1
|
Bellitto D, Bozzo M, Ravera S, Bertola N, Rosamilia F, Milia J, Barboro P, Vargas GC, Di Lisa D, Pastorino L, Lantieri F, Castagnola P, Iervasi E, Ponassi M, Profumo A, Tkachenko K, Rosano C, Candiani S, Bachetti T. A multi-omics approach reveals impaired lipid metabolism and oxidative stress in a zebrafish model of Alexander disease. Redox Biol 2025; 81:103544. [PMID: 40023981 PMCID: PMC11915002 DOI: 10.1016/j.redox.2025.103544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/01/2025] [Accepted: 02/11/2025] [Indexed: 03/04/2025] Open
Abstract
Alexander disease (AxD) is a rare leukodystrophy caused by heterozygous mutations in the GFAP gene. To date, several in vitro and in vivo models have been generated in an attempt to unravel the main mechanisms underlying this complex disease. However, none of these models is suitable for investigating the global dysregulation caused by AxD. To address this shortcoming, we have generated a stable transgenic zebrafish line (zAxD) carrying the human GFAP p.R239C mutation, which is associated with severe phenotypes of AxD type I patients. We then performed transcriptomics and proteomics analyses on the whole larvae of our zAxD model, confirming the involvement of several pathways such as the immune system response and inflammation, oxidative stress, extracellular matrix, lipoxidation and lipid metabolism, which were previously reported in more limited omic studies. Interestingly, new pathways emerged as well, including tyrosine and butanoate metabolic processes. Biochemical assays confirmed alterations in cell respiration and lipid metabolism as well as elevated oxidative stress. These findings confirm the reliability of the zAxD model to apply a whole-organism approach to investigate the molecular basis of the disease.
Collapse
Affiliation(s)
- Deianira Bellitto
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, Genova, Italy
| | - Matteo Bozzo
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, Genova, Italy
| | - Silvia Ravera
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Nadia Bertola
- IRCCS Ospedale Policlinico San Martino, Genova, Unità Patologia Clinica, Italy
| | - Francesca Rosamilia
- Bioinformatica Clinica, Direzione Scientifica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Jessica Milia
- Centro di Ricerca, Sviluppo e Studi Superiori in Sardegna (CRS4), Pula, Italy
| | - Paola Barboro
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | - Donatella Di Lisa
- Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi, Università di Genova, Genova, Italy
| | - Laura Pastorino
- Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi, Università di Genova, Genova, Italy
| | - Francesca Lantieri
- Dipartimento di Scienze della Salute, Università di Genova, Genova, Italy
| | - Patrizio Castagnola
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, Genova, Italy
| | - Erika Iervasi
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Marco Ponassi
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Aldo Profumo
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | | | - Simona Candiani
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | | |
Collapse
|
2
|
Berman RF, Matson MR, Bachman AM, Lin NH, Coyne S, Frelka A, Pearce RA, Messing A, Hagemann TL. GFAP mutation and astrocyte dysfunction lead to a neurodegenerative profile with impaired synaptic plasticity and cognitive deficits in a rat model of Alexander disease. eNeuro 2025; 12:ENEURO.0504-24.2025. [PMID: 40064497 PMCID: PMC11936449 DOI: 10.1523/eneuro.0504-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/28/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Alexander disease (AxD) is a rare neurological disorder caused by dominant gain-of-function mutations in the gene for glial acidic fibrillary protein (GFAP). Expression of mutant protein results in astrocyte dysfunction that ultimately leads to developmental delay, failure to thrive, and intellectual and motor impairment. The disease is typically fatal, and at present there are no preventative or effective treatments. To gain a better understanding of the link between astrocyte dysfunction and behavioral deficits in AxD we recently developed a rat model that recapitulates many of the clinical features of the disease, including failure to thrive, motor impairment, and white matter deficits. In the present study, we show that both male and female AxD model rats exhibit a neurodegenerative profile with a progressive neuroinflammatory response combined with reduced expression of synaptic and mitochondrial proteins. Consistent with these results AxD rats show reduced hippocampal long-term potentiation and are cognitively impaired, as demonstrated by poor performance in the Barnes maze and novel object recognition tests. The AxD rat provides a novel model in which to investigate the impact of astrocyte pathology on central nervous system function and provides an essential platform for further development of effective treatments for AxD and potentially other neurodegenerative diseases with astrocyte pathology.Significance Statement Alexander disease (AxD) is a fatal neurodegenerative disorder caused by gain-of-function GFAP mutations. We recently developed a Gfap +/R237H rat model which demonstrates hallmark astrocyte pathology, myelin deficits, and motor impairment. Here, we show that Gfap +/R237H rats also exhibit reduced synaptic plasticity and cognitive deficits as additional clinically relevant phenotypes, further demonstrating its utility as a model. Hippocampal transcriptomic analysis in young adult animals reveals a neurodegenerative signature with an innate immune response and loss of synaptic and metabolic gene expression, features that are typically associated with chronic diseases of aging. These results reveal mechanisms by which astrocyte dysfunction leads to learning and memory deficits in AxD and perhaps contributes to other diseases such as Alzheimer's and Parkinson's.
Collapse
Affiliation(s)
- Robert F. Berman
- UC Davis M.I.N.D. Institute, University of California Davis, Davis, California 95816
- Department of Neurological Surgery, University of California Davis, Sacramento, California 95816
| | - Matthew R. Matson
- UC Davis M.I.N.D. Institute, University of California Davis, Davis, California 95816
| | - Angelica M. Bachman
- UC Davis M.I.N.D. Institute, University of California Davis, Davis, California 95816
| | - Ni-Hsuan Lin
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Sierra Coyne
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Alyssa Frelka
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Robert A. Pearce
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Albee Messing
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Tracy L. Hagemann
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705
| |
Collapse
|
3
|
Matusova Z, Dykstra W, de Pablo Y, Zetterdahl OG, Canals I, van Gelder CAGH, Vos HR, Pérez-Sala D, Kubista M, Abaffy P, Ahlenius H, Valihrach L, Hol EM, Pekny M. Aberrant neurodevelopment in human iPS cell-derived models of Alexander disease. Glia 2025; 73:57-79. [PMID: 39308436 DOI: 10.1002/glia.24618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 12/21/2024]
Abstract
Alexander disease (AxD) is a rare and severe neurodegenerative disorder caused by mutations in glial fibrillary acidic protein (GFAP). While the exact disease mechanism remains unknown, previous studies suggest that mutant GFAP influences many cellular processes, including cytoskeleton stability, mechanosensing, metabolism, and proteasome function. While most studies have primarily focused on GFAP-expressing astrocytes, GFAP is also expressed by radial glia and neural progenitor cells, prompting questions about the impact of GFAP mutations on central nervous system (CNS) development. In this study, we observed impaired differentiation of astrocytes and neurons in co-cultures of astrocytes and neurons, as well as in neural organoids, both generated from AxD patient-derived induced pluripotent stem (iPS) cells with a GFAPR239C mutation. Leveraging single-cell RNA sequencing (scRNA-seq), we identified distinct cell populations and transcriptomic differences between the mutant GFAP cultures and a corrected isogenic control. These findings were supported by results obtained with immunocytochemistry and proteomics. In co-cultures, the GFAPR239C mutation resulted in an increased abundance of immature cells, while in unguided neural organoids and cortical organoids, we observed altered lineage commitment and reduced abundance of astrocytes. Gene expression analysis revealed increased stress susceptibility, cytoskeletal abnormalities, and altered extracellular matrix and cell-cell communication patterns in the AxD cultures, which also exhibited higher cell death after stress. Overall, our results point to altered cell differentiation in AxD patient-derived iPS-cell models, opening new avenues for AxD research.
Collapse
Affiliation(s)
- Zuzana Matusova
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Werner Dykstra
- Department of Translational Neuroscience, University Medical Centre Utrecht Brain Centre, Utrecht University, Utrecht, The Netherlands
| | - Yolanda de Pablo
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Oskar G Zetterdahl
- Stem Cells, Aging and Neurodegeneration Lab, Department of Experimental Medical Science, Faculty of Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
- Glial and Neuronal Biology Lab, Department of Experimental Medical Science, Faculty of Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Isaac Canals
- Glial and Neuronal Biology Lab, Department of Experimental Medical Science, Faculty of Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
- Division of Metabolism, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- ITINERARE-Innovative therapies in rare diseases, University Research Priority Program, University of Zurich, Zurich, Switzerland
| | - Charlotte A G H van Gelder
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Harmjan R Vos
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Henrik Ahlenius
- Stem Cells, Aging and Neurodegeneration Lab, Department of Experimental Medical Science, Faculty of Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Centre Utrecht Brain Centre, Utrecht University, Utrecht, The Netherlands
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
4
|
Hol EM, Dykstra W, Chevalier J, Cuadrado E, Bugiani M, Aronica E, Verkhratsky A. Neuroglia in leukodystrophies. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:159-175. [PMID: 40148043 DOI: 10.1016/b978-0-443-19102-2.00032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Leukodystrophies are a heterogeneous group of rare genetic neurologic disorders characterized by white matter degeneration resulting from mutations affecting glial cells. This review focuses on the primary subtypes-astroglial, oligodendroglial, and microglial leukodystrophies-offering a detailed description of their neuropathologic features and clinical manifestations. It delves into key aspects of the pathogenesis, emphasizing the distinct cellular mechanisms that drive white matter damage. Advances in disease modeling, including the development of animal models with pathologic gene expressions and patient-derived iPS-cell models, have significantly enhanced our understanding of these rare disorders. Insights into the roles of different glial cell types highlight the complexity of leukodystrophies and provide a foundation for the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Werner Dykstra
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Juliette Chevalier
- Department of Child Neurology and Pathology, Amsterdam Leukodystrophy Center, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Eloy Cuadrado
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Marianna Bugiani
- Department of Child Neurology and Pathology, Amsterdam Leukodystrophy Center, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
5
|
Yi H, Zhang J, Gao K, Yan W, Chu H, Zhang J, Zhang F, Jiang Y, Wang J, Wu Y. Morphological Characteristics and Extracellular Matrix Abnormalities in Astrocytes Derived From iPSCs of Children With Alexander Disease. CNS Neurosci Ther 2025; 31:e70240. [PMID: 39868835 PMCID: PMC11770893 DOI: 10.1111/cns.70240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/11/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025] Open
Abstract
AIMS Alexander disease (AxD) is a leukodystrophy caused by mutations in the astrocytic filament gene GFAP. There are currently no effective treatments for AxD. Previous studies have rarely established AxD models with the patient's original GFAP mutations. In this study, we aimed to explore the morphological and transcriptomic characteristics of GFAP-mutant astrocytes via induced pluripotent stem cell (iPSC) models of AxD. METHODS Fibroblasts from three AxD children were reprogrammed into iPSCs. Wild-type (WT) and AxD-iPSCs were differentiated into astrocytes. We compared the morphological and transcriptomic differences between WT- and AxD iPSC-derived astrocytes. RESULTS Astrocytes induced from AxD-derived iPSCs exhibited the Rosenthal fibers (RFs), the main pathological phenotype of AxD. Compared with WT astrocytes, AxD astrocytes had shorter processes, more branches, and larger cell bodies. Transcriptomic analysis revealed that extracellular matrix (ECM) components, particularly chondroitin sulfate proteoglycans (CSPGs), were upregulated, and ECM-degrading enzymes were generally downregulated. These changes may lead to abnormalities in neurons and myelination. CONCLUSIONS We explored the morphological characteristics of AxD astrocytes via iPSC models and revealed the ECM, previously unexplored for AxD, may be an important new pathogenic mechanism of this disease.
Collapse
Affiliation(s)
- Huan Yi
- Children's Medical Center, Department of Pediatric NeurologyPeking University First HospitalBeijingChina
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic DiseasesBeijingChina
| | - Jie Zhang
- Children's Medical Center, Department of Pediatric NeurologyPeking University First HospitalBeijingChina
| | - Kai Gao
- Children's Medical Center, Department of Pediatric NeurologyPeking University First HospitalBeijingChina
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic DiseasesBeijingChina
| | - Wei Yan
- Children's Medical Center, Department of Pediatric NeurologyPeking University First HospitalBeijingChina
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic DiseasesBeijingChina
| | - Hongyuan Chu
- Children's Medical Center, Department of Pediatric NeurologyPeking University First HospitalBeijingChina
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic DiseasesBeijingChina
| | - Junjiao Zhang
- Children's Medical Center, Department of Pediatric NeurologyPeking University First HospitalBeijingChina
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic DiseasesBeijingChina
| | - Fan Zhang
- Children's Medical Center, Department of Pediatric NeurologyPeking University First HospitalBeijingChina
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic DiseasesBeijingChina
| | - Yuwu Jiang
- Children's Medical Center, Department of Pediatric NeurologyPeking University First HospitalBeijingChina
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic DiseasesBeijingChina
| | - Jingmin Wang
- Children's Medical Center, Department of Pediatric NeurologyPeking University First HospitalBeijingChina
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic DiseasesBeijingChina
| | - Ye Wu
- Children's Medical Center, Department of Pediatric NeurologyPeking University First HospitalBeijingChina
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic DiseasesBeijingChina
| |
Collapse
|
6
|
Chaudhary R, Rehman M, Agarwal V, Kumar A, Kaushik AS, Srivastava S, Srivastava S, Verma R, Rajinikanth PS, Mishra V. Terra incognita of glial cell dynamics in the etiology of leukodystrophies: Broadening disease and therapeutic perspectives. Life Sci 2024; 354:122953. [PMID: 39122110 DOI: 10.1016/j.lfs.2024.122953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Neuroglial cells, also known as glia, are primarily characterized as auxiliary cells within the central nervous system (CNS). The recent findings have shed light on their significance in numerous physiological processes and their involvement in various neurological disorders. Leukodystrophies encompass an array of rare and hereditary neurodegenerative conditions that were initially characterized by the deficiency, aberration, or degradation of myelin sheath within CNS. The primary cellular populations that experience significant alterations are astrocytes, oligodendrocytes and microglia. These glial cells are either structurally or metabolically impaired due to inherent cellular dysfunction. Alternatively, they may fall victim to the accumulation of harmful by-products resulting from metabolic disturbances. In either situation, the possible replacement of glial cells through the utilization of implanted tissue or stem cell-derived human neural or glial progenitor cells hold great promise as a therapeutic strategy for both the restoration of structural integrity through remyelination and the amelioration of metabolic deficiencies. Various emerging treatment strategies like stem cell therapy, ex-vivo gene therapy, infusion of adeno-associated virus vectors, emerging RNA-based therapies as well as long-term therapies have demonstrated success in pre-clinical studies and show promise for rapid clinical translation. Here, we addressed various leukodystrophies in a comprehensive and detailed manner as well as provide prospective therapeutic interventions that are being considered for clinical trials. Further, we aim to emphasize the crucial role of different glial cells in the pathogenesis of leukodystrophies. By doing so, we hope to advance our understanding of the disease, elucidate underlying mechanisms, and facilitate the development of potential treatment interventions.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Mujeeba Rehman
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Vipul Agarwal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Anand Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Siddhi Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Sukriti Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Rajkumar Verma
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India.
| |
Collapse
|
7
|
Wang Y, Du J, Hu Y, Zhang S. CXCL10 impairs synaptic plasticity and was modulated by cGAS-STING pathway after stroke in mice. J Neurophysiol 2024; 132:722-732. [PMID: 38919986 DOI: 10.1152/jn.00079.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024] Open
Abstract
Sensorimotor deficits following stroke remain a major cause of disability, but little is known about the specific pathological mechanisms. Exploring the pathological mechanisms and identifying potential therapeutic targets to promote functional rehabilitation after stroke are essential. CXCL10, also known as interferon-γ-inducible protein 10 (IP-10), plays an important role in multiple brain disorders by mediating synaptic plasticity, yet its role in stroke is still unclear. In this study, mice were subjected to photothrombotic (PT) stroke, and sensorimotor deficits were determined by the ladder walking tests, tape removal tests, and rotarod tests. The density of dendritic spines and synaptic plasticity was determined in Thy1-EGFP mice and evaluated by electrophysiology. We found that photothrombotic stroke induced sensorimotor deficits and upregulated the expression of CXCL10, whereas suppressing the expression of CXCL10 by adeno-associated virus (AAV) ameliorated sensorimotor deficits and increased the levels of synapse-related proteins, the density of dendritic spines, and synaptic strength. Furthermore, the cyclic GMP-AMP (cGAMP) synthase (cGAS)-stimulus of interferon genes (STING) pathway was activated by stroke and induced CXCL10 release, and cGAS or STING antagonists downregulated the levels of CXCL10 and improved synaptic plasticity after stroke. Collectively, our results indicate that cGAS-STING pathway activation promoted CXCL10 release and impaired synaptic plasticity during stroke recovery.NEW & NOTEWORTHY Chemokine-mediated inflammatory response plays a critical role in stroke. CXCL10 plays an important role in multiple brain disorders by mediating synaptic plasticity, yet its role in stroke recovery is still unclear. Herein, we identified a new mechanism that cyclic GMP-AMP (cGAMP) synthase (cGAS)-stimulus of interferon genes (STING) pathway activation promoted CXCL10 release and impaired synaptic plasticity during stroke recovery. Our findings highlight the potential therapeutic strategy of targeting the cGAS-STING pathway to treat stroke.
Collapse
Affiliation(s)
- Yi Wang
- Department of Child Healthcare, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Juan Du
- College of Life Sciences, Chongqing Normal University, Chongqing, People's Republic of China
- School of Pharmacy and Nursing, Chongqing Vocational College of Light Industry, Chongqing, People's Republic of China
| | - Youfang Hu
- Department of Child Healthcare, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Sufen Zhang
- Department of Child Healthcare, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
8
|
Metovic J, Li Y, Gong Y, Eichler F. Gene therapy for the leukodystrophies: From preclinical animal studies to clinical trials. Neurotherapeutics 2024; 21:e00443. [PMID: 39276676 PMCID: PMC11418141 DOI: 10.1016/j.neurot.2024.e00443] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024] Open
Abstract
Leukodystrophies are progressive single gene disorders affecting the white matter of the brain. Several gene therapy trials are in progress to address the urgent unmet need for this patient population. We performed a comprehensive literature review of all gene therapy clinical trials listed in www.clinicaltrials.gov through August 2024, and the relevant preclinical studies that enabled clinical translation. Of the approximately 50 leukodystrophies described to date, only eight have existing gene therapy clinical trials: metachromatic leukodystrophy, X-linked adrenoleukodystrophy, globoid cell leukodystrophy, Canavan disease, giant axonal neuropathy, GM2 gangliosidoses, Alexander disease and Pelizaeus-Merzbacher disease. What led to the emergence of gene therapy trials for these specific disorders? What preclinical data or disease context was enabling? For each of these eight disorders, we first describe its pathophysiology and clinical presentation. We discuss the impact of gene therapy delivery route, targeted cell type, delivery modality, dosage, and timing on therapeutic efficacy. We note that use of allogeneic hematopoietic stem cell transplantation in some leukodystrophies allowed for an accelerated path to clinic even in the absence of available animal models. In other leukodystrophies, small and large animal model studies enabled clinical translation of experimental gene therapies. Human clinical trials for the leukodystrophies include ex vivo lentiviral gene delivery, in vivo AAV-mediated gene delivery, and intrathecal antisense oligonucleotide approaches. We outline adverse events associated with each modality focusing specifically on genotoxicity and immunotoxicity. We review monitoring and management of events related to insertional mutagenesis and immune responses. The data presented in this review show that gene therapy, while promising, requires systematic monitoring to account for the precarious disease biology and the adverse events associated with new technology.
Collapse
Affiliation(s)
- Jasna Metovic
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yedda Li
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yi Gong
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Florian Eichler
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
9
|
Yang K, Muir RT, Nowicki M, Branson H, Jain P. Infant with Macrocephaly, Refractory Seizures, and a Leukodystrophy. Can J Neurol Sci 2024; 51:571-572. [PMID: 37577938 DOI: 10.1017/cjn.2023.274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Affiliation(s)
- Kathryn Yang
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Ryan T Muir
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Magda Nowicki
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Helen Branson
- Division of Neuroradiology, Department of Medical Imaging, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Puneet Jain
- Epilepsy Program, Division of Neurology, Department of Paediatrics, The Hospital for Sick Childrenm University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Saito K, Shigetomi E, Shinozaki Y, Kobayashi K, Parajuli B, Kubota Y, Sakai K, Miyakawa M, Horiuchi H, Nabekura J, Koizumi S. Microglia sense astrocyte dysfunction and prevent disease progression in an Alexander disease model. Brain 2024; 147:698-716. [PMID: 37955589 PMCID: PMC10834242 DOI: 10.1093/brain/awad358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
Alexander disease (AxD) is an intractable neurodegenerative disorder caused by GFAP mutations. It is a primary astrocyte disease with a pathological hallmark of Rosenthal fibres within astrocytes. AxD astrocytes show several abnormal phenotypes. Our previous study showed that AxD astrocytes in model mice exhibit aberrant Ca2+ signals that induce AxD aetiology. Here, we show that microglia have unique phenotypes with morphological and functional alterations, which are related to the pathogenesis of AxD. Immunohistochemical studies of 60TM mice (AxD model) showed that AxD microglia exhibited highly ramified morphology. Functional changes in microglia were assessed by Ca2+ imaging using hippocampal brain slices from Iba1-GCaMP6-60TM mice and two-photon microscopy. We found that AxD microglia showed aberrant Ca2+ signals, with high frequency Ca2+ signals in both the processes and cell bodies. These microglial Ca2+ signals were inhibited by pharmacological blockade or genetic knockdown of P2Y12 receptors but not by tetrodotoxin, indicating that these signals are independent of neuronal activity but dependent on extracellular ATP from non-neuronal cells. Our single-cell RNA sequencing data showed that the expression level of Entpd2, an astrocyte-specific gene encoding the ATP-degrading enzyme NTPDase2, was lower in AxD astrocytes than in wild-type astrocytes. In situ ATP imaging using the adeno-associated virus vector GfaABC1D ATP1.0 showed that exogenously applied ATP was present longer in 60TM mice than in wild-type mice. Thus, the increased ATP level caused by the decrease in its metabolizing enzyme in astrocytes could be responsible for the enhancement of microglial Ca2+ signals. To determine whether these P2Y12 receptor-mediated Ca2+ signals in AxD microglia play a significant role in the pathological mechanism, a P2Y12 receptor antagonist, clopidogrel, was administered. Clopidogrel significantly exacerbated pathological markers in AxD model mice and attenuated the morphological features of microglia, suggesting that microglia play a protective role against AxD pathology via P2Y12 receptors. Taken together, we demonstrated that microglia sense AxD astrocyte dysfunction via P2Y12 receptors as an increase in extracellular ATP and alter their morphology and Ca2+ signalling, thereby protecting against AxD pathology. Although AxD is a primary astrocyte disease, our study may facilitate understanding of the role of microglia as a disease modifier, which may contribute to the clinical diversity of AxD.
Collapse
Affiliation(s)
- Kozo Saito
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Kenji Kobayashi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Bijay Parajuli
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Yuto Kubota
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Kent Sakai
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Miho Miyakawa
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Hiroshi Horiuchi
- Division of Homeostatic Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi 444-8585, Japan
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi 444-8585, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| |
Collapse
|
11
|
Shiohama T, Stewart N, Nangaku M, van der Kouwe AJ, Takahashi E. Identification of association fibers using ex vivo diffusion tractography in Alexander disease brains. J Neuroimaging 2022; 32:866-874. [PMID: 35983725 PMCID: PMC9474676 DOI: 10.1111/jon.13040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Alexander disease (AxD) is a neurodegenerative disorder caused by heterozygous Glial Fibrillary Acidic Protein mutation. The characteristic structural findings of AxD, such as leukodystrophic features, are well known, while association fibers of AxD remain uninvestigated. The aim of this study was to explore global and subcortical fibers in four brains with AxD using ex vivo diffusion tractography METHODS: High-angular-resolution diffusion magnetic resonance imaging (HARDI) tractography and diffusion-tensor imaging (DTI) tractography were used to evaluate long and short association fibers and compared to histological findings in brain specimens obtained from four donors with AxD and two donors without neurological disorders RESULTS: AxD brains showed impairment of long association fibers, except for the arcuate fasciculus and cingulum bundle, and abnormal trajectories of the inferior longitudinal and fronto-occipital fasciculi on HARDI tractography and loss of multidirectionality in subcortical fibers on DTI tractography. In histological studies, AxD brains showed diffuse low density on Klüver-Barrera and neurofilament staining and sporadic Rosenthal fibers on hematoxylin and eosin staining CONCLUSIONS: This study describes the spatial distribution of degenerations of short and long association fibers in AxD brains using combined tractography and pathological findings.
Collapse
Affiliation(s)
- Tadashi Shiohama
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Natalie Stewart
- College of Science, Northeastern University, Boston, MA 02115, USA
| | | | - Andre J.W. van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02144, USA
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
12
|
Wu X, Sosunov AA, Lado W, Teoh JJ, Ham A, Li H, Al-Dalahmah O, Gill BJA, Arancio O, Schevon CA, Frankel WN, McKhann GM, Sulzer D, Goldman JE, Tang G. Synaptic hyperexcitability of cytomegalic pyramidal neurons contributes to epileptogenesis in tuberous sclerosis complex. Cell Rep 2022; 40:111085. [PMID: 35858542 PMCID: PMC9376014 DOI: 10.1016/j.celrep.2022.111085] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 02/15/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a developmental disorder associated with epilepsy, autism, and cognitive impairment. Despite inactivating mutations in the TSC1 or TSC2 genes and hyperactive mechanistic target of rapamycin (mTOR) signaling, the mechanisms underlying TSC-associated neurological symptoms remain incompletely understood. Here we generate a Tsc1 conditional knockout (CKO) mouse model in which Tsc1 inactivation in late embryonic radial glia causes social and cognitive impairment and spontaneous seizures. Tsc1 depletion occurs in a subset of layer 2/3 cortical pyramidal neurons, leading to development of cytomegalic pyramidal neurons (CPNs) that mimic dysplastic neurons in human TSC, featuring abnormal dendritic and axonal overgrowth, enhanced glutamatergic synaptic transmission, and increased susceptibility to seizure-like activities. We provide evidence that enhanced synaptic excitation in CPNs contributes to cortical hyperexcitability and epileptogenesis. In contrast, astrocytic regulation of synapse formation and synaptic transmission remains unchanged after late embryonic radial glial Tsc1 inactivation, and astrogliosis evolves secondary to seizures. Wu et al. demonstrate that Tsc1 inactivation in late embryonic radial glial cells (RGCs) produces cytomegalic pyramidal neurons that mimic TSC-like dysplastic neurons. They find that enhanced excitatory synaptic transmission in Tsc1-null cytomegalic pyramidal neurons contributes to cortical hyperexcitability and epileptogenesis.
Collapse
Affiliation(s)
- Xiaoping Wu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alexander A Sosunov
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wudu Lado
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jia Jie Teoh
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ahrom Ham
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hongyu Li
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Osama Al-Dalahmah
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Brian J A Gill
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; The Taub Institute, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Catherine A Schevon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wayne N Frankel
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Guy M McKhann
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David Sulzer
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pharmacology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; The Taub Institute, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Guomei Tang
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
13
|
Zardadi S, Razmara E, Rasoulinezhad M, Babaei M, Ashrafi MR, Pak N, Garshasbi M, Tavasoli AR. Symptomatic care of late-onset Alexander disease presenting with area postrema-like syndrome with prednisolone; a case report. BMC Pediatr 2022; 22:412. [PMID: 35831840 PMCID: PMC9277918 DOI: 10.1186/s12887-022-03468-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
Background Alexander disease (AxD) is classified into AxD type I (infantile) and AxD type II (juvenile and adult form). We aimed to determine the potential genetic cause(s) contributing to the AxD type II manifestations in a 9-year-old male who presented area postrema-like syndrome and his vomiting and weight loss improved after taking prednisolone. Case presentation A normal cognitive 9-year-old boy with persistent nausea, vomiting, and a significant weight loss at the age of 6 years was noticed. He also experienced an episode of status epilepticus with generalized atonic seizures. He showed non-febrile infrequent multifocal motor seizures at the age of 40 days which were treated with phenobarbital. He exhibited normal physical growth and neurologic developmental milestones by the age of six. Occasionally vomiting unrelated to feeding was reported. Upon examination at 9 years, a weak gag reflex, prominent drooling, exaggerated knee-deep tendon reflexes (3+), and nasal tone speech was detected. All gastroenterological, biochemical, and metabolic assessments were normal. Brain magnetic resonance imaging (MRI) revealed bifrontal confluent deep and periventricular white matter signal changes, fine symmetric frontal white matter and bilateral caudate nucleus involvements with garland changes, and a hyperintense tumefactive-like lesion in the brain stem around the floor of the fourth ventricle and area postrema with contrast uptake in post-contrast T1-W images. Latter MRI at the age of 8 years showed enlarged area postrema lesion and bilateral middle cerebellar peduncles and dentate nuclei involvements. Due to clinical and genetic heterogeneities, whole-exome sequencing was performed and the candidate variant was confirmed by Sanger sequencing. A de novo heterozygous mutation, NM_001242376.1:c.262 C > T;R88C in exon 1 of the GFAP (OMIM: 137,780) was verified. Because of persistent vomiting and weight loss of 6.0 kg, prednisolone was prescribed which brought about ceasing vomiting and led to weight gaining of 3.0 kg over the next 3 months after treatment. Occasional attempts to discontinue prednisolone had been resulting in the reappearance of vomiting. Conclusions This study broadens the spectrum of symptomatic treatment in leukodystrophies and also shows that R88C mutation may lead to a broad range of phenotypes in AxD type II patients.
Collapse
Affiliation(s)
- Safoura Zardadi
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran.,Present affiliation: Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Ehsan Razmara
- Present affiliation: Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia.,Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Rasoulinezhad
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Meisam Babaei
- Department of Pediatrics, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Reza Ashrafi
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Pak
- Pediatric Radiology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Ali Reza Tavasoli
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Yang AW, Lin NH, Yeh TH, Snider N, Perng MD. Effects of Alexander disease-associated mutations on the assembly and organization of GFAP intermediate filaments. Mol Biol Cell 2022; 33:ar69. [PMID: 35511821 PMCID: PMC9635275 DOI: 10.1091/mbc.e22-01-0013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 02/02/2023] Open
Abstract
Alexander disease is a primary genetic disorder of astrocytes caused by dominant mutations in the gene encoding glial fibrillary acidic protein (GFAP). How single-amino-acid changes can lead to cytoskeletal catastrophe and brain degeneration remains poorly understood. In this study, we have analyzed 14 missense mutations located in the GFAP rod domain to investigate how these mutations affect in vitro filament assembly. Whereas the internal rod mutants assembled into filaments that were shorter than those of wild type, the rod end mutants formed structures with one or more of several atypical characteristics, including short filament length, irregular width, roughness of filament surface, and filament aggregation. When transduced into primary astrocytes, GFAP mutants with in vitro assembly defects usually formed cytoplasmic aggregates, which were more resistant to biochemical extraction. The resistance of GFAP to solubilization was also observed in brain tissues of patients with Alexander disease, in which a significant proportion of insoluble GFAP were accumulated in Rosenthal fiber fractions. These findings provide clinically relevant evidence that link GFAP assembly defects to disease pathology at the tissue level and suggest that altered filament assembly and properties as a result of GFAP mutation are critical initiating factors for the pathogenesis of Alexander disease.
Collapse
Affiliation(s)
- Ai-Wen Yang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ni-Hsuan Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ting-Hung Yeh
- Department of Medical Science, College of Life Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Natasha Snider
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Ming-Der Perng
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Medical Science, College of Life Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
15
|
Lawal O, Ulloa Severino FP, Eroglu C. The role of astrocyte structural plasticity in regulating neural circuit function and behavior. Glia 2022; 70:1467-1483. [PMID: 35535566 PMCID: PMC9233050 DOI: 10.1002/glia.24191] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022]
Abstract
Brain circuits undergo substantial structural changes during development, driven by the formation, stabilization, and elimination of synapses. Synaptic connections continue to undergo experience‐dependent structural rearrangements throughout life, which are postulated to underlie learning and memory. Astrocytes, a major glial cell type in the brain, are physically in contact with synaptic circuits through their structural ensheathment of synapses. Astrocytes strongly contribute to the remodeling of synaptic structures in healthy and diseased central nervous systems by regulating synaptic connectivity and behaviors. However, whether structural plasticity of astrocytes is involved in their critical functions at the synapse is unknown. This review will discuss the emerging evidence linking astrocytic structural plasticity to synaptic circuit remodeling and regulation of behaviors. Moreover, we will survey possible molecular and cellular mechanisms regulating the structural plasticity of astrocytes and their non‐cell‐autonomous effects on neuronal plasticity. Finally, we will discuss how astrocyte morphological changes in different physiological states and disease conditions contribute to neuronal circuit function and dysfunction.
Collapse
Affiliation(s)
- Oluwadamilola Lawal
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Francesco Paolo Ulloa Severino
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neuroscience and Psychology, Duke University, Durham, North Carolina, USA.,Howard Hughes Medical Institute, Duke University, Durham, North Carolina, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA.,Howard Hughes Medical Institute, Duke University, Durham, North Carolina, USA.,Duke Institute for Brain Sciences, Durham, North Carolina, USA
| |
Collapse
|
16
|
Zarekiani P, Nogueira Pinto H, Hol EM, Bugiani M, de Vries HE. The neurovascular unit in leukodystrophies: towards solving the puzzle. Fluids Barriers CNS 2022; 19:18. [PMID: 35227276 PMCID: PMC8887016 DOI: 10.1186/s12987-022-00316-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/11/2022] [Indexed: 12/11/2022] Open
Abstract
The neurovascular unit (NVU) is a highly organized multicellular system localized in the brain, formed by neuronal, glial (astrocytes, oligodendrocytes, and microglia) and vascular (endothelial cells and pericytes) cells. The blood-brain barrier, a complex and dynamic endothelial cell barrier in the brain microvasculature that separates the blood from the brain parenchyma, is a component of the NVU. In a variety of neurological disorders, including Alzheimer's disease, multiple sclerosis, and stroke, dysfunctions of the NVU occurs. There is, however, a lack of knowledge regarding the NVU function in leukodystrophies, which are rare monogenic disorders that primarily affect the white matter. Since leukodystrophies are rare diseases, human brain tissue availability is scarce and representative animal models that significantly recapitulate the disease are difficult to develop. The introduction of human induced pluripotent stem cells (hiPSC) now makes it possible to surpass these limitations while maintaining the ability to work in a biologically relevant human context and safeguarding the genetic background of the patient. This review aims to provide further insights into the NVU functioning in leukodystrophies, with a special focus on iPSC-derived models that can be used to dissect neurovascular pathophysiology in these diseases.
Collapse
Affiliation(s)
- Parand Zarekiani
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Leukodystrophy Center, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Henrique Nogueira Pinto
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Leukodystrophy Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Bugiani M, Plug BC, Man JHK, Breur M, van der Knaap MS. Heterogeneity of white matter astrocytes in the human brain. Acta Neuropathol 2022; 143:159-177. [PMID: 34878591 DOI: 10.1007/s00401-021-02391-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/17/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022]
Abstract
Astrocytes regulate central nervous system development, maintain its homeostasis and orchestrate repair upon injury. Emerging evidence support functional specialization of astroglia, both between and within brain regions. Different subtypes of gray matter astrocytes have been identified, yet molecular and functional diversity of white matter astrocytes remains largely unexplored. Nonetheless, their important and diverse roles in maintaining white matter integrity and function are well recognized. Compelling evidence indicate that impairment of normal astrocytic function and their response to injury contribute to a wide variety of diseases, including white matter disorders. In this review, we highlight our current understanding of astrocyte heterogeneity in the white matter of the mammalian brain and how an interplay between developmental origins and local environmental cues contribute to astroglial diversification. In addition, we discuss whether, and if so, how, heterogeneous astrocytes could contribute to white matter function in health and disease and focus on the sparse human research data available. We highlight four leukodystrophies primarily due to astrocytic dysfunction, the so-called astrocytopathies. Insight into the role of astroglial heterogeneity in both healthy and diseased white matter may provide new avenues for therapies aimed at promoting repair and restoring normal white matter function.
Collapse
|
18
|
Hagemann TL. Alexander disease: models, mechanisms, and medicine. Curr Opin Neurobiol 2022; 72:140-147. [PMID: 34826654 PMCID: PMC8901527 DOI: 10.1016/j.conb.2021.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 02/03/2023]
Abstract
Alexander disease is a primary disorder of astrocytes caused by gain-of-function mutations in the gene for glial fibrillary acidic protein (GFAP), which lead to protein aggregation and a reactive astrocyte response, with devastating effects on the central nervous system. Over the past two decades since the discovery of GFAP as the culprit, several cellular and animal models have been generated, and much has been learned about underlying mechanisms contributing to the disease. Despite these efforts, many aspects of Alexander disease have remained enigmatic, particularly the initiating events in GFAP accumulation and astrocyte pathology, the relation between astrocyte dysfunction and myelin deficits, and the variability in age of onset and disease severity. More recent work in both old and new models has begun to address these complex questions and identify new therapeutics that finally offer the promise of effective treatment.
Collapse
Affiliation(s)
- Tracy L. Hagemann
- Waisman Center, University of Wisconsin – Madison, 1500 Highland Ave, Madison, WI 53705
| |
Collapse
|
19
|
Heaven MR, Herren AW, Flint DL, Pacheco NL, Li J, Tang A, Khan F, Goldman JE, Phinney BS, Olsen ML. Metabolic Enzyme Alterations and Astrocyte Dysfunction in a Murine Model of Alexander Disease With Severe Reactive Gliosis. Mol Cell Proteomics 2022; 21:100180. [PMID: 34808356 PMCID: PMC8717607 DOI: 10.1016/j.mcpro.2021.100180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022] Open
Abstract
Alexander disease (AxD) is a rare and fatal neurodegenerative disorder caused by mutations in the gene encoding glial fibrillary acidic protein (GFAP). In this report, a mouse model of AxD (GFAPTg;Gfap+/R236H) was analyzed that contains a heterozygous R236H point mutation in murine Gfap as well as a transgene with a GFAP promoter to overexpress human GFAP. Using label-free quantitative proteomic comparisons of brain tissue from GFAPTg;Gfap+/R236H versus wild-type mice confirmed upregulation of the glutathione metabolism pathway and indicated proteins were elevated in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, which had not been reported previously in AxD. Relative protein-level differences were confirmed by a targeted proteomics assay, including proteins related to astrocytes and oligodendrocytes. Of particular interest was the decreased level of the oligodendrocyte protein, 2-hydroxyacylsphingosine 1-beta-galactosyltransferase (Ugt8), since Ugt8-deficient mice exhibit a phenotype similar to GFAPTg;Gfap+/R236H mice (e.g., tremors, ataxia, hind-limb paralysis). In addition, decreased levels of myelin-associated proteins were found in the GFAPTg;Gfap+/R236H mice, consistent with the role of Ugt8 in myelin synthesis. Fabp7 upregulation in GFAPTg;Gfap+/R236H mice was also selected for further investigation due to its uncharacterized association to AxD, critical function in astrocyte proliferation, and functional ability to inhibit the anti-inflammatory PPAR signaling pathway in models of amyotrophic lateral sclerosis (ALS). Within Gfap+ astrocytes, Fabp7 was markedly increased in the hippocampus, a brain region subjected to extensive pathology and chronic reactive gliosis in GFAPTg;Gfap+/R236H mice. Last, to determine whether the findings in GFAPTg;Gfap+/R236H mice are present in the human condition, AxD patient and control samples were analyzed by Western blot, which indicated that Type I AxD patients have a significant fourfold upregulation of FABP7. However, immunohistochemistry analysis showed that UGT8 accumulates in AxD patient subpial brain regions where abundant amounts of Rosenthal fibers are located, which was not observed in the GFAPTg;Gfap+/R236H mice.
Collapse
Affiliation(s)
| | - Anthony W Herren
- University of California at Davis Proteomics Core, Davis, California, USA
| | | | - Natasha L Pacheco
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jiangtao Li
- Graduate Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia, USA; School of Neuroscience, Virginia Tech, Blacksburg, Virginia, USA
| | - Alice Tang
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Fatima Khan
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Brett S Phinney
- University of California at Davis Proteomics Core, Davis, California, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia, USA.
| |
Collapse
|
20
|
Lanciotti A, Brignone MS, Macioce P, Visentin S, Ambrosini E. Human iPSC-Derived Astrocytes: A Powerful Tool to Study Primary Astrocyte Dysfunction in the Pathogenesis of Rare Leukodystrophies. Int J Mol Sci 2021; 23:ijms23010274. [PMID: 35008700 PMCID: PMC8745131 DOI: 10.3390/ijms23010274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are very versatile cells, endowed with multitasking capacities to ensure brain homeostasis maintenance from brain development to adult life. It has become increasingly evident that astrocytes play a central role in many central nervous system pathologies, not only as regulators of defensive responses against brain insults but also as primary culprits of the disease onset and progression. This is particularly evident in some rare leukodystrophies (LDs) where white matter/myelin deterioration is due to primary astrocyte dysfunctions. Understanding the molecular defects causing these LDs may help clarify astrocyte contribution to myelin formation/maintenance and favor the identification of possible therapeutic targets for LDs and other CNS demyelinating diseases. To date, the pathogenic mechanisms of these LDs are poorly known due to the rarity of the pathological tissue and the failure of the animal models to fully recapitulate the human diseases. Thus, the development of human induced pluripotent stem cells (hiPSC) from patient fibroblasts and their differentiation into astrocytes is a promising approach to overcome these issues. In this review, we discuss the primary role of astrocytes in LD pathogenesis, the experimental models currently available and the advantages, future evolutions, perspectives, and limitations of hiPSC to study pathologies implying astrocyte dysfunctions.
Collapse
Affiliation(s)
- Angela Lanciotti
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy; (A.L.); (M.S.B.); (P.M.)
| | - Maria Stefania Brignone
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy; (A.L.); (M.S.B.); (P.M.)
| | - Pompeo Macioce
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy; (A.L.); (M.S.B.); (P.M.)
| | - Sergio Visentin
- National Center for Research and Preclinical and Clinical Evaluation of Drugs, Istituto Superiore di Sanità, 00169 Rome, Italy;
| | - Elena Ambrosini
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy; (A.L.); (M.S.B.); (P.M.)
- Correspondence: ; Tel.: +39-064-990-2037
| |
Collapse
|
21
|
Mura E, Nicita F, Masnada S, Battini R, Ticci C, Montomoli M, Berardinelli A, Pantaleoni C, Ardissone A, Foiadelli T, Tartara E, Salsano E, Veggiotti P, Ceccherini I, Moroni I, Bertini E, Tonduti D. Alexander disease evolution over time: data from an Italian cohort of pediatric-onset patients. Mol Genet Metab 2021; 134:353-358. [PMID: 34865968 DOI: 10.1016/j.ymgme.2021.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/26/2022]
Abstract
Alexander disease (AxD) is a leukodystrophy that primarily affects astrocytes and is caused by dominant variants in the Glial Fibrillary Acidic Protein gene. Three main classifications are currently used, the traditional one defined by the age of onset, and two more recent ones based on both clinical features at onset and brain MRI findings. In this study, we retrospectively included patients with genetically confirmed pediatric-onset AxD. Twenty-one Italian patients were enrolled, and we revised all their clinical and radiological data. Participants were divided according to the current classification systems. We qualitatively analyzed data on neurodevelopment and neurologic decline in order to identify the possible trajectories of the evolution of the disease over time. One patient suffered from a Neonatal presentation and showed a rapidly evolving course which led to death within the second year of life (Type Ia). 16 patients suffered from the Infantile presentation: 5 of them (here defined Type Ib) presented developmental delay and began to deteriorate by the age of 5. A second group (Type Ic) included patients who presented a delay in neuromotor development and started deteriorating after 6 years of age. A third group (Type Id) included patients who presented developmental delay and remained clinically stable beyond adolescence. In 4 patients, the age at last evaluation made it not possible to ascertain whether they belonged to Type Ic or Id, as they were too young to evaluate their neurologic decline. 4 patients suffered from the Juvenile presentation: they had normal neuromotor development with no or only mild cognitive impairment; the subsequent clinical evolution was similar to Type Ic AxD in 2 patients, to Id group in the other 2. In conclusion, our results confirm previously described findings about clinical features at onset; based on follow-up data we might classify patients with Type I AxD into four subgroups (Ia, Ib, Ic, Id). Further studies will be needed to confirm our results and to better highlight the existence of clinical and neuroradiological prognostic factors able to predict disease progression.
Collapse
Affiliation(s)
- Eleonora Mura
- Unit of Pediatric Neurology, V. Buzzi Children's Hospital, Milan, Italy; C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Milan, Italy
| | - Francesco Nicita
- Genetics and Rare Diseases Research Division, Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Silvia Masnada
- Unit of Pediatric Neurology, V. Buzzi Children's Hospital, Milan, Italy; C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Milan, Italy
| | - Roberta Battini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Stella Maris Foundation, IRCCS, Calambrone, Pisa, Italy
| | - Chiara Ticci
- Stella Maris Foundation, IRCCS, Calambrone, Pisa, Italy
| | - Martino Montomoli
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Department of Neuroscience, A. Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Angela Berardinelli
- Department of Child Neurology and Psychiatry, Mondino Foundation, IRCCS, Pavia, Italy
| | - Chiara Pantaleoni
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Anna Ardissone
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Thomas Foiadelli
- Pediatric Clinic, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, IRCCS Policlinico San Matteo Foundation - University of Pavia, Pavia, Italy
| | - Elena Tartara
- Epilepsy and EEG Unit, IRCCS Mondino Foundation, Pavia, ERN Epicare full member, Italy
| | - Ettore Salsano
- Unit of Rare Neurodegenerative and Neurometabolic Disease, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Pierangelo Veggiotti
- Unit of Pediatric Neurology, V. Buzzi Children's Hospital, Milan, Italy; C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Milan, Italy; Department of Biomedical and Clinical Science "L. Sacco", University of Milan, Milan, Italy
| | - Isabella Ceccherini
- UOSD Laboratory of Genetics and Genomics of Rare Diseases, Istituto Giannina Gaslini, IRCCS, Genoa, Italy
| | - Isabella Moroni
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Enrico Bertini
- Genetics and Rare Diseases Research Division, Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Davide Tonduti
- Unit of Pediatric Neurology, V. Buzzi Children's Hospital, Milan, Italy; C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Milan, Italy.
| |
Collapse
|
22
|
Saito K, Shigetomi E, Koizumi S. [Alexander disease: diversity of cell population and interactions between neuron and glia]. Nihon Yakurigaku Zasshi 2021; 156:239-243. [PMID: 34193704 DOI: 10.1254/fpj.21028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Alexander disease (AxD) is a rare neurodegenerative disorder caused by the mutations in glial fibrillary acidic protein (GFAP) gene. Rosenthal fiber formations in astrocytes are the pathological hallmarks of AxD. Astrocyte dysfunction in the AxD brain is considered to be involved in its pathogenesis. We have previously reported that in AxD model mice aberrant Ca2+ signals in astrocytes were associated with the upregulation of reactive phenotype. Reactive astrocytes are conditions that lead to morphological, functional, and molecular changes by responding to various pathological insults (trauma, inflammation, ischemia), and environmental stimuli. Recent technological advances in single-cell gene expression analysis have revealed that astrocytes have heterogeneity by indicating that they form sub population with different characteristics depending on the brain region, the growth development, aging stage, and the pathological condition. AxD astrocytes are also thought to constitute a heterogeneous population with diverse properties and functions. Moreover, it is presumed that AxD pathogenesis occur due to interactions with neurons and other glial cells, as well as the microenvironment in tissues. Research strategies based on these perspectives will help us understand AxD pathology better and may lead to the elucidation of disease modifiers and clinical diversity.
Collapse
Affiliation(s)
- Kozo Saito
- Department of Neuropharmcology, Interdisciplinary Graduate School of Medicine
| | - Eiji Shigetomi
- Department of Neuropharmcology, Interdisciplinary Graduate School of Medicine
| | - Schuichi Koizumi
- Department of Neuropharmcology, Interdisciplinary Graduate School of Medicine
| |
Collapse
|
23
|
Song X, Jiang J, Tian W, Zhan F, Zhu Z, Li B, Tang H, Cao L. A report of two cases of bulbospinal form Alexander disease and preliminary exploration of the disease. Mol Med Rep 2021; 24:572. [PMID: 34109421 PMCID: PMC8201446 DOI: 10.3892/mmr.2021.12211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/10/2021] [Indexed: 11/05/2022] Open
Abstract
Alexander disease (AxD) is a cerebral white matter disease affecting a wide range of ages, from infants to adults. In the present study, two cases of bulbospinal form AxD were reported, and a preliminary exploration of AxD was conducted thorough clinical, functional magnetic resonance imaging (fMRI) and functional analyses. In total, two de novo mutations in the glial fibrillary acidic protein (GFAP) gene (c.214G>A and c.1235C>T) were identified in unrelated patients (one in each patient). Both patients showed increased regional neural activity and functional connectivity in the cerebellum and posterior parietal cortex according to fMRI analysis. Notably, grey matter atrophy was discovered in the patient with c.214G>A variant. Functional experiments revealed aberrant accumulation of mutant GFAP and decreased solubility of c.1235C>T variant. Under pathological conditions, autophagic flux was activated for GFAP aggregate degradation. Moreover, transcriptional data of AxD and healthy human brain samples were obtained from the Gene Expression Omnibus database. Gene set enrichment analysis revealed an upregulation of immune‑related responses and downregulation of ion transport, synaptic transmission and neurotransmitter homeostasis. Enrichment analysis of cell‑specific differentially expressed genes also indicated a marked inflammatory environment in AxD. Overall, the clinical features of the two patients with bulbospinal form AxD were thoroughly described. To the best of our knowledge, the brain atrophy pattern and spontaneous brain functional network activity of patients with AxD were explored for the first time. Cytological experiments provided evidence of the pathogenicity of the identified variants. Furthermore, bioinformatics analysis found that inflammatory immune‑related reactions may play a critical role in AxD, which may be conducive to the understanding of this disease.
Collapse
Affiliation(s)
- Xiaoxuan Song
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Jingwen Jiang
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Wotu Tian
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Feixia Zhan
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Zeyu Zhu
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Binyin Li
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Huidong Tang
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Li Cao
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
24
|
Zarekiani P, Breur M, Wolf NI, de Vries HE, van der Knaap MS, Bugiani M. Pathology of the neurovascular unit in leukodystrophies. Acta Neuropathol Commun 2021; 9:103. [PMID: 34082828 PMCID: PMC8173888 DOI: 10.1186/s40478-021-01206-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/24/2021] [Indexed: 01/20/2023] Open
Abstract
The blood-brain barrier is a dynamic endothelial cell barrier in the brain microvasculature that separates the blood from the brain parenchyma. Specialized brain endothelial cells, astrocytes, neurons, microglia and pericytes together compose the neurovascular unit and interact to maintain blood-brain barrier function. A disturbed brain barrier function is reported in most common neurological disorders and may play a role in disease pathogenesis. However, a comprehensive overview of how the neurovascular unit is affected in a wide range of rare disorders is lacking. Our aim was to provide further insights into the neuropathology of the neurovascular unit in leukodystrophies to unravel its potential pathogenic role in these diseases. Leukodystrophies are monogenic disorders of the white matter due to defects in any of its structural components. Single leukodystrophies are exceedingly rare, and availability of human tissue is unique. Expression of selective neurovascular unit markers such as claudin-5, zona occludens 1, laminin, PDGFRβ, aquaporin-4 and α-dystroglycan was investigated in eight different leukodystrophies using immunohistochemistry. We observed tight junction rearrangements, indicative of endothelial dysfunction, in five out of eight assessed leukodystrophies of different origin and an altered aquaporin-4 distribution in all. Aquaporin-4 redistribution indicates a general astrocytic dysfunction in leukodystrophies, even in those not directly related to astrocytic pathology or without prominent reactive astrogliosis. These findings provide further evidence for dysfunction in the orchestration of the neurovascular unit in leukodystrophies and contribute to a better understanding of the underlying disease mechanism.
Collapse
Affiliation(s)
- Parand Zarekiani
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, de Boelelaan 1117, 1081HV Amsterdam, The Netherlands
- Amsterdam Leukodystrophy Center, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marjolein Breur
- Amsterdam Leukodystrophy Center, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Child Neurology, Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Nicole I. Wolf
- Amsterdam Leukodystrophy Center, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Child Neurology, Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Helga E. de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marjo S. van der Knaap
- Amsterdam Leukodystrophy Center, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Child Neurology, Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, de Boelelaan 1117, 1081HV Amsterdam, The Netherlands
- Amsterdam Leukodystrophy Center, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Boyd MM, Litscher SJ, Seitz LL, Messing A, Hagemann TL, Collier LS. Pexidartinib treatment in Alexander disease model mice reduces macrophage numbers and increases glial fibrillary acidic protein levels, yet has minimal impact on other disease phenotypes. J Neuroinflammation 2021; 18:67. [PMID: 33685480 PMCID: PMC7941726 DOI: 10.1186/s12974-021-02118-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alexander disease (AxD) is a rare neurodegenerative disorder that is caused by dominant mutations in the gene encoding glial fibrillary acidic protein (GFAP), an intermediate filament that is primarily expressed by astrocytes. In AxD, mutant GFAP in combination with increased GFAP expression result in astrocyte dysfunction and the accumulation of Rosenthal fibers. A neuroinflammatory environment consisting primarily of macrophage lineage cells has been observed in AxD patients and mouse models. METHODS To examine if macrophage lineage cells could serve as a therapeutic target in AxD, GFAP knock-in mutant AxD model mice were treated with a colony-stimulating factor 1 receptor (CSF1R) inhibitor, pexidartinib. The effects of pexidartinib treatment on disease phenotypes were assessed. RESULTS In AxD model mice, pexidartinib administration depleted macrophages in the CNS and caused elevation of GFAP transcript and protein levels with minimal impacts on other phenotypes including body weight, stress response activation, chemokine/cytokine expression, and T cell infiltration. CONCLUSIONS Together, these results highlight the complicated role that macrophages can play in neurological diseases and do not support the use of pexidartinib as a therapy for AxD.
Collapse
Affiliation(s)
- Michelle M Boyd
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, USA
| | - Suzanne J Litscher
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, USA
| | - Laura L Seitz
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, USA
| | - Albee Messing
- Waisman Center, University of Wisconsin-Madison, Madison, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, USA
| | | | - Lara S Collier
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, USA.
| |
Collapse
|
26
|
Ravi K, Paidas MJ, Saad A, Jayakumar AR. Astrocytes in rare neurological conditions: Morphological and functional considerations. J Comp Neurol 2021; 529:2676-2705. [PMID: 33496339 DOI: 10.1002/cne.25118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 01/06/2023]
Abstract
Astrocytes are a population of central nervous system (CNS) cells with distinctive morphological and functional characteristics that differ within specific areas of the brain and are widely distributed throughout the CNS. There are mainly two types of astrocytes, protoplasmic and fibrous, which differ in morphologic appearance and location. Astrocytes are important cells of the CNS that not only provide structural support, but also modulate synaptic activity, regulate neuroinflammatory responses, maintain the blood-brain barrier, and supply energy to neurons. As a result, astrocytic disruption can lead to widespread detrimental effects and can contribute to the pathophysiology of several neurological conditions. The characteristics of astrocytes in more common neuropathologies such as Alzheimer's and Parkinson's disease have significantly been described and continue to be widely studied. However, there still exist numerous rare neurological conditions in which astrocytic involvement is unknown and needs to be explored. Accordingly, this review will summarize functional and morphological changes of astrocytes in various rare neurological conditions based on current knowledge thus far and highlight remaining neuropathologies where astrocytic involvement has yet to be investigated.
Collapse
Affiliation(s)
- Karthik Ravi
- University of Michigan, Ann Arbor, Michigan, USA
| | - Michael J Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, Florida, USA
| | - Ali Saad
- Pathology and Laboratory Medicine, University of Miami School of Medicine, Miami, Florida, USA
| | - Arumugam R Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, Florida, USA.,South Florida VA Foundation for Research and Education Inc, Miami, Florida, USA.,General Medical Research Neuropathology Section, R&D Service, Veterans Affairs Medical Centre, Miami, Florida, USA
| |
Collapse
|
27
|
Ketogenic Diet Therapy for Intractable Epilepsy in Infantile Alexander Disease: A Small Case Series and Analyses of Astroglial Chemokines and Proinflammatory Cytokines. Epilepsy Res 2020; 170:106519. [PMID: 33395615 DOI: 10.1016/j.eplepsyres.2020.106519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 11/20/2022]
Abstract
In infantile Alexander disease (iAxD), one of the serious symptoms is intractable epilepsy, and some reports have suggested that neuroinflammation may be involved in the pathophysiology of the disease. Drug-resistant seizures adversely affect not only the quality of life of the caregivers and patients, but also patients' lifespan. Thus, controlling epilepsy is clinically important. For intractable childhood epilepsy, ketogenic diet therapy (KDT) is well-established, but its effects on iAxD have not been characterized. Here, we describe the use of KDT in three iAxD patients experiencing drug-resistant seizures. In all three cases, the formerly intractable epilepsies were well controlled by KDT. However, the brain magnetic resonance imaging findings deteriorated even after the epilepsy was controlled. In addition, the concentrations of monocyte chemotactic protein-1 and proinflammatory cytokines in the cerebrospinal fluid of the patients remained still high. KDT is effective in controlling epilepsy in iAxD. Our results clinically support previous reports arguing the involvement of neuroinflammation in the pathophysiology of iAxD. Although KDT cannot prevent disease progression, earlier initiation might contribute to a better prognosis.
Collapse
|
28
|
de Waard DM, Bugiani M. Astrocyte-Oligodendrocyte-Microglia Crosstalk in Astrocytopathies. Front Cell Neurosci 2020; 14:608073. [PMID: 33328899 PMCID: PMC7710860 DOI: 10.3389/fncel.2020.608073] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Defective astrocyte function due to a genetic mutation can have major consequences for microglia and oligodendrocyte physiology, which in turn affects the white matter integrity of the brain. This review addresses the current knowledge on shared and unique pathophysiological mechanisms of astrocytopathies, including vanishing white matter, Alexander disease, megalencephalic leukoencephalopathy with subcortical cysts, Aicardi-Goutières syndrome, and oculodentodigital dysplasia. The mechanisms of disease include protein accumulation, unbalanced secretion of extracellular matrix proteins, pro- and anti-inflammatory molecules, cytokines and chemokines by astrocytes, as well as an altered gap junctional network and a changed ionic and nutrient homeostasis. Interestingly, the extent to which astrogliosis and microgliosis are present in these astrocytopathies is highly variable. An improved understanding of astrocyte-microglia-oligodendrocyte crosstalk might ultimately lead to the identification of druggable targets for these, currently untreatable, severe conditions.
Collapse
Affiliation(s)
| | - Marianna Bugiani
- Department of Pathology, VU Medical center, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
29
|
Trujillo-Estrada L, Gomez-Arboledas A, Forner S, Martini AC, Gutierrez A, Baglietto-Vargas D, LaFerla FM. Astrocytes: From the Physiology to the Disease. Curr Alzheimer Res 2020; 16:675-698. [PMID: 31470787 DOI: 10.2174/1567205016666190830110152] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/12/2019] [Accepted: 05/17/2019] [Indexed: 12/14/2022]
Abstract
Astrocytes are key cells for adequate brain formation and regulation of cerebral blood flow as well as for the maintenance of neuronal metabolism, neurotransmitter synthesis and exocytosis, and synaptic transmission. Many of these functions are intrinsically related to neurodegeneration, allowing refocusing on the role of astrocytes in physiological and neurodegenerative states. Indeed, emerging evidence in the field indicates that abnormalities in the astrocytic function are involved in the pathogenesis of multiple neurodegenerative diseases, including Alzheimer's Disease (AD), Parkinson's Disease (PD), Huntington's Disease (HD) and Amyotrophic Lateral Sclerosis (ALS). In the present review, we highlight the physiological role of astrocytes in the CNS, including their communication with other cells in the brain. Furthermore, we discuss exciting findings and novel experimental approaches that elucidate the role of astrocytes in multiple neurological disorders.
Collapse
Affiliation(s)
- Laura Trujillo-Estrada
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, CA 92697-4545, United States
| | - Angela Gomez-Arboledas
- Department of Cell Biology, Genetic and Physiology, Faculty of Sciences, University of Malaga, Malaga, Spain.,Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Stefânia Forner
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, CA 92697-4545, United States
| | - Alessandra Cadete Martini
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, CA 92697-4545, United States
| | - Antonia Gutierrez
- Department of Cell Biology, Genetic and Physiology, Faculty of Sciences, University of Malaga, Malaga, Spain.,Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - David Baglietto-Vargas
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, CA 92697-4545, United States.,Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, United States
| | - Frank M LaFerla
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, CA 92697-4545, United States.,Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, United States
| |
Collapse
|
30
|
Garcia LM, Hacker JL, Sase S, Adang L, Almad A. Glial cells in the driver seat of leukodystrophy pathogenesis. Neurobiol Dis 2020; 146:105087. [PMID: 32977022 DOI: 10.1016/j.nbd.2020.105087] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/16/2020] [Accepted: 09/18/2020] [Indexed: 01/24/2023] Open
Abstract
Glia cells are often viewed as support cells in the central nervous system, but recent discoveries highlight their importance in physiological functions and in neurological diseases. Central to this are leukodystrophies, a group of progressive, neurogenetic disease affecting white matter pathology. In this review, we take a closer look at multiple leukodystrophies, classified based on the primary glial cell type that is affected. While white matter diseases involve oligodendrocyte and myelin loss, we discuss how astrocytes and microglia are affected and impinge on oligodendrocyte, myelin and axonal pathology. We provide an overview of the leukodystrophies covering their hallmark features, clinical phenotypes, diverse molecular pathways, and potential therapeutics for clinical trials. Glial cells are gaining momentum as cellular therapeutic targets for treatment of demyelinating diseases such as leukodystrophies, currently with no treatment options. Here, we bring the much needed attention to role of glia in leukodystrophies, an integral step towards furthering disease comprehension, understanding mechanisms and developing future therapeutics.
Collapse
Affiliation(s)
- Luis M Garcia
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Julia L Hacker
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Sunetra Sase
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Laura Adang
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Akshata Almad
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA.
| |
Collapse
|
31
|
NG2 and GFAP co-expression after differentiation in cells transfected with mutant GFAP and in undifferentiated glioma cells. NEUROLOGÍA (ENGLISH EDITION) 2020. [DOI: 10.1016/j.nrleng.2017.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
32
|
Radcliff AB, Heidari M, Field AS, Duncan ID. Feline irradiated diet-induced demyelination; a model of the neuropathology of sub-acute combined degeneration? PLoS One 2020; 15:e0228109. [PMID: 31978144 PMCID: PMC6980670 DOI: 10.1371/journal.pone.0228109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/07/2020] [Indexed: 12/05/2022] Open
Abstract
Irradiation of food at 50–55 kGy results in a profound, chronic demyelinating-remyelinating disease of the entire central nervous system (CNS) in cats, named Feline Irradiated Diet-Induced Demyelination (FIDID). This study examines the early stages of demyelination and long-term consequences of demyelination and remyelination on axon survival or loss. Myelin vacuolation is the primary defect leading to myelin breakdown, demyelination then prompt remyelination in the spinal cord and brain. There is no evidence of oligodendrocyte death. The spinal cord dorsal column is initially spared yet eventually becomes severely demyelinated with subsequent loss of axons in the core and then surface of the fasciculus gracilis. However remyelination of the sub-pial axons in the dorsal column results in their protection. While there was a lack of biochemical evidence of Vitamin B12 deficiency, the pathological similarities of FIDID with sub-acute combined degeneration (SCD) led us to explore treatment with Vitamin B12. Treatment led to recovery or improvement in some cats and neurologic relapse on cessation of B12 therapy. While the reason that irradiated food is myelinotoxic in the cat remains unresolved, nonetheless the neuropathological changes match exactly what is seen in SCD and its models and provide an ideal model to study the cellular and molecular basis of remyelination.
Collapse
Affiliation(s)
- Abigail B. Radcliff
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Moones Heidari
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Aaron S. Field
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Ian D. Duncan
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
33
|
Kora K, Kato T, Ide M, Tanaka T, Yoshida T. Inflammatory neuropathology of infantile Alexander disease: A case report. Brain Dev 2020; 42:64-68. [PMID: 31455510 DOI: 10.1016/j.braindev.2019.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/10/2019] [Accepted: 07/29/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Alexander disease (AxD) is a rare fatal leukodystrophy caused by a dominant missense mutation in the glial fibrillary acidic protein. In a mouse model of AxD, the pathological astrocyte causes a pronounced immune response. The inflammatory environment in the brain might play an important role in the neuronal dysfunction of AxD. CASE A 3-month-old girl diagnosed with infantile AxD presented with severe intractable seizures and a deteriorated neurological state. Steroid pulse therapy was effective at preventing the epileptic activity and progressive white matter abnormalities on magnetic resonance images, but the effect was temporary. Levels of interleukin (IL)-6, IL-8, and macrophage chemotactic protein 1 (MCP-1) in the cerebrospinal fluid were high at onset and reduced transiently after steroid pulse therapy. DISCUSSION These results suggest that inflammatory responses of astrocyte and microglia can contribute to the neuropathology of AxD. Robust immunomodulation that targets activated astrocytes and microglia may be a novel therapeutic strategy to improve neurological prognosis in AxD.
Collapse
Affiliation(s)
- Kengo Kora
- Department of Pediatric Neurology, Hyogo Prefectural Amagasaki General Medical Center, Japan
| | - Takeo Kato
- Department of Pediatric Neurology, Hyogo Prefectural Amagasaki General Medical Center, Japan.
| | - Minako Ide
- Department of Pediatric Neurology, Hyogo Prefectural Amagasaki General Medical Center, Japan
| | - Takayuki Tanaka
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Japan
| | - Tomokatsu Yoshida
- Department of Neurology, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Japan
| |
Collapse
|
34
|
Abstract
Alexander disease (AxD) is a rare autosomal dominant leukodystrophy with three clinical subtypes: infantile, juvenile and adult. Forms differ by age of symptoms occurrence and the clinical presentation. Although recent data suggest considering only two subtypes: type I (infantile onset with lesions extending to the cerebral hemispheres); type II (adult onset with primary involvement of subtentorial structures). Dominant mutations in the glial fibrillary acidic protein (GFAP) gene in AxD cause dysfunction of astrocytes (a type III intermediate filament). The authors discuss the clinical picture of a boy with infantile form of AxD confirmed by the presence of de novo heterozygous mutation c.236G>A in the GFAP gene and without striking symptoms such as macrocephaly and with exceptional late-onset epileptic spasms with hypsarrhyth- mia on electroencephalogram (EEG).
Collapse
|
35
|
Sequeira J, Willson D, Marinello M. All in Your Mind? New-Onset Dysphagia in a Previously Healthy Adolescent Child. J Pediatr Intensive Care 2019; 9:135-138. [PMID: 32351769 DOI: 10.1055/s-0039-3401008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/03/2019] [Indexed: 10/25/2022] Open
Abstract
A healthy 11-year-old male develops fear of choking secondary to progressive dysphagia that began in early childhood. No organic cause is found, and the patient is diagnosed with psychiatric oral aversion. The child is eventually transferred to a psychiatric facility, where a month later he has a possible aspiration event and is transferred to the local emergency room for respiratory distress before being admitted to the intensive care unit. Workup is notable for abnormal findings on brain imaging, and the diagnosis of Alexander's disease is made. This case highlights the importance of complete history-taking and examinations in pediatric patients.
Collapse
Affiliation(s)
- Jake Sequeira
- VCU Department of Pediatric Critical Care, Richmond, Virginia, United States
| | - Douglas Willson
- VCU Department of Pediatric Critical Care, Richmond, Virginia, United States
| | - Mark Marinello
- VCU Department of Pediatric Critical Care, Richmond, Virginia, United States
| |
Collapse
|
36
|
Abstract
Leukodystrophies are genetically determined disorders affecting the white matter of the central nervous system. The combination of MRI pattern recognition and next-generation sequencing for the definition of novel disease entities has recently demonstrated that many leukodystrophies are due to the primary involvement and/or mutations in genes selectively expressed by cell types other than the oligodendrocytes, the myelin-forming cells in the brain. This has led to a new definition of leukodystrophies as genetic white matter disorders resulting from the involvement of any white matter structural component. As a result, the research has shifted its main focus from oligodendrocytes to other types of neuroglia. Astrocytes are the housekeeping cells of the nervous system, responsible for maintaining homeostasis and normal brain physiology and to orchestrate repair upon injury. Several lines of evidence show that astrocytic interactions with the other white matter cellular constituents play a primary pathophysiologic role in many leukodystrophies. These are thus now classified as astrocytopathies. This chapter addresses how the crosstalk between astrocytes, other glial cells, axons and non-neural cells are essential for the integrity and maintenance of the white matter in health. It also addresses the current knowledge of the cellular pathomechanisms of astrocytic leukodystrophies, and specifically Alexander disease, vanishing white matter, megalencephalic leukoencephalopathy with subcortical cysts and Aicardi-Goutière Syndrome.
Collapse
Affiliation(s)
- M S Jorge
- Department of Pathology, Free University Medical Centre, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, Free University Medical Centre, Amsterdam, The Netherlands.
| |
Collapse
|
37
|
Li L, Tian E, Chen X, Chao J, Klein J, Qu Q, Sun G, Sun G, Huang Y, Warden CD, Ye P, Feng L, Li X, Cui Q, Sultan A, Douvaras P, Fossati V, Sanjana NE, Riggs AD, Shi Y. GFAP Mutations in Astrocytes Impair Oligodendrocyte Progenitor Proliferation and Myelination in an hiPSC Model of Alexander Disease. Cell Stem Cell 2019; 23:239-251.e6. [PMID: 30075130 DOI: 10.1016/j.stem.2018.07.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/23/2018] [Accepted: 07/16/2018] [Indexed: 10/28/2022]
Abstract
Alexander disease (AxD) is a leukodystrophy that primarily affects astrocytes and is caused by mutations in the astrocytic filament gene GFAP. While astrocytes are thought to have important roles in controlling myelination, AxD animal models do not recapitulate critical myelination phenotypes and it is therefore not clear how AxD astrocytes contribute to leukodystrophy. Here, we show that AxD patient iPSC-derived astrocytes recapitulate key features of AxD pathology such as GFAP aggregation. Moreover, AxD astrocytes inhibit proliferation of human iPSC-derived oligodendrocyte progenitor cells (OPCs) in co-culture and reduce their myelination potential. CRISPR/Cas9-based correction of GFAP mutations reversed these phenotypes. Transcriptomic analyses of AxD astrocytes and postmortem brains identified CHI3L1 as a key mediator of AxD astrocyte-induced inhibition of OPC activity. Thus, this iPSC-based model of AxD not only recapitulates patient phenotypes not observed in animal models, but also reveals mechanisms underlying disease pathology and provides a platform for assessing therapeutic interventions.
Collapse
Affiliation(s)
- Li Li
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - E Tian
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Xianwei Chen
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Jianfei Chao
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Jeremy Klein
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Qiuhao Qu
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Guihua Sun
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Guoqiang Sun
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Yanzhou Huang
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Charles D Warden
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Peng Ye
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Lizhao Feng
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Xinqiang Li
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Qi Cui
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Abdullah Sultan
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Panagiotis Douvaras
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Valentina Fossati
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Neville E Sanjana
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10003, USA; Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Arthur D Riggs
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Yanhong Shi
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
38
|
Stadelmann C, Timmler S, Barrantes-Freer A, Simons M. Myelin in the Central Nervous System: Structure, Function, and Pathology. Physiol Rev 2019; 99:1381-1431. [PMID: 31066630 DOI: 10.1152/physrev.00031.2018] [Citation(s) in RCA: 397] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oligodendrocytes generate multiple layers of myelin membrane around axons of the central nervous system to enable fast and efficient nerve conduction. Until recently, saltatory nerve conduction was considered the only purpose of myelin, but it is now clear that myelin has more functions. In fact, myelinating oligodendrocytes are embedded in a vast network of interconnected glial and neuronal cells, and increasing evidence supports an active role of oligodendrocytes within this assembly, for example, by providing metabolic support to neurons, by regulating ion and water homeostasis, and by adapting to activity-dependent neuronal signals. The molecular complexity governing these interactions requires an in-depth molecular understanding of how oligodendrocytes and axons interact and how they generate, maintain, and remodel their myelin sheaths. This review deals with the biology of myelin, the expanded relationship of myelin with its underlying axons and the neighboring cells, and its disturbances in various diseases such as multiple sclerosis, acute disseminated encephalomyelitis, and neuromyelitis optica spectrum disorders. Furthermore, we will highlight how specific interactions between astrocytes, oligodendrocytes, and microglia contribute to demyelination in hereditary white matter pathologies.
Collapse
Affiliation(s)
- Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Sebastian Timmler
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Alonso Barrantes-Freer
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Mikael Simons
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| |
Collapse
|
39
|
Heaven MR, Wilson L, Barnes S, Brenner M. Relative stabilities of wild-type and mutant glial fibrillary acidic protein in patients with Alexander disease. J Biol Chem 2019; 294:15604-15612. [PMID: 31484723 DOI: 10.1074/jbc.ra119.009777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/24/2019] [Indexed: 01/13/2023] Open
Abstract
Alexander disease (AxD) is an often fatal astrogliopathy caused by dominant gain-of-function missense mutations in the glial fibrillary acidic protein (GFAP) gene. The mechanism by which the mutations produce the AxD phenotype is not known. However, the observation that features of AxD are displayed by mice that express elevated levels of GFAP from a human WT GFAP transgene has contributed to the notion that the mutations produce AxD by increasing accumulation of total GFAP above some toxic threshold rather than the mutant GFAP being inherently toxic. A possible mechanism for accumulation of GFAP in AxD patients is that the mutated GFAP variants are more stable than the WT, an attribution abetted by observations that GFAP complexes containing GFAP variants are more resistant to solvent extraction. Here we tested this hypothesis by determining the relative levels of WT and mutant GFAP in three individuals with AxD, each of whom carried a common but different GFAP mutation (R79C, R239H, or R416W). Mass spectrometry analysis identified a peptide specific to the mutant or WT GFAP in each patient, and we quantified this peptide by comparing its signal to that of an added [15N]GFAP standard. In all three individuals, the level of mutant GFAP was less than that of the WT. This finding suggests that AxD onset is due to an intrinsic toxicity of the mutant GFAP instead of it acting indirectly by being more stable than WT GFAP and thereby increasing the total GFAP level.
Collapse
Affiliation(s)
- Michael R Heaven
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama 35294
| | - Landon Wilson
- Department of Pharmacology and Toxicology, Targeted Metabolomics and Proteomics Laboratory, University of Alabama, Birmingham, Alabama 35294
| | - Stephen Barnes
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama 35294.,Department of Pharmacology and Toxicology, Targeted Metabolomics and Proteomics Laboratory, University of Alabama, Birmingham, Alabama 35294
| | - Michael Brenner
- Department of Neurobiology, University of Alabama, Birmingham, Alabama 35294
| |
Collapse
|
40
|
Ziaei A, Xu X, Dehghani L, Bonnard C, Zellner A, Jin Ng AY, Tohari S, Venkatesh B, Haffner C, Reversade B, Shaygannejad V, Pouladi MA. Novel mutation in HTRA1 in a family with diffuse white matter lesions and inflammatory features. NEUROLOGY-GENETICS 2019; 5:e345. [PMID: 31403081 PMCID: PMC6659136 DOI: 10.1212/nxg.0000000000000345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/28/2019] [Indexed: 11/24/2022]
Abstract
Objective To investigate the possible involvement of germline mutations in a neurologic condition involving diffuse white matter lesions. Methods The patients were 3 siblings born to healthy parents. We performed homozygosity mapping, whole-exome sequencing, site-directed mutagenesis, and immunoblotting. Results All 3 patients showed clinical manifestations of ataxia, behavioral and mood changes, premature hair loss, memory loss, and lower back pain. In addition, they presented with inflammatory-like features and recurrent rhinitis. MRI showed abnormal diffuse demyelination lesions in the brain and myelitis in the spinal cord. We identified an insertion in high-temperature requirement A (HTRA1), which showed complete segregation in the pedigree. Functional analysis showed the mutation to affect stability and secretion of truncated protein. Conclusions The patients' clinical manifestations are consistent with cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL; OMIM #600142), which is known to be caused by HTRA1 mutations. Because some aspects of the clinical presentation deviate from those reported for CARASIL, our study expands the spectrum of clinical consequences of loss-of-function mutations in HTRA1.
Collapse
Affiliation(s)
- Amin Ziaei
- Translational Laboratory in Genetic Medicine (TLGM) (A. Ziaei, X.X., M.A.P.), Agency for Science, Technology and Research (ASTAR), 8A Biomedical Grove, Immunos, Level 5; Department of Medicine (A. Ziaei, M.A.P.), National University of Singapore; Department of Neurology and Stroke Center (X.X.), the First Affiliated Hospital, Jinan University; Clinical Neuroscience Institute of Jinan University (X.X.), Guangzhou, Guangdong, China; Department of Tissue Engineering and Regenerative Medicine (L.D.), School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Institute of Medical Biology (IMB) (C.B., B.R.), A*STAR, 8A Biomedical Grove, Immunos, Level 5, Singapore; Institute for Stroke and Dementia Research (A. Zellner, C.H.), Klinikum der Universität München, Ludwig Maximilians University, Munich, Germany; Comparative Genomics Laboratory (A.Y.J.N., S.T., B.V.), Institute of Molecular and Cell Biology, A*STAR, Biopolis; Department of Paediatrics (B.V.), National University of Singapore; Department of Neurology (A. Ziaei, V.S.), Isfahan Neurosciences Research Centre, Faculty of Medicine, Isfahan University of Medical Sciences, Iran; and Department of Physiology (M.A.P.), National University of Singapore
| | - Xiaohong Xu
- Translational Laboratory in Genetic Medicine (TLGM) (A. Ziaei, X.X., M.A.P.), Agency for Science, Technology and Research (ASTAR), 8A Biomedical Grove, Immunos, Level 5; Department of Medicine (A. Ziaei, M.A.P.), National University of Singapore; Department of Neurology and Stroke Center (X.X.), the First Affiliated Hospital, Jinan University; Clinical Neuroscience Institute of Jinan University (X.X.), Guangzhou, Guangdong, China; Department of Tissue Engineering and Regenerative Medicine (L.D.), School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Institute of Medical Biology (IMB) (C.B., B.R.), A*STAR, 8A Biomedical Grove, Immunos, Level 5, Singapore; Institute for Stroke and Dementia Research (A. Zellner, C.H.), Klinikum der Universität München, Ludwig Maximilians University, Munich, Germany; Comparative Genomics Laboratory (A.Y.J.N., S.T., B.V.), Institute of Molecular and Cell Biology, A*STAR, Biopolis; Department of Paediatrics (B.V.), National University of Singapore; Department of Neurology (A. Ziaei, V.S.), Isfahan Neurosciences Research Centre, Faculty of Medicine, Isfahan University of Medical Sciences, Iran; and Department of Physiology (M.A.P.), National University of Singapore
| | - Leila Dehghani
- Translational Laboratory in Genetic Medicine (TLGM) (A. Ziaei, X.X., M.A.P.), Agency for Science, Technology and Research (ASTAR), 8A Biomedical Grove, Immunos, Level 5; Department of Medicine (A. Ziaei, M.A.P.), National University of Singapore; Department of Neurology and Stroke Center (X.X.), the First Affiliated Hospital, Jinan University; Clinical Neuroscience Institute of Jinan University (X.X.), Guangzhou, Guangdong, China; Department of Tissue Engineering and Regenerative Medicine (L.D.), School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Institute of Medical Biology (IMB) (C.B., B.R.), A*STAR, 8A Biomedical Grove, Immunos, Level 5, Singapore; Institute for Stroke and Dementia Research (A. Zellner, C.H.), Klinikum der Universität München, Ludwig Maximilians University, Munich, Germany; Comparative Genomics Laboratory (A.Y.J.N., S.T., B.V.), Institute of Molecular and Cell Biology, A*STAR, Biopolis; Department of Paediatrics (B.V.), National University of Singapore; Department of Neurology (A. Ziaei, V.S.), Isfahan Neurosciences Research Centre, Faculty of Medicine, Isfahan University of Medical Sciences, Iran; and Department of Physiology (M.A.P.), National University of Singapore
| | - Carine Bonnard
- Translational Laboratory in Genetic Medicine (TLGM) (A. Ziaei, X.X., M.A.P.), Agency for Science, Technology and Research (ASTAR), 8A Biomedical Grove, Immunos, Level 5; Department of Medicine (A. Ziaei, M.A.P.), National University of Singapore; Department of Neurology and Stroke Center (X.X.), the First Affiliated Hospital, Jinan University; Clinical Neuroscience Institute of Jinan University (X.X.), Guangzhou, Guangdong, China; Department of Tissue Engineering and Regenerative Medicine (L.D.), School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Institute of Medical Biology (IMB) (C.B., B.R.), A*STAR, 8A Biomedical Grove, Immunos, Level 5, Singapore; Institute for Stroke and Dementia Research (A. Zellner, C.H.), Klinikum der Universität München, Ludwig Maximilians University, Munich, Germany; Comparative Genomics Laboratory (A.Y.J.N., S.T., B.V.), Institute of Molecular and Cell Biology, A*STAR, Biopolis; Department of Paediatrics (B.V.), National University of Singapore; Department of Neurology (A. Ziaei, V.S.), Isfahan Neurosciences Research Centre, Faculty of Medicine, Isfahan University of Medical Sciences, Iran; and Department of Physiology (M.A.P.), National University of Singapore
| | - Andreas Zellner
- Translational Laboratory in Genetic Medicine (TLGM) (A. Ziaei, X.X., M.A.P.), Agency for Science, Technology and Research (ASTAR), 8A Biomedical Grove, Immunos, Level 5; Department of Medicine (A. Ziaei, M.A.P.), National University of Singapore; Department of Neurology and Stroke Center (X.X.), the First Affiliated Hospital, Jinan University; Clinical Neuroscience Institute of Jinan University (X.X.), Guangzhou, Guangdong, China; Department of Tissue Engineering and Regenerative Medicine (L.D.), School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Institute of Medical Biology (IMB) (C.B., B.R.), A*STAR, 8A Biomedical Grove, Immunos, Level 5, Singapore; Institute for Stroke and Dementia Research (A. Zellner, C.H.), Klinikum der Universität München, Ludwig Maximilians University, Munich, Germany; Comparative Genomics Laboratory (A.Y.J.N., S.T., B.V.), Institute of Molecular and Cell Biology, A*STAR, Biopolis; Department of Paediatrics (B.V.), National University of Singapore; Department of Neurology (A. Ziaei, V.S.), Isfahan Neurosciences Research Centre, Faculty of Medicine, Isfahan University of Medical Sciences, Iran; and Department of Physiology (M.A.P.), National University of Singapore
| | - Alvin Yu Jin Ng
- Translational Laboratory in Genetic Medicine (TLGM) (A. Ziaei, X.X., M.A.P.), Agency for Science, Technology and Research (ASTAR), 8A Biomedical Grove, Immunos, Level 5; Department of Medicine (A. Ziaei, M.A.P.), National University of Singapore; Department of Neurology and Stroke Center (X.X.), the First Affiliated Hospital, Jinan University; Clinical Neuroscience Institute of Jinan University (X.X.), Guangzhou, Guangdong, China; Department of Tissue Engineering and Regenerative Medicine (L.D.), School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Institute of Medical Biology (IMB) (C.B., B.R.), A*STAR, 8A Biomedical Grove, Immunos, Level 5, Singapore; Institute for Stroke and Dementia Research (A. Zellner, C.H.), Klinikum der Universität München, Ludwig Maximilians University, Munich, Germany; Comparative Genomics Laboratory (A.Y.J.N., S.T., B.V.), Institute of Molecular and Cell Biology, A*STAR, Biopolis; Department of Paediatrics (B.V.), National University of Singapore; Department of Neurology (A. Ziaei, V.S.), Isfahan Neurosciences Research Centre, Faculty of Medicine, Isfahan University of Medical Sciences, Iran; and Department of Physiology (M.A.P.), National University of Singapore
| | - Sumanty Tohari
- Translational Laboratory in Genetic Medicine (TLGM) (A. Ziaei, X.X., M.A.P.), Agency for Science, Technology and Research (ASTAR), 8A Biomedical Grove, Immunos, Level 5; Department of Medicine (A. Ziaei, M.A.P.), National University of Singapore; Department of Neurology and Stroke Center (X.X.), the First Affiliated Hospital, Jinan University; Clinical Neuroscience Institute of Jinan University (X.X.), Guangzhou, Guangdong, China; Department of Tissue Engineering and Regenerative Medicine (L.D.), School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Institute of Medical Biology (IMB) (C.B., B.R.), A*STAR, 8A Biomedical Grove, Immunos, Level 5, Singapore; Institute for Stroke and Dementia Research (A. Zellner, C.H.), Klinikum der Universität München, Ludwig Maximilians University, Munich, Germany; Comparative Genomics Laboratory (A.Y.J.N., S.T., B.V.), Institute of Molecular and Cell Biology, A*STAR, Biopolis; Department of Paediatrics (B.V.), National University of Singapore; Department of Neurology (A. Ziaei, V.S.), Isfahan Neurosciences Research Centre, Faculty of Medicine, Isfahan University of Medical Sciences, Iran; and Department of Physiology (M.A.P.), National University of Singapore
| | - Byrappa Venkatesh
- Translational Laboratory in Genetic Medicine (TLGM) (A. Ziaei, X.X., M.A.P.), Agency for Science, Technology and Research (ASTAR), 8A Biomedical Grove, Immunos, Level 5; Department of Medicine (A. Ziaei, M.A.P.), National University of Singapore; Department of Neurology and Stroke Center (X.X.), the First Affiliated Hospital, Jinan University; Clinical Neuroscience Institute of Jinan University (X.X.), Guangzhou, Guangdong, China; Department of Tissue Engineering and Regenerative Medicine (L.D.), School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Institute of Medical Biology (IMB) (C.B., B.R.), A*STAR, 8A Biomedical Grove, Immunos, Level 5, Singapore; Institute for Stroke and Dementia Research (A. Zellner, C.H.), Klinikum der Universität München, Ludwig Maximilians University, Munich, Germany; Comparative Genomics Laboratory (A.Y.J.N., S.T., B.V.), Institute of Molecular and Cell Biology, A*STAR, Biopolis; Department of Paediatrics (B.V.), National University of Singapore; Department of Neurology (A. Ziaei, V.S.), Isfahan Neurosciences Research Centre, Faculty of Medicine, Isfahan University of Medical Sciences, Iran; and Department of Physiology (M.A.P.), National University of Singapore
| | - Christof Haffner
- Translational Laboratory in Genetic Medicine (TLGM) (A. Ziaei, X.X., M.A.P.), Agency for Science, Technology and Research (ASTAR), 8A Biomedical Grove, Immunos, Level 5; Department of Medicine (A. Ziaei, M.A.P.), National University of Singapore; Department of Neurology and Stroke Center (X.X.), the First Affiliated Hospital, Jinan University; Clinical Neuroscience Institute of Jinan University (X.X.), Guangzhou, Guangdong, China; Department of Tissue Engineering and Regenerative Medicine (L.D.), School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Institute of Medical Biology (IMB) (C.B., B.R.), A*STAR, 8A Biomedical Grove, Immunos, Level 5, Singapore; Institute for Stroke and Dementia Research (A. Zellner, C.H.), Klinikum der Universität München, Ludwig Maximilians University, Munich, Germany; Comparative Genomics Laboratory (A.Y.J.N., S.T., B.V.), Institute of Molecular and Cell Biology, A*STAR, Biopolis; Department of Paediatrics (B.V.), National University of Singapore; Department of Neurology (A. Ziaei, V.S.), Isfahan Neurosciences Research Centre, Faculty of Medicine, Isfahan University of Medical Sciences, Iran; and Department of Physiology (M.A.P.), National University of Singapore
| | - Bruno Reversade
- Translational Laboratory in Genetic Medicine (TLGM) (A. Ziaei, X.X., M.A.P.), Agency for Science, Technology and Research (ASTAR), 8A Biomedical Grove, Immunos, Level 5; Department of Medicine (A. Ziaei, M.A.P.), National University of Singapore; Department of Neurology and Stroke Center (X.X.), the First Affiliated Hospital, Jinan University; Clinical Neuroscience Institute of Jinan University (X.X.), Guangzhou, Guangdong, China; Department of Tissue Engineering and Regenerative Medicine (L.D.), School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Institute of Medical Biology (IMB) (C.B., B.R.), A*STAR, 8A Biomedical Grove, Immunos, Level 5, Singapore; Institute for Stroke and Dementia Research (A. Zellner, C.H.), Klinikum der Universität München, Ludwig Maximilians University, Munich, Germany; Comparative Genomics Laboratory (A.Y.J.N., S.T., B.V.), Institute of Molecular and Cell Biology, A*STAR, Biopolis; Department of Paediatrics (B.V.), National University of Singapore; Department of Neurology (A. Ziaei, V.S.), Isfahan Neurosciences Research Centre, Faculty of Medicine, Isfahan University of Medical Sciences, Iran; and Department of Physiology (M.A.P.), National University of Singapore
| | - Vahid Shaygannejad
- Translational Laboratory in Genetic Medicine (TLGM) (A. Ziaei, X.X., M.A.P.), Agency for Science, Technology and Research (ASTAR), 8A Biomedical Grove, Immunos, Level 5; Department of Medicine (A. Ziaei, M.A.P.), National University of Singapore; Department of Neurology and Stroke Center (X.X.), the First Affiliated Hospital, Jinan University; Clinical Neuroscience Institute of Jinan University (X.X.), Guangzhou, Guangdong, China; Department of Tissue Engineering and Regenerative Medicine (L.D.), School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Institute of Medical Biology (IMB) (C.B., B.R.), A*STAR, 8A Biomedical Grove, Immunos, Level 5, Singapore; Institute for Stroke and Dementia Research (A. Zellner, C.H.), Klinikum der Universität München, Ludwig Maximilians University, Munich, Germany; Comparative Genomics Laboratory (A.Y.J.N., S.T., B.V.), Institute of Molecular and Cell Biology, A*STAR, Biopolis; Department of Paediatrics (B.V.), National University of Singapore; Department of Neurology (A. Ziaei, V.S.), Isfahan Neurosciences Research Centre, Faculty of Medicine, Isfahan University of Medical Sciences, Iran; and Department of Physiology (M.A.P.), National University of Singapore
| | - Mahmoud A Pouladi
- Translational Laboratory in Genetic Medicine (TLGM) (A. Ziaei, X.X., M.A.P.), Agency for Science, Technology and Research (ASTAR), 8A Biomedical Grove, Immunos, Level 5; Department of Medicine (A. Ziaei, M.A.P.), National University of Singapore; Department of Neurology and Stroke Center (X.X.), the First Affiliated Hospital, Jinan University; Clinical Neuroscience Institute of Jinan University (X.X.), Guangzhou, Guangdong, China; Department of Tissue Engineering and Regenerative Medicine (L.D.), School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Institute of Medical Biology (IMB) (C.B., B.R.), A*STAR, 8A Biomedical Grove, Immunos, Level 5, Singapore; Institute for Stroke and Dementia Research (A. Zellner, C.H.), Klinikum der Universität München, Ludwig Maximilians University, Munich, Germany; Comparative Genomics Laboratory (A.Y.J.N., S.T., B.V.), Institute of Molecular and Cell Biology, A*STAR, Biopolis; Department of Paediatrics (B.V.), National University of Singapore; Department of Neurology (A. Ziaei, V.S.), Isfahan Neurosciences Research Centre, Faculty of Medicine, Isfahan University of Medical Sciences, Iran; and Department of Physiology (M.A.P.), National University of Singapore
| |
Collapse
|
41
|
Kramann N, Menken L, Pförtner R, Schmid SN, Stadelmann C, Wegner C, Brück W. Glial fibrillary acidic protein expression alters astrocytic chemokine release and protects mice from cuprizone-induced demyelination. Glia 2019; 67:1308-1319. [DOI: 10.1002/glia.23605] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/31/2019] [Accepted: 02/07/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Nadine Kramann
- Institute of Neuropathology, University Medical Center Göttingen; Göttingen Germany
| | - Lena Menken
- Institute of Neuropathology, University Medical Center Göttingen; Göttingen Germany
| | - Ramona Pförtner
- Institute of Neuropathology, University Medical Center Göttingen; Göttingen Germany
| | - Susanne N. Schmid
- Institute of Neuropathology, University Medical Center Göttingen; Göttingen Germany
| | - Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen; Göttingen Germany
| | - Christiane Wegner
- Institute of Neuropathology, University Medical Center Göttingen; Göttingen Germany
- Institute of Pathology, University Medical Center Göttingen; Göttingen Germany
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center Göttingen; Göttingen Germany
| |
Collapse
|
42
|
Sosunov A, Olabarria M, Goldman JE. Alexander disease: an astrocytopathy that produces a leukodystrophy. Brain Pathol 2019; 28:388-398. [PMID: 29740945 DOI: 10.1111/bpa.12601] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/02/2018] [Indexed: 02/02/2023] Open
Abstract
Alexander Disease (AxD) is a degenerative disorder caused by mutations in the GFAP gene, which encodes the major intermediate filament of astrocytes. As other cells in the CNS do not express GFAP, AxD is a primary astrocyte disease. Astrocytes acquire a large number of pathological features, including changes in morphology, the loss or diminution of a number of critical astrocyte functions and the activation of cell stress and inflammatory pathways. AxD is also characterized by white matter degeneration, a pathology that has led it to be included in the "leukodystrophies." Furthermore, variable degrees of neuronal loss take place. Thus, the astrocyte pathology triggers alterations in other cell types. Here, we will review the neuropathology of AxD and discuss how a disease of astrocytes can lead to severe pathologies in non-astrocytic cells. Our knowledge of the pathophysiology of AxD will also lead to a better understanding of how astrocytes interact with other CNS cells and how astrocytes in the gliosis that accompanies many neurological disorders can damage the function and survival of other cells.
Collapse
Affiliation(s)
| | - Markel Olabarria
- Departments of Pathology and Cell Biology, Columbia University, New York, NY
| | - James E Goldman
- Departments of Pathology and Cell Biology, Columbia University, New York, NY
| |
Collapse
|
43
|
Gómez-Pinedo U, Duran-Moreno M, Sirerol-Piquer S, Matias-Guiu J. Myelin changes in Alexander disease. NEUROLOGÍA (ENGLISH EDITION) 2018. [DOI: 10.1016/j.nrleng.2017.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
44
|
Saito K, Shigetomi E, Yasuda R, Sato R, Nakano M, Tashiro K, Tanaka KF, Ikenaka K, Mikoshiba K, Mizuta I, Yoshida T, Nakagawa M, Mizuno T, Koizumi S. Aberrant astrocyte Ca 2+ signals "AxCa signals" exacerbate pathological alterations in an Alexander disease model. Glia 2018; 66:1053-1067. [PMID: 29383757 DOI: 10.1002/glia.23300] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/12/2017] [Accepted: 01/10/2018] [Indexed: 12/21/2022]
Abstract
Alexander disease (AxD) is a rare neurodegenerative disorder caused by gain of function mutations in the glial fibrillary acidic protein (GFAP) gene. Accumulation of GFAP proteins and formation of Rosenthal fibers (RFs) in astrocytes are hallmarks of AxD. However, malfunction of astrocytes in the AxD brain is poorly understood. Here, we show aberrant Ca2+ responses in astrocytes as playing a causative role in AxD. Transcriptome analysis of astrocytes from a model of AxD showed age-dependent upregulation of GFAP, several markers for neurotoxic reactive astrocytes, and downregulation of Ca2+ homeostasis molecules. In situ AxD model astrocytes produced aberrant extra-large Ca2+ signals "AxCa signals", which increased with age, correlated with GFAP upregulation, and were dependent on stored Ca2+ . Inhibition of AxCa signals by deletion of inositol 1,4,5-trisphosphate type 2 receptors (IP3R2) ameliorated AxD pathogenesis. Taken together, AxCa signals in the model astrocytes would contribute to AxD pathogenesis.
Collapse
Affiliation(s)
- Kozo Saito
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Kofu, Yamanashi Prefecture, 400-8510, Japan.,Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Kofu, Yamanashi Prefecture, 400-8510, Japan
| | - Rei Yasuda
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryuichi Sato
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masakazu Nakano
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kei Tashiro
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenji F Tanaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Japan
| | - Ikuko Mizuta
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomokatsu Yoshida
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masanori Nakagawa
- Department of Neurology, North Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Kofu, Yamanashi Prefecture, 400-8510, Japan
| |
Collapse
|
45
|
Gómez-Pinedo U, Sirerol-Piquer S, Durán-Moreno M, Matias-Guiu JA, Barcia JA, García-Verdugo JM, Matias-Guiu J. NG2 and GFAP co-expression after differentiation in cells transfected with mutant GFAP and in undifferentiated glioma cells. Neurologia 2017; 35:479-485. [PMID: 29249301 DOI: 10.1016/j.nrl.2017.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 10/29/2017] [Accepted: 11/05/2017] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Alexander disease is a rare disorder caused by mutations in the gene coding for glial fibrillary acidic protein (GFAP). In a previous study, differentiation of neurospheres transfected with these mutations resulted in a cell type that expresses both GFAP and NG2. OBJECTIVE To determine the effect of molecular marker mutations in comparison to undifferentiated glioma cells simultaneously expressing GFAP and NG2. METHODS We used samples of human glioblastoma (GBM) and rat neurospheres transfected with GFAP mutations to analyse GFAP and NG2 expression after differentiation. We also performed an immunocytochemical analysis of neuronal differentiation for both cell types and detection of GFAP, NG2, vimentin, Olig2, and caspase-3 at 3 and 7 days from differentiation. RESULTS Both the cells transfected with GFAP mutations and GBM cells showed increased NG2 and GFAP expression. However, expression of caspase-3-positive cells was found to be considerably higher in transfected cells than in GBM cells. CONCLUSIONS Our results suggest that GFAP expression is not the only factor associated with cell death in Alexander disease. Caspase-3 expression and the potential role of NG2 in increasing resistance to apoptosis in cells co-expressing GFAP and NG2 should be considered in the search for new therapeutic strategies for the disease.
Collapse
Affiliation(s)
- U Gómez-Pinedo
- Laboratorio de Neurobiología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España.
| | - S Sirerol-Piquer
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Valencia, España
| | - M Durán-Moreno
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Valencia, España
| | - J A Matias-Guiu
- Laboratorio de Neurobiología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - J A Barcia
- Laboratorio de Neurobiología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - J M García-Verdugo
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Valencia, España
| | - J Matias-Guiu
- Laboratorio de Neurobiología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| |
Collapse
|
46
|
Leferink PS, Heine VM. The Healthy and Diseased Microenvironments Regulate Oligodendrocyte Properties: Implications for Regenerative Medicine. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:39-52. [PMID: 29024633 DOI: 10.1016/j.ajpath.2017.08.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/12/2017] [Accepted: 08/01/2017] [Indexed: 02/08/2023]
Abstract
White matter disorders are characterized by deficient myelin or myelin loss, lead to a range of neurologic dysfunctions, and can result in early death. Oligodendrocytes, which are responsible for white matter formation, are the first targets for treatment. However, many studies indicate that failure of white matter repair goes beyond the intrinsic incapacity of oligodendrocytes to (re)generate myelin and that failed interactions with neighboring cells or factors in the diseased microenvironment can underlie white matter defects. Moreover, most of the white matter disorders show specific white matter pathology caused by different disease mechanisms. Herein, we review the factors within the cellular and the extracellular microenvironment regulating oligodendrocyte properties and discuss stem cell tools to identify microenvironmental factors of importance to the development of improved regenerative medicine for patients with white matter disorders.
Collapse
Affiliation(s)
- Prisca S Leferink
- Department of Pediatrics/Child Neurology, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Vivi M Heine
- Department of Pediatrics/Child Neurology, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands; Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
47
|
Olabarria M, Goldman JE. Disorders of Astrocytes: Alexander Disease as a Model. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 12:131-152. [PMID: 28135564 DOI: 10.1146/annurev-pathol-052016-100218] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Astrocytes undergo important phenotypic changes in many neurological disorders, including strokes, trauma, inflammatory diseases, infectious diseases, and neurodegenerative diseases. We have been studying the astrocytes of Alexander disease (AxD), which is caused by heterozygous mutations in the GFAP gene, which is the gene that encodes the major astrocyte intermediate filament protein. AxD is a primary astrocyte disease because GFAP expression is specific to astrocytes in the central nervous system (CNS). The accumulation of extremely large amounts of GFAP causes many molecular changes in astrocytes, including proteasome inhibition, stress kinase activation, mechanistic target of rapamycin (mTOR) activation, loss of glutamate and potassium buffering capacity, loss of astrocyte coupling, and changes in cell morphology. Many of these changes appear to be common to astrocyte reactions in other neurological disorders. Using AxD to illuminate common mechanisms, we discuss the molecular pathology of AxD astrocytes and compare that to astrocyte pathology in other disorders.
Collapse
Affiliation(s)
- Markel Olabarria
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032; ,
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032; ,
| |
Collapse
|
48
|
Gómez-Pinedo U, Sirerol-Piquer MS, Durán-Moreno M, García-Verdugo JM, Matias-Guiu J. Alexander Disease Mutations Produce Cells with Coexpression of Glial Fibrillary Acidic Protein and NG2 in Neurosphere Cultures and Inhibit Differentiation into Mature Oligodendrocytes. Front Neurol 2017; 8:255. [PMID: 28634469 PMCID: PMC5459916 DOI: 10.3389/fneur.2017.00255] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/22/2017] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Alexander disease (AxD) is a rare disease caused by mutations in the gene encoding glial fibrillary acidic protein (GFAP). The disease is characterized by presence of GFAP aggregates in the cytoplasm of astrocytes and loss of myelin. OBJECTIVES Determine the effect of AxD-related mutations on adult neurogenesis. METHODS We transfected different types of mutant GFAP into neurospheres using the nucleofection technique. RESULTS We find that mutations may cause coexpression of GFAP and NG2 in neurosphere cultures, which would inhibit the differentiation of precursors into oligodendrocytes and thus explain the myelin loss occurring in the disease. Transfection produces cells that differentiate into new cells marked simultaneously by GFAP and NG2 and whose percentage increased over days of differentiation. Increased expression of GFAP is due to a protein with an anomalous structure that forms aggregates throughout the cytoplasm of new cells. These cells display down-expression of vimentin and nestin. Up-expression of cathepsin D and caspase-3 in the first days of differentiation suggest that apoptosis as a lysosomal response may be at work. HSP27, a protein found in Rosenthal bodies, is expressed less at the beginning of the process although its presence increases in later stages. CONCLUSION Our findings seem to suggest that the mechanism of development of AxD may not be due to a function gain due to increase of GFAP, but to failure in the differentiation process may occur at the stage in which precursor cells transform into oligodendrocytes, and that possibility may provide the best explanation for the clinical and radiological images described in AxD.
Collapse
Affiliation(s)
- Ulises Gómez-Pinedo
- Neurobiology Laboratory, Neuroscience Institute, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Maria Salomé Sirerol-Piquer
- Laboratory of Comparative Neurobiology, Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Universidad de Valencia, Valencia, Spain
| | - María Durán-Moreno
- Laboratory of Comparative Neurobiology, Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Universidad de Valencia, Valencia, Spain
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Universidad de Valencia, Valencia, Spain
| | - Jorge Matias-Guiu
- Neurobiology Laboratory, Neuroscience Institute, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
49
|
Gómez-Pinedo U, Duran-Moreno M, Sirerol-Piquer S, Matias-Guiu J. Myelin changes in Alexander disease. Neurologia 2017; 33:526-533. [PMID: 28342553 DOI: 10.1016/j.nrl.2017.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 01/26/2017] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Alexander disease (AxD) is a type of leukodystrophy. Its pathological basis, along with myelin loss, is the appearance of Rosenthal bodies, which are cytoplasmic inclusions in astrocytes. Mutations in the gene coding for GFAP have been identified as a genetic basis for AxD. However, the mechanism by which these variants produce the disease is not understood. DEVELOPMENT The most widespread hypothesis is that AxD develops when a gain of function mutation causes an increase in GFAP. However, this mechanism does not explain myelin loss, given that experimental models in which GFAP expression is normal or mutated do not exhibit myelin disorders. This review analyses other possibilities that may explain this alteration, such as epigenetic or inflammatory alterations, presence of NG2 (+) - GFAP (+) cells, or post-translational modifications in GFAP that are unrelated to increased expression. CONCLUSIONS The different hypotheses analysed here may explain the myelin alteration affecting these patients, and multiple mechanisms may coexist. These theories raise the possibility of designing therapies based on these mechanisms.
Collapse
Affiliation(s)
- U Gómez-Pinedo
- Laboratorio de Neurobiología, Servicio de Neurología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España.
| | - M Duran-Moreno
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Valencia, España
| | - S Sirerol-Piquer
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Valencia, España
| | - J Matias-Guiu
- Laboratorio de Neurobiología, Servicio de Neurología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| |
Collapse
|
50
|
Sphingosine 1-phosphate receptor modulation suppresses pathogenic astrocyte activation and chronic progressive CNS inflammation. Proc Natl Acad Sci U S A 2017; 114:2012-2017. [PMID: 28167760 DOI: 10.1073/pnas.1615413114] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory demyelinating disease of the CNS that causes disability in young adults as a result of the irreversible accumulation of neurological deficits. Although there are potent disease-modifying agents for its initial relapsing-remitting phase, these therapies show limited efficacy in secondary progressive MS (SPMS). Thus, there is an unmet clinical need for the identification of disease mechanisms and potential therapeutic approaches for SPMS. Here, we show that the sphingosine 1-phosphate receptor (S1PR) modulator fingolimod (FTY720) ameliorated chronic progressive experimental autoimmune encephalomyelitis in nonobese diabetic mice, an experimental model that resembles several aspects of SPMS, including neurodegeneration and disease progression driven by the innate immune response in the CNS. Indeed, S1PR modulation by FTY720 in murine and human astrocytes suppressed neurodegeneration-promoting mechanisms mediated by astrocytes, microglia, and CNS-infiltrating proinflammatory monocytes. Genome-wide studies showed that FTY720 suppresses transcriptional programs associated with the promotion of disease progression by astrocytes. The study of the molecular mechanisms controlling these transcriptional modules may open new avenues for the development of therapeutic strategies for progressive MS.
Collapse
|