1
|
Bagnato F, Mordin M, Greene N, Mahida S, van Wingerden J. Associations between chronic active lesions and clinical outcomes in multiple sclerosis: A systematic literature review. J Manag Care Spec Pharm 2025:1-28. [PMID: 40357663 DOI: 10.18553/jmcp.2025.24294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic neuroinflammatory and neurodegenerative disease. Emerging evidence suggests that chronic disease processes within the central nervous system are important drivers of the ongoing disability accumulation in people with MS (pwMS). Chronic lesion activity driven by smoldering neuroinflammation is considered one of the neuropathological hallmarks of disease progression in worsening disability. Our understanding of the role of chronic active lesions (CALs) in MS pathology has expanded with improvements in imaging technology. Three in vivo imaging biomarkers of CALs are available to detect CALs: paramagnetic rim lesions (PRLs), 18 kDa translocator protein (TSPO)-positron emission tomography rim-positive lesions, and the magnetic resonance imaging (MRI)-defined slowly expanding lesions (SELs). OBJECTIVE To evaluate associations between CALs and measures of worsening disability in pwMS. METHODS A systematic literature search was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines using PubMed, Embase, and the Cochrane Library on April 21, 2023. The review included randomized controlled trials, retrospective studies, and prospective cross-sectional and longitudinal studies conducted during 2010-2023 reporting the outcomes of interest. Studies evaluating people with any MS phenotype were included if they reported any associative analysis between CALs and clinical outcomes. RESULTS A total of 30 of 149 unique studies identified in the literature met the inclusion criteria. Of these 30 publications, 18 were based on PRLs, 9 on MRI-defined SELs, 1 on PRLs and MRI-defined SELs simultaneously, and 2 on TSPO-positive lesions. PRLs were associated with disability worsening in 17 studies, as measured by clinical disability scales. MRI-defined SELs were associated with worsening disability in 10 studies. CONCLUSIONS CALs are frequently associated with disease progression and disability accumulation. CALs may provide an indicator of disease severity and may assist with the assessment of treatment efficacy.
Collapse
Affiliation(s)
- Francesca Bagnato
- Neuroimaging Unit, Neuorimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | | | | | | | | |
Collapse
|
2
|
Klistorner S, Barnett M, Parratt JDE, Yiannikas C, Wang C, Wang D, Shieh A, Klistorner A. Evolution of Chronic Lesion Tissue in Relapsing-Remitting Patients With Multiple Sclerosis: An Association With Disease Progression. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200377. [PMID: 40020214 PMCID: PMC11908449 DOI: 10.1212/nxi.0000000000200377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 01/03/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND AND OBJECTIVES In this study, we examine the long-term changes in chronic lesion tissue (CLT) among patients with relapsing-remitting MS (RRMS), focusing on its impact on clinical and radiologic disease progression indicators. METHODS The study involved 72 patients with multiple sclerosis with at least a 5-year follow-up. Annual assessments used 3D fluid-attenuated inversion recovery (FLAIR), precontrast and postcontrast 3D T1, and diffusion-weighted MRI. Lesion segmentation was conducted using iQ-MS software, while brain structures were segmented using AssemblyNet. Volumetric changes in CLT were tracked using a novel custom-designed pipeline that estimates longitudinal volumetric changes in CLT using serial MRI data. RESULTS Throughout the follow-up period, the volume of CLT in the entire cohort increased continuously and steadily, averaging 7.75% ± 8.2% or 315 ± 465 mm³ per year. Patients with expanding CLT experienced significantly faster brain atrophy, affecting both white and gray matter, particularly in the brain's central area. Expanded CLT was also associated with higher and worsening Expanded Disability Status Scale (EDSS) scores, in contrast to the stable CLT group, where EDSS remained unchanged. Sample size calculation for a clinical trial investigating the effect of treatment on slow expansion of chronic lesions demonstrated that a relatively small cohort of patients with RRMS, ranging from 24 to 69 patients per arm, would be required. DISCUSSION This study demonstrates that, over a period of up to 5 years, patient-specific enlargement of CLT, when present, progresses at a constant rate and significantly influences brain atrophy and disease progression. In addition, the study underscores CLT as a promising biomarker for RRMS progression and suggests the feasibility of smaller, targeted clinical trials to evaluate treatments aimed at reducing chronic lesion expansion.
Collapse
Affiliation(s)
- Samuel Klistorner
- Save Sight Institute, Sydney Medical School, University of Sydney, Australia
| | - Michael Barnett
- Brain and Mind Centre, University of Sydney, Australia
- Sydney Neuroimaging Analysis Centre, Camperdown, Australia
- Royal Prince Alfred Hospital, Sydney, Australia; and
| | | | | | - Chenyu Wang
- Brain and Mind Centre, University of Sydney, Australia
- Sydney Neuroimaging Analysis Centre, Camperdown, Australia
| | - Dongang Wang
- Brain and Mind Centre, University of Sydney, Australia
- Sydney Neuroimaging Analysis Centre, Camperdown, Australia
| | - Andy Shieh
- Sydney Neuroimaging Analysis Centre, Camperdown, Australia
| | | |
Collapse
|
3
|
Okutan B, Frederiksen JL, Houen G, Sellebjerg F, Kyllesbech C, Magyari M, Paunovic M, Sørensen PS, Jacobsen C, Lassmann H, Bramow S. Subcortical plaques and inflammation reflect cortical and meningeal pathologies in progressive multiple sclerosis. Brain Pathol 2025; 35:e13314. [PMID: 39460678 PMCID: PMC11961212 DOI: 10.1111/bpa.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
It remains elusive whether lesions and inflammation in the sub/juxtacortical white matter reflect cortical and/or meningeal pathologies. Elucidating this could have implications for MRI monitoring as sub/juxtacortical lesions are detectable by routine MRI, while cortical lesions and meningeal inflammation are not. By large-area microscopy, we quantified total and mixed active plaque loads along with densities and sizes of perivascular mononuclear infiltrates (infiltrates) in the sub/juxtacortical white matter ≤2 mm from the cortex, intra-cortically and in the meninges. Data were related to ante-mortem clinical parameters in a false discovery rate-corrected analysis. We compared 12 patients with primary progressive multiple sclerosis (PPMS) and 15 with secondary progressive MS to 22 controls. Fifteen patients and 11 controls contributed with hemispheric sections. Sections were stained with haematoxylin-eosin, for myelin and for microglia/macrophages. B cells and T cells were confirmed in a subset. Immunoglobulin G depositions in selected cortical plaques resembled depositions described before in "slowly expanding" plaques in the white matter. We quantified plaque activity by measuring microglia-dominated and macrophage-dominated areas. Sub/juxtacortical plaques (load and activity) reflected plaque activity in the cerebral cortex. Plaque activity and infiltrates were more pronounced in the sub/juxtacortical white matter than in the cerebral cortex while conversely, the total plaque load was highest in the cortex. Infiltrates correlated trans-cortically and sub/juxtacortical plaque activity reflected cortical and meningeal infiltrates. Sub/juxtacortical infiltrate sizes correlated with shorter survival after progression onset. Two patients with PPMS and putatively fatal brain stem lesions argue against incidental findings. Trans-cortical inflammatory flares and plaque activity may be pathogenic in progressive MS. We suggest emphasis on sub/juxtacortical MRI lesions as plausible surrogates for cortical and meningeal pathologies and, when present, as indicators for cognitive testing.
Collapse
Affiliation(s)
- Betül Okutan
- Department of Neurology, Danish Multiple Sclerosis CenterCopenhagen University Hospital – RigshospitaletGlostrupDenmark
| | - Jette L. Frederiksen
- Department of Neurology, Danish Multiple Sclerosis CenterCopenhagen University Hospital – RigshospitaletGlostrupDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Gunnar Houen
- Department of Neurology, Danish Multiple Sclerosis CenterCopenhagen University Hospital – RigshospitaletGlostrupDenmark
- Department of Biochemistry and Molecular Biology, Faculty of Health SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Finn Sellebjerg
- Department of Neurology, Danish Multiple Sclerosis CenterCopenhagen University Hospital – RigshospitaletGlostrupDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Cecilie Kyllesbech
- Department of Neurology, Danish Multiple Sclerosis CenterCopenhagen University Hospital – RigshospitaletGlostrupDenmark
- Department of Biochemistry and Molecular Biology, Faculty of Health SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Melinda Magyari
- Department of Neurology, Danish Multiple Sclerosis CenterCopenhagen University Hospital – RigshospitaletGlostrupDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Neurology, Danish Multiple Sclerosis RegistryCopenhagen University Hospital – RigshospitaletGlostrupDenmark
| | - Manuela Paunovic
- Department of NeurologyErasmus Medical CentreRotterdamThe Netherlands
- Center for Brain ResearchMedical University of ViennaViennaAustria
| | - Per S. Sørensen
- Department of Neurology, Danish Multiple Sclerosis CenterCopenhagen University Hospital – RigshospitaletGlostrupDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Christina Jacobsen
- Section of Forensic Pathology, Department of Forensic Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Hans Lassmann
- Center for Brain ResearchMedical University of ViennaViennaAustria
| | - Stephan Bramow
- Department of Neurology, Danish Multiple Sclerosis CenterCopenhagen University Hospital – RigshospitaletGlostrupDenmark
- Department of PathologyCopenhagen University Hospital – RigshospitaletCopenhagenDenmark
| |
Collapse
|
4
|
Liu X, Wang Y, Wei N, Zhu W, Suo Y, Xu Y, Jin A, Xu Q, Qi N, Jiang Q, Wang Z, Su L, Guo A, Sun J, Duan Y, Zhang Z, Jing J, Tian DC. The characteristics and influencing factors of paramagnetic rim lesions in Chinese MS patients: A 7T MRI study. Mult Scler 2025:13524585251328902. [PMID: 40219829 DOI: 10.1177/13524585251328902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
BACKGROUND Paramagnetic rim lesions (PRLs) in multiple sclerosis (MS) are a significant factor for disability progression and prognosis, but their characteristics in the Chinese population are unclear. OBJECTIVE To explore PRLs in Chinese MS patients using 7T magnetic resonance imaging (MRI), including their number, proportion, distribution, and associated factors. METHODS Patients from the 7T MRI subgroup of the China National Registry of Neuro-Inflammatory Diseases (CNRID) were prospectively included. PRLs were assessed on susceptibility-weighted imaging (SWI)-phase images. Patients were grouped by PRL count (0, 1-3, 4-10, >10). Associations between clinical characteristics and PRL count were analyzed using multivariable linear regression, while correlations with disease duration were assessed using Pearson partial correlation and regression. RESULTS Among 110 participants, 96 (87.3%) had at least one PRL. In PRL groups, proportions were 12.7%, 20.0%, 29.1%, and 38.2%. PRL count positively correlated with Expanded Disability Status Scale (EDSS), total lesion count, and volume and negatively with Symbol Digit Modality Test (SDMT; p < 0.05). Longer disease duration was associated with a lower PRL proportion after adjusting for age and sex (β = -0.006, p = 0.032). CONCLUSION A high proportion of Chinese MS patients in our 7T MRI cohort had PRLs, with many exhibiting multiple PRLs (⩾4). PRL count was influenced by EDSS, SDMT, total lesion count, and volume, while PRL proportion negatively correlated with disease duration.
Collapse
Affiliation(s)
- Xinyao Liu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yue Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ning Wei
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wanlin Zhu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yue Suo
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuyuan Xu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Aoming Jin
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qin Xu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Epidemiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Nan Qi
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qianmei Jiang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhaobin Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lei Su
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ai Guo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiali Sun
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yunyun Duan
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhe Zhang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing Jing
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - De-Cai Tian
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Marrodan M, Yañez P, Calandri IL, Piedrabuena MA, Zárate MA, Ysrraelit MC, Fiol M, Correale J. Impact of oral Cladribine on paramagnetic rim lesions of Multiple Sclerosis patients. Mult Scler Relat Disord 2025; 96:106339. [PMID: 40020453 DOI: 10.1016/j.msard.2025.106339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/06/2025] [Accepted: 02/15/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Paramagnetic rim lesions (PRLs), marked by chronic inflammation and iron-loaded microglia, are linked to severe disease progression in multiple sclerosis (MS). The impact of cladribine, an immune reconstitution therapy, on PRLs remains underexplored. OBJECTIVE To evaluate the effect of cladribine tablets on PRLs in relapsing-remitting MS (RRMS) patients and explore the association between PRLs dynamics and brain atrophy. METHODS We conducted a retrospective analysis of 52 RRMS patients treated with cladribine in Buenos Aires between 2018 and 2021. Brain MRIs were analyzed at baseline, 12, and 24 months post-treatment, focusing on PRLs count and brain volume measurements. Statistical analyses included Wilcoxon tests, Poisson mixed models, and linear mixed models. RESULTS The cohort included 52 patients (32 women) with a median age of 36 years (range 21-66 years). PRLs were present in 61.5% of patients at baseline. Cladribine treatment significantly reduced PRLs count (IRR=0.68, 95% CI [0.49, 0.95], p=0.02), independent of prior treatment or disease activity. While no significant relationship was found between PRLs changes and overall brain atrophy, a significant interaction between PRLs dynamics and atrophy in the right thalamus was observed (p<0.05). CONCLUSION Cladribine tablets are associated with a reduction in PRLs in RRMS patients, potentially influencing regional brain atrophy over time.
Collapse
Affiliation(s)
| | - Paulina Yañez
- Department of Neuro-Radiology, Fleni. Buenos Aires, Argentina.
| | - Ismael L Calandri
- Department of Cognitive Neurology, Fleni. Buenos Aires, Argentina; Alzheimer center, VU University, Amsterdam, the Netherlands.
| | | | - María A Zárate
- Departament of Neurology, Fleni. Buenos Aires, Argentina.
| | | | - Marcela Fiol
- Departament of Neurology, Fleni. Buenos Aires, Argentina.
| | - Jorge Correale
- Departament of Neurology, Fleni. Buenos Aires, Argentina; Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), CONICET/Universidad de Buenos Aires. Buenos Aires, Argentina.
| |
Collapse
|
6
|
Vavasour I, Elliott C, Arnold DL, Gaetano L, Clayton D, Magon S, Bonati U, Bernasconi C, Traboulsee A, Kolind S. Presence of slowly expanding lesions in multiple sclerosis predicts progressive demyelination within lesions and normal-appearing tissue over time. Mult Scler 2025; 31:418-432. [PMID: 39950257 PMCID: PMC11956371 DOI: 10.1177/13524585251316519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Multiple sclerosis (MS) slowly expanding lesions (SELs) are defined on magnetic resonance imaging (MRI) as contiguous regions of pre-existing focal non-contrast-enhancing T2 lesions with constant and concentric local expansion on conventional T1-weighted and T2-weighted images. SELs are associated with an increased risk of disability progression. METHODS Myelin-related changes detected using myelin water fraction (MWF) and magnetisation transfer ratio (MTR) in SELs and T2 lesions were measured over 192 weeks in participants with relapsing MS. RESULTS In participants with SELs (SEL+), SELs (MWF: 0.12 ± 0.03, MTR: 33.1 ± 3.6 pu) showed reduced myelin measures at baseline compared to T2 lesions (MWF: 0.13 ± 0.02, MTR: 35.1 ± 2.4 pu). In participants without SELs (SEL-), T2 lesions had higher myelin measures (MWF: 0.15 ± 0.02, MTR: 36.2 ± 2.0 pu) compared to T2 lesions in SEL+. Over 4 years, only SELs showed decreases in MWF (-11.4%). The percentage of abnormal voxels within normal-appearing white matter was higher in SEL+ and increased over time (SEL+ MWF Week 0: 0.56%, Week 192: 0.98%; SEL- MWF Week 0: 0.13%, Week 192: 0.25%). CONCLUSION Our results indicate progressive focal and global demyelination in SEL+ participants and that the presence of SELs might be a biomarker for participants with ongoing diffuse or smouldering inflammation within the whole brain.
Collapse
Affiliation(s)
- Irene Vavasour
- The University of British Columbia, Vancouver, BC, Canada
| | | | - Douglas L Arnold
- NeuroRx Research, Montreal, QC, Canada; McGill University, Montreal, QC, Canada
| | | | | | | | | | | | | | - Shannon Kolind
- The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Elkady AM, Elliott C, Fetco D, Araujo D, Karimaghaloo Z, Ganzetti M, Clayton D, Craveiro L, Kazlauskaite A, Narayanan S, Arnold DL, Rudko DA. Longitudinal Multiparametric Quantitative MRI Evaluation of Acute and Chronic Multiple Sclerosis Paramagnetic Rim Lesions. J Magn Reson Imaging 2025; 61:1812-1828. [PMID: 39239775 PMCID: PMC11896925 DOI: 10.1002/jmri.29583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) paramagnetic rim lesions (PRLs) are markers of chronic active biology and exhibit complex iron and myelin changes that may complicate quantification when using conventional MRI approaches. PURPOSE To conduct a multiparametric MRI analysis of PRLs. STUDY TYPE Retrospective/longitudinal. SUBJECTS Ninety-five progressive MS subjects with at least one persistent PRL who were enrolled in the CONSONANCE trial. FIELD STRENGTH/SEQUENCE 3-T/Susceptibility-weighted, T1-weighted, T2-weighted, and fluid-attenuated inversion recovery. ASSESSMENT Acute/chronic PRLs and non-PRLs were measured at screening, 24, 48, and 96 weeks using quantitative magnetic susceptibility (QS), R2*, and standardized T1w/T2w ratio (sT1w/T2w). PRL analyses were performed for whole lesion, core, and rim. The correlations between PRL core and rim sT1w/T2w, QS, and R2* were assessed. STATISTICAL TESTS Linear mixed models. A P-value <0.05 was considered significant. RESULTS There was a significant decrease in sT1w/T2w (-0.24 ± -5.3 × 10-3) and R2* (-3.6 ± 2.2 Hz) but a significant increase in QS (+21 ± 1.3 ppb) using whole-lesion analysis of chronic PRLs compared to non-PRLs at screening. Tissue damage accumulated at the 96-week time point was more evident in acute/chronic PRLs compared to acute/chronic non-PRLs (ΔsT1w/T2w = -0.21/-0.24 ± 0.033/0.0053; ΔR2* = -4.4/-3.6 ± 1.4/2.2 Hz). New, acute PRL sT1w/T2w significantly increased in lesion core (+4.3 × 10-3 ± 1.2 × 10-4) and rim (+5.6 × 10-3 ± 1.2 × 10-4) 24 weeks post lesion inception, suggestive of partial recovery. Chronic PRLs, contrastingly, showed significant decreases in sT1w/T2w over the initial 24 weeks for both core (-2.1 × 10-4 ± 2.0 × 10-5) and rim (-2.4 × 10-4 ± 2.0 × 10-5), indicative of irreversible tissue damage. Significant positive correlations between PRL core and rim sT1w/T2w (R2 = 0.53), R2* (R2 = 0.69) and QS (R2 = 0.52) were observed. DATA CONCLUSION Multiparametric assessment of PRLs has the potential to be a valuable tool for assessing complex iron and myelin changes in chronic active PRLs of progressive MS patients. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Ahmed M. Elkady
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMontrealQuebecCanada
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
- NeuroRx ResearchMontrealQuebecCanada
| | | | - Dumitru Fetco
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMontrealQuebecCanada
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
- NeuroRx ResearchMontrealQuebecCanada
| | - David Araujo
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMontrealQuebecCanada
- NeuroRx ResearchMontrealQuebecCanada
| | | | | | | | | | | | - Sridar Narayanan
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMontrealQuebecCanada
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
- NeuroRx ResearchMontrealQuebecCanada
| | - Douglas L. Arnold
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMontrealQuebecCanada
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
- NeuroRx ResearchMontrealQuebecCanada
| | - David A. Rudko
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMontrealQuebecCanada
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
- Department of Biomedical EngineeringMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
8
|
De Meo E, Prados Carrasco F, Brown JWL, Coles AJ, Cunniffe NG, Jolly AE, Kanber B, Samson R, Barkhof F, Chard D. An MRI assessment of mechanisms underlying lesion growth and shrinkage in multiple sclerosis. Ann Clin Transl Neurol 2025; 12:686-700. [PMID: 39869436 PMCID: PMC12040513 DOI: 10.1002/acn3.52308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/18/2024] [Accepted: 01/09/2025] [Indexed: 01/29/2025] Open
Abstract
OBJECTIVE To assess the pathological mechanisms contributing to white matter (WM) lesion expansion or contraction and remyelination in multiple sclerosis (MS). METHODS We assessed 1,613 lesions in 49 people with relapsing-remitting MS in the CCMR-One bexarotene trial (EudraCT 2014-003145-99). We measured lesion orientation relative to WM tracts, surface-in gradients and veins. Jacobian deformation was used to assess lesion expansion over 6 months, while magnetization transfer ratio (MTR) imaging was used to assess remyelination. RESULTS At baseline, 33% of lesions were aligned with veins, 2% along WM tracts, 0% with surface-in gradients, and 4% orthogonal to veins. No significant differences were observed in lesion shape, while lesions aligned with surface-in gradients and with veins had lower volume compared to all remaining orientations. At follow-up, 13% of lesions expanded and 7% contracted. The directions for both expansion and contraction were 18% and 8%, respectively, along WM tracts, 20% and 15% parallel to veins, 22% and 23% orthogonal to veins and 0% and 1% along surface-in gradients. Bexarotene had no effect on lesion expansion or contraction, but MTR significantly increased in lesions aligned with surface-in gradients and veins. INTERPRETATION Lesion expansion and shrinkage are affected by venous and WM tract factors, but these do not influence bexarotene's capacity to promote remyelination. This, instead, appears to be affected by surface-in factors. To limit lesion expansion and maximize tissue repair, multiple processes may need to be targeted.
Collapse
Affiliation(s)
- Ermelinda De Meo
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Ferran Prados Carrasco
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Universitat Oberta de CatalunyaBarcelonaSpain
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing (CMIC)University College LondonLondonUK
| | | | - Alasdair J. Coles
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Nick G. Cunniffe
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Amy E. Jolly
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Baris Kanber
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing (CMIC)University College LondonLondonUK
| | - Rebecca Samson
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Frederik Barkhof
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research CentreLondonUK
- Radiology and Nuclear MedicineAmsterdam UMCAmsterdamthe Netherlands
| | - Declan Chard
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research CentreLondonUK
| |
Collapse
|
9
|
Vakrakou AG, Papadopoulos I, Brinia ME, Karathanasis D, Panaretos D, Stathopoulos P, Alexaki A, Pantoleon V, Karavasilis E, Velonakis G, Stefanis L, Evangelopoulos ME, Kilidireas C. Neurodegeneration correlates of iron-related lesions and leptomeningeal inflammation in multiple sclerosis clinical subtypes. Neuroradiology 2025:10.1007/s00234-025-03595-0. [PMID: 40131429 DOI: 10.1007/s00234-025-03595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/08/2025] [Indexed: 03/27/2025]
Abstract
PURPOSE The aim of this study was to investigate the significant implications of different types of lesions as assessed by QSM (quantitative-susceptibility-mapping) as well as leptomeningeal contrast-enhancement in a cohort of Relapsing-Remitting (RR) and Primary Progressive (PP) MS patients and to assess their association with clinical disability and MRI-measures of brain structural damage. METHODS Different types of white-matter lesions were identified and quantified using QSM in 24 RRMS and 15 PPMS (11 patients with follow-up MRI). Leptomeningeal contrast-enhancement (LMCE; foci) was assessed on 3D-FLAIR post-gadolinium. RESULTS Both RRMS and PPMS presented PRL (paramagnetic-rim lesions) and LMCE, with PPMS showing a trend towards more LMCE (RRMS 37%, PPMS 53%). In QSM RRMS patients showed more hyperintense white-matter lesions with greater lesion volume. In RRMS PRL correlated with disease duration and lesion burden especially the volume of juxtacortical Flair-hyperintense lesions. Besides, the presence of PRL lesions in PPMS was associated with subcortical atrophy mainly thalamus and pallidum volumetry. In all MS-cohort, patients with more than 3-PRLs exhibited reduced regional cortical thickness in specific temporal areas and post/para central gyrus. Forest-analysis selected age, increased NAWM (normal appearing white-matter) QSM intensity, total lesion volume and the presence of LMCE as informative predictors of cortical thickness. After anti-CD20 treatment, no significant change was observed regarding the number of PRL and LMCE, but the percentage of PRL lesions over the total lesion types and the QSM rim intensity increased. CONCLUSION Our findings suggest that QSM-lesion types and leptomeningeal inflammation capture different aspects of progressive disease biology in both RRMS and PPMS.
Collapse
Affiliation(s)
- Aigli G Vakrakou
- Neuroimmunology Unit,1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, NKUA, Athens, Greece.
- Multiple Sclerosis and Demyelinating Diseases Unit, Center of Expertise for Rare Demyelinating and Autoimmune Diseases of CNS, First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, NKUA, Aiginition University Hospital, Athens, Greece.
| | - Ioannis Papadopoulos
- Research Unit of Radiology,2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Evgenia Brinia
- Neuroimmunology Unit,1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, NKUA, Athens, Greece
| | - Dimitrios Karathanasis
- Multiple Sclerosis and Demyelinating Diseases Unit, Center of Expertise for Rare Demyelinating and Autoimmune Diseases of CNS, First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, NKUA, Aiginition University Hospital, Athens, Greece
| | - Dimitrios Panaretos
- Department of Statistics and Insurance Science, School of Economic Sciences, University of Western, Kozani, Macedonia
| | - Panos Stathopoulos
- Neuroimmunology Unit,1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, NKUA, Athens, Greece
- Multiple Sclerosis and Demyelinating Diseases Unit, Center of Expertise for Rare Demyelinating and Autoimmune Diseases of CNS, First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, NKUA, Aiginition University Hospital, Athens, Greece
| | - Anastasia Alexaki
- Neuroimmunology Unit,1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, NKUA, Athens, Greece
| | - Varvara Pantoleon
- Research Unit of Radiology,2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstratios Karavasilis
- Laboratory of Medical Physics, School of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Georgios Velonakis
- Research Unit of Radiology,2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Leonidas Stefanis
- Neuroimmunology Unit,1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, NKUA, Athens, Greece
- Multiple Sclerosis and Demyelinating Diseases Unit, Center of Expertise for Rare Demyelinating and Autoimmune Diseases of CNS, First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, NKUA, Aiginition University Hospital, Athens, Greece
| | - Maria-Eleftheria Evangelopoulos
- Multiple Sclerosis and Demyelinating Diseases Unit, Center of Expertise for Rare Demyelinating and Autoimmune Diseases of CNS, First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, NKUA, Aiginition University Hospital, Athens, Greece
| | - Constantinos Kilidireas
- Neuroimmunology Unit,1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, NKUA, Athens, Greece
- Department of Neurology, Henry Dunant Hospital Center, Athens, Greece
| |
Collapse
|
10
|
Mohebbi M, Reeves JA, Jakimovski D, Bartnik A, Bergsland N, Salman F, Schweser F, Weinstock-Guttman B, Zivadinov R, Dwyer MG. Diffusion- and Tractography-Based Characterization of Tissue Damage Within and Surrounding Paramagnetic Rim Lesions in Multiple Sclerosis. AJNR Am J Neuroradiol 2025; 46:611-619. [PMID: 40037698 PMCID: PMC11979825 DOI: 10.3174/ajnr.a8524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/02/2024] [Indexed: 03/06/2025]
Abstract
BACKGROUND AND PURPOSE Paramagnetic rim lesions (PRLs) are an imaging biomarker of chronic inflammation in MS that are associated with more aggressive disease. However, the precise tissue characteristics and extent of their damage, particularly with regard to connected axonal tracts, are incompletely understood. Quantitative diffusion tissue measurements and fiber tractography can provide a more complete picture of these phenomena. MATERIALS AND METHODS One hundred fifteen people with MS were enrolled in this study. Quantitative susceptibility mapping and DWI were acquired on a 3T MRI scanner. PRLs were identified in 49 (43%) subjects. Diffusion tractography was then used to identify nearby PRL-connected versus non-PRL connected tracts and PRL-connected versus nonconnected surrounding tracts. DWI metrics, including fractional anisotropy (FA), quantitative anisotropy (QA), mean diffusivity, axial diffusivity, radial diffusivity, isotropy, and restricted diffusion imaging, were compared between these tracts and within PRLs and non-PRL lesions themselves. RESULTS Tissue within PRLs had significantly lower FA than tissue within non-PRL T2 lesions (P = .04). Tracts connected to PRLs exhibited significantly lower FA (P < .001), higher restricted diffusion imaging (P = .02, and higher Iso values (P = .007) than tracts connected to non-PRL T2 lesions. Only QA was different between tracts connected to PRLs and nonconnected surrounding tracts (P = .003). CONCLUSIONS PRLs are more destructive both within themselves and to surrounding tissue. This damage appears more spatially than axonally mediated.
Collapse
Affiliation(s)
- Maryam Mohebbi
- From the Buffalo Neuroimaging Analysis Center (M.M., J.A.R., D.J., A.B., N.B., F.Salman, F.Schweser, R.Z., M.G.D.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - Jack A Reeves
- From the Buffalo Neuroimaging Analysis Center (M.M., J.A.R., D.J., A.B., N.B., F.Salman, F.Schweser, R.Z., M.G.D.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - Dejan Jakimovski
- From the Buffalo Neuroimaging Analysis Center (M.M., J.A.R., D.J., A.B., N.B., F.Salman, F.Schweser, R.Z., M.G.D.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - Alexander Bartnik
- From the Buffalo Neuroimaging Analysis Center (M.M., J.A.R., D.J., A.B., N.B., F.Salman, F.Schweser, R.Z., M.G.D.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - Niels Bergsland
- From the Buffalo Neuroimaging Analysis Center (M.M., J.A.R., D.J., A.B., N.B., F.Salman, F.Schweser, R.Z., M.G.D.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - Fahad Salman
- From the Buffalo Neuroimaging Analysis Center (M.M., J.A.R., D.J., A.B., N.B., F.Salman, F.Schweser, R.Z., M.G.D.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - Ferdinand Schweser
- From the Buffalo Neuroimaging Analysis Center (M.M., J.A.R., D.J., A.B., N.B., F.Salman, F.Schweser, R.Z., M.G.D.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York
- Center for Biomedical Imaging at the Clinical Translational Science Institute (F.Schweser, R.Z.), University at Buffalo, State University of New York, Buffalo, New York
| | | | - Robert Zivadinov
- From the Buffalo Neuroimaging Analysis Center (M.M., J.A.R., D.J., A.B., N.B., F.Salman, F.Schweser, R.Z., M.G.D.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York
- Center for Biomedical Imaging at the Clinical Translational Science Institute (F.Schweser, R.Z.), University at Buffalo, State University of New York, Buffalo, New York
| | - Michael G Dwyer
- From the Buffalo Neuroimaging Analysis Center (M.M., J.A.R., D.J., A.B., N.B., F.Salman, F.Schweser, R.Z., M.G.D.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| |
Collapse
|
11
|
Kornberg MD, Calabresi PA. Multiple Sclerosis and Other Acquired Demyelinating Diseases of the Central Nervous System. Cold Spring Harb Perspect Biol 2025; 17:a041374. [PMID: 38806240 PMCID: PMC11875095 DOI: 10.1101/cshperspect.a041374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Acquired demyelinating diseases of the central nervous system (CNS) comprise inflammatory conditions, including multiple sclerosis (MS) and related diseases, as well as noninflammatory conditions caused by toxic, metabolic, infectious, traumatic, and neurodegenerative insults. Here, we review the spectrum of diseases producing acquired CNS demyelination before focusing on the prototypical example of MS, exploring the pathologic mechanisms leading to myelin injury in relapsing and progressive MS and summarizing the mechanisms and modulators of remyelination. We highlight the complex interplay between the immune system, oligodendrocytes and oligodendrocyte progenitor cells (OPCs), and other CNS glia cells such as microglia and astrocytes in the pathogenesis and clinical course of MS. Finally, we review emerging therapeutic strategies that exploit our growing understanding of disease mechanisms to limit progression and promote remyelination.
Collapse
Affiliation(s)
- Michael D Kornberg
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
12
|
Smith BC, Williams JL. Multiple sclerosis is at a checkpoint: advancing the program. Neural Regen Res 2025; 20:811-812. [PMID: 38886950 PMCID: PMC11433900 DOI: 10.4103/nrr.nrr-d-23-02094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 06/20/2024] Open
Affiliation(s)
- Brandon C. Smith
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
| | - Jessica L. Williams
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
13
|
Toscano S, Spelman T, Ozakbas S, Alroughani R, Chisari CG, Lo Fermo S, Prat A, Girard M, Duquette P, Izquierdo G, Eichau S, Grammond P, Boz C, Kalincik T, Blanco Y, Buzzard K, Skibina O, Sa MJ, van der Walt A, Butzkueven H, Terzi M, Gerlach O, Grand'Maison F, Foschi M, Surcinelli A, Barnett M, Lugaresi A, Onofrj M, Yamout B, Khoury SJ, Prevost J, Lechner-Scott J, Maimone D, Amato MP, Spitaleri D, Van Pesch V, Macdonell R, Cartechini E, de Gans K, Slee M, Castillo-Triviño T, Soysal A, Sanchez-Menoyo JL, Laureys G, Van Hijfte L, McCombe P, Altintas A, Weinstock-Guttman B, Aguera-Morales E, Etemadifar M, Ramo-Tello C, John N, Turkoglu R, Hodgkinson S, Besora S, Van Wijmeersch B, Fernandez-Bolaños R, Patti F. First-year treatment response predicts the following 5-year disease course in patients with relapsing-remitting multiple sclerosis. Neurotherapeutics 2025; 22:e00552. [PMID: 39965993 PMCID: PMC12014414 DOI: 10.1016/j.neurot.2025.e00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
Predicting long-term prognosis and choosing the appropriate therapeutic approach in patients with Multiple Sclerosis (MS) at the time of diagnosis is crucial in view of a personalized medicine. We investigated the impact of early therapeutic response on the 5-year prognosis of patients with relapsing-remitting MS (RRMS). We recruited patients from MSBase Registry covering the period between 1996 and 2022. All patients were diagnosed with RRMS and actively followed-up for at least 5 years to explore the following outcomes: clinical relapses, confirmed disability worsening (CDW) and improvement (CDI), EDSS 3.0, EDSS 6.0, conversion to secondary progressive MS (SPMS), new MRI lesions, Progression Independent of Relapse Activity (PIRA). Predictors included demographic, clinical and radiological data, and sub-optimal response (SR) within the first year of treatment. Female sex (HR 1.27; 95 % CI 1.16-1.40) and EDSS at baseline (HR 1.19; 95 % CI 1.15-1.24) were independent risk factors for the occurrence of relapses during the first 5 years after diagnosis, while high-efficacy treatment (HR 0.78; 95 % CI 0.67-0.91) and age at diagnosis (HR 0.83; 95 % CI 0.79-0.86) significantly reduced the risk. SR predicted clinical relapses (HR = 3.84; 95 % CI 3.51-4.19), CDW (HR = 1.74; 95 % CI 1.56-1.93), EDSS 3.0 (HR = 3.01; 95 % CI 2.58-3.51), EDSS 6.0 (HR = 1.77; 95 % CI 1.43-2.20) and new brain (HR = 2.33; 95 % CI 2.04-2.66) and spinal (HR 1.65; 95 % CI 1.29-2.09) MRI lesions. This study highlights the importance of selecting the appropriate DMT for each patient soon after MS diagnosis, also providing clinicians with a practical tool able to calculate personalized risk estimates for different outcomes.
Collapse
Affiliation(s)
- Simona Toscano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; Multiple Sclerosis Unit, University-Hospital G. Rodolico - San Marco, Catania, Italy
| | - Tim Spelman
- MSBase Foundation, VIC, Melbourne, Australia; Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | - Raed Alroughani
- Division of Neurology, Department of Medicine, Amiri Hospital, Sharq 73767, Kuwait
| | - Clara G Chisari
- Multiple Sclerosis Unit, University-Hospital G. Rodolico - San Marco, Catania, Italy; Department of Medical and Surgical Sciences and Advanced Technologies, GF Ingrassia, Catania 95123, Italy
| | - Salvatore Lo Fermo
- Multiple Sclerosis Unit, University-Hospital G. Rodolico - San Marco, Catania, Italy; Department of Medical and Surgical Sciences and Advanced Technologies, GF Ingrassia, Catania 95123, Italy
| | - Alexandre Prat
- CHUM MS Center and Universite de Montreal, Montreal H2L 4M1, Canada
| | - Marc Girard
- CHUM MS Center and Universite de Montreal, Montreal H2L 4M1, Canada
| | - Pierre Duquette
- CHUM MS Center and Universite de Montreal, Montreal H2L 4M1, Canada
| | | | - Sara Eichau
- Hospital Universitario Virgen Macarena, Sevilla 41009, Spain
| | | | - Cavit Boz
- KTU Medical Faculty Farabi Hospital, Trabzon 61080, Turkey
| | - Tomas Kalincik
- CORe, Department of Medicine, The University of Melbourne, Melbourne 3050, Australia; Neuroimmunology Centre, Department of Neurology, Royal Melbourne Hospital, Melbourne 3050, Australia
| | - Yolanda Blanco
- Center of Neuroimmunology, Service of Neurology, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Katherine Buzzard
- Department of Neurology, Box Hill Hospital, Melbourne 3128, Australia
| | - Olga Skibina
- Department of Neurology, Box Hill Hospital, Melbourne 3128, Australia
| | - Maria Jose Sa
- Department of Neurology, Centro Hospitalar Universitario de Sao Joao, Porto 4200-319, Portugal; Faculty of Health Sciences, University Fernando Pessoa, Porto, Portugal
| | | | - Helmut Butzkueven
- Department of Neurology, The Alfred Hospital, Melbourne 3000, Australia
| | - Murat Terzi
- Medical Faculty, 19 Mayis University, Samsun 55160, Turkey
| | - Oliver Gerlach
- Academic MS Center Zuyd, Department of Neurology, Zuyderland Medical Center, Sittard-Geleen 5500, the Netherlands; School for Mental Health and Neuroscience, Department of Neurology, Maastricht University Medical Center, Maastricht 6131 BK, the Netherlands
| | | | - Matteo Foschi
- Department of Neuroscience, Multiple Sclerosis Center, Neurology Unit, S. Maria delle Croci Hospital, AUSL Romagna, Ravenna, Italy; Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Andrea Surcinelli
- Department of Neuroscience, Multiple Sclerosis Center, Neurology Unit, S. Maria delle Croci Hospital, AUSL Romagna, Ravenna, Italy
| | | | - Alessandra Lugaresi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | - Marco Onofrj
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. D'Annunzio, Chieti 66013, Italy
| | - Bassem Yamout
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Samia J Khoury
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | | | | | - Davide Maimone
- Centro Sclerosi Multipla, Garibaldi Hospital, Catania 95124, Italy
| | - Maria Pia Amato
- Department NEUROFARBA, University of Florence, Florence 50134, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Daniele Spitaleri
- Azienda Ospedaliera di Rilievo Nazionale San Giuseppe Moscati Avellino, Avellino 83100, Italy
| | - Vincent Van Pesch
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | | | | | - Koen de Gans
- Department of Neurology, Groene Hart Ziekenhuis, Gouda, Zuid-Holland, the Netherlands
| | - Mark Slee
- Flinders University, Adelaide 5042, Australia
| | | | - Aysun Soysal
- Bakirkoy Education and Research Hospital for Psychiatric and Neurological Diseases, Istanbul 34147, Turkey
| | - Jose Luis Sanchez-Menoyo
- Department of Neurology, Galdakao-Usansolo University Hospital, Osakidetza-Basque Health Service, Biocruces, Spain
| | - Guy Laureys
- Department of Neurology, Ghent Universitary Hospital, Ghent 9000, Belgium
| | | | - Pamela McCombe
- Royal Brisbane and Women's Hospital, University of Queensland, Brisbane 4000, Australia
| | - Ayse Altintas
- Department of Neurology, School of Medicine, Koc University, Koc University Research Center for Translational Medicine (KUTTAM), Istanbul 34450, Turkey
| | | | | | - Masoud Etemadifar
- Department of Neurosurgery, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Nevin John
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Australia; Department of Neurology, Monash Health, Clayton, Australia
| | - Recai Turkoglu
- Haydarpasa Numune Training and Research Hospital, Istanbul 34668, Turkey
| | | | - Sarah Besora
- Hospital Universitari Mútua de Terrassa, Barcelona, Spain
| | - Bart Van Wijmeersch
- Universitair MS Centrum, Hasselt University, Hasselt-Pelt, Belgium; Rehabilitation & MS Centre, Pelt, Belgium
| | | | - Francesco Patti
- Multiple Sclerosis Unit, University-Hospital G. Rodolico - San Marco, Catania, Italy; Department of Medical and Surgical Sciences and Advanced Technologies, GF Ingrassia, Catania 95123, Italy.
| |
Collapse
|
14
|
Messmer ML, Salapa HE, Popescu BF, Levin MC. RNA Binding Protein Dysfunction Links Smoldering/Slowly Expanding Lesions to Neurodegeneration in Multiple Sclerosis. Ann Neurol 2025; 97:313-328. [PMID: 39422285 DOI: 10.1002/ana.27114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE Despite the advances in treatments for multiple sclerosis (MS), unremitting neurodegeneration continues to drive disability and disease progression. Smoldering/slowly expanding lesions (SELs) and dysfunction of the RNA binding protein (RBP) heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) are pathologic hallmarks of MS cortex and intricately tied to disability and neurodegeneration, respectively. We hypothesized that neuronal hnRNP A1 dysfunction contributes to neurodegeneration and is exacerbated by smoldering/SELs in progressive MS. METHODS Neuronal hnRNP A1 pathology (nucleocytoplasmic mislocalization of hnRNP A1) was examined in healthy control and MS brains using immunohistochemistry. MS cases were stratified by severity of hnRNP A1 pathology to examine the link between RBP dysfunction, demyelination, and neurodegeneration. RESULTS We found that smoldering/SELs were only present within a subset of MS tissues characterized by elevated neuronal hnRNP A1 pathology (MS-A1high) in adjacent cortical gray matter. In contrast to healthy controls and MS with low hnRNP A1 pathology (MS-A1low), MS-A1high showed elevated markers of neurodegeneration, including neuronal loss and injury, brain atrophy, axonal loss, and axon degeneration. Additionally, we discovered a subpopulation of morphologically intact neurons lacking expression of NeuN, a neuron-specific RBP, in cortical projection neurons in MS-A1high cases. INTERPRETATION hnRNP A1 dysfunction contributes to neurodegeneration and may be exacerbated by smoldering/SELs in progressive MS. The discovery of NeuN-negative neurons suggests that some cortical neurons may only be injured and not lost. By characterizing RBP pathology in MS cortex, this study has important implications for understanding the pathogenic mechanisms driving neurodegeneration, the substrate of disability and disease progression. ANN NEUROL 2025;97:313-328.
Collapse
Affiliation(s)
- Miranda L Messmer
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hannah E Salapa
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bogdan F Popescu
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael C Levin
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
15
|
Rovira À, Pareto D. Unmasking paramagnetic rim multiple sclerosis lesions: the advantages of quantitative susceptibility mapping over phase imaging. Brain Commun 2025; 7:fcaf037. [PMID: 39916750 PMCID: PMC11800473 DOI: 10.1093/braincomms/fcaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 01/15/2025] [Accepted: 01/25/2025] [Indexed: 02/09/2025] Open
Abstract
This scientific commentary refers to 'Quantitative susceptibility mapping is more sensitive and specific than phase imaging in detecting chronic active multiple sclerosis lesion rims: pathological validation', by Gillen et al. (https://doi.org/10.1093/braincomms/fcaf011).
Collapse
Affiliation(s)
- Àlex Rovira
- Section of Neuroradiology, Department of Radiology (IDI), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Deborah Pareto
- Section of Neuroradiology, Department of Radiology (IDI), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| |
Collapse
|
16
|
Tozlu C, Jamison K, Kang Y, Rua SH, Kaunzner UW, Nguyen T, Kuceyeski A, Gauthier SA. TSPO-PET Reveals Higher Inflammation in White Matter Disrupted by Paramagnetic Rim Lesions in Multiple Sclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.03.627857. [PMID: 39803549 PMCID: PMC11722250 DOI: 10.1101/2025.01.03.627857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Objective To explore whether the inflammatory activity is higher in white matter (WM) tracts disrupted by paramagnetic rim lesions (PRLs) and if inflammation in PRL-disrupted WM tracts is associated with disability in people with multiple sclerosis (MS). Methods Forty-four MS patients and 16 healthy controls were included. 18 kDa-translocator protein positron emission tomography (TSPO-PET) with the 11C-PK11195 radioligand was used to measure the neuroinflammatory activity. The Network Modification Tool was used to identify WM tracts disrupted by PRLs and non-PRLs that were delineated on MRI. The Expanded Disability Status Scale was used to measure disability. Results MS patients had higher inflammatory activity in whole brain WM compared to healthy controls (p=0.001). Compared to patients without PRLs, patients with PRLs exhibited higher levels of inflammatory activity in the WM tracts disrupted by any type of lesions (p=0.02) or PRLs (p=0.004). In patients with at least one PRL, inflammatory activity was higher in WM tracts highly disrupted by PRLs compared to WM tracts highly disrupted by non-PRLs (p=0.009). Elevated inflammatory activity in highly disrupted WM tracts was associated with increased disability in patients with PRL (p=0.03), but not in patients without PRL (p=0.2). Interpretation This study suggests that patients with PRLs may exhibit more diffuse WM inflammation in addition to higher inflammation along WM tracts disrupted by PRLs compared to non-PRLs, which could contribute to larger lesion volumes and faster disability progression. Imaging PRLs may serve to identify patients with both focal and diffuse inflammation, guiding therapeutic interventions aimed at reducing inflammation and preventing progressive disability in MS.
Collapse
Affiliation(s)
- Ceren Tozlu
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Keith Jamison
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Yeona Kang
- Department of Mathematics, Howard University, Washington DC, USA
| | - Sandra Hurtado Rua
- Department of Mathematics and Statistics, Cleveland State University, Cleveland, Ohio, USA
| | - Ulrike W. Kaunzner
- Department of Neurology, Weill Cornell Medical College, New York, New York, USA
| | - Thanh Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Susan A. Gauthier
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
- Department of Neurology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
17
|
Reeves JA, Salman F, Mohebbi M, Bergsland N, Jakimovski D, Hametner S, Weinstock-Guttman B, Zivadinov R, Dwyer MG, Schweser F. Association between paramagnetic rim lesions and pulvinar iron depletion in persons with multiple sclerosis. Mult Scler Relat Disord 2025; 93:106187. [PMID: 39644585 DOI: 10.1016/j.msard.2024.106187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/11/2024] [Accepted: 11/23/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND The deep gray matter (DGM), especially the pulvinar, and the white matter surrounding chronic active lesions have demonstrated depleted iron levels, indicating a possible mechanistic link. However, no studies have investigated the potential relationship between these phenomena. OBJECTIVES The study aimed to determine whether PRLs were associated with pulvinar iron depletion and, if so, whether this relationship was spatially mediated. METHODS This retrospective analysis included 139 people with MS (pwMS) and 43 healthy controls (HCs) scanned at 3T MRI at baseline and after 5.4 ± 0.6 years. Pulvinar iron concentrations (cFe) and iron masses (mFe) were estimated from quantitative susceptibility maps and tested for associations with PRLs. A separate cohort of 96 pwMS with PRLs and propensity-matched HCs was included to evaluate peri‑plaque normal-appearing white matter (NAWM) abnormalities. RESULTS PRL number was associated with greater decline in pulvinar cFe (β = -0.265, p = 0.005) and mFe (β = -0.256, p = 0.006). Peri-plaque NAWM susceptibility was increased 11 mm surrounding PRLs, outside which shorter PRL-to-pulvinar distance was associated with greater decline in pulvinar cFe (β = 0.380, p = 0.005) and mFe (β = 0.348, p = 0.022). CONCLUSIONS Our findings support a spatially-mediated relationship between PRLs and chronic pulvinar iron depletion.
Collapse
Affiliation(s)
- Jack A Reeves
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States.
| | - Fahad Salman
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Maryam Mohebbi
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States; Wynn Hospital, Mohawk Valley Health System, Utica, NY, 13502, USA
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | | | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States; Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States; Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States; Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, United States
| |
Collapse
|
18
|
Zhang L, Verkhratsky A, Shi FD. Astrocytes and microglia in multiple sclerosis and neuromyelitis optica. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:133-145. [PMID: 40148041 DOI: 10.1016/b978-0-443-19102-2.00001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Multiple sclerosis and neuromyelitis optica are autoimmune neurodegenerative diseases primarily targeting myelin sheath and neuroglia. In multiple sclerosis, autoantibodies destroy oligodendrocytes and myelin, which underlies primary neurologic symptoms. Focal damage to myelin triggers reactive astrogliosis and microgliosis, which contribute to and to a large extent define the disease progression. In neuromyelitis optica, autoantibodies against water channel aquaporin 4 (AQP4), which are localized at astrocytic endfeet mediate damage of the glia limitans thus facilitating infiltration of blood-borne molecules and cells that propagate the damage to nerves and neurons. This primary astrocytopathy recruits microglia, which contribute to the neuroinflammatory response. Neuroglial cells therefore are potential targets for cell-specific therapies.
Collapse
Affiliation(s)
- Linjie Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China; Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
19
|
De Angelis F, Nistri R, Wright S. Measuring Disease Progression in Multiple Sclerosis Clinical Drug Trials and Impact on Future Patient Care. CNS Drugs 2025; 39:55-80. [PMID: 39581949 DOI: 10.1007/s40263-024-01132-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2024] [Indexed: 11/26/2024]
Abstract
Multiple sclerosis (MS) is a chronic immune-mediated disease of the central nervous system characterised by inflammation, demyelination and neurodegeneration. Although several drugs are approved for MS, their efficacy in progressive disease is modest. Addressing disease progression as a treatment goal in MS is challenging due to several factors. These include a lack of complete understanding of the pathophysiological mechanisms driving MS and the absence of sensitive markers of disease progression in the short-term of clinical trials. MS usually begins at a young age and lasts for decades, whereas clinical research often spans only 1-3 years. Additionally, there is no unifying definition of disease progression. Several drugs are currently being investigated for progressive MS. In addition to new medications, the rise of new technologies and of adaptive trial designs is enabling larger and more integrated data collection. Remote assessments and decentralised clinical trials are becoming feasible. These will allow more efficient and large studies at a lower cost and with less burden on study participants. As new drugs are developed and research evolves, we anticipate a concurrent change in patient care at various levels in the foreseeable future. We conducted a narrative review to discuss the challenges of accurately measuring disease progression in contemporary MS drug trials, some new research trends and their implications for patient care.
Collapse
Affiliation(s)
- Floriana De Angelis
- Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square Multiple Sclerosis Centre, University College London Queen Square Institute of Neurology, University College London, London, WC1B 5EH, UK.
- National Institute for Health and Care Research, Biomedical Research Centre, University College London Hospitals, London, UK.
- The National Hospital for Neurology and Neurosurgery, University College London Hospitals, London, UK.
| | - Riccardo Nistri
- Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square Multiple Sclerosis Centre, University College London Queen Square Institute of Neurology, University College London, London, WC1B 5EH, UK
| | - Sarah Wright
- Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square Multiple Sclerosis Centre, University College London Queen Square Institute of Neurology, University College London, London, WC1B 5EH, UK
- The National Hospital for Neurology and Neurosurgery, University College London Hospitals, London, UK
| |
Collapse
|
20
|
Krajnc N, Hofer L, Föttinger F, Dal‐Bianco A, Leutmezer F, Kornek B, Rommer P, Kasprian G, Berger T, Pemp B, Haider L, Bsteh G. Paramagnetic rim lesions are associated with inner retinal layer thinning and progression independent of relapse activity in multiple sclerosis. Eur J Neurol 2025; 32:e16529. [PMID: 39529542 PMCID: PMC11622274 DOI: 10.1111/ene.16529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/02/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND PURPOSE Paramagnetic rim lesions (PRLs) are chronic active lesions associated with a severe disease course in multiple sclerosis (MS). This study was undertaken to investigate an association between retinal layer thinning (annualized loss of peripapillary retinal nerve fiber layer [aLpRNFL] and ganglion cell-inner plexiform layer [aLGCIPL]) and PRLs in patients with MS (pwMS). METHODS In this study, pwMS with brain magnetic resonance imaging and ≥2 optical coherence tomography scans were included. Cox proportional hazard regression models were performed using progression independent of relapse activity (PIRA) as the dependent variable, and aLpRNFL, aLGCIPL, or the number of PRLs as independent variables, adjusted for covariates. RESULTS We analyzed data from 97 pwMS (mean age = 35.2 years [SD = 9.9], 71.1% female, median disease duration = 2.3 years [interquartile range = 0.9-9.0]). The number of PRLs was associated with aLpRNFL and aLGCIPL. PIRA was observed in 18 (18.6%) pwMS, with aLpRNFL (hazard ratio [HR] = 1.44 per %/year), aLGCIPL (HR = 1.61 per %/year), and the number of PRLs (HR = 1.24 per PRL) being associated with increased risk of PIRA. CONCLUSIONS The number of PRLs is associated with inner retinal layer thinning and increased risk of PIRA. A combination of PRLs and retinal layer thinning could serve as a surrogate for pwMS at highest risk of disability progression.
Collapse
Affiliation(s)
- Nik Krajnc
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Leo Hofer
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
- Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
| | - Fabian Föttinger
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Assunta Dal‐Bianco
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Fritz Leutmezer
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Barbara Kornek
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Paulus Rommer
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Gregor Kasprian
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
- Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
| | - Thomas Berger
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Berthold Pemp
- Department of OphthalmologyMedical University of ViennaViennaAustria
| | - Lukas Haider
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
- Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
| | - Gabriel Bsteh
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| |
Collapse
|
21
|
Dal-Bianco A, Oh J, Sati P, Absinta M. Chronic active lesions in multiple sclerosis: classification, terminology, and clinical significance. Ther Adv Neurol Disord 2024; 17:17562864241306684. [PMID: 39711984 PMCID: PMC11660293 DOI: 10.1177/17562864241306684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
In multiple sclerosis (MS), increasing disability is considered to occur due to persistent, chronic inflammation trapped within the central nervous system (CNS). This condition, known as smoldering neuroinflammation, is present across the clinical spectrum of MS and is currently understood to be relatively resistant to treatment with existing disease-modifying therapies. Chronic active white matter lesions represent a key component of smoldering neuroinflammation. Initially characterized in autopsy specimens, multiple approaches to visualize chronic active lesions (CALs) in vivo using advanced neuroimaging techniques and postprocessing methods are rapidly emerging. Among these in vivo imaging correlates of CALs, paramagnetic rim lesions (PRLs) are defined by the presence of a perilesional rim formed by iron-laden microglia and macrophages, whereas slowly expanding lesions are identified based on linear, concentric lesion expansion over time. In recent years, several longitudinal studies have linked the occurrence of in vivo detected CALs to a more aggressive disease course. PRLs are highly specific to MS and therefore have recently been incorporated into the MS diagnostic criteria. They also have prognostic potential as biomarkers to identify patients at risk of early and severe disease progression. These developments could significantly affect MS care and the evaluation of new treatments. This review describes the latest knowledge on CAL biology and imaging and the relevance of CALs to the natural history of MS. In addition, we outline considerations for current and future in vivo biomarkers of CALs, emphasizing the need for validation, standardization, and automation in their assessment.
Collapse
Affiliation(s)
- Assunta Dal-Bianco
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18–20, Vienna 1090, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Jiwon Oh
- Division of Neurology, Department of Medicine, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - Pascal Sati
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Martina Absinta
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Experimental Neuropathology Lab, Neuro Center, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
22
|
Khormi I, Fazlollahi A, Al-iedani O, Vidyasagar R, Ayton S, Alshehri A, Paton B, Ramadan S, Lechner-Scott J. Quantitative susceptibility mapping of the fear circuit: Associations with silent symptoms in relapsing-remitting multiple sclerosis. Neuroradiol J 2024:19714009241303123. [PMID: 39631056 PMCID: PMC11618841 DOI: 10.1177/19714009241303123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Background: Multiple sclerosis (MS) is a long-term autoimmune inflammatory disorder that affects the central nervous system leading to neurodegeneration, and can involve a variety of symptoms. These symptoms can include fatigue, anxiety, depression, and cognitive decline, which may be silent. The objective of this study was to explore changes in brain iron deposition in people with relapsing-remitting MS (pw-RRMS) compared to healthy controls (HCs), with a particular focus on regions of fear circuit. Additionally, the study aimed to evaluate relationship between iron deposition in these areas and clinical measurements. Methods: Pw-RRMS and HCs participants underwent brain MRI scans using quantitative susceptibility mapping (QSM) to assess iron deposition in the fear circuit between the two groups. The study analyzed correlations between brain susceptibility changes and clinical measurements. Results: We recruited 35 pw-RRMS (mean age = 46.7 ± 11 years; median EDSS = 2.5) and 18 HCs (mean age = 40.6 ± 17.8 years). Our research revealed significant increases in QSM signals relating to iron deposition in pw-RRMS compared to HCs, whole fear circuit (β = 5.82, p < 0.001), caudate (β = 21.48, p < 0.001), and putamen (β = 17.53, p = 0.03), showing the greatest difference. The whole fear circuit and particularly the caudate are strongly associated with fatigue in pw-RRMS. QSM values in the anterior cingulate cortex significantly differed between pw-RRMS with normal and abnormal depression scores (p = 0.007). Conclusions: These results strengthen the relationship between increased iron deposition in fear circuit regions and specific silent symptoms in pw-RRMS. However, further studies are required to confirm these findings and clarify the implications of iron accumulation in MS pathophysiology.
Collapse
Affiliation(s)
- Ibrahim Khormi
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Applied Radiologic Technology, College of Applied Medical Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Amir Fazlollahi
- Department of Radiology, University of Melbourne, Melbourne, VIC, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Oun Al-iedani
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Rishma Vidyasagar
- Department of Radiology, University of Melbourne, Melbourne, VIC, Australia
| | - Scott Ayton
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Abdulaziz Alshehri
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Radiology, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Bryan Paton
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Psychological Sciences, College of Engineering, Science, and the Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Saadallah Ramadan
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jeannette Lechner-Scott
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Neurology, John Hunter Hospital, New Lambton Heights, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
23
|
Stölting A, Vanden Bulcke C, Borrelli S, Bugli C, Du Pasquier R, van Pesch V, Maggi P. Clinical relevance of paramagnetic rim lesion heterogeneity in multiple sclerosis. Ann Clin Transl Neurol 2024; 11:3137-3151. [PMID: 39382072 DOI: 10.1002/acn3.52220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 09/14/2024] [Indexed: 10/10/2024] Open
Abstract
OBJECTIVE Previous studies reveal heterogeneity in terms of paramagnetic rim lesions (PRL) associated tissue damage. We investigated the physiopathology and clinical implications of this heterogeneity. METHODS In 103 MS patients (72 relapsing and 31 progressive), brain lesions were manually segmented on 3T 3D-FLAIR and rim visibility was assessed with a visual confidence level score (VCLS) on 3D-EPI phase. Using T1 relaxation time maps, lesions were categorized in long-T1 and short-T1. Lesion age was calculated from time of first gadolinium enhancement (N = 84 lesions). Results on clinical scores were validated in an extended cohort of 167 patients using normalized T1w-MPRAGE lesion values. RESULTS Rim visibility (VCLS analysis) was associated with increasing lesional T1 (P/PFDR < 0.001). Of 1680 analyzed lesions, 427 were categorized as PRL. Long-T1 PRL were older than short-T1 PRL (average 0.8 vs. 2.0 years, P/PFDR = 0.005/0.008), and featured larger lesional volume (P/PFDR < 0.0001) and multi-shell diffusion-measured axonal damage (P/PFDR < 0.0001). The total volume of long-T1-PRL versus PRL showed 2× predictive power for both higher MS disability (EDSS; P/PFDR = 0.003/0.005 vs. P/PFDR = 0.042/0.057) and severity (MSSS; P/PFDR = 0.0006/0.001 vs. P/PFDR = 0.004/0.007). In random forest, having ≥1 long-T1-PRL versus ≥4 PRL showed 2-4× higher performance to predict a higher EDSS and MSSS. In the validation cohort, long-T1 PRL outperformed (~2×) PRL in predicting both EDSS and MSSS. INTERPRETATION PRL show substantial heterogeneity in terms of intralesional tissue damage. More destructive, likely older, long-T1 PRL improve the association with MS clinical scales. This PRL heterogeneity characterization was replicated using standard T1w MRI, highlighting its potential for clinical translation.
Collapse
Affiliation(s)
- Anna Stölting
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium
| | - Colin Vanden Bulcke
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium
- ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Serena Borrelli
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium
- Department of Neurology, Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Brussels, Brussels, Belgium
| | - Céline Bugli
- Plateforme technologique de Support en Méthodologie et Calcul Statistique, Université catholique de Louvain, Brussels, Belgium
| | - Renaud Du Pasquier
- Neurology Service, Department of Clinical Neurosciences, University Hospital of Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Vincent van Pesch
- Department of Neurology, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Pietro Maggi
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium
- Department of Neurology, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
24
|
Alsema AM, Wijering MHC, Miedema A, Kotah JM, Koster M, Rijnsburger M, van Weering HRJ, de Vries HE, Baron W, Kooistra SM, Eggen BJL. Spatially resolved gene signatures of white matter lesion progression in multiple sclerosis. Nat Neurosci 2024; 27:2341-2353. [PMID: 39501035 DOI: 10.1038/s41593-024-01765-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/14/2024] [Indexed: 11/08/2024]
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system characterized by myelin loss and progressive neurodegeneration. To understand MS lesion initiation and progression, we generate spatial gene expression maps of white matter (WM) and grey matter (GM) MS lesions. In different MS lesion types, we detect domains characterized by a distinct gene signature, including an identifiable rim around active WM lesions. Expression changes in astrocyte-specific, oligodendrocyte-specific and microglia-specific gene sets characterize the active lesion rims. Furthermore, we identify three WM lesion progression trajectories, predicting how normal-appearing WM can develop into WM active or mixed active-inactive lesions. Our data shed light on the dynamic progression of MS lesions.
Collapse
Affiliation(s)
- Astrid M Alsema
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- MS Centrum Noord Nederland, Groningen, The Netherlands
| | - Marion H C Wijering
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- MS Centrum Noord Nederland, Groningen, The Netherlands
| | - Anneke Miedema
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- MS Centrum Noord Nederland, Groningen, The Netherlands
| | - Janssen M Kotah
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- MS Centrum Noord Nederland, Groningen, The Netherlands
| | - Mirjam Koster
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- MS Centrum Noord Nederland, Groningen, The Netherlands
| | - Merel Rijnsburger
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC, Location VU Medical Center, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Hilmar R J van Weering
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- MS Centrum Noord Nederland, Groningen, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC, Location VU Medical Center, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wia Baron
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- MS Centrum Noord Nederland, Groningen, The Netherlands
| | - Susanne M Kooistra
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- MS Centrum Noord Nederland, Groningen, The Netherlands
| | - Bart J L Eggen
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- MS Centrum Noord Nederland, Groningen, The Netherlands.
| |
Collapse
|
25
|
Lerma-Martin C, Badia-I-Mompel P, Ramirez Flores RO, Sekol P, Schäfer PSL, Riedl CJ, Hofmann A, Thäwel T, Wünnemann F, Ibarra-Arellano MA, Trobisch T, Eisele P, Schapiro D, Haeussler M, Hametner S, Saez-Rodriguez J, Schirmer L. Cell type mapping reveals tissue niches and interactions in subcortical multiple sclerosis lesions. Nat Neurosci 2024; 27:2354-2365. [PMID: 39501036 PMCID: PMC11614744 DOI: 10.1038/s41593-024-01796-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 09/30/2024] [Indexed: 11/08/2024]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system. Inflammation is gradually compartmentalized and restricted to specific tissue niches such as the lesion rim. However, the precise cell type composition of such niches, their interactions and changes between chronic active and inactive stages are incompletely understood. We used single-nucleus and spatial transcriptomics from subcortical MS and corresponding control tissues to map cell types and associated pathways to lesion and nonlesion areas. We identified niches such as perivascular spaces, the inflamed lesion rim or the lesion core that are associated with the glial scar and a cilia-forming astrocyte subtype. Focusing on the inflamed rim of chronic active lesions, we uncovered cell-cell communication events between myeloid, endothelial and glial cell types. Our results provide insight into the cellular composition, multicellular programs and intercellular communication in tissue niches along the conversion from a homeostatic to a dysfunctional state underlying lesion progression in MS.
Collapse
Affiliation(s)
- Celia Lerma-Martin
- Department of Neurology, Division of Neuroimmunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Pau Badia-I-Mompel
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
- GSK, Cellzome, Heidelberg, Germany
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Ricardo O Ramirez Flores
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Patricia Sekol
- Department of Neurology, Division of Neuroimmunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Philipp S L Schäfer
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Christian J Riedl
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Annika Hofmann
- Department of Neurology, Division of Neuroimmunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Thomas Thäwel
- Department of Neurology, Division of Neuroimmunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Florian Wünnemann
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
| | - Miguel A Ibarra-Arellano
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
| | - Tim Trobisch
- Department of Neurology, Division of Neuroimmunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Philipp Eisele
- Department of Neurology, Division of Neuroimmunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Center for Translational Neuroscience, Medical Faculty, Mannheim Heidelberg University, Mannheim, Germany
| | - Denis Schapiro
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
- Institute of Pathology, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
- Translational Spatial Profiling Center (TSPC), Heidelberg, Germany
| | | | - Simon Hametner
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany.
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK.
| | - Lucas Schirmer
- Department of Neurology, Division of Neuroimmunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Mannheim Center for Translational Neuroscience, Medical Faculty, Mannheim Heidelberg University, Mannheim, Germany.
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
26
|
Gaitán MI, Marquez RV, Ayerbe J, Reich DS. Imaging Outcomes for Phase 2 Trials Targeting Compartmentalized Inflammation. Mult Scler 2024; 30:48-60. [PMID: 39658905 PMCID: PMC11637223 DOI: 10.1177/13524585241301303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
This comprehensive review aims to explore imaging outcome measures targeting compartmentalized inflammation in Phase 2 clinical trials for multiple sclerosis (MS). The traditional primary imaging outcomes used in Phase 2 MS trials, new or enhancing white matter lesions on MRI, target the effects of peripheral inflammation, but the widespread inflammation behind a mostly closed blood-brain barrier is not captured. This review discusses several emerging imaging technologies that could be used as surrogate markers of compartmentalized inflammation, targeting chronic active lesions, meningeal inflammation, and innate immune activation within the normal-appearing white matter and gray matter. The integration of specific imaging outcomes into Phase 2 trials can provide a more accurate assessment of treatment efficacy, ultimately contributing to the development of more effective therapies for MS.
Collapse
Affiliation(s)
- María I Gaitán
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Rocio V Marquez
- Department of Neurology, Italian Hospital of Buenos Aires, Argentina
| | - Jeremias Ayerbe
- Department of Neurology, Italian Hospital of Buenos Aires, Argentina
| | - Daniel S Reich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
27
|
Treaba CA, Herranz E, Barletta VT, Mehndiratta A, Sloane JA, Granberg T, Miscioscia A, Bomprezzi R, Loggia ML, Mainero C. Phenotyping in vivo chronic inflammation in multiple sclerosis by combined 11C-PBR28 MR-PET and 7T susceptibility-weighted imaging. Mult Scler 2024; 30:1755-1764. [PMID: 39436837 PMCID: PMC11742271 DOI: 10.1177/13524585241284157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
BACKGROUND 11C-PBR28 positron emission tomography (PET), targeting the translocator protein, and paramagnetic rim lesions (PRL) have emerged as promising imaging markers of MS chronic inflammation. No consensus on which is the optimal marker exists. OBJECTIVES To investigate the ability of 11C-PBR28 PET and PRL assessment to identify chronic inflammation in white matter (WM) MS lesions and their relation to neurological impairment. METHODS Based on 11C-PBR28 uptake, brain WM lesions from 30 MS patients were classified as PET active or inactive. The PRL presence was assessed on 7T phase reconstructions, T1/T2 ratio was calculated to measure WM microstructural integrity. RESULTS Less than half (44%) of non-PRL WM lesions were active on 11C-PBR28 imaging either throughout the lesion (whole active) or at its periphery. PET peripherally active lesions and PRL did not differ in T1/T2 ratio and 11C-PBR28 uptake. A positive correlation was observed between PRL and active PET lesion count. Whole active PET lesion volume was the strongest predictor (β = 0.97, p < 0.001) of increased Expanded Disability Status Scale scores. CONCLUSION 11C-PBR28 imaging reveals more active WM lesions than 7T PRL assessment. Although PRL and PET active lesion counts are related, neurological disability is better explained by PET whole active lesion volume.
Collapse
Affiliation(s)
- Constantina A Treaba
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Elena Herranz
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Valeria T Barletta
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ambica Mehndiratta
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Jacob A Sloane
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tobias Granberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Alessandro Miscioscia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Neuroscience, University of Padua, Padua, Italy
| | - Roberto Bomprezzi
- Department of Neurology, UMass Chan Medical School, Worcester, MA, USA
| | - Marco L Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care & Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Xie Y, Wu S, Su H, Yao Y, Zhu H, Zhang Y, Zhu W. Segmental abnormalities of white matter microstructure in multiple sclerosis and neuromyelitis optica spectrum disorder identified by automated fiber quantification. Mult Scler Relat Disord 2024; 92:106147. [PMID: 39504730 DOI: 10.1016/j.msard.2024.106147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/13/2024] [Accepted: 10/26/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD) are different in pathogenesis, but both could lead to white matter (WM) microstructural damage. The aim of this study was to explore the differences in the patterns of WM fiber tract damage in relapsing-remitting MS (RRMS) and NMOSD by automated fiber quantification (AFQ). MATERIALS AND METHODS Forty-one RRMS patients, 30 NMOSD patients and 30 healthy controls (HC) underwent MRI examination. AFQ was applied to identify and quantify 100 equally spaced nodes of specific WM fiber tracts for each participant. Measurements of fractional anisotropy (FA), mean diffusion (MD), axial diffusivity (AD) and radial diffusivity (RD) for each segment of a specific fiber tract were compared between RRMS, NMOSD and HC. RESULTS The decrease in FA was found in 7 fiber tracts in entire tract comparison and 9 fiber tracts in pointwise comparison in RRMS patients. However, the FA in left thalamic radiation (TR) and right uncinate fasciculus showed significant differences between RRMS and HC only in the pointwise comparison, but not in the entire tract comparison. The MD, AD and RD of WM fiber tracts in RRMS patients were extensively increased both in the entire level and in the pointwise level. NMOSD patients showed significant FA decrease in left TR and callosum forceps minor (CF_minor), and significant RD increase in CF_minor in the pointwise level. In the pointwise comparison between RRMS and NMOSD, significant FA decrease was found in right inferior fronto-occipital fasciculus and bilateral inferior longitudinal fasciculus in RRMS patients, focal or widespread MD, AD and RD increase was found in multiple fiber tracts. CONCLUSION The AFQ approach is a more sensitive way to reflect WM microstructural abnormalities, revealing extensive WM microstructural damage in RRMS and limited WM fiber tract damage in NMOSD.
Collapse
Affiliation(s)
- Yan Xie
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaolong Wu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Houming Su
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yihao Yao
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongquan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
29
|
Yokote H, Miyazaki Y, Fujimori J, Nishida Y, Toru S, Niino M, Nakashima I, Miura Y, Yokota T. Slowly expanding lesions are associated with disease activity and gray matter loss in relapse-onset multiple sclerosis. J Neuroimaging 2024; 34:758-765. [PMID: 39390692 DOI: 10.1111/jon.13243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND AND PURPOSE Slowly expanding lesions (SELs) have been proposed as novel MRI markers of chronic active lesions in multiple sclerosis (MS). However, the mechanism through which SELs affect brain volume loss in patients with MS remains unknown. Additionally, the prevalence and significance of SELs in Asian patients with MS remain unclear. This study aimed to investigate the association between SELs and no evidence of disease activity (NEDA)-3 status as well as brain volume loss in Japanese patients. METHODS A total of 99 patients with relapse-onset MS were retrospectively evaluated. SELs were identified on brain MRI based on local deformation when consecutive scans were registered longitudinally. We developed a logistic regression model and generalized linear mixed models (GLMMs) to evaluate the association between the number of SELs and disease activity and changes in brain volume. RESULTS During the observation period (2.0 ± 0.22 years), 35 patients developed at least one SEL. Multivariable logistic regression analysis showed that ≥2 SELs were associated with 0.2 times the risk of achieving a NEDA-3 status. GLMMs revealed that the number of SELs was negatively associated with volume changes in the cortex (p = .00169) and subcortical gray matter (p = .00964) after correction for multiple comparisons. CONCLUSION SELs were identified in Japanese patients with MS during the 2-year observation period. The number of SELs is associated with disease activity and brain volume loss, suggesting that the number of SELs could be a biomarker of disease activity in MS.
Collapse
Affiliation(s)
- Hiroaki Yokote
- Department of Neurology, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusei Miyazaki
- Department of Clinical Research, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Juichi Fujimori
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yoichiro Nishida
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuta Toru
- Department of Neurology, Nitobe Memorial Nakano General Hospital, Tokyo, Japan
| | - Masaaki Niino
- Department of Clinical Research, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Ichiro Nakashima
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yoshiharu Miura
- Department of Neurology, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
30
|
Scalfari A, Traboulsee A, Oh J, Airas L, Bittner S, Calabrese M, Garcia Dominguez JM, Granziera C, Greenberg B, Hellwig K, Illes Z, Lycke J, Popescu V, Bagnato F, Giovannoni G. Smouldering-Associated Worsening in Multiple Sclerosis: An International Consensus Statement on Definition, Biology, Clinical Implications, and Future Directions. Ann Neurol 2024; 96:826-845. [PMID: 39051525 DOI: 10.1002/ana.27034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
Despite therapeutic suppression of relapses, multiple sclerosis (MS) patients often experience subtle deterioration, which extends beyond the definition of "progression independent of relapsing activity." We propose the concept of smouldering-associated-worsening (SAW), encompassing physical and cognitive symptoms, resulting from smouldering pathological processes, which remain unmet therapeutic targets. We provide a consensus-based framework of possible pathological substrates and manifestations of smouldering MS, and we discuss clinical, radiological, and serum/cerebrospinal fluid biomarkers for potentially monitoring SAW. Finally, we share considerations for optimizing disease surveillance and implications for clinical trials to promote the integration of smouldering MS into routine practice and future research efforts. ANN NEUROL 2024;96:826-845.
Collapse
Affiliation(s)
- Antonio Scalfari
- Center of Neuroscience, Department of Medicine, Charing Cross Hospital, Imperial College, London, UK
| | | | - Jiwon Oh
- Division of Neurology, Department of Medicine, St Michael's Hospital, University of Toronto, Toronto, Canada
| | - Laura Airas
- University of Turku and Turku University Hospital, Turku, Finland
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | - Cristina Granziera
- Translational Imaging in Neurology (THiNK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University of Basel, Basel, Switzerland
- Department of Neurology and MS Center, University Hospital Basel Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Basel, Switzerland
| | | | | | - Zsolt Illes
- Department of Neurology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Jan Lycke
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Veronica Popescu
- University MS Centre Pelt-Hasselt, Noorderhart Hospital, Belgium Hasselt University, Pelt, Belgium
| | - Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, VA Hospital, TN Valley Healthcare System, Nashville, TN, USA
| | - Gavin Giovannoni
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
31
|
Trattnig S, Hangel G, Robinson SD, Juras V, Szomolanyi P, Dal-Bianco A. Ultrahigh-field MRI: where it really makes a difference. RADIOLOGIE (HEIDELBERG, GERMANY) 2024; 64:1-8. [PMID: 37584681 PMCID: PMC11602857 DOI: 10.1007/s00117-023-01184-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND Currently, two major magnetic resonance (MR) vendors provide commercial 7‑T scanners that are approved by the Food and Drug Administration (FDA) for clinical application. There is growing interest in ultrahigh-field MRI because of the improved clinical results in terms of morphological detail, as well as functional and metabolic imaging capabilities. MATERIALS AND METHODS The 7‑T systems benefit from a higher signal-to-noise ratio, which scales supralinearly with field strength, a supralinear increase in the blood oxygenation level dependent (BOLD) contrast for functional MRI and susceptibility weighted imaging (SWI), and the chemical shift increases linearly with field strength with consequently higher spectral resolution. RESULTS In multiple sclerosis (MS), 7‑T imaging enables visualization of cortical lesions, the central vein sign, and paramagnetic rim lesions, which may be beneficial for the differential diagnosis between MS and other neuroinflammatory diseases in challenging and inconclusive clinical presentations and are seen as promising biomarkers for prognosis and treatment monitoring. The recent development of high-resolution proton MR spectroscopic imaging in clinically reasonable scan times has provided new insights into tumor metabolism and tumor grading as well as into early metabolic changes that may precede inflammatory processes in MS. This technique also improves the detection of epileptogenic foci in the brain. Multi-nuclear clinical applications, such as sodium imaging, have shown great potential for the evaluation of repair tissue quality after cartilage transplantation and in the monitoring of newly developed cartilage regenerative drugs for osteoarthritis. CONCLUSION For special clinical applications, such as SWI in MS, MR spectroscopic imaging in tumors, MS and epilepsy, and sodium imaging in cartilage repair, 7T may become a new standard.
Collapse
Affiliation(s)
- Siegfried Trattnig
- High-Field MR Center - 7T MR, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Lazarettgasse 14, 1090, Vienna, Austria.
| | - Gilbert Hangel
- High-Field MR Center - 7T MR, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Lazarettgasse 14, 1090, Vienna, Austria
| | - Simon D Robinson
- High-Field MR Center - 7T MR, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Lazarettgasse 14, 1090, Vienna, Austria
| | - Vladimir Juras
- High-Field MR Center - 7T MR, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Lazarettgasse 14, 1090, Vienna, Austria
| | - Pavol Szomolanyi
- High-Field MR Center - 7T MR, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Lazarettgasse 14, 1090, Vienna, Austria
- Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Dubravska cesta 9, 84104, Bratislava, Slovakia
| | - Assunta Dal-Bianco
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Medical University of Vienna, Comprehensive Center for Clinical Neurosciences & Mental Health, Vienna, Austria
| |
Collapse
|
32
|
Langlois J, Lange S, Ebeling M, Macnair W, Schmucki R, Li C, DeGeer J, Sudharshan TJJ, Yong VW, Shen YA, Harp C, Collin L, Keaney J. Fenebrutinib, a Bruton's tyrosine kinase inhibitor, blocks distinct human microglial signaling pathways. J Neuroinflammation 2024; 21:276. [PMID: 39465429 PMCID: PMC11514909 DOI: 10.1186/s12974-024-03267-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Bruton's tyrosine kinase (BTK) is an intracellular signaling enzyme that regulates B-lymphocyte and myeloid cell functions. Due to its involvement in both innate and adaptive immune compartments, BTK inhibitors have emerged as a therapeutic option in autoimmune disorders such as multiple sclerosis (MS). Brain-penetrant, small-molecule BTK inhibitors may also address compartmentalized neuroinflammation, which is proposed to underlie MS disease progression. BTK is expressed by microglia, which are the resident innate immune cells of the brain; however, the precise roles of microglial BTK and impact of BTK inhibitors on microglial functions are still being elucidated. Research on the effects of BTK inhibitors has been limited to rodent disease models. This is the first study reporting effects in human microglia. METHODS Here we characterize the pharmacological and functional properties of fenebrutinib, a potent, highly selective, noncovalent, reversible, brain-penetrant BTK inhibitor, in human microglia and complex human brain cell systems, including brain organoids. RESULTS We find that fenebrutinib blocks the deleterious effects of microglial Fc gamma receptor (FcγR) activation, including cytokine and chemokine release, microglial clustering and neurite damage in diverse human brain cell systems. Gene expression analyses identified pathways linked to inflammation, matrix metalloproteinase production and cholesterol metabolism that were modulated by fenebrutinib treatment. In contrast, fenebrutinib had no significant impact on human microglial pathways linked to Toll-like receptor 4 (TLR4) and NACHT, LRR and PYD domains-containing protein 3 (NLRP3) signaling or myelin phagocytosis. CONCLUSIONS Our study enhances the understanding of BTK functions in human microglial signaling that are relevant to MS pathogenesis and suggests that fenebrutinib could attenuate detrimental microglial activity associated with FcγR activation in people with MS.
Collapse
Affiliation(s)
- Julie Langlois
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Simona Lange
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Martin Ebeling
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Will Macnair
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Roland Schmucki
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Cenxiao Li
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada
| | - Jonathan DeGeer
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Tania J J Sudharshan
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - V Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada
| | - Yun-An Shen
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | | | - Ludovic Collin
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - James Keaney
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| |
Collapse
|
33
|
Harrison DM, Sati P, Klawiter EC, Narayanan S, Bagnato F, Beck ES, Barker P, Calvi A, Cagol A, Donadieu M, Duyn J, Granziera C, Henry RG, Huang SY, Hoff MN, Mainero C, Ontaneda D, Reich DS, Rudko DA, Smith SA, Trattnig S, Zurawski J, Bakshi R, Gauthier S, Laule C. The use of 7T MRI in multiple sclerosis: review and consensus statement from the North American Imaging in Multiple Sclerosis Cooperative. Brain Commun 2024; 6:fcae359. [PMID: 39445084 PMCID: PMC11497623 DOI: 10.1093/braincomms/fcae359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/28/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
The use of ultra-high-field 7-Tesla (7T) MRI in multiple sclerosis (MS) research has grown significantly over the past two decades. With recent regulatory approvals of 7T scanners for clinical use in 2017 and 2020, the use of this technology for routine care is poised to continue to increase in the coming years. In this context, the North American Imaging in MS Cooperative (NAIMS) convened a workshop in February 2023 to review the previous and current use of 7T technology for MS research and potential future research and clinical applications. In this workshop, experts were tasked with reviewing the current literature and proposing a series of consensus statements, which were reviewed and approved by the NAIMS. In this review and consensus paper, we provide background on the use of 7T MRI in MS research, highlighting this technology's promise for identification and quantification of aspects of MS pathology that are more difficult to visualize with lower-field MRI, such as grey matter lesions, paramagnetic rim lesions, leptomeningeal enhancement and the central vein sign. We also review the promise of 7T MRI to study metabolic and functional changes to the brain in MS. The NAIMS provides a series of consensus statements regarding what is currently known about the use of 7T MRI in MS, and additional statements intended to provide guidance as to what work is necessary going forward to accelerate 7T MRI research in MS and translate this technology for use in clinical practice and clinical trials. This includes guidance on technical development, proposals for a universal acquisition protocol and suggestions for research geared towards assessing the utility of 7T MRI to improve MS diagnostics, prognostics and therapeutic efficacy monitoring. The NAIMS expects that this article will provide a roadmap for future use of 7T MRI in MS.
Collapse
Affiliation(s)
- Daniel M Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Neurology, Baltimore VA Medical Center, Baltimore, MD 21201, USA
| | - Pascal Sati
- Neuroimaging Program, Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Eric C Klawiter
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sridar Narayanan
- McConnell Brain Imaging Centre, Montreal Neurological Institute-Hospital, Montreal, QC, Canada, H3A 2B4
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada, H3A 2B4
| | - Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Neurology, Nashville VA Medical Center, TN Valley Healthcare System, Nashville, TN 37212, USA
| | - Erin S Beck
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alberto Calvi
- Laboratory of Advanced Imaging in Neuroimmunological Diseases, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Hospital Clinic Barcelona, 08036 Barcelona, Spain
| | - Alessandro Cagol
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, University of Basel, 4001 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, 4001 Basel, Switzerland
- Department of Health Sciences, University of Genova, 16132 Genova, Italy
| | - Maxime Donadieu
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeff Duyn
- Advanced MRI Section, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, University of Basel, 4001 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, 4001 Basel, Switzerland
- Department of Neurology, University Hospital Basel, 4001 Basel, Switzerland
| | - Roland G Henry
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Susie Y Huang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA
| | - Michael N Hoff
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Caterina Mainero
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - David A Rudko
- McConnell Brain Imaging Centre, Montreal Neurological Institute-Hospital, Montreal, QC, Canada, H3A 2B4
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, TN 37212, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37212, USA
| | - Siegfried Trattnig
- Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Jonathan Zurawski
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rohit Bakshi
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Susan Gauthier
- Department of Neurology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Cornelia Laule
- Radiology, Pathology and Laboratory Medicine, Physics and Astronomy, International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada, BC V6T 1Z4
| |
Collapse
|
34
|
Miscioscia A, Mainero C, Treaba CA, Silvestri E, Scialpi G, Berardi A, Causin F, Anglani MG, Rinaldi F, Perini P, Puthenparampil M, Bertoldo A, Gallo P. The contribution of paramagnetic rim and cortical lesions to physical and cognitive disability at multiple sclerosis clinical onset: evaluating the power of MRI and OCT biomarkers. J Neurol 2024; 271:6702-6714. [PMID: 39155316 DOI: 10.1007/s00415-024-12622-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND In multiple sclerosis (MS), imaging biomarkers play a crucial role in characterizing the disease at the time of diagnosis. MRI and optical coherence tomography (OCT) provide readily available biomarkers that may help to define the patient's clinical profile. However, the evaluation of cortical and paramagnetic rim lesions (CL, PRL), as well as retinal atrophy, is not routinely performed in clinic. OBJECTIVE To identify the most significant MRI and OCT biomarkers associated with early clinical disability in MS. METHODS Brain, spinal cord (SC) MRI, and OCT scans were acquired from 45 patients at MS diagnosis to obtain: brain PRL and non-PRL, CL, SC lesion volumes and counts, brain volumetric metrics, SC C2-C3 cross-sectional area, and retinal layer thickness. Regression models assessed relationships with physical disability (Expanded Disability Status Scale [EDSS]) and cognitive performance (Brief International Cognitive Assessment for Multiple Sclerosis [BICAMS]). RESULTS In a stepwise regression (R2 = 0.526), PRL (β = 0.001, p = 0.023) and SC lesion volumes (β = 0.001, p = 0.017) were the most significant predictors of EDSS, while CL volume and age were strongly associated with BICAMS scores. Moreover, in a model where PRL and non-PRL were pooled, only the contribution of SC lesion volume was retained in EDSS prediction. OCT measures did not show associations with disability at the onset. CONCLUSION At MS onset, PRL and SC lesions exhibit the strongest association with physical disability, while CL strongly contribute to cognitive performance. Incorporating the evaluation of PRL and CL into the initial MS patient assessment could help define their clinical profile, thus supporting the treatment choice.
Collapse
Affiliation(s)
- Alessandro Miscioscia
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Bldg 149, 13th Street, Charlestown, MA, 02129, USA.
- Department of Neuroscience, University of Padua, Padua, Italy.
- Multiple Sclerosis Centre of the Veneto Region (CeSMuV), Padua University Hospital, Padua, Italy.
| | - Caterina Mainero
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Bldg 149, 13th Street, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, USA
| | - Constantina A Treaba
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Bldg 149, 13th Street, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, USA
| | - Erica Silvestri
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Graziana Scialpi
- Multiple Sclerosis Centre of the Veneto Region (CeSMuV), Padua University Hospital, Padua, Italy
| | - Angela Berardi
- Multiple Sclerosis Centre of the Veneto Region (CeSMuV), Padua University Hospital, Padua, Italy
| | | | | | - Francesca Rinaldi
- Multiple Sclerosis Centre of the Veneto Region (CeSMuV), Padua University Hospital, Padua, Italy
| | - Paola Perini
- Multiple Sclerosis Centre of the Veneto Region (CeSMuV), Padua University Hospital, Padua, Italy
| | - Marco Puthenparampil
- Department of Neuroscience, University of Padua, Padua, Italy
- Multiple Sclerosis Centre of the Veneto Region (CeSMuV), Padua University Hospital, Padua, Italy
| | | | - Paolo Gallo
- Department of Neuroscience, University of Padua, Padua, Italy
- Multiple Sclerosis Centre of the Veneto Region (CeSMuV), Padua University Hospital, Padua, Italy
| |
Collapse
|
35
|
Comi G, Dalla Costa G, Stankoff B, Hartung HP, Soelberg Sørensen P, Vermersch P, Leocani L. Assessing disease progression and treatment response in progressive multiple sclerosis. Nat Rev Neurol 2024; 20:573-586. [PMID: 39251843 DOI: 10.1038/s41582-024-01006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/11/2024]
Abstract
Progressive multiple sclerosis poses a considerable challenge in the evaluation of disease progression and treatment response owing to its multifaceted pathophysiology. Traditional clinical measures such as the Expanded Disability Status Scale are limited in capturing the full scope of disease and treatment effects. Advanced imaging techniques, including MRI and PET scans, have emerged as valuable tools for the assessment of neurodegenerative processes, including the respective role of adaptive and innate immunity, detailed insights into brain and spinal cord atrophy, lesion dynamics and grey matter damage. The potential of cerebrospinal fluid and blood biomarkers is increasingly recognized, with neurofilament light chain levels being a notable indicator of neuro-axonal damage. Moreover, patient-reported outcomes are crucial for reflecting the subjective experience of disease progression and treatment efficacy, covering aspects such as fatigue, cognitive function and overall quality of life. The future incorporation of digital technologies and wearable devices in research and clinical practice promises to enhance our understanding of functional impairments and disease progression. This Review offers a comprehensive examination of these diverse evaluation tools, highlighting their combined use in accurately assessing disease progression and treatment efficacy in progressive multiple sclerosis, thereby guiding more effective therapeutic strategies.
Collapse
Affiliation(s)
- Giancarlo Comi
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy.
| | | | - Bruno Stankoff
- Sorbonne Université, Paris Brain Institute, Institut du Cerveau et de la Moelle Épinière, Centre National de la Recherche Scientifique, Inserm, Paris, France
| | - Hans-Peter Hartung
- Brain and Mind Center, University of Sydney, Sydney, Australia
- Department of Neurology, Palacky University Olomouc, Olomouc, Czech Republic
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Per Soelberg Sørensen
- Department of Neurology, Danish Multiple Sclerosis Center, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Patrick Vermersch
- University of Lille, Inserm U1172, Lille Neuroscience & Cognition, Centre Hospitalier Universitaire de Lille, Fédération Hospitalo-Universitaire Precision Medicine in Psychiatry, Lille, France
| | - Letizia Leocani
- Vita-Salute San Raffaele University, Milan, Italy
- Multiple Sclerosis Center, Casa di Cura Igea, Milan, Italy
| |
Collapse
|
36
|
Klistorner S, Barnett MH, Parratt J, Yiannikas C, Klistorner A. Examining the relative contribution of slow-burning inflammation and chronic demyelination to axonal damage in chronic multiple sclerosis lesions. Mult Scler Relat Disord 2024; 90:105828. [PMID: 39208570 DOI: 10.1016/j.msard.2024.105828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/11/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND OBJECTIVES Slow-burning inflammation at the edge, and chronic demyelination at the core, of established multiple sclerosis (MS) lesions are potential mediators of disease progression. However, their relative contribution to progressive axonal damage has not been explored. Therefore, in this study, we investigated the comparative contribution of slow-burning inflammation and chronic demyelination to axonal attrition within MS lesions by measuring progressive tissue rarefaction. In addition, we use the visual system as a model to investigate the effect of chronic demyelination on the acceleration of axonal death in a sub-group of patients with unilateral optic neuritis. METHODS Pre- and post-gadolinium 3D-T1, 3D FLAIR, diffusion tensor images, Optical Coherence tomography and multifocal visual evoked potentials were acquired from 52 relapsing-remitting MS patients who completed at least 5 years follow-up. Lesion expansion was measured using custom software, and the rate of tissue rarefication inside lesion core was assessed by measuring increase of normalized mean diffusivity (nMD). Axonal loss was also examined in eyes with severe optic nerve demyelination. RESULTS Among the 361 lesions analyzed, 104 were expanding (a minimum of 4 % expansion per year) and 257 were stable. Expanding lesions showed a significantly higher rate of progressive tissue rarefication inside lesion (1.12 % per year) core compared to stable lesions (0.21 % per year, p = 0.01). The magnitude of nMD change was significantly correlated with the rate of lesion expansion (r = 0.4, p < 0.001). Analysis of retinal ganglion cells in eyes with severe optic nerve demyelination (Inter-eye latency delay of >10 ms) revealed a similar rate of axonal loss (0.19 %) to the degree of tissue rarefaction observed in stable lesions (0.21 %). DISCUSSION The results of the study suggest that the slow-burning inflammation at the lesion's edge (as measured by lesion expansion), is likely to have a greater impact on tissue damage (as measured by nMD change), when compared to stable chronically demyelinated lesions. The similar modest degree of tissue damage was also observed in chronically demyelinated fibers of the optic nerve.
Collapse
Affiliation(s)
- Samuel Klistorner
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Michael H Barnett
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia; Sydney Neuroimaging Analysis Centre, Camperdown, New South Wales, Australia
| | - John Parratt
- Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Con Yiannikas
- Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Alexander Klistorner
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
37
|
Rovira À, Pareto D. χ-Separation as a Novel MRI Biomarker for Assessing Disease Progression in Multiple Sclerosis: Divide and Conquer. Neurology 2024; 103:e209735. [PMID: 39213477 DOI: 10.1212/wnl.0000000000209735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Affiliation(s)
- Àlex Rovira
- From the Section of Neuroradiology, Department of Radiology (IDI), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Deborah Pareto
- From the Section of Neuroradiology, Department of Radiology (IDI), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
38
|
Hua LH, Solomon AJ, Tenembaum S, Scalfari A, Rovira À, Rostasy K, Newsome SD, Marrie RA, Magyari M, Kantarci O, Hemmer B, Hemingway C, Harnegie MP, Graves JS, Cohen JA, Bove R, Banwell B, Corboy JR, Waubant E. Differential Diagnosis of Suspected Multiple Sclerosis in Pediatric and Late-Onset Populations: A Review. JAMA Neurol 2024; 81:2823593. [PMID: 39283621 DOI: 10.1001/jamaneurol.2024.3062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
IMPORTANCE While the typical onset of multiple sclerosis (MS) occurs in early adulthood, 2% to 10% of cases initially present prior to age 18 years, and approximately 5% after age 50 years. Guidance on approaches to differential diagnosis in suspected MS specific to these 2 age groups is needed. OBSERVATIONS There are unique biological factors in children younger than 18 years and in adults older than age 50 years compared to typical adult-onset MS. These biological differences, particularly immunological and hormonal, may influence the clinical presentation of MS, resilience to neuronal injury, and differential diagnosis. While mimics of MS at the typical age at onset have been described, a comprehensive approach focused on the younger and older ends of the age spectrum has not been previously published. CONCLUSIONS AND RELEVANCE An international committee of MS experts in pediatric and adult MS was formed to provide consensus guidance on diagnostic approaches and key clinical and paraclinical red flags for non-MS diagnosis in children and older adults.
Collapse
Affiliation(s)
- Le H Hua
- Lou Ruvo Center for Brain Health, Cleveland Clinic, Las Vegas, Nevada
| | - Andrew J Solomon
- Larner College of Medicine at the University of Vermont, Burlington
| | - Silvia Tenembaum
- Department of Neurology, National Pediatric Hospital Dr J. P. Garrahan, Buenos Aires, Argentina
| | - Antonio Scalfari
- Centre for Neuroscience, Department of Medicine, Charing Cross Hospital, Imperial College London, London, United Kingdom
| | - Àlex Rovira
- Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Kevin Rostasy
- Children's Hospital Datteln, University Witten/Herdecke, Witten, Germany
| | - Scott D Newsome
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ruth Ann Marrie
- Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Melinda Magyari
- Danish Multiple Sclerosis Center, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Orhun Kantarci
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Bernhard Hemmer
- Department of Neurology, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Cheryl Hemingway
- Paediatric Neurology, Great Ormond Street Children's Hospital, London, United Kingdom
- Institute of Neurology, University College London, London, United Kingdom
| | | | | | - Jeffrey A Cohen
- Mellen Center for MS Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, Ohio
| | - Riley Bove
- UCSF Weill Institute for Neurosciences, University of California, San Francisco
| | - Brenda Banwell
- Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - John R Corboy
- Department of Neurology, University of Colorado, School of Medicine, Aurora
| | - Emmanuelle Waubant
- UCSF Weill Institute for Neurosciences, University of California, San Francisco
| |
Collapse
|
39
|
Bagnato F, Sati P, Hemond CC, Elliott C, Gauthier SA, Harrison DM, Mainero C, Oh J, Pitt D, Shinohara RT, Smith SA, Trapp B, Azevedo CJ, Calabresi PA, Henry RG, Laule C, Ontaneda D, Rooney WD, Sicotte NL, Reich DS, Absinta M. Imaging chronic active lesions in multiple sclerosis: a consensus statement. Brain 2024; 147:2913-2933. [PMID: 38226694 PMCID: PMC11370808 DOI: 10.1093/brain/awae013] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024] Open
Abstract
Chronic active lesions (CAL) are an important manifestation of chronic inflammation in multiple sclerosis and have implications for non-relapsing biological progression. In recent years, the discovery of innovative MRI and PET-derived biomarkers has made it possible to detect CAL, and to some extent quantify them, in the brain of persons with multiple sclerosis, in vivo. Paramagnetic rim lesions on susceptibility-sensitive MRI sequences, MRI-defined slowly expanding lesions on T1-weighted and T2-weighted scans, and 18-kDa translocator protein-positive lesions on PET are promising candidate biomarkers of CAL. While partially overlapping, these biomarkers do not have equivalent sensitivity and specificity to histopathological CAL. Standardization in the use of available imaging measures for CAL identification, quantification and monitoring is lacking. To fast-forward clinical translation of CAL, the North American Imaging in Multiple Sclerosis Cooperative developed a consensus statement, which provides guidance for the radiological definition and measurement of CAL. The proposed manuscript presents this consensus statement, summarizes the multistep process leading to it, and identifies the remaining major gaps in knowledge.
Collapse
Affiliation(s)
- Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Neurology, Nashville VA Medical Center, Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Pascal Sati
- Neuroimaging Program, Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Christopher C Hemond
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | | | - Susan A Gauthier
- Department of Neurology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Daniel M Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Neurology, Baltimore VA Medical Center, VA Maryland Healthcare System, Baltimore, MD 21201, USA
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jiwon Oh
- Division of Neurology, St. Michael’s Hospital, University of Toronto, Toronto, ON M5S, Canada
| | - David Pitt
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Endeavor, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Biomedical Image Computing and Analytics, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Seth A Smith
- Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Bruce Trapp
- Department on Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Christina J Azevedo
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90007, USA
| | - Peter A Calabresi
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Roland G Henry
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Cornelia Laule
- Department of Radiology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, OH 44195, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Nancy L Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martina Absinta
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Translational Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| |
Collapse
|
40
|
Ravano V, Andelova M, Piredda GF, Sommer S, Caneschi S, Roccaro L, Krasensky J, Kudrna M, Uher T, Corredor-Jerez RA, Disselhorst JA, Maréchal B, Hilbert T, Thiran JP, Richiardi J, Horakova D, Vaneckova M, Kober T. Microstructural characterization of multiple sclerosis lesion phenotypes using multiparametric longitudinal analysis. J Neurol 2024; 271:5944-5957. [PMID: 39003428 PMCID: PMC11377637 DOI: 10.1007/s00415-024-12568-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND AND OBJECTIVES In multiple sclerosis (MS), slowly expanding lesions were shown to be associated with worse disability and prognosis. Their timely detection from cross-sectional data at early disease stages could be clinically relevant to inform treatment planning. Here, we propose to use multiparametric, quantitative MRI to allow a better cross-sectional characterization of lesions with different longitudinal phenotypes. METHODS We analysed T1 and T2 relaxometry maps from a longitudinal cohort of MS patients. Lesions were classified as enlarging, shrinking, new or stable based on their longitudinal volumetric change using a newly developed automated technique. Voxelwise deviations were computed as z-scores by comparing individual patient data to T1, T2 and T2/T1 normative values from healthy subjects. We studied the distribution of microstructural properties inside lesions and within perilesional tissue. RESULTS AND CONCLUSIONS Stable lesions exhibited the highest T1 and T2 z-scores in lesion tissue, while the lowest values were observed for new lesions. Shrinking lesions presented the highest T1 z-scores in the first perilesional ring while enlarging lesions showed the highest T2 z-scores in the same region. Finally, a classification model was trained to predict the longitudinal lesion type based on microstructural metrics and feature importance was assessed. Z-scores estimated in lesion and perilesional tissue from T1, T2 and T2/T1 quantitative maps carry discriminative and complementary information to classify longitudinal lesion phenotypes, hence suggesting that multiparametric MRI approaches are essential for a better understanding of the pathophysiological mechanisms underlying disease activity in MS lesions.
Collapse
Affiliation(s)
- Veronica Ravano
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Geneva and Zurich, Switzerland.
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Michaela Andelova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University, Prague, Czech Republic
| | - Gian Franco Piredda
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Geneva and Zurich, Switzerland
| | - Stefan Sommer
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Geneva and Zurich, Switzerland
- Swiss Center for Muscoloskeletal Imaging (SCMI) Balgrist Campus, Zurich, Switzerland
| | - Samuele Caneschi
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Geneva and Zurich, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lucia Roccaro
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Geneva and Zurich, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jan Krasensky
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Matej Kudrna
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Tomas Uher
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University, Prague, Czech Republic
| | - Ricardo A Corredor-Jerez
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Geneva and Zurich, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jonathan A Disselhorst
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Geneva and Zurich, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bénédicte Maréchal
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Geneva and Zurich, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tom Hilbert
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Geneva and Zurich, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Jonas Richiardi
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Dana Horakova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University, Prague, Czech Republic
| | - Manuela Vaneckova
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Geneva and Zurich, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
41
|
Steinmaurer A, Riedl C, König T, Testa G, Köck U, Bauer J, Lassmann H, Höftberger R, Berger T, Wimmer I, Hametner S. The relation between BTK expression and iron accumulation of myeloid cells in multiple sclerosis. Brain Pathol 2024; 34:e13240. [PMID: 38254312 PMCID: PMC11328345 DOI: 10.1111/bpa.13240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Activation of Bruton's tyrosine kinase (BTK) has been shown to play a crucial role in the proinflammatory response of B cells and myeloid cells upon engagement with B cell, Fc, Toll-like receptor, and distinct chemokine receptors. Previous reports suggest BTK actively contributes to the pathogenesis of multiple sclerosis (MS). The BTK inhibitor Evobrutinib has been shown to reduce the numbers of gadolinium-enhancing lesions and relapses in relapsing-remitting MS patients. In vitro, BTK inhibition resulted in reduced phagocytic activity and modulated BTK-dependent inflammatory signaling of microglia and macrophages. Here, we investigated the protein expression of BTK and CD68 as well as iron accumulation in postmortem control (n = 10) and MS (n = 23) brain tissue, focusing on microglia and macrophages. MS cases encompassed active, chronic active, and inactive lesions. BTK+ and iron+ cells positively correlated across all regions of interests and, along with CD68, revealed highest numbers in the center of active and at the rim of chronic active lesions. We then studied the effect of BTK inhibition in the human immortalized microglia-like HMC3 cell line in vitro. In particular, we loaded HMC3 cells with iron-dextran and subsequently administered the BTK inhibitor Evobrutinib. Iron treatment alone induced a proinflammatory phenotype and increased the expression of iron importers as well as the intracellular iron storage protein ferritin light chain (FTL). BTK inhibition of iron-laden cells dampened the expression of microglia-related inflammatory genes as well as iron-importers, whereas the iron-exporter ferroportin was upregulated. Our data suggest that BTK inhibition not only dampens the proinflammatory response but also reduces iron import and storage in activated microglia and macrophages with possible implications on microglial iron accumulation in chronic active lesions in MS.
Collapse
Affiliation(s)
- Anja Steinmaurer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Christian Riedl
- Division of Neurochemistry and Neuropathology, Medical University of Vienna, Vienna, Austria
| | - Theresa König
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Giulia Testa
- Division of Neurochemistry and Neuropathology, Medical University of Vienna, Vienna, Austria
| | - Ulrike Köck
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Romana Höftberger
- Division of Neurochemistry and Neuropathology, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Isabella Wimmer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Simon Hametner
- Division of Neurochemistry and Neuropathology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
42
|
Stys PK, Tsutsui S, Gafson AR, ‘t Hart BA, Belachew S, Geurts JJG. New views on the complex interplay between degeneration and autoimmunity in multiple sclerosis. Front Cell Neurosci 2024; 18:1426231. [PMID: 39161786 PMCID: PMC11330826 DOI: 10.3389/fncel.2024.1426231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/14/2024] [Indexed: 08/21/2024] Open
Abstract
Multiple sclerosis (MS) is a frequently disabling neurological disorder characterized by symptoms, clinical signs and imaging abnormalities that typically fluctuate over time, affecting any level of the CNS. Prominent lymphocytic inflammation, many genetic susceptibility variants involving immune pathways, as well as potent responses of the neuroinflammatory component to immunomodulating drugs, have led to the natural conclusion that this disease is driven by a primary autoimmune process. In this Hypothesis and Theory article, we discuss emerging data that cast doubt on this assumption. After three decades of therapeutic experience, what has become clear is that potent immune modulators are highly effective at suppressing inflammatory relapses, yet exhibit very limited effects on the later progressive phase of MS. Moreover, neuropathological examination of MS tissue indicates that degeneration, CNS atrophy, and myelin loss are most prominent in the progressive stage, when lymphocytic inflammation paradoxically wanes. Finally, emerging clinical observations such as "progression independent of relapse activity" and "silent progression," now thought to take hold very early in the course, together argue that an underlying "cytodegenerative" process, likely targeting the myelinating unit, may in fact represent the most proximal step in a complex pathophysiological cascade exacerbated by an autoimmune inflammatory overlay. Parallels are drawn with more traditional neurodegenerative disorders, where a progressive proteopathy with prion-like propagation of toxic misfolded species is now known to play a key role. A potentially pivotal contribution of the Epstein-Barr virus and B cells in this process is also discussed.
Collapse
Affiliation(s)
- Peter K. Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Shigeki Tsutsui
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Arie R. Gafson
- Biogen Digital Health, Biogen, Cambridge, MA, United States
| | - Bert A. ‘t Hart
- Department of Anatomy and Neurosciences, Amsterdam University Medical Centers (location VUmc), Amsterdam, Netherlands
| | - Shibeshih Belachew
- TheraPanacea, Paris, France
- Indivi (DBA of Healios AG), Basel, Switzerland
| | - Jeroen J. G. Geurts
- Department of Anatomy and Neurosciences, Amsterdam University Medical Centers (location VUmc), Amsterdam, Netherlands
| |
Collapse
|
43
|
Ludwig N, Cucinelli S, Hametner S, Muckenthaler MU, Schirmer L. Iron scavenging and myeloid cell polarization. Trends Immunol 2024; 45:625-638. [PMID: 39054114 DOI: 10.1016/j.it.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
Myeloid cells that populate all human organs and blood are a versatile class of innate immune cells. They are crucial for sensing and regulating processes as diverse as tissue homeostasis and inflammation and are frequently characterized by their roles in either regulating or promoting inflammation. Recent studies in cultured cells and mouse models highlight the role of iron in skewing the functional properties of myeloid cells in tissue damage and repair. Here, we review certain emerging concepts on how iron influences and determines myeloid cell polarization in the context of its uptake, storage, and metabolism, including in conditions such as multiple sclerosis (MS), sickle cell disease, and tumors.
Collapse
Affiliation(s)
- Natalie Ludwig
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Stefania Cucinelli
- Department of Paediatric Hematology, Oncology, and Immunology, University of Heidelberg, Heidelberg, Germany; Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory and University of Heidelberg, Heidelberg, Germany
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria; Medical Neuroscience Cluster, Medical University of Vienna, Vienna, Austria
| | - Martina U Muckenthaler
- Department of Paediatric Hematology, Oncology, and Immunology, University of Heidelberg, Heidelberg, Germany; Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory and University of Heidelberg, Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.
| | - Lucas Schirmer
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany; Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
44
|
Mistry N, Hobart J, Rog D, Muhlert N, Mathews J, Baker D, Giovannoni G. Reconciling lesions, relapses and smouldering associated worsening: A unifying model for multiple sclerosis pathogenesis. Mult Scler Relat Disord 2024; 88:105706. [PMID: 38880031 DOI: 10.1016/j.msard.2024.105706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
The failure of relapses and white matter lesions to properly explain long-term disability and progression in multiple sclerosis is compounded by its artificial separation into relapsing remitting, secondary progressive, and primary progressive pigeonholes. The well-known epidemiological disconnection between relapses and long-term disability progression has been rediscovered as "progression independent of relapse activity", i.e. smouldering multiple sclerosis. This smouldering associated worsening proceeds despite early and prolonged use of disease modification therapies, even those that are highly effective at preventing relapses and new/enhancing white matter lesions on MRI. We recognise that smouldering associated worsening and relapse/lesion associated worsening coexist, to varying extents. The extent of cortical demyelination has been shown to correlate significantly with the severity of diffuse injury in normal appearing white matter (post mortem histopathologically (r = 0.55; P = 0.001), and in vivo with MRI (r = -0.6874; P = 0.0006)) and does so independently of white matter lesion burden. Axon loss in the normal appearing white matter explains disability in multiple sclerosis better than focal white matter lesions do. Smouldering associated worsening typically manifests as a length-dependent central axonopathy. We propose a unifying model for multiple sclerosis pathogenesis, wherein accumulation of cortical lesion burden predisposes associated normal appearing white matter to diffuse injury, whilst also intensifying damage within white matter lesions. Our novel two-hit hypothesis implicates cortical disease as a culprit for smouldering multiple sclerosis, abetted by active focal inflammation in the white matter (and vice versa). Substantiation of the two-hit hypothesis would advance the importance of specific therapeutic intervention for (and monitoring of) cortical/meningeal inflammation in people with multiple sclerosis.
Collapse
Affiliation(s)
- Niraj Mistry
- Department of Clinical Neurosciences, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
| | - Jeremy Hobart
- Peninsula Schools of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - David Rog
- Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK
| | - Nils Muhlert
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Joela Mathews
- Department of Neurology, The Royal London Hospital, London, UK
| | - David Baker
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gavin Giovannoni
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
45
|
Mahmoudi N, Wattjes MP. Treatment Monitoring in Multiple Sclerosis - Efficacy and Safety. Neuroimaging Clin N Am 2024; 34:439-452. [PMID: 38942526 DOI: 10.1016/j.nic.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Magnetic resonance imaging is the most sensitive method for detecting inflammatory activity in multiple sclerosis, particularly in the brain where it reveals subclinical inflammation. Established MRI markers include contrast-enhancing lesions and active T2 lesions. Recent promising markers like slowly expanding lesions and phase rim lesions are being explored for monitoring chronic inflammation, but require further validation for clinical use. Volumetric and quantitative MRI techniques are currently limited to clinical trials and are not yet recommended for routine clinical use. Additionally, MRI is crucial for detecting complications from disease-modifying treatments and for implementing MRI-based pharmacovigilance strategies, such as in patients treated with natalizumab.
Collapse
Affiliation(s)
- Nima Mahmoudi
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Mike P Wattjes
- Department of Neuroradiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
46
|
Xie Y, Zhang S, Wu D, Yao Y, Cho J, Lu J, Zhu H, Wang Y, Zhang Y, Zhu W. The changes of oxygen extraction fraction in different types of lesions in relapsing-remitting multiple sclerosis: A cross-sectional and longitudinal study. Neurol Sci 2024; 45:3939-3949. [PMID: 38492126 DOI: 10.1007/s10072-024-07463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVES To explore the oxygen metabolism level of different types of lesions in relapsing-remitting multiple sclerosis (RRMS) patients by oxygen extraction fraction (OEF) both cross-sectionally and longitudinally. METHODS Forty-six RRMS patients and forty-one healthy controls (HC) went MRI examination. The quantitative susceptibility mapping (QSM) and OEF map were reconstructed from a 3D multi-echo gradient echo sequence. MS lesions in white matter were classified as contrast-enhancing lesions (CELs) on post-gadolinium T1-weighted sequence, paramagnetic rim lesions (PRLs), hyperintense lesions and non-hyperintense lesions on QSM, respectively. The susceptibility and OEF of different types of lesions were compared. The susceptibility and OEF values were measured and compared among different types of lesions. Among these RRMS patients, seventeen had follow-up MRI and 232 lesions, and baseline to follow-up longitudinal changes in susceptibility and OEF were measured. RESULTS PRLs had higher susceptibility and lower OEF than CELs, hyperintense lesions, and non-hyperintense lesions. The hyperintense lesions had higher susceptibility and lower OEF than non-hyperintense lesions. In longitudinal changes, PRLs had susceptibility increased (P < 0.001) and OEF decreased (P < 0.001). The hyperintense lesions showed significant decreases in susceptibility (P = 0.020), and non-hyperintense lesions showed significant increases in OEF during follow-up (P = 0.005). Notably, hyperintense lesions may convert to PRLs or non-hyperintense lesions as time progresses, accompanied by changes of OEF and susceptibility in the lesions. CONCLUSION This study revealed tissue damage and oxygen metabolism level in different types of MS lesions. The OEF may contribute to further understanding the evolution of MS lesions.
Collapse
Affiliation(s)
- Yan Xie
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Shun Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Di Wu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Yihao Yao
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Junghun Cho
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Jun Lu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Hongquan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Yan Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
47
|
Hemond CC, Gaitán MI, Absinta M, Reich DS. New Imaging Markers in Multiple Sclerosis and Related Disorders: Smoldering Inflammation and the Central Vein Sign. Neuroimaging Clin N Am 2024; 34:359-373. [PMID: 38942521 PMCID: PMC11213979 DOI: 10.1016/j.nic.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Concepts of multiple sclerosis (MS) biology continue to evolve, with observations such as "progression independent of disease activity" challenging traditional phenotypic categorization. Iron-sensitive, susceptibility-based imaging techniques are emerging as highly translatable MR imaging sequences that allow for visualization of at least 2 clinically useful biomarkers: the central vein sign and the paramagnetic rim lesion (PRL). Both biomarkers demonstrate high specificity in the discrimination of MS from other mimics and can be seen at 1.5 T and 3 T field strengths. Additionally, PRLs represent a subset of chronic active lesions engaged in "smoldering" compartmentalized inflammation behind an intact blood-brain barrier.
Collapse
Affiliation(s)
- Christopher C Hemond
- Department of Neurology, University of Massachusetts Memorial Medical Center and University of Massachusetts Chan Medical School, Worcester, MA, USA; National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - María I Gaitán
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Martina Absinta
- Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
48
|
Monif M, Sequeira RP, Muscat A, Stuckey S, Sanfilippo PG, Minh V, Loftus N, Voo V, Fazzolari K, Moss M, Maltby VE, Nguyen AL, Wesselingh R, Seery N, Nesbitt C, Baker J, Dwyer C, Taylor L, Rath L, Van der Walt A, Marriott M, Kalincik T, Lechner-Scott J, O'Brien TJ, Butzkueven H. CLADIN- CLADribine and INnate immune response in multiple sclerosis - A phase IV prospective study. Clin Immunol 2024; 265:110304. [PMID: 38964633 DOI: 10.1016/j.clim.2024.110304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/06/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Cladribine (Mavenclad®) is an oral treatment for relapsing remitting MS (RRMS), but its mechanism of action and its effects on innate immune responses in unknown. This study is a prospective Phase IV study of 41 patients with RRMS, and aims to investigate the mechanism of action of cladribine on peripheral monocytes, and its impact on the P2X7 receptor. There was a significant reduction in monocyte count in vivo at week 1 post cladribine administration, and the subset of cells being most impacted were the CD14lo CD16+ 'non-classical' monocytes. Of the 14 cytokines measured in serum, CCL2 levels increased at week 1. In vitro, cladrabine induced a reduction in P2X7R pore as well as channel activity. This study demonstrates a novel mechanism of action for cladribine. It calls for studying potential benefits of cladribine in progressive forms of MS and other neurodegenerative diseases where innate immune related inflammation is implicated in disease pathogenesis.
Collapse
Affiliation(s)
- Mastura Monif
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Department of Neurology, Melbourne Health, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Melbourne, VIC, Australia; Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia.
| | - Richard P Sequeira
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Andrea Muscat
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Sian Stuckey
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Paul G Sanfilippo
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Viet Minh
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia; School of Nursing, Midwifery and Paramedicine, Australian Catholic University, Melbourne, VIC, Australia
| | - Naomi Loftus
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Veronica Voo
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | | | - Melinda Moss
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Vicki E Maltby
- John Hunter Hospital, Department of Neurology, New Lambton Heights, NSW, Australia; School of Medicine and Public Health, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | - Ai-Lan Nguyen
- Department of Neurology, Melbourne Health, Melbourne, VIC, Australia; Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Robb Wesselingh
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Nabil Seery
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Cassie Nesbitt
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia; Department of Neurology, Barwon Health, Melbourne, VIC, Australia
| | - Josephine Baker
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Chris Dwyer
- Department of Neurology, Melbourne Health, Melbourne, VIC, Australia
| | - Lisa Taylor
- Department of Neurology, Melbourne Health, Melbourne, VIC, Australia
| | - Louise Rath
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Anneke Van der Walt
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Mark Marriott
- Department of Neurology, Melbourne Health, Melbourne, VIC, Australia; Department of Medicine, University of Melbourne, Melbourne, VIC, Australia; Department of Neurology, Eastern Health, Melbourne, VIC, Australia
| | - Tomas Kalincik
- Department of Neurology, Melbourne Health, Melbourne, VIC, Australia; Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Jeannette Lechner-Scott
- John Hunter Hospital, Department of Neurology, New Lambton Heights, NSW, Australia; School of Medicine and Public Health, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| |
Collapse
|
49
|
Zhu Z, Zhang Y, Li C, Guo W, Chen Z, Chen W, Li S, Wang N, Chen X, Fu Y. Paramagnetic rim lesions as a biomarker to discriminate between multiple sclerosis and cerebral small vessel disease. Front Neurol 2024; 15:1429698. [PMID: 39081339 PMCID: PMC11286476 DOI: 10.3389/fneur.2024.1429698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Background Multiple sclerosis (MS) and Cerebral Small Vessel Disease (CSVD) exhibit some similarities in Magnetic resonance imaging (MRI), potentially leading to misdiagnosis and delaying effective treatment windows. It is unclear whether CSVD can be detected with Paramagnetic Rim Lesions (PRL), which is special in MS. Objective We aimed to investigate whether PRL can serve as a neuroimaging marker for discriminating between MS and CSVD. Methods In this retrospective study, 49 MS and 104 CSVD patients underwent 3.0 T Magnetic resonance imaging (MRI). Visual assessment of 37 MS patients and 89 CSVD patients with or without lacunes, cerebral microbleeds (CMBs), enlarged perivascular spaces (EPVS), white matter hyperintensity (WMH), central vein sign (CVS), and PRL. The distribution and number of PRL were then counted. Results Our study found that PRL was detected in over half of the MS patients but was entirely absent in CSVD patients (78.38 vs. 0%, p < 0.0001), and PRL showed high specificity with good sensitivity in discriminating between MS and CSVD (sensitivity: 78.38%, specificity: 100%, AUC: 0.96). Conclusion Paramagnetic Rim Lesions is a special imaging feature in MS, absent in CSVD. Detection of PRL can be very helpful in the clinical management of MS and CSVD.
Collapse
Affiliation(s)
- Zhibao Zhu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yuanyuan Zhang
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chun Li
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wenliang Guo
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhili Chen
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wei Chen
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Shaowu Li
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ning Wang
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaochun Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, China
| | - Ying Fu
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
50
|
Zeng L, Yang K, Yu G, Hao W, Zhu X, Ge A, Chen J, Sun L. Advances in research on immunocyte iron metabolism, ferroptosis, and their regulatory roles in autoimmune and autoinflammatory diseases. Cell Death Dis 2024; 15:481. [PMID: 38965216 PMCID: PMC11224426 DOI: 10.1038/s41419-024-06807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024]
Abstract
Autoimmune diseases commonly affect various systems, but their etiology and pathogenesis remain unclear. Currently, increasing research has highlighted the role of ferroptosis in immune regulation, with immune cells being a crucial component of the body's immune system. This review provides an overview and discusses the relationship between ferroptosis, programmed cell death in immune cells, and autoimmune diseases. Additionally, it summarizes the role of various key targets of ferroptosis, such as GPX4 and TFR, in immune cell immune responses. Furthermore, the release of multiple molecules, including damage-associated molecular patterns (DAMPs), following cell death by ferroptosis, is examined, as these molecules further influence the differentiation and function of immune cells, thereby affecting the occurrence and progression of autoimmune diseases. Moreover, immune cells secrete immune factors or their metabolites, which also impact the occurrence of ferroptosis in target organs and tissues involved in autoimmune diseases. Iron chelators, chloroquine and its derivatives, antioxidants, chloroquine derivatives, and calreticulin have been demonstrated to be effective in animal studies for certain autoimmune diseases, exerting anti-inflammatory and immunomodulatory effects. Finally, a brief summary and future perspectives on the research of autoimmune diseases are provided, aiming to guide disease treatment strategies.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China.
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China.
| | - Ganpeng Yu
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Junpeng Chen
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China.
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, USA.
- College of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|