peptide (Aβ), which aggregates into amyloid plaques, one of the major hallmarks of AD. APP mutations within the Aβ sequence, so-called intra-Aβ mutations, cluster around position E693 of APP, which corresponds to position E22 in the Aβ sequence. One of these mutations is the Osaka mutation, E693Δ, which has unique aggregation properties with patients showing unusually low brain amyloid levels on amyloid PET scans. Despite intense research on the pathomechanisms of different intra-Aβ mutants, our knowledge is limited due to controversial findings in various studies. Here, we investigated in an ex vivo experimental system the neuro- and synaptotoxic properties of two intra-Aβ mutants with different intrinsic aggregation propensities, the Osaka mutation E22Δ and the Arctic mutation E22G, and compared them to wild-type (wt) Aβ. Experiments in hippocampal slice cultures from transgenic mice were complemented by treating wild-type slices with recombinantly produced Aβ40 or Aβ42 containing the respective intra-Aβ mutations. Our analyses revealed that wt Aβ and E22G Aβ, both recombinant and transgenic, caused a loss of dendritic spines along with an increase in tau phosphorylation and tau-dependent neurodegeneration. In all experiments, the 42-residue variants of wt and E22G Aβ showed stronger effects than the respective Aβ40 isoforms. In contrast, E22Δ Aβ neither reduced dendritic spine density nor resulted in increased tau phosphorylation or neuronal cell death in our ex vivo system. Our findings suggest that the previously reported major differences in the aggregation kinetics between E22G and E22Δ Aβ are likely reflected in different disease pathomechanisms.
Collapse
Affiliation(s)
- Christian Tackenberg
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- * E-mail:
| | - Luka Kulic
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Roger M. Nitsch
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Myers A, McGonigle P. Overview of Transgenic Mouse Models for Alzheimer's Disease. ACTA ACUST UNITED AC 2020; 89:e81. [PMID: 31532917 DOI: 10.1002/cpns.81] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review describes several transgenic mouse models of Alzheimer's disease (AD), a devastating neurodegenerative disorder that causes progressive cognitive decline and is diagnosed postmortem by the presence of extracellular amyloid-β (Aβ) plaques and intraneuronal tau neurofibrillary tangles in the cerebral cortex. Currently there is no intervention that cures, prevents, or even slows disease progression. Its complex etiology and pathology pose significant challenges for animal model development, and there is no single model that faithfully recapitulates both the pathological aspects and behavioral phenotypes of AD. Nearly 200 transgenic rodent models of AD have been generated primarily based on mutations linked to Aβ protein misprocessing in the familial form of the disease. More recent models incorporate mutations in tau protein, as well as mutations associated with the sporadic form of the disease. The salient features, strengths, limitations, and key differentiators for the most commonly used and best characterized of these models are considered here. While the translational utility of many of these models to assess the potential of novel therapeutics is in dispute, knowledge of the different models available and a detailed understanding of their features can aid in the selection of the optimal model to explore disease mechanisms or evaluate candidate medications. We comment on the predictive utility of these models considering recent clinical trial failures and discuss trends and future directions in the development of models for AD based on the plethora of clinical data that have been generated over the last decade. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Ariana Myers
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania.,Buck Institute for Research on Aging, Novato, California
| | - Paul McGonigle
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
25
|
Shimada H, Minatani S, Takeuchi J, Takeda A, Kawabe J, Wada Y, Mawatari A, Watanabe Y, Shimada H, Higuchi M, Suhara T, Tomiyama T, Itoh Y. Heavy Tau Burden with Subtle Amyloid β Accumulation in the Cerebral Cortex and Cerebellum in a Case of Familial Alzheimer's Disease with APP Osaka Mutation. Int J Mol Sci 2020; 21:ijms21124443. [PMID: 32580499 PMCID: PMC7352205 DOI: 10.3390/ijms21124443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022] Open
Abstract
We previously identified a novel mutation in amyloid precursor protein from a Japanese pedigree of familial Alzheimer's disease, FAD (Osaka). Our previous positron emission tomography (PET) study revealed that amyloid β (Aβ) accumulation was negligible in two sister cases of this pedigree, indicating a possibility that this mutation induces dementia without forming senile plaques. To further explore the relationship between Aβ, tau and neurodegeneration, we performed tau and Aβ PET imaging in the proband of FAD (Osaka) and in patients with sporadic Alzheimer's disease (SAD) and healthy controls (HCs). The FAD (Osaka) patient showed higher uptake of tau PET tracer in the frontal, lateral temporal, and parietal cortices, posterior cingulate gyrus and precuneus than the HCs (>2.5 SD) and in the lateral temporal and parietal cortices than the SAD patients (>2 SD). Most noticeably, heavy tau tracer accumulation in the cerebellum was found only in the FAD (Osaka) patient. Scatter plot analysis of the two tracers revealed that FAD (Osaka) exhibits a distinguishing pattern with a heavy tau burden and subtle Aβ accumulation in the cerebral cortex and cerebellum. These observations support our hypothesis that Aβ can induce tau accumulation and neuronal degeneration without forming senile plaques.
Collapse
Affiliation(s)
- Hiroyuki Shimada
- Department of Radiology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan;
| | - Shinobu Minatani
- Department of Neurology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan; (S.M.); (J.T.); (A.T.)
| | - Jun Takeuchi
- Department of Neurology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan; (S.M.); (J.T.); (A.T.)
| | - Akitoshi Takeda
- Department of Neurology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan; (S.M.); (J.T.); (A.T.)
| | - Joji Kawabe
- Department of Nuclear Medicine, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan;
| | - Yasuhiro Wada
- RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan; (Y.W.); (A.M.); (Y.W.)
| | - Aya Mawatari
- RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan; (Y.W.); (A.M.); (Y.W.)
| | - Yasuyoshi Watanabe
- RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan; (Y.W.); (A.M.); (Y.W.)
| | - Hitoshi Shimada
- Department of Functional Brain Imaging Research (DOFI), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan; (H.S.); (M.H.); (T.S.)
| | - Makoto Higuchi
- Department of Functional Brain Imaging Research (DOFI), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan; (H.S.); (M.H.); (T.S.)
| | - Tetsuya Suhara
- Department of Functional Brain Imaging Research (DOFI), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan; (H.S.); (M.H.); (T.S.)
| | - Takami Tomiyama
- Department of Translational Neuroscience, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan;
| | - Yoshiaki Itoh
- Department of Neurology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan; (S.M.); (J.T.); (A.T.)
- Correspondence:
| |
Collapse
|
26
|
Biophysical studies of protein misfolding and aggregation in in vivo models of Alzheimer's and Parkinson's diseases. Q Rev Biophys 2020; 49:e22. [PMID: 32493529 DOI: 10.1017/s0033583520000025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurodegenerative disorders, including Alzheimer's (AD) and Parkinson's diseases (PD), are characterised by the formation of aberrant assemblies of misfolded proteins. The discovery of disease-modifying drugs for these disorders is challenging, in part because we still have a limited understanding of their molecular origins. In this review, we discuss how biophysical approaches can help explain the formation of the aberrant conformational states of proteins whose neurotoxic effects underlie these diseases. We discuss in particular models based on the transgenic expression of amyloid-β (Aβ) and tau in AD, and α-synuclein in PD. Because biophysical methods have enabled an accurate quantification and a detailed understanding of the molecular mechanisms underlying protein misfolding and aggregation in vitro, we expect that the further development of these methods to probe directly the corresponding mechanisms in vivo will open effective routes for diagnostic and therapeutic interventions.
Collapse
|
27
|
Rao SS, Lago L, Gonzalez de Vega R, Bray L, Hare DJ, Clases D, Doble PA, Adlard PA. Characterising the spatial and temporal brain metal profile in a mouse model of tauopathy. Metallomics 2020; 12:301-313. [PMID: 31904058 DOI: 10.1039/c9mt00267g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A dysregulation in the homeostasis of metals such as copper, iron and zinc is speculated to be involved in the pathogenesis of tauopathies, which includes Alzheimer's disease (AD). In particular, there is a growing body of evidence to support a role for iron in facilitating the hyperphosphorylation and aggregation of the tau protein into neurofibrillary tangles (NFTs) - a primary neuropathological hallmark of tauopathies. Therefore, the aim of this study was to characterize the spatial and temporal brain metallomic profile in a mouse model of tauopathy (rTg(tauP301L)4510), so as to provide some insight into the potential interaction between tau pathology and iron. Using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), our results revealed an age-dependent increase in brain iron levels in both WT and rTg(tauP301L)4510 mice. In addition, size exclusion chromatography-ICP-MS (SEC-ICP-MS) revealed significant age-related changes in iron bound to metalloproteins such as ferritin. The outcomes from this study may provide valuable insight into the inter-relationship between iron and tau in ageing and neurodegeneration.
Collapse
Affiliation(s)
- Shalini S Rao
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, The Melbourne Dementia Research Centre, Parkville, Victoria, Australia.
| | - Larissa Lago
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, The Melbourne Dementia Research Centre, Parkville, Victoria, Australia.
| | | | - Lisa Bray
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, The Melbourne Dementia Research Centre, Parkville, Victoria, Australia.
| | - Dominic J Hare
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, The Melbourne Dementia Research Centre, Parkville, Victoria, Australia.
| | - David Clases
- The Atomic Medicine Initiative, University of Technology Sydney, Sydney, NSW, Australia
| | - Philip A Doble
- The Atomic Medicine Initiative, University of Technology Sydney, Sydney, NSW, Australia
| | - Paul A Adlard
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, The Melbourne Dementia Research Centre, Parkville, Victoria, Australia.
| |
Collapse
|
28
|
APP Osaka Mutation in Familial Alzheimer's Disease-Its Discovery, Phenotypes, and Mechanism of Recessive Inheritance. Int J Mol Sci 2020; 21:ijms21041413. [PMID: 32093100 PMCID: PMC7073033 DOI: 10.3390/ijms21041413] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease is believed to begin with synaptic dysfunction caused by soluble Aβ oligomers. When this oligomer hypothesis was proposed in 2002, there was no direct evidence that Aβ oligomers actually disrupt synaptic function to cause cognitive impairment in humans. In patient brains, both soluble and insoluble Aβ species always coexist, and therefore it is difficult to determine which pathologies are caused by Aβ oligomers and which are caused by amyloid fibrils. Thus, no validity of the oligomer hypothesis was available until the Osaka mutation was discovered. This mutation, which was found in a Japanese pedigree of familial Alzheimer’s disease, is the deletion of codon 693 of APP gene, resulting in mutant Aβ lacking the 22nd glutamate. Only homozygous carriers suffer from dementia. In vitro studies revealed that this mutation has a very unique character that accelerates Aβ oligomerization but does not form amyloid fibrils. Model mice expressing this mutation demonstrated that all pathologies of Alzheimer’s disease can be induced by Aβ oligomers alone. In this review, we describe the story behind the discovery of the Osaka mutation, summarize the mutant’s phenotypes, and propose a mechanism of its recessive inheritance.
Collapse
|
29
|
Miguel L, Frebourg T, Campion D, Lecourtois M. Moderate Overexpression of Tau in Drosophila Exacerbates Amyloid-β-Induced Neuronal Phenotypes and Correlates with Tau Oligomerization. J Alzheimers Dis 2020; 74:637-647. [PMID: 32065789 DOI: 10.3233/jad-190906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Alzheimer's disease (AD) is neuropathologically defined by two key hallmarks: extracellular senile plaques composed primarily of amyloid-β (Aβ) peptide and intraneuronal neurofibrillary tangles, containing abnormally hyperphosphorylated tau protein. The tau protein is encoded by the MAPT gene. Recently, the H1 and H2 haplotypes of the MAPT gene were associated with AD risk. The minor MAPT H2 haplotype has been linked with a decreased risk of developing late-onset AD (LOAD). MAPT haplotypes show different levels of MAPT/Tau expression with H1 being ∼1.5-fold more expressed than H2, suggesting that MAPT expression level could be related to LOAD risk. In this study, we investigated whether this moderate difference in MAPT/Tau expression could influence Aβ-induced toxicity in vivo. We show that modest overexpression of tau protein in Drosophila exacerbates neuronal phenotypes in AβPP/BACE1 flies. The exacerbation of neuronal defects correlates with the accumulation of insoluble dTau oligomers, suggesting that the moderate difference in level of tau expression observed between H1 and H2 haplotypes could influence Aβ toxicity through the production of oligomeric tau insoluble species.
Collapse
Affiliation(s)
- Laetitia Miguel
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Thierry Frebourg
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Dominique Campion
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France.,Centre Hospitalier du Rouvray, Sotteville-Lès-Rouen, France
| | - Magalie Lecourtois
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| |
Collapse
|
30
|
Laos V, Bishop D, Lang CA, Marsh NM, Cantrell KL, Buratto SK, Singh AK, Bowers MT. Modulating ALS-Related Amyloidogenic TDP-43 307-319 Oligomeric Aggregates with Computationally Derived Therapeutic Molecules. Biochemistry 2019; 59:499-508. [PMID: 31846303 DOI: 10.1021/acs.biochem.9b00905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
TDP-43 aggregates are a salient feature of amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and a variety of other neurodegenerative diseases, including Alzheimer's disease (AD). With an anticipated growth in the most susceptible demographic, projections predict neurodegenerative diseases will potentially affect 15 million people in the United States by 2050. Currently, there are no cures for ALS, FTD, or AD. Previous studies of the amyloidogenic core of TDP-43 have demonstrated that oligomers greater than a trimer are associated with toxicity. Utilizing a joint pharmacophore space (JPS) method, potential drugs have been designed specifically for amyloid-related diseases. These molecules were generated on the basis of key chemical features necessary for blood-brain barrier permeability, low adverse side effects, and target selectivity. Combining ion-mobility mass spectrometry and atomic force microscopy with the JPS computational method allows us to more efficiently evaluate a potential drug's efficacy in disrupting the development of putative toxic species. Our results demonstrate the dissociation of higher-order oligomers in the presence of these novel JPS-generated inhibitors into smaller oligomer species. Additionally, drugs approved by the Food and Drug Administration for the treatment of ALS were also evaluated and demonstrated to maintain higher-order oligomeric assemblies. Possible mechanisms for the observed action of the JPS molecules are discussed.
Collapse
Affiliation(s)
- Veronica Laos
- Department of Chemistry & Biochemistry , University of California, Santa Barbara , Santa Barbara , California 93106 , United States
| | - Dezmond Bishop
- Department of Chemistry & Biochemistry , University of California, Santa Barbara , Santa Barbara , California 93106 , United States
| | | | - Nicole M Marsh
- Department of Chemistry , Westmont College , Santa Barbaraa , California 93108 , United States
| | - Kristi Lazar Cantrell
- Department of Chemistry , Westmont College , Santa Barbaraa , California 93108 , United States
| | - Steven K Buratto
- Department of Chemistry & Biochemistry , University of California, Santa Barbara , Santa Barbara , California 93106 , United States
| | - Ambuj K Singh
- Department of Computer Science , University of California, Santa Barbara , Santa Barbara , California 93106-5110 , United States
| | - Michael T Bowers
- Department of Chemistry & Biochemistry , University of California, Santa Barbara , Santa Barbara , California 93106 , United States
| |
Collapse
|
31
|
Ectopic Expression Induces Abnormal Somatodendritic Distribution of Tau in the Mouse Brain. J Neurosci 2019; 39:6781-6797. [PMID: 31235644 DOI: 10.1523/jneurosci.2845-18.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 01/09/2023] Open
Abstract
Tau is a microtubule (MT)-associated protein that is localized to the axon. In Alzheimer's disease, the distribution of tau undergoes a remarkable alteration, leading to the formation of tau inclusions in the somatodendritic compartment. To investigate how this mislocalization occurs, we recently developed immunohistochemical tools that can separately detect endogenous mouse and exogenous human tau with high sensitivity, which allows us to visualize not only the pathological but also the pre-aggregated tau in mouse brain tissues of both sexes. Using these antibodies, we found that in tau-transgenic mouse brains, exogenous human tau was abundant in dendrites and somata even in the presymptomatic period, whereas the axonal localization of endogenous mouse tau was unaffected. In stark contrast, exogenous tau was properly localized to the axon in human tau knock-in mice. We tracked this difference to the temporal expression patterns of tau. Endogenous mouse tau and exogenous human tau in human tau knock-in mice exhibited high expression levels during the neonatal period and strong suppression into the adulthood. However, human tau in transgenic mice was expressed continuously and at high levels in adult animals. These results indicated the uncontrolled expression of exogenous tau beyond the developmental period as a cause of mislocalization in the transgenic mice. Superresolution microscopic and biochemical analyses also indicated that the interaction between MTs and exogenous tau was impaired only in the tau-transgenic mice, but not in knock-in mice. Thus, the ectopic expression of tau may be critical for its somatodendritic mislocalization, a key step of the tauopathy.SIGNIFICANCE STATEMENT Somatodendritic localization of tau may be an early step leading to the neuronal degeneration in tauopathies. However, the mechanisms of the normal axonal distribution of tau and the mislocalization of pathological tau remain obscure. Our immunohistochemical and biochemical analyses demonstrated that the endogenous mouse tau is transiently expressed in neonatal brains, that exogenous human tau expressed corresponding to such tau expression profile can distribute into the axon, and that the constitutive expression of tau into adulthood (e.g., human tau in transgenic mice) results in abnormal somatodendritic localization. Thus, the expression profile of tau is tightly associated with the localization of tau, and the ectopic expression of tau in matured neurons may be involved in the pathogenesis of tauopathy.
Collapse
|
32
|
Cline EN, Bicca MA, Viola KL, Klein WL. The Amyloid-β Oligomer Hypothesis: Beginning of the Third Decade. J Alzheimers Dis 2019; 64:S567-S610. [PMID: 29843241 PMCID: PMC6004937 DOI: 10.3233/jad-179941] [Citation(s) in RCA: 598] [Impact Index Per Article: 99.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The amyloid-β oligomer (AβO) hypothesis was introduced in 1998. It proposed that the brain damage leading to Alzheimer’s disease (AD) was instigated by soluble, ligand-like AβOs. This hypothesis was based on the discovery that fibril-free synthetic preparations of AβOs were potent CNS neurotoxins that rapidly inhibited long-term potentiation and, with time, caused selective nerve cell death (Lambert et al., 1998). The mechanism was attributed to disrupted signaling involving the tyrosine-protein kinase Fyn, mediated by an unknown toxin receptor. Over 4,000 articles concerning AβOs have been published since then, including more than 400 reviews. AβOs have been shown to accumulate in an AD-dependent manner in human and animal model brain tissue and, experimentally, to impair learning and memory and instigate major facets of AD neuropathology, including tau pathology, synapse deterioration and loss, inflammation, and oxidative damage. As reviewed by Hayden and Teplow in 2013, the AβO hypothesis “has all but supplanted the amyloid cascade.” Despite the emerging understanding of the role played by AβOs in AD pathogenesis, AβOs have not yet received the clinical attention given to amyloid plaques, which have been at the core of major attempts at therapeutics and diagnostics but are no longer regarded as the most pathogenic form of Aβ. However, if the momentum of AβO research continues, particularly efforts to elucidate key aspects of structure, a clear path to a successful disease modifying therapy can be envisioned. Ensuring that lessons learned from recent, late-stage clinical failures are applied appropriately throughout therapeutic development will further enable the likelihood of a successful therapy in the near-term.
Collapse
Affiliation(s)
- Erika N Cline
- Department of Neurobiology, Cognitive Neurology and Alzheimer's Disease Center, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Maíra Assunção Bicca
- Department of Neurobiology, Cognitive Neurology and Alzheimer's Disease Center, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Kirsten L Viola
- Department of Neurobiology, Cognitive Neurology and Alzheimer's Disease Center, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - William L Klein
- Department of Neurobiology, Cognitive Neurology and Alzheimer's Disease Center, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| |
Collapse
|
33
|
Relationship Between Tau, β Amyloid and α-Synuclein Pathologies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1184:169-176. [PMID: 32096037 DOI: 10.1007/978-981-32-9358-8_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
It is becoming increasing clear that multiple pathological lesions co-exist in the brains of the demented and non-demented elderly, and with putative interactions revealed at the molecular level in addition to the cumulative effects on brain damage, mounting evidence suggests manifestation of multiple protein aggregates will have implications for the clinical course of many neurodegenerative diseases associated with dementia. In this section we will discuss how the presence of multiple pathological lesions can affect the pathological and clinical phenotype of neurodegenerative disorders.
Collapse
|
34
|
Downey MA, Giammona MJ, Lang CA, Buratto SK, Singh A, Bowers MT. Inhibiting and Remodeling Toxic Amyloid-Beta Oligomer Formation Using a Computationally Designed Drug Molecule That Targets Alzheimer's Disease. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:85-93. [PMID: 29713966 PMCID: PMC6258352 DOI: 10.1007/s13361-018-1975-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 05/25/2023]
Abstract
Alzheimer's disease (AD) is rapidly reaching epidemic status among a burgeoning aging population. Much evidence suggests the toxicity of this amyloid disease is most influenced by the formation of soluble oligomeric forms of amyloid β-protein, particularly the 42-residue alloform (Aβ42). Developing potential therapeutics in a directed, streamlined approach to treating this disease is necessary. Here we utilize the joint pharmacophore space (JPS) model to design a new molecule [AC0107] incorporating structural characteristics of known Aβ inhibitors, blood-brain barrier permeability, and limited toxicity. To test the molecule's efficacy experimentally, we employed ion mobility mass spectrometry (IM-MS) to discover [AC0107] inhibits the formation of the toxic Aβ42 dodecamer at both high (1:10) and equimolar concentrations of inhibitor. Atomic force microscopy (AFM) experiments reveal that [AC0107] prevents further aggregation of Aβ42, destabilizes preformed fibrils, and reverses Aβ42 aggregation. This trend continues for long-term interaction times of 2 days until only small aggregates remain with virtually no fibrils or higher order oligomers surviving. Pairing JPS with IM-MS and AFM presents a powerful and effective first step for AD drug development. Graphical Abstract.
Collapse
Affiliation(s)
- Matthew A Downey
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Maxwell J Giammona
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Christian A Lang
- Acelot, Inc., 5385 Hollister Ave, Suite 111, Santa Barbara, CA, 93111, USA
| | - Steven K Buratto
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Ambuj Singh
- Acelot, Inc., 5385 Hollister Ave, Suite 111, Santa Barbara, CA, 93111, USA
- Department of Computer Science, University of California, Santa Barbara, CA, 93106, USA
| | - Michael T Bowers
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
35
|
Rao SS, Adlard PA. Untangling Tau and Iron: Exploring the Interaction Between Iron and Tau in Neurodegeneration. Front Mol Neurosci 2018; 11:276. [PMID: 30174587 PMCID: PMC6108061 DOI: 10.3389/fnmol.2018.00276] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/20/2018] [Indexed: 11/16/2022] Open
Abstract
There is an emerging link between the accumulation of iron in the brain and abnormal tau pathology in a number of neurodegenerative disorders, such as Alzheimer’s disease (AD). Studies have demonstrated that iron can regulate tau phosphorylation by inducing the activity of multiple kinases that promote tau hyperphosphorylation and potentially also by impacting protein phosphatase 2A activity. Iron is also reported to induce the aggregation of hyperphosphorylated tau, possibly through a direct interaction via a putative iron binding motif in the tau protein, facilitating the formation of neurofibrillary tangles (NFTs). Furthermore, in human studies high levels of iron have been reported to co-localize with tau in NFT-bearing neurons. These data, together with our own work showing that tau has a role in mediating cellular iron efflux, provide evidence supporting a critical tau:iron interaction that may impact both the symptomatic presentation and the progression of disease. Importantly, this may also have relevance for therapeutic directions, and indeed, the use of iron chelators such as deferiprone and deferoxamine have been reported to alleviate the phenotypes, reduce phosphorylated tau levels and stabilize iron regulation in various animal models. As these compounds are also moving towards clinical translation, then it is imperative that we understand the intersection between iron and tau in neurodegeneration. In this article, we provide an overview of the key pathological and biochemical interactions between tau and iron. We also review the role of iron and tau in disease pathology and the potential of metal-based therapies for tauopathies.
Collapse
Affiliation(s)
- Shalini S Rao
- Division of Mental Health, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Paul Anthony Adlard
- Division of Mental Health, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
36
|
Spires-Jones TL, Attems J, Thal DR. Interactions of pathological proteins in neurodegenerative diseases. Acta Neuropathol 2017; 134:187-205. [PMID: 28401333 PMCID: PMC5508034 DOI: 10.1007/s00401-017-1709-7] [Citation(s) in RCA: 296] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/30/2017] [Accepted: 04/01/2017] [Indexed: 02/06/2023]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), frontotemporal lobar degeneration (FTD), Lewy body disease (LBD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) have in common that protein aggregates represent pathological hallmark lesions. Amyloid β-protein, τ-protein, α-synuclein, and TDP-43 are the most frequently aggregated proteins in these disorders. Although they are assumed to form disease-characteristic aggregates, such as amyloid plaques and neurofibrillary tangles in AD or Lewy bodies in LBD/PD, they are not restricted to these clinical presentations. They also occur in non-diseased individuals and can co-exist in the same brain without or with a clinical picture of a distinct dementing or movement disorder. In this review, we discuss the co-existence of these pathologies and potential additive effects in the human brain as well as related functional findings on cross-seeding and molecular interactions between these aggregates/proteins. We conclude that there is evidence for interactions at the molecular level as well as for additive effects on brain damage by multiple pathologies occurring in different functionally important neurons. Based upon this information, we hypothesize a cascade of events that may explain general mechanisms in the development of neurodegenerative disorders: (1) distinct lesions are a prerequisite for the development of a distinct disease (e.g., primary age-related tauopathy for AD), (2) disease-specific pathogenic events further trigger the development of a specific disease (e.g., Aβ aggregation in AD that exaggerate further Aβ and AD-related τ pathology), (3) the symptomatic disease manifests, and (4) neurodegenerative co-pathologies may be either purely coincidental or (more likely) have influence on the disease development and/or its clinical presentation.
Collapse
Affiliation(s)
- Tara L Spires-Jones
- Centre for Dementia Prevention, and Euan MacDonald Centre for Motor Neurone Disease, The University of Edinburgh Centre for Cognitive and Neural Systems, 1 George Square, Edinburgh, EH8 9JZ, UK.
| | - Johannes Attems
- Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Dietmar Rudolf Thal
- Departement Neurowetenschappen, Katholieke Universiteit Leuven, Herestraat 49, 3000, Leuven, Belgium
- Departement Pathologische Ontleedkunde, UZ Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
37
|
Drummond E, Wisniewski T. Alzheimer's disease: experimental models and reality. Acta Neuropathol 2017; 133:155-175. [PMID: 28025715 PMCID: PMC5253109 DOI: 10.1007/s00401-016-1662-x] [Citation(s) in RCA: 500] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 12/15/2022]
Abstract
Experimental models of Alzheimer's disease (AD) are critical to gaining a better understanding of pathogenesis and to assess the potential of novel therapeutic approaches. The most commonly used experimental animal models are transgenic mice that overexpress human genes associated with familial AD (FAD) that result in the formation of amyloid plaques. However, AD is defined by the presence and interplay of both amyloid plaques and neurofibrillary tangle pathology. The track record of success in AD clinical trials thus far has been very poor. In part, this high failure rate has been related to the premature translation of highly successful results in animal models that mirror only limited aspects of AD pathology to humans. A greater understanding of the strengths and weakness of each of the various models and the use of more than one model to evaluate potential therapies would help enhance the success of therapy translation from preclinical studies to patients. In this review, we summarize the pathological features and limitations of the major experimental models of AD, including transgenic mice, transgenic rats, various physiological models of sporadic AD and in vitro human cell culture models.
Collapse
Affiliation(s)
- Eleanor Drummond
- Center for Cognitive Neurology and Department of Neurology, NYU School of Medicine, Alexandria ERSP, 450 East 29th Street, New York, NY, 10016, USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology and Departments of Neurology, Pathology and Psychiatry, NYU School of Medicine, Alexandria ERSP, 450 East 29th Street, New York, NY, 10016, USA.
| |
Collapse
|
38
|
Jackson RJ, Rudinskiy N, Herrmann AG, Croft S, Kim JM, Petrova V, Ramos-Rodriguez JJ, Pitstick R, Wegmann S, Garcia-Alloza M, Carlson GA, Hyman BT, Spires-Jones TL. Human tau increases amyloid β plaque size but not amyloid β-mediated synapse loss in a novel mouse model of Alzheimer's disease. Eur J Neurosci 2016; 44:3056-3066. [PMID: 27748574 PMCID: PMC5215483 DOI: 10.1111/ejn.13442] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/21/2016] [Accepted: 10/13/2016] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease is characterized by the presence of aggregates of amyloid beta (Aβ) in senile plaques and tau in neurofibrillary tangles, as well as marked neuron and synapse loss. Of these pathological changes, synapse loss correlates most strongly with cognitive decline. Synapse loss occurs prominently around plaques due to accumulations of oligomeric Aβ. Recent evidence suggests that tau may also play a role in synapse loss but the interactions of Aβ and tau in synapse loss remain to be determined. In this study, we generated a novel transgenic mouse line, the APP/PS1/rTg21221 line, by crossing APP/PS1 mice, which develop Aβ‐plaques and synapse loss, with rTg21221 mice, which overexpress wild‐type human tau. When compared to the APP/PS1 mice without human tau, the cross‐sectional area of ThioS+ dense core plaques was increased by ~50%. Along with increased plaque size, we observed an increase in plaque‐associated dystrophic neurites containing misfolded tau, but there was no exacerbation of neurite curvature or local neuron loss around plaques. Array tomography analysis similarly revealed no worsening of synapse loss around plaques, and no change in the accumulation of Aβ at synapses. Together, these results indicate that adding human wild‐type tau exacerbates plaque pathology and neurite deformation but does not exacerbate plaque‐associated synapse loss.
Collapse
Affiliation(s)
- Rosemary J Jackson
- Centre for Cognitive and Neural Systems and Centre for Dementia Prevention, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Nikita Rudinskiy
- Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Abigail G Herrmann
- Centre for Cognitive and Neural Systems and Centre for Dementia Prevention, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Shaun Croft
- Centre for Cognitive and Neural Systems and Centre for Dementia Prevention, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - JeeSoo Monica Kim
- Centre for Cognitive and Neural Systems and Centre for Dementia Prevention, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Veselina Petrova
- Centre for Cognitive and Neural Systems and Centre for Dementia Prevention, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | | | | | - Susanne Wegmann
- Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | | | | | - Bradley T Hyman
- Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Tara L Spires-Jones
- Centre for Cognitive and Neural Systems and Centre for Dementia Prevention, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| |
Collapse
|
39
|
Bodea L, Eckert A, Ittner LM, Piguet O, Götz J. Tau physiology and pathomechanisms in frontotemporal lobar degeneration. J Neurochem 2016; 138 Suppl 1:71-94. [PMID: 27306859 PMCID: PMC5094566 DOI: 10.1111/jnc.13600] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/31/2016] [Accepted: 02/24/2016] [Indexed: 12/27/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) has been associated with toxic intracellular aggregates of hyperphosphorylated tau (FTLD-tau). Moreover, genetic studies identified mutations in the MAPT gene encoding tau in familial cases of the disease. In this review, we cover a range of aspects of tau function, both in the healthy and diseased brain, discussing several in vitro and in vivo models. Tau structure and function in the healthy brain is presented, accentuating its distinct compartmentalization in neurons and its role in microtubule stabilization and axonal transport. Furthermore, tau-driven pathology is discussed, introducing current concepts and the underlying experimental evidence. Different aspects of pathological tau phosphorylation, the protein's genomic and domain organization as well as its spreading in disease, together with MAPT-associated mutations and their respective models are presented. Dysfunction related to other post-transcriptional modifications and their effect on normal neuronal functions such as cell cycle, epigenetics and synapse dynamics are also discussed, providing a mechanistic explanation for the observations made in FTLD-tau cases, with the possibility for therapeutic intervention. In this review, we cover aspects of tau function, both in the healthy and diseased brain, referring to different in vitro and in vivo models. In healthy neurons, tau is compartmentalized, with higher concentrations found in the distal part of the axon. Cargo molecules are sensitive to this gradient. A disturbed tau distribution, as found in frontotemporal lobar degeneration (FTLD-tau), has severe consequences for cellular physiology: tau accumulates in the neuronal soma and dendrites, leading among others to microtubule depolymerization and impaired axonal transport. Tau forms insoluble aggregates that sequester additional molecules stalling cellular physiology. Neuronal communication is gradually lost as toxic tau accumulates in dendritic spines with subsequent degeneration of synapses and synaptic loss. Thus, by providing a mechanistic explanation for the observations made in FTLD-tau cases, arises a possibility for therapeutic interventions. This article is part of the Frontotemporal Dementia special issue.
Collapse
Affiliation(s)
- Liviu‐Gabriel Bodea
- Clem Jones Centre for Ageing Dementia ResearchQueensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Anne Eckert
- Neurobiology LaboratoryPsychiatric University Clinics BaselUniversity of BaselBaselSwitzerland
| | - Lars Matthias Ittner
- Dementia Research UnitSchool of Medical SciencesFaculty of MedicineUniversity of New South WalesSydneyNSWAustralia
| | | | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia ResearchQueensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
40
|
Umeda T, Ono K, Sakai A, Yamashita M, Mizuguchi M, Klein WL, Yamada M, Mori H, Tomiyama T. Rifampicin is a candidate preventive medicine against amyloid-β and tau oligomers. Brain 2016; 139:1568-86. [PMID: 27020329 DOI: 10.1093/brain/aww042] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 01/04/2016] [Indexed: 01/02/2023] Open
Abstract
Amyloid-β, tau, and α-synuclein, or more specifically their soluble oligomers, are the aetiologic molecules in Alzheimer's disease, tauopathies, and α-synucleinopathies, respectively. These proteins have been shown to interact to accelerate each other's pathology. Clinical studies of amyloid-β-targeting therapies in Alzheimer's disease have revealed that the treatments after disease onset have little benefit on patient cognition. These findings prompted us to explore a preventive medicine which is orally available, has few adverse effects, and is effective at reducing neurotoxic oligomers with a broad spectrum. We initially tested five candidate compounds: rifampicin, curcumin, epigallocatechin-3-gallate, myricetin, and scyllo-inositol, in cells expressing amyloid precursor protein (APP) with the Osaka (E693Δ) mutation, which promotes amyloid-β oligomerization. Among these compounds, rifampicin, a well-known antibiotic, showed the strongest activities against the accumulation and toxicity (i.e. cytochrome c release from mitochondria) of intracellular amyloid-β oligomers. Under cell-free conditions, rifampicin inhibited oligomer formation of amyloid-β, tau, and α-synuclein, indicating its broad spectrum. The inhibitory effects of rifampicin against amyloid-β and tau oligomers were evaluated in APPOSK mice (amyloid-β oligomer model), Tg2576 mice (Alzheimer's disease model), and tau609 mice (tauopathy model). When orally administered to 17-month-old APPOSK mice at 0.5 and 1 mg/day for 1 month, rifampicin reduced the accumulation of amyloid-β oligomers as well as tau hyperphosphorylation, synapse loss, and microglial activation in a dose-dependent manner. In the Morris water maze, rifampicin at 1 mg/day improved memory of the mice to a level similar to that in non-transgenic littermates. Rifampicin also inhibited cytochrome c release from the mitochondria and caspase 3 activation in the hippocampus. In 13-month-old Tg2576 mice, oral rifampicin at 0.5 mg/day for 1 month decreased amyloid-β oligomer accumulation, tau hyperphosphorylation, synapse loss, and microglial activation, but not amyloid deposition. Rifampicin treatment to 14-15-month-old tau609 mice at 0.5 and 1 mg/day for 1 month also reduced tau oligomer accumulation, tau hyperphosphorylation, synapse loss, and microglial activation in a dose-dependent fashion, and improved the memory almost completely at 1 mg/day. In addition, rifampicin decreased the level of p62/sequestosome-1 in the brain without affecting the increased levels of LC3 (microtubule-associated protein light chain 3) conversion, suggesting the restoration of autophagy-lysosomal function. Considering its prescribed dose and safety in humans, these results indicate that rifampicin could be a promising, ready-to-use medicine for the prevention of Alzheimer's disease and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Tomohiro Umeda
- Department of Neuroscience, Osaka City University Graduate School of Medicine, Osaka, Japan Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Kenjiro Ono
- Department of Neurology and Neurobiology and Aging, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Ayumi Sakai
- Department of Neuroscience, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Minato Yamashita
- Department of Neuroscience, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Mineyuki Mizuguchi
- Laboratory of Structual Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - William L Klein
- Department of Neurobiology, Weinberg College of Arts and Science, Northwestern University, Evanston, IL, USA
| | - Masahito Yamada
- Department of Neurology and Neurobiology and Aging, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Hiroshi Mori
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan Department of Clinical Neuroscience, Osaka City University Medical School, Osaka, Japan
| | - Takami Tomiyama
- Department of Neuroscience, Osaka City University Graduate School of Medicine, Osaka, Japan Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
41
|
Chambers JK, Tokuda T, Uchida K, Ishii R, Tatebe H, Takahashi E, Tomiyama T, Une Y, Nakayama H. The domestic cat as a natural animal model of Alzheimer's disease. Acta Neuropathol Commun 2015; 3:78. [PMID: 26651821 PMCID: PMC4674944 DOI: 10.1186/s40478-015-0258-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 11/19/2015] [Indexed: 12/27/2022] Open
Abstract
Introduction Alzheimer’s disease (AD) is the most dominant neurodegenerative disorder that causes dementia, and no effective treatments are available. To study its pathogenesis and develop therapeutics, animal models representing its pathologies are needed. Although many animal species develop senile plaques (SP) composed of amyloid-β (Aβ) proteins that are identical to those found in humans, none of them exhibit neurofibrillary tangles (NFT) and subsequent neurodegeneration, which are integral parts of the pathology of AD. Results The present study shows that Aβ accumulation, NFT formation, and significant neuronal loss all emerge naturally in the hippocampi of aged domestic cats. The NFT that form in the cat brain are identical to those seen in human AD in terms of their spatial distribution, the cells they affect, and the tau isoforms that comprise them. Interestingly, aged cats do not develop mature argyrophilic SP, but instead accumulate intraneuronal Aβ oligomers in their hippocampal pyramidal cells, which might be due to the amino acid sequence of felid Aβ. Conclusions These results suggest that Aβ oligomers are more important than SP for NFT formation and the subsequent neurodegeneration. The domestic cat is a unique animal species that naturally replicates various AD pathologies, especially Aβ oligomer accumulation, NFT formation, and neuronal loss. Electronic supplementary material The online version of this article (doi:10.1186/s40478-015-0258-3) contains supplementary material, which is available to authorized users.
Collapse
|
42
|
Gidyk DC, Deibel SH, Hong NS, McDonald RJ. Barriers to developing a valid rodent model of Alzheimer's disease: from behavioral analysis to etiological mechanisms. Front Neurosci 2015; 9:245. [PMID: 26283893 PMCID: PMC4518326 DOI: 10.3389/fnins.2015.00245] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/29/2015] [Indexed: 12/30/2022] Open
Abstract
Sporadic Alzheimer's disease (AD) is the most prevalent form of age-related dementia. As such, great effort has been put forth to investigate the etiology, progression, and underlying mechanisms of the disease. Countless studies have been conducted, however, the details of this disease remain largely unknown. Rodent models provide opportunities to investigate certain aspects of AD that cannot be studied in humans. These animal models vary from study to study and have provided some insight, but no real advancements in the prevention or treatment of the disease. In this Hypothesis and Theory paper, we discuss what we perceive as barriers to impactful discovery in rodent AD research and we offer potential solutions for moving forward. Although no single model of AD is capable of providing the solution to the growing epidemic of the disease, we encourage a comprehensive approach that acknowledges the complex etiology of AD with the goal of enhancing the bidirectional translatability from bench to bedside and vice versa.
Collapse
Affiliation(s)
- Darryl C. Gidyk
- *Correspondence: Darryl C. Gidyk, Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 6W4, Canada
| | | | | | | |
Collapse
|
43
|
Dorostkar MM, Zou C, Blazquez-Llorca L, Herms J. Analyzing dendritic spine pathology in Alzheimer's disease: problems and opportunities. Acta Neuropathol 2015; 130:1-19. [PMID: 26063233 PMCID: PMC4469300 DOI: 10.1007/s00401-015-1449-5] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/02/2015] [Accepted: 06/02/2015] [Indexed: 12/22/2022]
Abstract
Synaptic failure is an immediate cause of cognitive decline and memory dysfunction in Alzheimer’s disease. Dendritic spines are specialized structures on neuronal processes, on which excitatory synaptic contacts take place and the loss of dendritic spines directly correlates with the loss of synaptic function. Dendritic spines are readily accessible for both in vitro and in vivo experiments and have, therefore, been studied in great detail in Alzheimer’s disease mouse models. To date, a large number of different mechanisms have been proposed to cause dendritic spine dysfunction and loss in Alzheimer’s disease. For instance, amyloid beta fibrils, diffusible oligomers or the intracellular accumulation of amyloid beta have been found to alter the function and structure of dendritic spines by distinct mechanisms. Furthermore, tau hyperphosphorylation and microglia activation, which are thought to be consequences of amyloidosis in Alzheimer’s disease, may also contribute to spine loss. Lastly, genetic and therapeutic interventions employed to model the disease and elucidate its pathogenetic mechanisms in experimental animals may cause alterations of dendritic spines on their own. However, to date none of these mechanisms have been translated into successful therapeutic approaches for the human disease. Here, we critically review the most intensely studied mechanisms of spine loss in Alzheimer’s disease as well as the possible pitfalls inherent in the animal models of such a complex neurodegenerative disorder.
Collapse
Affiliation(s)
- Mario M. Dorostkar
- />Ludwig-Maximilians University Munich, Center for Neuropathology and Prion Research, Feodor-Lynen-Str. 23, 81377 Munich, Germany
| | - Chengyu Zou
- />Ludwig-Maximilians University Munich, Center for Neuropathology and Prion Research, Feodor-Lynen-Str. 23, 81377 Munich, Germany
- />Graduate School of Systemic Neuroscience, Ludwig-Maximilians-University Munich, Munich, Germany
- />German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Str. 23, 81377 Munich, Germany
| | - Lidia Blazquez-Llorca
- />Ludwig-Maximilians University Munich, Center for Neuropathology and Prion Research, Feodor-Lynen-Str. 23, 81377 Munich, Germany
- />German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Str. 23, 81377 Munich, Germany
| | - Jochen Herms
- />German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Str. 23, 81377 Munich, Germany
- />Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
44
|
Yamakuni T, Kawahata I. [Pharmacological superiority of nobiletin-rich Citrus reticulata peel, a multicomponent drug, over nobiletin alone regarding anti-dementia action]. Nihon Yakurigaku Zasshi 2015; 145:229-33. [PMID: 25958909 DOI: 10.1254/fpj.145.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Murakami K. Conformation-specific antibodies to target amyloid β oligomers and their application to immunotherapy for Alzheimer's disease. Biosci Biotechnol Biochem 2015; 78:1293-305. [PMID: 25130729 DOI: 10.1080/09168451.2014.940275] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Amyloid β-protein (Aβ) oligomers, intermediates of Aβ aggregation, cause cognitive impairment and synaptotoxicity in the pathogenesis of Alzheimer's disease (AD). Immunotherapy using anti-Aβ antibody is one of the most promising approaches for AD treatment. However, most clinical trials using conventional sequence-specific antibodies have proceeded with difficulty. This is probably due to the unintended removal of the non-pathological monomer and fibrils of Aβ as well as the pathological oligomers by these antibodies that recognize Aβ sequence, which is not involved in synaptotoxicity. Several efforts have been made recently to develop conformation-specific antibodies that target the tertiary structure of Aβ oligomers. Here, we review the recent findings of Aβ oligomers and anti-Aβ antibodies including our own, and discuss their potential as therapeutic and diagnostic tools.
Collapse
Affiliation(s)
- Kazuma Murakami
- a Division of Food Science and Biotechnology , Graduate School of Agriculture, Kyoto University , Kyoto , Japan
| |
Collapse
|
46
|
Baker S, Götz J. What we can learn from animal models about cerebral multi-morbidity. ALZHEIMERS RESEARCH & THERAPY 2015; 7:11. [PMID: 25810783 PMCID: PMC4373088 DOI: 10.1186/s13195-015-0097-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Late-onset diseases such as Alzheimer's disease, Parkinson's disease, or frontotemporal lobar degeneration are considered to be protein-folding disorders, with the accumulation of protein deposits causing a gain-of-toxic function. Alzheimer's disease is characterized by two histological hallmark lesions: amyloid-β-containing plaques and tau-containing neurofibrillary tangles. However, signature proteins, including α-synuclein, which are found in an aggregated fibrillar form in the Lewy bodies of Parkinson's disease brains, are also frequently found in Alzheimer's disease. This highlights the fact that, although specific aggregates form the basis for diagnosis, there is a high prevalence of clinical overlap between neuropathological lesions linked to different diseases, a finding known as cerebral co- or multi-morbidity. Furthermore, the proteins forming these lesions interact, and this interaction accelerates an ongoing degenerative process. Here, we review the contribution that transgenic animal models have made to a better mechanistic understanding of the causes and consequences of co- or multi-morbidity. We discuss selected vertebrate and invertebrate models as well as the insight gained from non-transgenic senescence-accelerated mouse-prone mice. This article is part of a series on 'Cerebral multi-morbidity of the aging brain'.
Collapse
Affiliation(s)
- Siân Baker
- Clem Jones Centre for Aging Dementia Research, Queensland Brain Institute, The University of Queensland, Upland Road, Building 79, St Lucia Campus, Brisbane, QLD 4072 Australia
| | - Jürgen Götz
- Clem Jones Centre for Aging Dementia Research, Queensland Brain Institute, The University of Queensland, Upland Road, Building 79, St Lucia Campus, Brisbane, QLD 4072 Australia
| |
Collapse
|
47
|
Umeda T, Eguchi H, Kunori Y, Matsumoto Y, Taniguchi T, Mori H, Tomiyama T. Passive immunotherapy of tauopathy targeting pSer413-tau: a pilot study in mice. Ann Clin Transl Neurol 2015; 2:241-55. [PMID: 25815351 PMCID: PMC4369274 DOI: 10.1002/acn3.171] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 11/17/2022] Open
Abstract
Objective Cellular inclusions of hyperphosphorylated tau are a hallmark of tauopathies, which are neurodegenerative disorders that include Alzheimer's disease (AD). Active and passive immunization against hyperphosphorylated tau has been shown to attenuate phenotypes in model mice. We developed new monoclonal antibodies to hyperphosphorylated tau and sought high therapeutic efficacy for future clinical use. Methods Using more than 20 antibodies, we investigated which sites on tau are phosphorylated early and highly in the tauopathy mouse models tau609 and tau784. These mice display tau hyperphosphorylation, synapse loss, memory impairment at 6 months, and tangle formation and neuronal loss at 15 months. We generated mouse monoclonal antibodies to selected epitopes and examined their effects on memory and tau pathology in aged tau609 and tau784 mice by the Morris water maze and by histological and biochemical analyses. Results Immunohistochemical screening revealed that pSer413 is expressed early and highly. Monoclonal antibodies to pSer413 and to pSer396 (control) were generated. These antibodies specifically recognized pathological tau in AD brains but not normal tau in control brains according to Western blots. Representative anti-pSer413 and anti-pSer396 antibodies were injected intraperitoneally into 10–11- or 14-month-old mice once a week at 0.1 or 1 mg/shot 5 times. The anti-pSer413 antibody significantly improved memory, whereas the anti-pSer396 antibodies showed less effect. The cognitive improvement paralleled a reduction in the levels of tau hyperphosphorylation, tau oligomer accumulation, synapse loss, tangle formation, and neuronal loss. Interpretation These results indicate that pSer413 is a promising target in the treatment of tauopathy.
Collapse
Affiliation(s)
- Tomohiro Umeda
- Department of Neuroscience, Osaka City University Graduate School of Medicine Osaka, Japan
| | - Hiroshi Eguchi
- Teijin Institute for Bio-medical Research, Teijin Pharma Limited Hino, Japan
| | - Yuichi Kunori
- Teijin Institute for Bio-medical Research, Teijin Pharma Limited Hino, Japan
| | - Yoichi Matsumoto
- Teijin Institute for Bio-medical Research, Teijin Pharma Limited Hino, Japan
| | - Taizo Taniguchi
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University Himeji, Japan
| | - Hiroshi Mori
- Department of Neuroscience, Osaka City University Graduate School of Medicine Osaka, Japan
| | - Takami Tomiyama
- Department of Neuroscience, Osaka City University Graduate School of Medicine Osaka, Japan
| |
Collapse
|
48
|
Stancu IC, Vasconcelos B, Terwel D, Dewachter I. Models of β-amyloid induced Tau-pathology: the long and "folded" road to understand the mechanism. Mol Neurodegener 2014; 9:51. [PMID: 25407337 PMCID: PMC4255655 DOI: 10.1186/1750-1326-9-51] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 10/14/2014] [Indexed: 02/28/2023] Open
Abstract
The amyloid cascade hypothesis has been the prevailing hypothesis in Alzheimer’s Disease research, although the final and most wanted proof i.e. fully successful anti-amyloid clinical trials in patients, is still lacking. This may require a better in depth understanding of the cascade. Particularly, the exact toxic forms of Aβ and Tau, the molecular link between them and their respective contributions to the disease process need to be identified in detail. Although the lack of final proof has raised substantial criticism on the hypothesis per se, accumulating experimental evidence in in vitro models, in vivo models and from biomarkers analysis in patients supports the amyloid cascade and particularly Aβ-induced Tau-pathology, which is the focus of this review. We here discuss available models that recapitulate Aβ-induced Tau-pathology and review some potential underlying mechanisms. The availability and diversity of these models that mimic the amyloid cascade partially or more complete, provide tools to study remaining questions, which are crucial for development of therapeutic strategies for Alzheimer’s Disease.
Collapse
Affiliation(s)
| | | | | | - Ilse Dewachter
- Catholic University of Louvain, Institute of Neuroscience, Alzheimer Dementia, Av, E, Mounier 53, Av, Hippocrate 54, B-1200 Brussels, Belgium.
| |
Collapse
|
49
|
Chojnacki JE, Liu K, Yan X, Toldo S, Selden T, Estrada M, Rodríguez-Franco MI, Halquist MS, Ye D, Zhang S. Discovery of 5-(4-hydroxyphenyl)-3-oxo-pentanoic acid [2-(5-methoxy-1H-indol-3-yl)-ethyl]-amide as a neuroprotectant for Alzheimer's disease by hybridization of curcumin and melatonin. ACS Chem Neurosci 2014; 5:690-9. [PMID: 24825313 DOI: 10.1021/cn500081s] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In our effort to develop effective neuroprotectants as potential treatments for Alzheimer's disease (AD), hybrid compounds of curcumin and melatonin, two natural products that have been extensively studied in various AD models, were designed, synthesized, and biologically characterized. A lead hybrid compound (7) was discovered to show significant neuroprotection with nanomolar potency (EC50 = 27.60 ± 9.4 nM) in MC65 cells, a cellular AD model. Multiple in vitro assay results established that 7 exhibited moderate inhibitory effects on the production of amyloid-β oligomers (AβOs) in MC65 cells, but not on the aggregation of Aβ species. It also exhibited significant antioxidative properties. Further mechanistic studies demonstrated that 7's antioxidant effects correlate well with its neuroprotective potency for MC65 cells, and these effects might be due to its interference with the interactions of AβOs within the mitochondria of MC65 cells. Furthermore, 7 was confirmed to cross the blood-brain barrier (BBB) and deliver a sufficient amount to brain tissue after oral administration. Collectively, these results strongly support the hybridization approach as an efficient strategy to help identify novel scaffolds with a desired pharmacology, and strongly encourage further optimization of 7 to develop more potent neuroprotectants for AD.
Collapse
Affiliation(s)
| | | | | | | | | | - Martin Estrada
- Instituto
de Química
Médica − Consejo Superior de Investigaciones Científicas
(IQM-CSIC), C/Juan de la Cierva, 3 − 28006-Madrid, Spain
| | - María Isabel Rodríguez-Franco
- Instituto
de Química
Médica − Consejo Superior de Investigaciones Científicas
(IQM-CSIC), C/Juan de la Cierva, 3 − 28006-Madrid, Spain
| | | | | | | |
Collapse
|
50
|
Neha, Sodhi RK, Jaggi AS, Singh N. Animal models of dementia and cognitive dysfunction. Life Sci 2014; 109:73-86. [DOI: 10.1016/j.lfs.2014.05.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/16/2014] [Accepted: 05/22/2014] [Indexed: 12/28/2022]
|